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A brief critique is presented of some different classes of magnetohydrodynamic equilibrium so-
lutions based on their continuity properties and whether the magnetic field is integrable or not.
A generalized energy functional is introduced that is comprised of alternating ideal regions, with
nested flux surfaces with irrational rotational-transform, and Taylor-relaxed regions, possibly with
magnetic islands and chaos. The equilibrium states are globally continuous and smooth, and may be
constructed for arbitrary three-dimensional plasma boundaries and appropriately prescribed pres-

sure and rotational-transform profiles.

A. introduction

A fundamental requirement for magnetically confining
plasmas for fusion research is to construct configurations
for which the macroscopic forces acting on the plasma are
balanced. The simplest, non-trivial equilibrium model
considers only the pressure-gradient and Lorentz forces,
and force balance is described by

Vp=jxB, (1)

where Vp is the pressure-gradient, j is the current-
density, j =V x B, and B is the magnetic field. This
equation is sometimes referred to as the ideal force-
balance equation, and it can be derived as the Euler-
Lagrange equation for states that minimize the plasma
energy functional under ideal variations [1-3]. The en-
ergy functional and its variations will be described below.

Despite the dramatic over-simplification of plasma dy-
namics, this equation is widely used to define the equi-
librium. Indeed, it is used because of the simplicity: ac-
curate numerical evaluations for simple plasma models
are, understandably, faster than that of more compli-
cated models, and it becomes practical to compute the
hundreds of thousands of equilibria required for exper-
imental design optimization, equilibrium reconstruction
and so on, in strongly shaped, three-dimensional (3D) ge-
ometries. Furthermore, if the macroscopic forces acting
on the plasma are not at least approximately balanced,
then there is little point in considering the microscopic
forces.

Preferably, exact solutions should be elucidated, which
can be approximated with standard numerical discretiza-
tions consistent with the mathematical structure of the
solutions, and for which the numerical error will reliably
and predictably decrease with increasing numerical reso-
lution. As with all differential equations, boundary con-
ditions must be supplied to obtain a unique solution (for
sake of simplicity, this paper will ignore the possibility
of bifurcations, for which two distinct solutions may be
found for the same boundary conditions). In fact, the
correct choice of boundary conditions is crucially impor-
tant in guaranteeing the existence of well-defined solu-
tions.

There are fundamental mathematical problems with
Eqn. (1) that are associated with its elliptic and hyper-
bolic characteristics [4, 5], which this paper will not ad-
dress. The mixed ideal-relaxed equilibrium model intro-
duced below will, in the “ideal regions”, avoid the difficul-
ties associated with the real characteristics by following

Betancourt & Garabedian [6] in assuming the existence
of nested toroidal flux surfaces, which allows the equa-
tion B - Vp = 0 to be immediately solved by p = p(v),
where 1 labels the enclosed toroidal flux. In the “re-
laxed” regions, attention will be restricted to a subset of
solutions of Eqn. (1), namely linear force-free fields that
satisfy V x B = uB for constant u, and the assumption
of nested surfaces is not required.

This paper shall restrict attention to the so-called
fixed-boundary case, for which the plasma boundary is
prescribed, herein assumed to be smooth, and for which
B - n =0, where n is normal. It is, however, simple to
generalize the following to the free-boundary case, for
which a supporting “vacuum” field generated by currents
external to the plasma must be provided.

This paper shall also adopt what may be called the
“equilibrium” approach: the pressure, p(1), is to be pro-
vided and is required to not change during the calcula-
tion. Depending on the particular class of equilibrium to
be constructed, at least one other profile function must
usually be provided, such as the parallel current-density,
w(1), or the rotational-transform, ¢(¢)). The equilibrium
calculation is then to determine the magnetic field that
satisfies force balance and is consistent with the given
plasma boundary and the given profiles. Note that, typ-
ically, if the parallel current-density is specified a priori,
then the rotational-transform is only known a posteori,
and vice-versa.

The equilibrium approach is in contrast to, for ex-
ample, what may be called the “transport” approach,
whereby an initial pressure and magnetic field both evolve
dynamically in time (or iteratively) according to, for
example, the resistive, extended magnetohydrodynamic
(MHD) equations [7, 8] towards what might be called a
resistive, or “Ohmic”, steady state [9-12]. For example,
the pressure might be allowed to evolve according to an
anisotropic diffusion law, which is effectively a transport
equation. The transport approach certainly has merit
and can include additional, non-ideal physics; however,
it does not easily lend itself towards constructing an equi-
librium state with a given pressure. (See also the simu-
lated annealing method advanced by Furukawa & Mor-
rison [13], which advances an initial state according to
a modified set of equations derived from reduced MHD
with constrained Casimirs.)

Eqn. (1) implies B - Vp =0, so that the pressure is
constant along each magnetic fieldline. This constraint
has important consequences: the pressure, which is an
“input”, is intimately related to the magnetic field, which



is an “output” of the numerical calculation. A necessary
feature of equilibrium codes is to appropriately constrain
the magnetic field to ensure that intact magnetic flux
surfaces coincide with the prescribed pressure-gradients:
an equilibrium code that solves ideal force-balance must
constrain the topology of the field to be consistent with
the given pressure.

B. different classes of solution

By restricting attention to axisymmetric configura-
tions with a rotational symmetry, Vp = j x B reduces
to the Grad-Shafranov equation [14, 15]. The ignorable
coordinate guarantees the existence of solutions with in-
tegrable magnetic fields. Here, the word “integrable”
is used in the dynamical systems context [16] to refer
to magnetic fields with a continuously nested family of
“flux” surfaces that remain invariant under the magnetic
fieldline flow. Arbitrary smooth functions for the pres-
sure and current-density profiles, for example, may be
admitted.

Hereafter, this paper will consider the “three-
dimensional” case, for which the plasma boundary does
not have a continuous symmetry or an ignorable coordi-
nate, and for which the magnetic field may or may not
be integrable, depending on whether J-function current-
densities (i.e., sheet-currents) are admitted or not. Iden-
tifying computationally tractable, physically acceptable
solutions is much more complicated than in the two-
dimensional case. Since the early days of research into
magnetically confined plasma it was recognized that 3D
MHD equilibrium states may be “pathological” [17].

There are several problems that must be addressed,
depending on the class of solution that one seeks.

Solutions can be categorized as being either continu-
ous or discontinuous, either smooth or not smooth, and
with either integrable or non-integrable magnetic fields.
Identification of the continuity properties of the solution
is crucial as this determines which numerical discretiza-
tions may be employed. The continuity properties of the
solution to a differential equation are partly determined
by the continuity properties of the supplied boundary
conditions. To obtain smooth solutions, the pressure and
rotational-transform must also be smooth, but this is not
sufficient: it is also required to ensure that any singular-
ities that may be present in the differential equation are
avoided.

continuous pressure, continuous non-integrable field

It seems reasonable to seek 3D solutions with a con-
tinuous, smooth pressure and a continuous, smooth mag-
netic field. Being analogous to 1% dimensional Hamilto-
nian systems [18], continuous, smooth, 3D magnetic field-
line flows with shear are typically non-integrable [19, 20],
possessing a fractal mix of (i) invariant surfaces known
as KAM surfaces [21, 22], which have “sufficiently irra-
tional” rotational-transform, (ii) magnetic islands, which
appear where the rotational-transform is rational, and
(iii) chaotic “irregular” fieldlines, which are associated
with the unstable manifolds of the periodic fieldlines
and ergodically fill a highly non-trivial volume. (Note

that a magnetic vector field may be a smooth func-
tion of position, B(x + dx) ~ B(x) + VB(x) - §x, but
the magnetic fieldlines may be chaotic/irregular.) From
B-Vp=0, it follows that any non-trivial, continuous
pressure consistent with such a field must also be fractal,
with Vp = 0 across the chaotic volumes and with non-
zero, finite pressure-gradients at a non-zero measure of
KAM surfaces. The KAM surfaces nowhere densely fill a
finite volume, and thus an uncountable infinity of discon-
tinuities in the pressure-gradient must arise. Solutions
with an infinity of discontinuities are intractable from a
numerical perspective. Discontinuities in the pressure-
gradient drive discontinuities in the current-density, and
the magnetic field is not smooth.

Given an arbitrary, non-integrable magnetic field, it
is a highly non-trivial problem to determine the fractal
topological structure of the magnetic fieldlines. Which
irrational surfaces survive 3D perturbations depends in
part on how “irrational” the rotational-transform is and
how the system is perturbed from integrability. Indi-
vidual KAM surfaces can be identified (with significant
computational cost) using Greene’s residue criterion [23];
however, no-one has yet, to the authors’ knowledge, de-
scribed how to determine the measure of phase-space
that is occupied with KAM surfaces for a given, non-
integrable field.

It is the inverse of this task that is required for the
equilibrium approach: one must first provide a continu-
ous pressure-profile with a fractally discontinuous gradi-
ent, and then appropriately constrain the representation
of the non-integrable magnetic field to be topologically
consistent with this given profile, i.e., to ensure that the
flux surfaces coincide with the pressure-gradients.

It is quite difficult to work with explicity fractal func-
tions. For example, consider the pressure-gradient pro-
file defined by the Diophantine condition, which plays a
prominent role in KAM theory and thus also in deter-
mining the structure of non-integrable magnetic fields,

(@) = { —1 , if |z —n/m| > d/mF, ¥n,m, )

0 , otherwise,

where d > 0 and k > 2. The pressure-gradient
is zero in a nomn-zero neighborhood of all rationals,
2 =n/m. This function is not Riemannian-integrable.
A standard discretization to compute the pressure on
axis, with p(1) =0, given by p(0) = Zfilp'(a:i)Ax,
where x; = i/N and Az = 1/N, fails spectacularly, as do
higher-order quadratures that are based on regular grids.

To approximate such “fractal” equilibria with non-
integrable magnetic fields, a more reliable approach is
to first provide well-defined, non-fractal pressure and
rotational-transform profiles, that in turn provide a well-
defined, non-fractal equilibrium that can be approxi-
mated with standard numerical discretizations to arbi-
trary accuracy; and then to consider the limiting proper-
ties of a sequence of such equilibria as the pressure and
rotational-transform profiles approach fractals. We shall
return to this idea later.

continuous pressure, continuous integrable field

Instead of admitting equilibria with non-integrable
fields, an alternative is seek solutions with a contin-



uous, smooth pressure and continuous, smooth, inte-
grable magnetic fields [24-27]. Such fields, having con-
tinuously nested flux surfaces, presumably are consistent
with smooth pressure and transform profiles; however,
unphysical currents arise near the rational rotational-
transform surfaces.

The perpendicular current-density consistent with
Eqn. (1) is j. = B x Vp/B?. By enforcing V-j =0,
with j = 0B 4+ j., a magnetic differential equation then
determines the parallel current, B - Vo = -V - j;.
Magnetic differential equations are densely singular,
and thus are intractable numerically. For integrable
fields, straight fieldline coordinates, x(1,6,(), can be
constructed and the magnetic field can be written
B = V¢ x VO + ¢t(¥)V( x Vip. The Fourier harmonics
of o must satisfy [2§]

Tm,n
where A,,, is an as-yet undetermined constant and
x(1p) = me(p) — n. The Jacobian satisfies 1/,/g = B-V(.

The J-function current-density is just a mathematical
approximation of localized currents, and is acceptable in
a macroscopic, perfectly conducting ideal-MHD model.
(For example, the current-density associated with a fi-
nite current passing along a very thin strand of super-
conducting wire is extremely well-approximated by a o-
function.) Including d-functions in the current-density
will result in a non-smooth magnetic field.

The 1/x singularity is far more problematic. For
a special choice of straight fieldline angles, namely
Boozer coordinates [29, 30], the magnetic field may be
written B = (¢, 0,¢¥)Vy + I(¢¥)VO + G(¢)V{, so that
1/B? = \/g/(G + +I), and

p’\/gjm (I —mG)

VIV Jimn = =" (&)

The magnitude of \/gmvn may be considered to be an
“output” quantity: it is determined by the geometry of,
and the tangential magnetic field on, the rational sur-
faces, both of which are determined by the magnetic field.
For an arbitrary boundary, there is no apparent a prior:
control over the geometry of the internal flux surfaces.

Assuming the pressure satisfies p(x) ~ p + p'z +
p"x?/2+. .., the current through a cross-sectional surface
bounded by z =€ and z =4, and § =0 and 0 = 7/m,
associated with the resonant harmonic of the parallel
current-density described by Eqn. (3) is

~ 2i(nf —mG) p,\/gm,n
m (G +¢l) &

(Ind —Ine), (5)

where all terms are evaluated at the rational surface.
This approaches infinity as € approaches zero.

This shows that there are cross-sectional surfaces close
to every rational surface through which the total cur-
rent is infinite, and this is unphysical. To guarantee such
problems are avoided, and assuming that there are no re-
strictions on \/§m’n, the pressure-gradient must be zero
on each rational surface. The next order term for the cur-
rent through the cross-sectional surface is proportional to
p’"(6 — €), and so we must require that p” < oco. For any
system with shear the rational surfaces densely fill space,

and so either the pressure-profile is trivial, with p’ = 0
everywhere, or the pressure-gradient must be discontin-
uous.
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FIG. 1: Piecewise-constant, discontinuous pressure-profile

(above), and discretely defined, strongly irrational rotational-
transform profile (below), with some low-order island chains
for illustration.

There is another possibility: rather than flattening the
pressure to avoid the logarithmic infinities in the parallel
current, one may restrict attention to so-called “healed”
configurations, for which the resonant harmonic of the
Jacobian, \/§m7n, vanishes at each resonant surface [31-

33]. Such a condition could only be satisfied for a re-
stricted class of 3D plasma boundaries.

There is another problem with ideal-MHD equi-
libria with integrable magnetic fields and rational
surfaces, which is frequently over-looked: the so-
lutions are mnot analytic functions of the boundary.
The equation describing the first-order plasma dis-
placement, under the constraints of ideal-MHD, in-
duced by a small deformation to the boundary is
Lol€) = 33l€] x B+j x 0BJ¢] — Voplg] = 0. (Expres-
sions relating the perturbed field, 0B, and pressure, dp,
to ideal plasma displacements are given below.) As dis-
cussed by Rosenbluth et al. [34], this is a singular equa-
tion, and the perturbed surfaces overlap and perturba-
tion theory breaks down. The problem of non-analyticity
lead Rosenbluth et al. [34] to consider a nonlinear treat-
ment of 3D “kink” states, and this analysis has recently
been revisited in the context of understanding the effect
of resonant magnetic perturbations (RMPs) in tokamak
plasmas [35].



discontinuous pressure, discontinuous non-integrable
magnetic field

Discontinuous and non-smooth solutions to differential
equations are not a problem per se. Well-defined equi-
librium solutions with a finite number of discontinuities
have been introduced. In 1996, stepped-pressure equilib-
rium states were introduced by Bruno & Laurence [36],
and theorems were provided that guarantee the existence
of such equilibria, provided the 3D deviation from ax-
isymmetry was sufficiently small. These configurations
were recognized as extrema of the multi-region, relaxed
MHD (MRxMHD) energy functional that was later intro-
duced by Dewar and co-workers [37-41]. Example pro-
files are shown in Fig. 1.

Stepped-pressure equilibria can be thought of as be-
ing comprised of a finite number of nested Taylor states
[42, 43], in each of which the pressure is flat and the field
satisfies a Beltrami equation, V x B = yB with constant
1. The constraints of ideal-MHD are not continuously en-
forced; and this eliminates the problem of non-analyticity
at the rational surfaces. The magnetic field may recon-
nect, i.e., the topology is not constrained, and magnetic
islands will generally open at resonances; and where is-
lands overlap fieldline chaos can emerge. For such “ir-
regular” fieldlines, the rotational-transform is not well-
defined.

The discontinuities in the pressure in the stepped-
pressure equilibria coincide with a finite set of “ideal-
interfaces”, Z;, with strongly irrational rotational-
transform, that separate adjacent Taylor states.
(Strongly irrational numbers may, for example [40], be
simply expressed as + = (p1 + yp2)/(¢1 + 7 ¢2), where
v = (1 ++/5)/2 is the golden mean and p;/q; and py/qo
are neighboring rationals [20].) On these interfaces, the
magnetic field is constrained to remain tangential, and
the discontinuities in the pressure are balanced by discon-
tinuities in the field strength, so that the “total pressure,”
P = p+ B?/2, is continuous across the Z;. The existence
of tangential discontinuities in B implies the existence
of sheet-currents. Stepped-pressure states, or MRxMHD
states as they are also called, are almost-everywhere re-
laxed but include a discrete set of (zero-volume) ideal
interfaces.

continuous pressure, discontinuous integrable magnetic field

Another class of discontinuous solutions, which are
globally ideal, was introduced recently by Loizu, Hudson
et al. [44], namely stepped-transform equilibria: equilib-
ria with continuously nested flux surfaces with discontin-
uous rotational-transform. These were introduced after
investigations [45] into the 1/z and d-function current-
densities in ideal-MHD equilibria with integrable fields
revealed the necessity to enforce infinite shear, ¢ = oo,
at the rational surfaces in order to obtain consistent
solutions. Effectively, the rational surface is removed
from the equilibrium, and the non-integrable current-
densities are avoided. Stepped-transform states can self-
consistently support globally smooth, arbitrary pressure-
profiles. Removing the rational surfaces also removes the
problem of non-analyticity, provided the discontinuities
in the rotational-transform across the rationals exceeds a
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FIG. 2: Arbitrary, smooth pressure-profile (above),

and piecewise-constant, strongly irrational, discontinuous
rotational-transform profile (below). No island chains are ad-
mitted.

minimum value — the sine qua non condition [44] — for
which analytic estimates were provided. The discontinu-
ities in the rotational-transform imply discontinuities in
the tangential magnetic field, and so sheet-currents must
also exist in these solutions.

The original investigation [44] of these stepped-
transform states was restricted to cylindrical geometry,
with only one resonant deformation, and so only one ra-
tional surface was of concern, and so only one disconti-
nuity in the rotational-transform profile was required to
eliminate the pathologies. In the general case with an ar-
bitrary 3D boundary, every rational surface would gener-
ally result in unphysical currents. It is easy to generalize
the concept to define equilibria with piecewise-constant
rotational-transform, for which the rotational-transform
is everywhere strongly irrational, and for which there is
a finite collection of discontinuities/sheet-currents. Ex-
ample profiles are shown in Fig. 2.

Both the stepped-pressure and the stepped-transform
classes of equilibria possess sheet-currents and discontin-
uous magnetic fields. This is acceptable within a macro-
scopic, ideal MHD context; and also from a mathemat-
ical perspective, as a finite set of discontinuities is easy
to accommodate numerically. The discontinuities in the
magnetic field may create difficulties for subsequent cal-
culations, gyrokinetic calculations of transport for exam-
ple.

In this paper, a new class of well-defined, numeri-
cally tractable, non-fractal equilibria that allow for non-
integrable magnetic fields is introduced that are continu-
ous and smooth, i.e. for which there are no sheet-currents.
These states are a combination of the piecewise-constant



rotational-transform equilibria with nested flux surfaces
and smooth pressure-profiles, and the piecewise-constant
pressure equilibria with, generally, magnetic islands and
chaotic fieldlines.

C. combined ideal-relaxed energy functional

The new equilibrium states are comprised of alternat-
ing ideal and relaxed regions and are extrema of the
mixed ideal-relaxed energy functional, as will now be de-
scribed. Restricting attention to toroidal configurations,
the plasma volume is partitioned into N sub-regions, R,
i =1,.., N, and we denote the toroidal boundaries sepa-
rating the sub-regions by Z;. The magnetic axis (or axes)
lies in Ry, which is a toroid and is bounded by Z;. For
i =2,..,N the R; are annular, and OR; = Z;_1 UZ;. The
outermost boundary, Zy, is coincident with the plasma
boundary. On each of the Z; the magnetic field is con-
strained to be tangential, B-n =0. In each R;, the
plasma energy [2] is

W, = /R<7pil + B;) dv. (6)

The equilibrium states minimize W; in each volume with
respect to variations in the pressure and the magnetic
field, but with suitable constraints imposed so as to avoid
trivial solutions, and with respect to deformations in the
internal boundaries, i.e. the Z; for i = 1, N — 1.

In the ideal regions we restrict attention to integrable
magnetic fields, with nested flux surfaces, which may
be labeled by the enclosed toroidal flux. The equa-
tion of state, di(p/p?) =0, where dy =0, +v-V and
v is the “velocity” of an assumed plasma displace-
ment, v = 0:£, may be combined with mass conserva-
tion, dyp+ V - (pv) = 0, to obtain an equation that re-
lates the ideal variation in the pressure to the plasma
displacement, ép=(y—1)&-Vp—~V-(p€). Varia-
tions in the magnetic field are related to & by Fara-
day’s law, 0,B=V x E, and the ideal Ohm’s law,
E + v x B =0, where E is the electric field, and we write
0B =V x (¢ x B). Note that this last constraint does
not allow the topology of the field to change. The first
variation of W; is

oW; = / (Vp—j ><B)~£dv—/ (p+ B?%/2)&-ds. (7)
R; R,

In the Taylor-relaxed regions, the variations in the field
and pressure are not related to (internal) plasma displace-
ments. The mass and entropy constraints do not apply to
individual fluid elements but instead to the entire volume,
and the constraint on the pressure is p;V,” = a;, where
V; is the volume of R; and a; is a constant. The inter-
nal energy in R; is [, pi/(y —1)dv = a; VA (v = 1),
and the first variation of this due to a deformation, &,
of the boundary is —p fBRi & - ds. The variation of the
magnetic field is arbitrary, 0B = V x JA, except for (i)
constraints on the enclosed toroidal and poloidal fluxes,
;= [pA-dland ¥, ; = [, A -dl, where P and T are
suitable poloidal and toroidal loops; and (ii) conservation
of the global helicity in each relaxed region,

HiE/A-Bd’U, (8)
Ri

and (iii) the constraint that B-n =0 on dR;. Much
can be said about the helicity constraint [42, 43, 46, 47],
and we refer the interested reader to the recent paper by
Moffat [48].

The flux constraints can be enforced by constraining
the representation for the vector potential, and the helic-
ity constraint can be enforced by introducing a Lagrange
multiplier, u. The constrained energy functional in the
relaxed regions is

Fi=W; — % (H; — H;p) 9)

Note that if R; is the innermost, toroidal region, the
poloidal flux is not defined and only the constraints on
the helicity and toroidal flux are required.

The first variation is

0F; = / (VxB—uB)-éAdv—/ (p+B?/2) &-ds, (10)
Ri R,
where A = £ x B has been used on the Z;.
The total constrained energy functional for the ideal-
relaxed plasma is

F=) Wi+) F, (11)

iel jeJ

where, for  example, I1={1,3,5,...} and
J={2,4,6,...}, which makes the innermost vol-
ume an ideal region. Alternatively, a relaxed region may
be assumed for the innermost volume, in which case
I={2,4,6,...} and J ={1,3,5,... }.

The Euler-Lagrange equations for extremizing states
are as follows: in the ideal regions we have Vp = j x B, in
the relaxed regions we have p = const. and V x B = uB,
and across the Z; we have [[p + B?/2]] = 0. Note that
fields that satisfy V x B = uB also satisfy Vp =j x B,
somewhat trivially, with Vp = 0, so these mixed ideal-
relaxed states globally satisfy Vp =j x B.

Having presented a combined ideal-relaxed energy
functional and derived the Euler-Lagrange equations gov-
erning extremal states, there are some subtleties concern-
ing the prescribed pressure and rotational-transform that
must be addressed to eliminate the formation of sheet-
currents. We seek solutions that are globally smooth; so
the pressure and the pressure-gradient in each ideal re-
gion at each Z; must match that in the adjacent relaxed
regions, where the pressure-gradient is zero. To avoid
the non-integrable current-densities described above, ra-
tional surfaces must be avoided in the ideal regions; so in
the ideal regions we restrict attention to magnetic fields
of the form B = Vi x VO + +;V({ x Vi, where ¢; is a
strongly irrational constant.

Because of the possibility of reconnection and the for-
mation of islands and irregular fieldlines, the rotational-
transform may not be globally defined in the relaxed re-
gions. It is well-defined on the Z;, which, because of the
constraint B - n = 0, remain as intact flux surfaces. How-
ever, if the Beltrami field is to be defined by prescribing
the enclosed toroidal and poloidal fluxes and the helicity,
the rotational-transform on the Z; is a priori unknown,
and must be computed a posteori. We cannot a priori
guarantee that an initial selection for Ay ;, A, ; and H;
is consistent with the existence of continuous rotational-
transform across the Z;. It will generally be required to
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FIG. 3: Globally smooth, locally flattened pressure-profile
(above), and piecewise-constant strongly irrational, piecewise-
a priori-unknown rotational-transform profile (below). Is-
lands are only allowed in the relaxed regions.

iterate on the parallel current-density — more formally,
to iterate on Ay, ; and H; o — in the relaxed regions
to obtain the desired (single-valued) rotational-transform
profile on the adjacent Z;.

We thus have described an equilibrium with a glob-
ally smooth pressure-profile with “flattening” across the
rational surfaces, and with a piecewise-flat, piecewise-
a priori-unknown rotational-transform profile. Smooth
pressure-gradients are supported in the ideal regions,
which are filled with flux surfaces with a constant,
strongly irrational rotational-transform. Magnetic is-
lands and chaotic fieldlines are allowed in the relaxed
regions, in which the pressure-gradient is zero, the
rotational-transform may or may not be defined, and
j-B/B? = p; is a constant. Example profiles are shown
in Fig. 3.

We make some brief comments regarding a possible
numerical construction that is a combination of the al-
gorithms already implemented in the VMEC [25, 26]
and SPEC [40] codes. In the ideal regions, given the
representation B = Vi x VO + ¢,V x V1), the numer-
ical task amounts to finding the coordinate interpola-
tion, x(v, 0, (), between the Z; that minimizes W;. This,
essentially, is the approach adopted in VMEC [25, 26].
In the relaxed regions, by using a suitable gauge for
the magnetic vector potential the magnetic can be rep-
resented as B =V x (4pV0 + A:V(), and the numeri-
cal task amounts to finding the functions Agy(s, 0, () and
Ac(s,0,¢) that extremize F;, with suitable constraints
imposed to enforce the boundary conditions that B-n = 0
on the Z; and the flux constraints, and where x(s, 6, ()
is an arbitrary coordinate interpolation between the Z;.

This is the approach adopted in SPEC [40]. After com-
puting the magnetic fields in each R;, the geometry of
the Z; must be adjusted (and the fields in each region
recomputed) to satisfy continuity of the total pressure,
P =p+ B?/2, across the Z;.
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FIG. 4: Similar to Fig. 3, but with Ny = 129 ideal and relaxed
regions. The insets show the detailed structure.

This paper does not consider whether continuous,
smooth solutions introduced herein are preferable to the
discontinuous solutions with sheet-currents. Ultimately,
the question of which class of equilibria best models
observations may only be answered by validation. To-
wards this goal, it is certainly interesting to note that
the pressure-profile shown in Fig. 3 bears a striking re-
semblance to pressure-profiles constructed by Ichiguchi
et al. [49, 50], who demonstrated that equilibria with
flattened pressure across the rational surfaces seems to
account for some experimental observations in the LHD
experiment.

The smooth solutions can approximate both classes
of discontinuous solutions, namely those with discontin-
uous pressure and those with discontinuous rotational-
transform, simply by letting the volume of the ideal or
relaxed regions reduce to zero as desired. This can be
enforced by constraining the toroidal flux in the appro-
priate regions.

Also, the number of volumes can become arbitrarily
large. In practice, any acceptable pressure and transform
profiles can be well approximated. Examples of what
appear to be “fractal” profiles are shown in Fig. 4.

We may expect that there will be a minimum allowed
value for the jumps in the rotational-transform across
the relaxed volumes that are similar to the sine qua non
condition described by Loizu, Hudson et al. [44]. This
condition is required to ensure that linear perturbation
theory does not result in overlapping geometry, i.e., that



the solutions are analytic functions of the 3D boundary.
We intend to explore this in future work.
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