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Seeded QED cascades in counterpropagating laser pulses
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The growth rates of seeded QED cascades in counterpropagating lasers are calculated with first-principles
two- and three-dimensional QED-PIC (particle-in-cell) simulations. The dependence of the growth rate on the
laser polarization and intensity is compared with analytical models that support the findings of the simulations.
The models provide insight regarding the qualitative trend of the cascade growth when the intensity of the laser
field is varied. A discussion about the cascade’s threshold is included, based on the analytical and numerical
results. These results show that relativistic pair plasmas and efficient conversion from laser photons to γ rays can
be observed with the typical intensities planned to operate on future ultraintense laser facilities such as ELI or
Vulcan.

DOI: 10.1103/PhysRevE.95.023210

I. INTRODUCTION

The process of electron-positron pair creation from photon
decay has been known since the early 1930s, but only
the striking E-144 SLAC experiment [1,2] first demon-
strated the possibility of producing matter directly via
light-by-light scattering. The limits of the laser technology
(I ∼ 1019 W/cm2) at the time constrained the experiments to
use the ultrarelativistic SLAC electron beam in order to reach
the quantum electrodynamic (QED) regime necessary for the
observation of pair production. The recent spectacular rise in
laser intensities, accompanied by the ongoing construction of
new laser facilities such as ELI [3] or the Vulcan 20 PW Project
[4], will place intensities above 1023 W/cm2 within reach, thus
allowing for the exploration of new physics regimes [5]. Dif-
ferent laser configurations that have been envisaged to lower
the intensity threshold [6] in order to observe Schwinger-like
pair creation but prolific vacuum pair production require higher
intensities than those mentioned earlier. Therefore, one ought
to consider pair creation through the decay of high-energy
photons in intense fields. This process usually leads to QED
cascades, as the pairs created reemit hard photons that decay
anew in pairs, eventually resulting in an electron-positron-
photon plasma. QED cascades, also known as electronic or
electromagnetic showers [7–10] when the external field is
purely magnetic, have been studied theoretically in different
electromagnetic configurations [11–14]. Notably, Bell and
Kirk [15] suggested a judicious configuration comprising
two circularly polarized counterpropagating lasers with some
electrons in the interaction region to seed the cascade. They
predicted prolific pair production for intensities approaching
1024 W/cm2 for a μm wavelength laser. Recently, several
groups [16–18] have pioneered the investigation of such
cascades in a counterpropagating laser setup with particle-
in-cell (PIC) simulations in which QED phenomena such as
photon emission and pair creation have been added. In this
paper, we intend to determine qualitatively the conditions
under which driven cascades operate. We resort to two-
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and three-dimensional (2D and 3D) QED-PIC simulations
to calculate their associated growth rates for different laser
polarizations and for a wide range of intensities. The numerical
results are then compared to an analytical model in two
asymptotic limits. This model paves the way for determining
the optimal conditions to generate dense electron-positron
plasmas in the laboratory.

II. SIMULATIONS

Our exploration relies on a QED module, part of our PIC
code OSIRIS 3.0 [19], which includes real photon emission from
an electron or a positron, and the decay of photons into pairs,
i.e., the Breit-Wheeler process. The differential probability
rates describing these processes can be found in [10,20–23].
The implementation of such a module has already been
described in detail elsewhere [16,24–28]. Many QED-PIC
simulations have been performed in order to benchmark our
module with previous results [16,17,24,26,29]. The exponen-
tial growth in the number of PIC particles, which is a critical
numerical issue, is sorted out with the use of a novel particle-
merging algorithm [30] that resamples the 6D phase space
with different weighted macroparticles, allowing parameter
scans in two and three dimensions. The algorithm preserves
the total energy, momentum, and charge as well as the particle
phase-space distribution, whereas previous attempts to merge
particles were only focused on the conservation of some of the
physical quantities [31–33].

To motivate our discussion, we first present simulations
in which we have explored three configurations of colliding
laser pulses whose polarization can either be linear or circular.
The three-dimensional development of the cascade is shown
in Fig. 1 for a different configuration. By examining the
geometry of the standing waves, we can develop an intuitive
picture of how the particles are accelerated, and hence
we can predict which configuration will be optimal. For
a given a0, the optimal configuration consists in favoring
the maximal pair growth and hence determining which
field configuration offers on average the highest values of

χ = (eh̄/m2c3)
√

(γ �E + �u × �B)2 − (�u · �E)2 with �u = �p/mc.
It should be emphasized that radiation reaction in intense fields
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FIG. 1. 3D PIC simulation snapshot of QED cascades for (a) setup 1 with a0 = 1000 at t = 90ω−1
0 , (b) setup 2 with a0 = 1300 at t = 80ω−1

0 ,
and (c) setup 3 with a0 = 2000 at t = 46ω−1

0 . The laser pulses are shown through isocontours of the electromagnetic energy. The particles
displayed represent only a small fraction of the simulation particles.

modifies the orbits of particles [34] and can lead to anomalous
radiative trapping [35], which we omit in the following analysis
but which is self-consistently captured in our simulations.

Setup 1 (lp-lp) consists of two linearly polarized lasers
where the phase and polarization are defined by

�a± = (0,a0 cos(ω0t ± k0x),0), (1)

where “−” and “+” denote, respectively, a wave prop-
agating in the positive and in the negative x direction.
a0 = eE0/mω0c is the Lorentz-invariant parameter, related
to the intensity I by a0 = 0.85(I [1018 W cm−2]λ2

0 [μm])1/2,
and E0 is the peak electric field strength (which will be
expressed is units of mω0c/e in the following, such that
Ẽ0 = eE0/mω0c = a0). This results in a standing wave where
Ey = 2a0 cos(k0x) sin(ω0t) and Bz = −2a0 sin(k0x) cos(ω0t);
the electric and magnetic fields of the standing wave have a
fixed direction. In addition, �E ⊥ �B and there is a π/2 phase
offset between �E and �B both in space and time. This suggests
that the dynamics of the particles in the standing wave might
be dominantly affected by the electric or the magnetic field
depending on the phase within the temporal cycle [17,34].
The electric field accelerates electrons in the y direction,
the magnetic field Bz can rotate the momentum vector and
produce also px , and the orbits are confined in the x-y plane;
see Fig. 1(a). The existence of the px component ensures
that there is a perpendicular momentum component to both
�E and �B. Rotating the momentum vector toward higher px

gradually increases χe until a photon is radiated. This photon
then propagates and can decay far from the emission point. For
a particle born at rest, χe oscillates approximatively twice per
laser period with a maximum on the order of 2a2

0/aS , where
aS = mc2/h̄ω0 is the normalized Schwinger field [36]. The
cascade develops mostly around the bunching locations (two
per wavelength, which corresponds to the moment of rotation
or high χ ) and is characterized by a growth rate that possesses
an oscillating component at 2ω0.

Setup 2 (cw-cw) is composed of two clockwise circularly
polarized lasers defined by

�a± = (0,a0 cos(ω0t ± k0x), ±a0 sin(ω0t ± k0x)), (2)

where a0 = 0.6(I [1018 W cm−2]λ2
0 [μm])1/2. In addition to

the Ey and Bz components that are the same as for the
lp-lp case, we also have Ez = 2a0 sin(k0x) sin(ω0t) and By =
−2a0 cos(k0x) cos(ω0t). For any x, both �E and �B are parallel

to the vector �e(x) = (0, cos x, sin x). The direction of the fields
depends on the position, but the amplitude of both �E and �B
is only a function of time, which results in a helical field
structure growing or shrinking uniformly in space ( �E and �B
are dephased by π/2 in space). Contrary to the lp-lp setup,
this configuration does not produce px for particles born at
rest since at each position both �E and �B are parallel to the
momentum at all times, and significant χe cannot be achieved.
Reaching high values of χe is, however, possible for particles
that are not at rest initially. If an external perturbation provides
a transverse momentum px (e.g., the initial ponderomotive
force due to the laser pulse envelope), the particle can move
along the x axis and leave the region where the fields remain
parallel to the momentum kick acquired at the initial position.
In this way, the value of χe is increased, and so is the
probability of radiating hard photons. The decay of hard
photons produces pairs that will possess either an initial
transverse or longitudinal momentum component, and the
cascade will naturally develop. A crude analysis shows that
the maximal χe attainable is on the order of 2a0γ0/aS (γ0

being the initial energy of the particle when created). All x

positions have equivalent probabilities to initiate a cascade
because only the azimuthal angle of the field changes along
the x axis. Therefore, the cascade shall develop over the entire
wavelength.

Setup 3 (cw-cp) is formed by a clockwise and a counter-
clockwise polarized laser:

�a± = (0,a0 cos(ω0t ± k0x), −a0 sin(ω0t ± k0x)), (3)

where a0 = 0.6(I [1018 W cm−2]λ2
0 [μm])1/2. The components

Ey and Bz are the same, but Ez = 2a0 cos(k0x) cos(ω0t) and
By = −2a0 sin(k0x) sin(ω0t). The magnitude of the field vec-
tors is constant in time (| �E| = 2a0 cos x and | �B| = 2a0 sin x),
whereas the direction changes. In this case, �E|| �B, and their
direction �e(t) = (0, cos t, sin t) does not depend on space,
which results in a fixed planar beating pattern that rotates
around the laser propagation axis. This setup consists in a
rotating field structure, and the dynamics of the particles has
already been studied [15,26,37]. The advantage lies in the
direction of the fields, which is constantly changing, and the
particles are not required to move in x to enter a region where
�E and �B are perpendicular to their momentum. For similar p⊥,
the χe is on the same order regardless of the x position, so we
could expect the cascade to grow everywhere with the same
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probability. However, the particle acceleration is stronger in the
regions of high electric field, so the highest electron momenta
are obtained where the electric field is maximum. This then
leads to higher χe, and the cascade develops favorably in the
region of strong electric field (precisely in the node where
B = 0 [15]), producing a plasma wheel as shown in Fig. 1(c).
At this particular position, the parameter χe can reach a
maximal value of 2a2

0/aS [26].
From the description of the three configurations, it seems

clear that the second setup can be considered nonoptimal in
view of the low values of χe. Rigorously, setup 1 can produce
the highest values of χe (χe > 2a2

0/aS) but only for particles
born in a specific phase of the standing wave. The majority of
the particles are sloshing back and forth between the electric
and magnetic zone, which results in lower average χe in
comparison with setup 3. The efficiency of the cascade setups
can be more accurately assessed by computing its growth rate
�. We measure the growth rate in simulations, and we compare
it to the analytical prediction when possible. As a matter of
fact, a full analytical treatment is not always possible due to the
complexity of the stochastic orbits in the standing wave. We
introduce here models that allow us to retrieve the asymptotic
limit of the growth rate.

III. CASCADE MODELS

A. Ideal model

For a collection of identical photons nγ , whose probability
rate to decay into a pair is given by Wp, the number of pairs
created after a time t is np = nγ (1 − e−Wpt ). If the photons
originate from a source that emits constantly at a rate Wγ , we
get np = ∫ t

0 dt ′Wγ (1 − e−Wp(t−t ′)). The rate of created pairs is
then

dnp

dt
=

∫ t

0
dt ′Wγ Wpe−Wp(t−t ′). (4)

If the source of the emitted photons is the pairs, the number
of photons created during a time dt ′, being 2dt ′Wγ , has to be
multiplied by the current number of pairs, np(t ′). The rate of
pairs is now

dnp

dt
= 2

∫ t

0
dt ′np(t ′)Wγ Wpe−Wp(t−t ′). (5)

This equation can be solved using the Laplace transform.
Defining the Laplace variable as s, Eq. (5) becomes

n̂(s) = n(0)

s − 2Wγ Wp

s+Wp

. (6)

The behavior of np, defined as the inverse Laplace transform
of n̂, depends at late times, t � W−1

γ ,W−1
p , on the contribution

of the singularities of n̂. These singularities are the roots of the
polynomial s2 + Wps − 2Wγ Wp = 0 that admits a positive
and a negative solution,

s± = Wp

2

(
−1 ±

√
1 + 8

Wγ

Wp

)
, (7)

where the positive solution s+ is consistent with the result
derived by Bashmakov [17]. A pole at s± gives a contribution
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FIG. 2. Electron energy distribution function at different times
for a0 = 500 in the case of a pure uniform rotating field. The energy
distribution is shown at three different times: red solid line at ω0t =
20, black dash-dotted line at ω0t = 26.3, and blue dashed line at
ω0t = 32.5.

scaling as es±t , thus the function np(t) grows exponentially
with a growth rate � = s+. It is interesting to look at how
the growth rate depends on the characteristic rate as the ratio
r = Wγ /Wp between them evolves,

� �

⎧⎪⎨
⎪⎩

2Wγ if r � 1,

Wp ∼ Wγ if r ∼ 1,√
2Wγ Wp if r � 1.

(8)

B. Rotating-field model

The case of a uniform rotating electric field constitutes a
good approximation of the standing-wave field produced in
setup 3 [15]. The advantage of this setup is that the cascade
develops mostly in one spot, x = 0, which allows us to assume
a time-dependent field. In a fully self-consistent kinetic model,
we would have to follow all particles including the quantum
radiation reaction for their stochastic orbits, which appears
to be overly cumbersome. Since the growth of the cascading
process in a uniform rotating electric field is purely exponential
[26], this means somehow that the electron (or positron) energy
distribution remains almost constant during the development
of the cascade (the number of particles increases but the shape
of the distribution is not altered). This implies that in the
tail of the distribution, the high-energy particles, which lose
energy-emitting photons, are constantly replaced by newly
created particles being reaccelerated. Figure 2 shows the
electron energy distribution at three different times (the details
of the simulation parameters are thoroughly discussed in
Sec. IV). These three times are taken at consecutive rotation
periods of the electric field, and one can notice that the shape
of the distribution remains constant as the number of pairs
grows in the system. We can then suppose that the pairs follow
a fluidlike behavior that can be described through an average
energy γ̄ and an average quantum parameter χ̄e. We generalize
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Eq. (5) in the following form:

dnp

dt
= 2

∫ t

0
dt ′

∫
dχγ np(t ′)

d2P

dt ′dχγ

Wpe−Wp(t−t ′). (9)

The differential probability rate d2P/dt ′dχγ depends thus on
γ̄ , χ̄e, and χγ . We further assume that the photon decay rate
(or the pair emission probability rate) can be considered as
constant in time, which permits us to write Wp = Wp(χγ ,εγ )
with εγ = γ̄ χγ /χ̄e. Equation (9) is solved in the same way as
before for Eq. (5), and calculating � amounts to solving the
zeros of

s − 2
∫ χ̄e

0
dχγ

d2P
dt ′dχγ

Wp

s + Wp

= 0. (10)

1. Weak-field limit

When χ̄e � 1, the pair creation probability can be
approximated by [10,23] Wp � (3π/50)(α/τc)e−8/3χγ χγ /εγ

and d2P/dt dχγ � √
2/3π (α/τc)e−δ/(δ1/2χ̄eγ̄ ) with δ =

2χγ /[3χ̄e(χ̄e − χγ )], τc = h̄/mc2, and α = e2/h̄c. We start
from an assumption (which is verified by the result) that in the
limit χ̄e � 1, Wp(χγ ) � s, hence the zeros of s corresponding
to a growing exponential (� = s+) are given by

� �
(

2
∫ χ̄e

0
dχγ

d2P

dt dχγ

Wp

)1/2

. (11)

This integrand in Eq. (11) is comprised of an exponential
function multiplied by another function. More specifically,
the argument of the exponential possesses a unique maxi-
mum, χγ,0 = 2χ̄e/3, at which the second derivative of the
argument is negative. One can thus evaluate the integral using
Laplace’s method:

∫
h(x)ef (x)dx � √

2π/|f ′′(x0)|h(x0)ef (x0),
where x0 is the unique maximum. In this case, f (χγ ) =
−δ − 8/3χγ , f (χγ,0) = −16/3χ̄e, f ′′(χγ,0) = −54/χ̄3

e , and
h(x0) = 1/

√
δ(χγ,0) = √

3χ̄e/2. We obtain for the growth rate
in the weak-field limit

� � 1

5

√
π

61/2

α

τc

χ̄ee
−8/3χ̄e

γ̄
. (12)

The last step consists in finding how γ̄ and χ̄e depend on a0.
In a rotating field mocking the beating of two 1 μm lasers
[12,15,26], �a = ar [cos(ω0t), sin(ω0t)] (ar = 2a0), it is clear
from Eq. (11) that � � ω0 for χ̄e � 1. Thus γ̄ and χ̄e can be
approximated by their average values over a laser cycle. The
expressions of γ (t) and χe(t) can be found in [26], and for
ar � 1 (neglecting the quantum recoil) one finds γ̄ � 〈γ 〉 =
4ar/π and χ̄e � 〈χe〉 = a2

r /aS . Although not shown in this
article, these estimates are close to the average energy and the
average quantum parameter of the particles in the simulations.

2. Strong-field limit

When χ̄e � 1, Wγ and Wp have similar asymptotic expres-
sions, and Fedotov [37] obtained with intuitive considerations
an estimate for the growth rate � ∼ Wp ∼ Wγ (χ̄e,γ̄ ). While
it is not an exact solution, one can verify that this result is
somehow consistent with Eq. (10). In this limit, where the
recoil cannot be omitted, � � ω0 and the values of γ̄ and χ̄e

can be evaluated as [37] γ̄ ∼ γ (t = W−1
γ ) � μ3/4√aS and

χ̄e ∼ χe(t = W−1
γ ) � 1.24μ3/2 with μ = ar/(αaS). Taking

the characteristic energy for photon emission at the moment
W−1

γ has been proven to be a valuable and accurate prediction
[26]. Unfortunately, it is not possible to obtain a simple
analytical expression for the growth rate in such a limit, and
we resorted to a numerical computation of Eq. (10).

These two asymptotic limits are a generalization of the
growth rate obtained in the ideal model for r ∼ 1 and r �
1. The case r � 1 is not physically relevant since photon
emission is always more probable than pair emission.

IV. PHYSICAL SETUP AND LASER PARAMETERS

The laser parameters we chose are based on the typical
parameters expected in future laser facilities such as Vulcan
or ELI [3,4,38], a 10 PW peak-power system, 100 J–1 kJ,
30–60 fs, and a focal spot that could be as small as a
micron. We have also pushed the parameters in order to
make the bridge between different regimes: the onset of
QED characterized by χ � 1 [12,15,28] and the full QED-
dominated regime for χ � 1, which have been explored in
prior studies [16,17,26,37].

One of the objectives of these future facilities is indeed
to focus these ultraintense lasers to a micron spot size, and
this can probably be achieved by using adequate optics.
Nonetheless, from a theoretical point of view, focusing a laser
pulse to a given waist requires knowing the self-consistent
shape of the pulse far away from the focus point. The
seminal article on electromagnetic beams from Davis [39]
shows how to construct light paraxial beams whose formal
solution employs an expansion in power of W0/zr , where
W0 is the beam waist and zr is the diffraction length. The
well-known solution used in the literature for Gaussian beams
requires W0 � zr or equivalently λ0 � W0 (λ0 being the
central wavelength of the laser beam). Hence, a paraxial beam
is not an accurate solution for a beam that is aimed at λ0 � W0.
Furthermore, it has also been proven [40] that focusing a laser
beam to the diffraction limit requires inclusion of terms of fifth
order in the diffraction parameter W0/zr in the description of
the associated fields. Another conclusion drawn from this latter
article is that the electron dynamics in a tightly focused beam
is not adequately described by the plane-wave approximation
because of the extra components of the field, which must be
considered to satisfy �∇ · �E = 0 and �∇ · �B = 0 in vacuum.

In our simulations, all the laser pulses have a λ0 = 1 μm
central wavelength and the same spatiotemporal envelope
functions, with differences in the fast-oscillating components
that will be presented separately for different polarizations.
The envelope function is transversally a Gaussian with a
focal spot of 3.2 μm, while the temporal profile is given by
10τ 3 − 15τ 4 + 6τ 5, τ = t/τ0 for t � τ0, and τ = 2τ0 − t for
τ0 < t � 2τ0, where τ0 = 32 fs is the pulse duration at full
width at half-maximum in the fields. The focal spot of 3.2 λ

represents a compromise where we can ensure that the laser
intensity at the focus is the one wanted and that in the region
of the focus the structure of the fields is close to a plane wave.
In OSIRIS, laser pulses are initialized far from the focus point
where the transverse fields are given by the paraxial theory
[39], whereas the longitudinal component is self-consistently
computed using �∇ · �E = 0 and �∇ · �B = 0.
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The laser pulses are initialized 20 μm away from one
another. The focal plane for both lasers is located at half-
distance between their envelope centers. A total of 100
test electrons are placed in the focal plane to seed the
cascade in three dimensions (there are 10 electrons in each
transverse direction, and they occupy an area of 1 c2/ω2

0).
Two-dimensional simulations were seeded with 100 electrons
in the transverse direction over a length of c/ω0. We have
also tested the seeding with one electron for 2D and 3D
simulations where the electron was located at the very center
of the focal plane. The simulation box is composed of
3000 × 1200 cells and 3000 × 1200 × 1200 cells for two
and three dimensions, respectively. The spatial resolution is
dx = dy = dz = 0.1c/ω0, and after extensive convergence
tests we have chosen dt = 0.001ω−1

0 (ω0 = k0c = 2πc/λ0).
To put the model presented in the previous section to the

test, we have also conducted a series of simulations with a
uniform rotating electric field. The rotating field is imposed
as an external field and is turned on during the duration
of the simulation, and it has the following structure: Ex =
a0 cos(ω0t) and Ey = a0 sin(ω0t). The spatial uniformity of
the electric field allows us to use a small simulation box with
periodic boundary conditions. Nonetheless, the time resolution
is still conditioned by the pair and photon characteristic
emission time, and we have thus kept dt = 0.001ω−1

0 .

V. DISCUSSION AND CONCLUSION

As was shown recently by Jirka et al. [18], the spatial
structure of cascading plasma is essential to understanding
where the pairs are produced. Additionally, the growth rate of
the cascade is the important macroscopic quantity that tells
how the number of pairs rises in the interaction region. As
a matter of fact, as we will see in this section, the growth
rate of the cascade depends on the polarization of the lasers
that produce different field structures. Additionally, the growth
rate of the cascade can only be determined in an unambiguous
manner when the density of the pair plasma is relativistically
underdense such that the self-generated field remains negli-
gible compared to the external fields provided by the overlap
of the two lasers. The case of relativistically overdense pair
plasmas is of high relevance for laser absorption, and this
problem has been addressed with QED-PIC showing that
significant absorption can be achieved for I > 1024 W/cm2

and pulses of a few 10’s of fs as first demonstrated by Nerush
[16] and later by Grismayer [41]. As mentioned previously,
the focal spot of both lasers is 3.2 microns, which is still in the
paraxial approximation for a one-micron wavelength and thus
ensures that at the focus, the field structure of the laser can be
described by a plane wave. We have actually performed several
simulations with pure plane standing waves and compared the
growth rate of the cascade with situations where realistic pulses
were used without significant differences, as can be seen in
Table I. It should be stressed that we measure the growth rate
in a realistic setup when the two lasers are around the point of
full overlap in order to make sensible comparisons with ideal
setups (such as the uniform rotating field).

Figure 3 shows the growth rate for different configurations
as a function of a0. The simulation results for the pure rotating
electric field configuration are displayed with black squares

TABLE I. Growth rate for the plane wave and for laser pulses.
The growth rate is measured in units of the plane-wave or laser pulse
frequency ω0. PW stands for plane wave, whereas pulse stands for
the simulation performed with realistic laser pulses whose parameters
are described in the text.

a0 1000 1500 3000 5000

type pulse/PW pulse / PW pulse/PW pulse/PW
�cw-cp 0.85/0.82 1.35/1.39 2.4/2.39 3.35/3.38
�lp-lp 0.28/0.25 0.56/0.52 0.85/0.82 1.2/1.05
�cw-cw 0.13/0.14 0.17/0.15 0.2/0.19 0.25/0.23

and lines. The growth rate given by Eq. (11) and the numerical
solution of Eq. (10) depicted by the blue and green dashed
lines, respectively, are in good agreement with the rotating-
field simulation results in the limit of their validity (a0 �
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FIG. 3. (a) Growth rate as a function of a0 for different laser
polarization. The low a0 model, depicted by a dashed blue (dark
gray) line, corresponds to Eq. (11), and the high a0 model, depicted by
a dash-dotted green (light gray) line, corresponds to the numerically
integrated Eq. (10) with γ̄ = μ3/4√aS and χ̄e = 1.24μ3/2. The model
of Bell and Kirl is shown by a dashed red (light gray) dashed line,
the model of Bashmakov is shown by a gray (upper) line, and the
model of Fedotov is displayed by a dash-dotted brown (light gray)
line. (b) Onset of QED cascades for the three setups for a0 = 1000;
the linear polarization setup is shown by the solid blue (dark gray)
line, the cw-cw setup by the dash-dotted orange (light gray) line, and
the cw-cc setup by the dashed red (dark gray) line.
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103 for χ̄e � 1 and a0 � 103 for χ̄e � 1). As expected, the
growth rates in the cw-cc setup match those of the rotating-
field configuration. This growth rate is the highest of all three
configurations for a fixed a0. To underscore the improvement
of our model compared to previous ones, we have also plotted
the growth rate derived by Bell and Kirk [15] with a red dashed
line, the rate derived by Bashmakov [17] with a gray dashed
line and the result given by Fedotov [37] with a dash-dotted
brown line. In the weak-field regime, the rate coming from the
model of Bell and Kirk is low in comparison with our analytical
and numerical study. Even though their model and ours are
essentially the same, one of the reasons for the mismatch is
that the successive approximations made by Bell and Kirk
led to an underestimate of the photon optical depth. In the
strong field regime, both prior models [17,37], which possess
the same scaling, appear to be valuable predictions for extreme
intensities (a0 � 104). The small discrepancy, which occurs at
lower intensity, with our analytical results (green dashed curve)
results from the approximation � ∼ Wp ∼ Wγ . As discussed
before, while this ordering is appropriate, numerical factors
(which are neglected) are sufficient to cause a departure from
the numerical results.

The lp-lp setup has a growth rate lower than the cw-
cc configuration, but higher than the cw-cw configuration.
Figure 3(b) also confirms the 2ω0 oscillating component of
the lp-lp growth rate. There is no appreciable difference in
the growth rate of the 2D and 3D simulations for linearly
polarized lasers. The lowest growth rate is attributed to the
cw-cw configuration, and this is also in agreement with
our previous analysis. Finite-size Gaussian laser pulses can
provide an initial nonzero px in order to seed the cascade. The
gradients of the intensity that provide the ponderomotive force
are more pronounced in three dimensions (they affect a higher
percentage of the particles), and therefore the growth rate in
this configuration becomes slightly higher in 3D simulations
than in 2D simulations. This configuration is robust because
there are no special favorable locations for the cascade seeding.
On the contrary, the seeding with electrons of the cw-cc setup
turns out to be difficult. The reason is that efficient growth
happens only in the regions around the maximum of the
electric field. By starting a cascade with only a few electrons,
it is not guaranteed that they will enter such a region. This is
precisely why there are no 3D data for the cw-cc configuration
in Fig. 3(a): the cascade has not started below a0 = 2000 even
though the same initial conditions were used as in setups 1 and
2. Similar conclusions have been drawn by Jirka [18], who
recommends the linear polarization setup in order to maximize
the number of pairs created.

A crucial question addressed by Fedotov et al. [37] concerns
the cascade threshold, which according to the latter author is
around Ith > 2.5 × 1025 W/cm2 or ar > αaS . Fundamentally
speaking, there is no threshold for the cascading process since
the growth rate never vanishes (even though it is reduced
exponentially for lower a0’s). Notwithstanding, a very low
growth rate requires a very long laser duration as well as a
gigantic spot size in order to show evidence of the cascade.
A convincing definition of the threshold can therefore be the
minimum growth rate required to observe a significant amount
of pairs produced, i.e., few e-folding of the cascade, �τc � 1,

where τc is the characteristic time during which the process
occurs. Fedotov et al. [37], who established a valid model in
the strong-field limit, identified two characteristic times: the
acceleration time, which is the time required to reach χ � 1,
and the escaping time, which is the duration of a particle
(pairs or photon) in the laser pulse. The minimum growth
rate lies probably in the the weak-field limit where χ < 1, so
the acceleration time is not necessary. However, the escaping
time is still relevant in our case and can be generalized as
tesc ∼ W0/c. Using Eq. (11), we obtain a new threshold given
by

a0 >

√
2aS

3 log
(

πa0αW0c

8ω0

) . (13)

For W0 = 3.2 μm, a0 > 310 or I > 2.7 × 1023 W/cm2, which
is two orders of magnitude lower than the threshold derived
initially by Fedotov et al. [37]. One should notice that in
a recent publication [42], the same author recognized that
the initial criteria, ar > αaS , in fact overestimate the actual
cascade threshold for three main reasons: (i) simulations show
cascade development at a lower intensity, (ii) the escaping time
may be larger, and (iii) pairs can only be created when χγ � 1.

We shall now consider what the threshold is for the
cascading process, taking into account the laser parameters of
future facilities. The laser power should theoretically rise up to
10 PW. For a focal spot close to the diffraction limit, W0 � λ0,
the intensity could then reach I � 1024 W/cm2. Applying the
same criteria for the threshold, � > 1/tesc, and using the results
of Fig. 3(a), we find that in the case of the cw-cc setup, a0 >

400, while for the lp-lp setup, a0 > 800, which corresponds
in both cases to intensities lower than I = 1024 W/cm2.
We would like to warn the reader that these numbers are
conjectural since we have not performed simulations for focal
spots close to the diffraction limit. In addition, the injection of
particles into the laser focus depends on several parameters,
such as pulse focusing, pulse duration, as well as the initial
position of the target, its size, shape, and composition (solid,
gaseous) [43]. Therefore, information on the laser intensity
alone may not be sufficient to fully characterize the cascade
threshold and to guarantee that the cascade will take off.
Nonetheless, our conjectural numbers appear to be on the
same order as the threshold, Ith = 1.7 × 1024 W/cm2, given
by Gelfer [14], who used colliding laser beams with a central
wavelength of λ = 1.24 μm (h̄ω = 1 eV), a beam waist of
W = 2

√
2/πλ � 0.9λ (which corresponds to tightly focused

beams), and a pulse duration of 20 fs. If the focal spot was
taken to be larger, such as the one we chose in this work,
W0 = 3.2 μm, for linearly polarized lasers (which are the
more likely to be delivered), observing a cascade will require
a0 > 700 or Ith > 6.8 × 1023 W/cm2. This threshold can be
verified in Table II for the laser pulse parameters considered in
this study. The criterion for the threshold is �W0/c > 1, which
implies that every single electron contributing to the cascade
will produce at least three new electrons during the interaction
of the two laser pulses. This intensity corresponds to a peak
power of P = πW 2

0 Ith/2 � 100 PW.
In summary, the efficiency of QED cascades has been

studied for three different laser intensities and configurations in
2D and 3D simulations. Whereas setup 3 seems to be promising

023210-6



SEEDED QED CASCADES IN COUNTERPROPAGATING . . . PHYSICAL REVIEW E 95, 023210 (2017)

TABLE II. Number of pairs per initial electron obtained for
linearly polarized laser pulses with W0 = 3.2 μm.

a0 Dimension Seeding Pairs/e− Cascade

400 2D 100 electrons 0.01 ✗

500 3D 100 electrons 0.03 ✗

700 2D 100 electrons 10 �
700 3D one electron 30 �

due to an unquestionably higher growth rate for a fixed a0, the
seeding of this latter configuration proves to be problematic.
Setups 1 and 2 are more preferable to ensure the takeoff of
the cascade. Using the growth rates of Fig. 3(a), we predict
that the cascading process should start around I > 7 × 1023

W/cm2 for a focal spot above the diffraction limit and 30 fs
lasers. With an electron seeding composed of a micron-sized

cryogenic hydrogen target, a relativistic critical density pair
plasma nrc can be created for the parameters expected for
ELI [38] (I > 1024 W/cm2 for pulses of a few 10’s of fs).
Once the plasma reaches the density nrc, the laser starts to
be efficiently converted into γ rays, and one approaches the
condition to create a laboratory γ -ray pulsar [16,41,44]. This
will be explored in future publications.
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