Magnetic reconnection in dynamical systems driven by localized hydrodynamic instabilities

M. Faganello¹

Aix-Marseille University, CNRS, PIIM UMR 7345, Marseille, France

Spineto, 24th-26th May 2017

In collaboration with: F. Califano, F. Pegoraro, S. Fadanelli

Outline

Introduction

The magnetospheric environment The need for reduced fluid models

3D simulation results

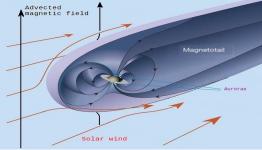
Differential advection \rightarrow magnetic shear layers \rightarrow reconnection Double mid-latitude reconnection An efficient and reliable mechanism

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Model improvement

Parallel particle streaming Discussion

Magnetospheric environment: Northward "quiet" periods

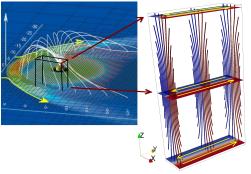


- Unexpected efficient transport between the solar wind and the magnetosphere
- Inferred $D_{eff} \simeq 10^9 m^2/s$
- Cross-field diffusivity (collisional or anomalous) too small
- ► Different mechanisms have been proposed →

- "Double lobe reconnection" can generate a Low Latitude Boundary Layer, but it is not sufficient.^a
- Kinetic Alfvén Waves can contribute to the transport^b
- 3) Kelvin-Helmholtz instability:
 - "Robust" phenomenon^c
 - HD/MHD instability (no mixing) but is good driver for a rich plasma dynamics enhancing the transport

aWing 06, Taylor 08 & Hasegawa 09 🗳 Johnson 🖻 Kavosi 15 📒 🔗 ९. 🔿

Minimal "geometrical" model for the magnetospheric flank



Sheared velocity

- \blacktriangleright ~ northward magnetic field lines
- High-latitude stabilization

- The fact that High-Latitude regions are stable with respect to the KH instability turns out to be crucial
- We need to simulate a system with at least two inhomogeneity directions: the one along the velocity gradient (x̂) and the one which KH stability conditions change (ẑ)
- 2D equilibrium, i.e. one ignorable direction along the flow (ŷ)
- ► **3D** numerical simulations $(\hat{x}, \hat{k} \parallel \hat{y}, \hat{z})$:
- → KH evolution & magnetic reconnection, even in the absence of an initial magnetic shear layer ≥ ≥ ∞ ∞

2D Equilibrium: translation symmetry along y-direction

- Ideal MHD equations & adiabatic closure
- 2D (x,z) equilibrium configuration:

$$\mathbf{B} = B_y \mathbf{e_y} +
abla \psi imes \mathbf{e_y} \;, \quad \psi = \psi(x, z)$$

Actually a distorted 1D equilibrium configuration:

$$B_y = B_y(\psi) \;, \quad \mathbf{v} = v_y(\psi) \mathbf{e_y} \;, \quad \rho =
ho(\psi) \;, \quad p = p(\psi)$$

Simplified Grad-Shafranov equation:

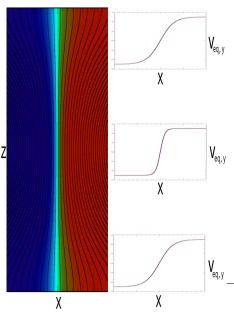
$$abla^2\psi=-4\pirac{d\Pi}{d\psi}\;,\quad \Pi=\Pi(\psi)=
ho+rac{B_y^2}{8\pi}$$

~

► $B_y = 0 \& p$ uniformity \rightarrow Laplace equation: $\nabla^2 \psi = 0$

• A simple solution: $\psi(x,z) = 1/2 [(1+A)x + (1-A)L_z/2\pi \sinh(2\pi x/L_z)\cos(2\pi z/L_z)]$

High-latitude stabilization



- V_{eq,y} Hourglass-like field lines (plane x z)
 - $v_{eq,y} = \Delta V_{eq}/2 \tanh(\psi/L_{eq,x})$
 - \rightarrow Stronger velocity gradient at the equators
 - ightarrow KH vortices develop far faster here ($\gamma \propto
 abla v_{eq,y}$)
 - ⇒ High-Latitude stabilization^a
 - Note that strong magnetic gradient exists at the x-boundary, even if magnetic pressure and tension counterbalance
 - \Rightarrow Hard to deal using kinetic codes

^aFaganello PPCF 2012

The advantage of a fluid description (MHD or Hall-MHD)

- Compressible MHD has an hyperbolic set of equations
- ⇒ At the x-boundaries we can use the MHD characteristic decomposition

 $(\rho, T, \mathbf{v}, B_y, B_z) \leftrightarrow (L_a^{\pm}, L_s^{\pm}, L_f^{\pm}, L_0)$ where the *L*s are the "non-linear contributions" of the alfvénic, magnetosonic and entropy modes

$$\partial/\partial t \ (\rho, T, \mathbf{v}, B_y, B_z) = F(L_a^{\pm}, L_s^{\pm}, L_f^{\pm}, L_0)$$
$$(L_a^{\pm}, L_s^{\pm}, L_f^{\pm}, L_0) = G(a, s, f, \rho, T, \mathbf{v}, B_y, B_z, \partial_x)$$

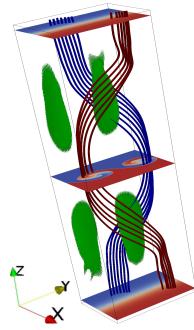
In such a way: Non-reflective boundary conditions and equilibrium sustainment:¹

$$ightarrow L^{\pm}_{0,a,s,f} = L^{\pm}_{0,a,s,f}|_{\it internal \ points}$$
 for outgoing waves

 $\leftarrow \ L^{\pm}_{0,a,s,f} = L^{\pm}_{0,a,s,f}|_{equilibrium} \qquad \text{for incoming waves}$

► In the case small-scale (~ d_i) perturbations stay inside the box, we can include there the Hall term, resistivity, electron inertia, etc.

Simulation results

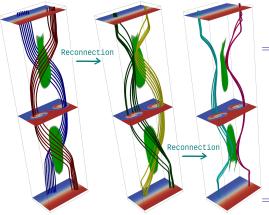


- ► Low-latitude region → vortices
- ► High-latitude regions → stable
- Differential advection for field lines
 - at $v_{Solar-Wind}$ or $v_{Magnetosphere}$ at high latitudes
 - at $v_{\text{phase}} \simeq (v_{\text{SW}} v_{\text{Msph}})$ at low latitud
- ⇒ Arched solar wind & magnetospheric field lines

Mid-latitude magnetic shear layers

→ Favorable conditions for reconnection to occur

Double mid-latitude reconnection



- Fast reconnection (Hall dominated) occurs in both hemispheres
- ⇒ Creates double reconnected lines

► They connect N pole \rightarrow red arm \rightarrow N pole

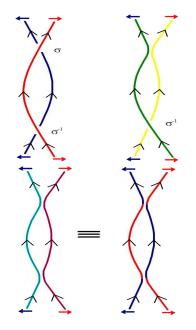
Flux tubes "closed" on the Earth populated by solar-wind particles

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

("Opened" flux tubes too.)

Solar wind particles enter the magnetosphere

Double mid-latitude reconnection: a dynamical mechanism

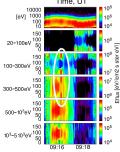


- 0) before reconnection \rightarrow **not braided**
- 1) First reconnection \rightarrow braided in the southern hemisphere
- + line feet still advected in opposite directions
- 2) Second reconnection thus must occur
- Creates double-reconnected field lines
- If we suppose that **solar wind** plasma **captured** by "closed" line is added to the **magnetosphere** $\Rightarrow D_{KH} \sim 10^9 m^2/s$ as **expected**.

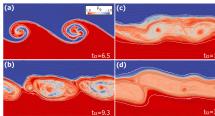
What is the model lacking?

- Magnetospheric and solar wind plasmas have really different densities and temperatures.
- As soon as new field lines connect them particles (in particular electrons) freely stream along field lines
- As a consequence important parallel fluxes develop as observed by satellites (Bavassano 10, Faganello 14, Eriksson 16, Vernisse 16)
- Similar fluxes have been reproduced by kinetic simulations (Nakamura 14) BUT when looking only at the "local" equatorial dynamics and neglecting the actual topology of the magnetic field.

(when neglecting H-L stabilization, reconnection can occur "locally" when an initial magnetic shear layer is considered.)



Electron flux Vs pitch angle and energy as observed by the THEMIS mission (Faganello 14)



Electron mixing ratio $F_e = n_{SW} - n_{Msph}/(n_{SW} + n_{Msph})$ (modified by parallel streaming) and in-plane magnetic field lines (in black) in a kinetic simulation of the "local" equatorial dynamics of KH vortices (Nakamira 14).

Model improvement

- A kinetic code would naturally reproduce the fluxes, for each energy band, but it would be difficult to menage the BC at the x-boundary in order to sustain the equilibrium gradients.
- The characteristic decomposition of the boundary is a powerfull tool

 \Rightarrow A **fluid code** (plus a possible "buffer zone" that gradually switchs off non-MHD terms at the boundaries) **can menage** such **equilibria**.

Adding parallel fluxes to the fluid model could be the practical solution:

- Including fluxes **at different energies** (for reproducing satellite data) seems to be an **"impossible dream"**.

- Adding an electron/ion heat flux to the pressure evolution equation would at least reproduce plasma mixing along a reconnected field lines, for a better estimation of D_{KH} .

Model improvement

Note that:

- Collisions are largely negligible: a diffusive heat flux (K_{||}∇²T)would be hardly justified.
- Collisionless heat fluxes such those included in Landau-fluid models (see Passot's presentation) suppose a nearly constant temperature along field lines + small perturbations while in our case $\Delta T/T \sim 1$.

Any suggestion is welcome :))))