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Summary/Outline

® Large Plasma Device (LAPD) at UCLA: Upgraded plasma source: LaB6
cathode provides up to 100x increase in plasma pressure + warm ions; with

lowered B, 8 ~ |

® Modification of pressure-gradient-driven turbulence and transport with
increasing 3

® Magnetic fluctuations increase, with parallel magnetic fluctuations
dominant (2x B, at highest B); Observations consistent with Gradient

Driven Coupling (GDC) instability: favorable comparisons with GENE
simulations

® Opportunities to study processes relevant to space/astrophysical plasmas in
LAPD and new device ETPD

® Linear and nonlinear physics of Alfvén waves, MHD turbulence in f ~ |
plasmas

® Pressure anisotropy: can mirror and firehose instabilities be studied in the
laboratory!?



The LArge Plasma Device (LAPD) at UCLA
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® Solenoidal magnetic field, cathode discharge plasma (BaO and LaBy)
e BaO Cathode:n ~ 102 ecm>3T. ~5-10eV.T s | eV
e LaB¢ Cathode:n ~ 5x10"3 em>,T. ~ 10-15 eV.T; ~ 6-10 eV

® B up to 2.5kG (with control of axial field profile)

® [arge plasma size, I8m long, D~60cm (BaO) (1kG:~300 pi, ~100 ps);
D ~ 20cm (LaB¢ prototype)

® High repetition rate: | Hz

o US DOE/NSF user facility for basic plasma science: the Basic Plasma
Science Facility or BaPSF (international users are welcome!)



LAPD BaO Plasma source
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Examples of recent research using BaPSF/LAPD
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® [aser-driven magnetized collisionless shocks
[Bondarenko, et al., Nat. Phys. (2017)]




LAPD prototype LaB¢ Cathode

Anode
Cathode \\ < j
—
Anode &
Cathode \\ < : ?
. I: : T
— _ /
X
New LaB6 Cathode

® [aBé6 cathode (operates at |800C) 20cm square prototype cathode
installed (larger version in development)

® Much better emissivity leads to 50x higher electron density, up to a
factor of ~2 higher electron temperature, factor of ~10 higher ion

temperature

® With reduced magnetic field, high B (order unity) achievable with
magnetized ions (marginally so at § ~ 1)



LAPD prototype LaB¢ Cathode
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LaB6 cathode (operates at 1800C) 20cm square prototype cathode

installed (larger version in development)

Much better emissivity leads to 50x higher electron density, up to a

factor of ~2 higher electron temperature, factor of ~10 higher ion

temperature

magnetized ions (marginally so at § ~ 1)

With reduced magnetic field, high B (order unity) achievable with



Upcoming major upgrade: replace primary BaO
cathode with large LaB, cathode source

calculated 3D Bfield lines

40 cm cathode  existing (yellow)
magnets
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New magnets

Will provide larger area (up to 80cm diameter)
B ~ | plasmas



Enormous Toroidal Plasma Device at UCLA
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< >

- Plasma
‘ Source

® Former Electric Tokamak, (5m major radius, Im minor
radius)

® Operating now with LaB¢ cathode discharge into
toroidal+vertical field

® Produces ~120m long, magnetized, high beta plasma (up to
~5x10'3 ecm-3,Te, Ti ~ 15-30eV, B~200G,  ~ 1).



High beta, hot ion plasmas in ETPD

Helium II (468 nm)
4 mT
334V, 234 A

»

Helium Plasma
3 =l '

® T.~T,~ 20 eV measured (passive spectroscopy of He |l
4686 line).

® With B~250G, plasma beta of order unity is achieved



r filtered 50KHz

Possible studies in ETPD
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® Alfvén waves, damping at B~| (underway, data above), many (~100)
Alfven parallel wavelengths in device;VWave-wave interactions,

driven Alfvénic cascade at B~

® Gradient-driven/interchange turbulence at high 3

® Mirror/firehose: Drive anisotropy, higher beta through expansion
(drive plasma into low field region)

® Reconnection, Shock physics



Why does B matter for pressure-gradient-driven
turbulence and transport?

® Modifications to drift instabilities at finite B

® Drift-Alfvén wave coupling at low B (mass ratio): leads to magnetic
fluctuations (DA, or OB.) (seen in low B LAPD discharges)

® |TG stabilization with increasing 3

® FElectromagnetic transport, e.g. magnetic flutter-transport arises with
B, fluctuations (Rechester, 1978)

® New instabilities may develop at finite f3
e Kinetic ballooning, etc.

® Gradient-driven drift-coupling mode (GDC)

® Couples to collisionless tearing modes and drives faster
magnetic reconnection rates (Pueschel, 2015)



LAPD: B up to 15% produced with magnetic field scan
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® Magnetic field varied from kG to 175G, 0.1% < B = 15%
in the core

® p;varies from ~3mm to ~2.5cm; marginal magnetization
at highest B (pi/Ln ~ 4; FLR effects likely important)



Fluctuation profiles: On, OB, peak on gradient;
OB. core localized
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Isat Power (arb.)

Fluctuation profiles: on, 0B, peak on gradient;
OB. core localized
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OB. profile consistent with dominance of low-m modes



OB / B %

Magnetic fluctuations increase with [; surprise is that
OB, dominates
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Magnetic fluctuations increase with B, density
fluctuations somewhat reduced
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Strong parallel magnetic field fluctuations seen as P is

increased
28 Crr T T T T T T
20 i_ SBII/SBJ_ . ° . _i
1.0?—;-‘ —f
osly _3
) T e I e

B%
® Surprisingly, By fluctuations dominate above B ~ 1%

® Evidence for emergence of new instability?



Fluctuation Power (arb)

Strong parallel magnetic field fluctuations seen as B is

175G, B~15%

increased
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® Surprisingly, B, fluctuations dominate above B ~ 1%

® Evidence for emergence of new instability?



Cross-correlation measurements reveal low-m structure
and anti-correlation between ﬁe and B,
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® Most fluctuation power in azimuthal modes m=1 to m=3

® Cross-correlation between density (Isat) and magnetic field
fluctuations: two fields are ~TT out of phase



Cross-correlation measurements reveal low-m structure
and anti-correlation between ﬁe and B,

Bi-n crosspower
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Electrostatic particle flux decreases with increasing f8
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® Peak ES particle flux decreases with B, primarily
due to decreased density and electric field
fluctuation amplitudes



ok —* — N N 0
o o & o & o

Electrostatic particle flux (10" cm™2s™)

o

Electromagnetic transport!?
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® |nitial magnetic flux estimate from [ ~ n Vyg « N B,

® Decrease at higher B due to ion FLR? More work needed
here (e.g. global particle balance, measurement of magnetic
flutter transport)
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Observations are consistent with newly™ predicted
instability, the Gradient Drift Coupling (GDC) instability

® GDC recently discovered in the context of magnetic
reconnection in high-B current sheets [Pueschel, et al. PoP 2015]

® Linear and nonlinear calculations show that it should be active
in these LAPD experiments

® Not likely to be excited in tokamaks due to magnetic shear,
but expected in space/astro plasmas

® Similar to universal instability/interchange instability but relies on
B perturbations that arise with density fluctuations in finite beta

plasmas and the associated VB drifts in the perturbed fields

® Predicts density, parallel magnetic fluctuations have TT phase
shift



Observations are consistent with newly predicted
instability, the Gradient Drift Coupling (GDC) instability

Linear Growth Rate vs. B
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Observations are consistent with newly predicted

mstablllty, the Gradient Drlft Coupllng (GDC) mstablllty
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Solar wind campaign: physics of B~ |, warm ion plasmas

e Kinetic instabilities, waves and turbulence at high plasma beta (va ~ Vi)
with warm ions

® Warm ions provide opportunity to study ion kinetic effects in waves
and instabilities: e.g.ion FLR effects on Alfvén wave

propagation; ion cyclotron absorption; modification to
nonlinear Alfven wave interactions; MHD turbulence

® With lower field, plasma beta can be increased substantially to study, e.g.,
modifications to Alfven wave dispersion and damping (e.g. ion Landau/
Barnes damping). Can temperature anisotropy driven

instabilities (mirror and firehose) be observed mthese |
plasmas? |

Campaign Leader: Greg Howes (U. lowa)

Hellinger, et al., 2006



Previous studies of nonlinear Alfven waves in LAPD

® Series of experiments exploring three-wave interactions and decay
instabilities. Motivations include studying Alfvénic turbulence in the lab

® Collision of two antenna-launched shear Alfven waves:

® Two co-propagating AWs produce a quasimode [Carter, et al., PRL,
96, 155001 (2006)]

® Two co-propagating KAWVs drive drift waves, lead to control/

suppression of unstable modes (in favor of driven stable mode)
[Auerbach, et al,, PRL, 105, 135005 (2010)]

® Two counter-propagating AWVs, one long wavelength (k; = 0),

produce daughter AW (building block of MHD turbulent cascade)
[Howes, et al.,, PRL, 109, 255001 (2012)]

® Two counter-propagating AWs nonlinearly excite an ion acoustic
wave [Dorfman & Carter, PRL, |1 10, 195001 (201 3)]

® Parametric instability of single large-amplitude shear wave [Dorfman &
Carter, PRL, | 16, 195002 (2016)]



Large amplitude Alfven wave generation

Y {cm)

® Antennas can generate AWs with OB/B ~ 1% (~10G or ImT); large
amplitude from several points of view:

® Wave beta is of order unity 3, = i’;gg ~ 1
® Wave Poynting flux ~ 200 kW/m?, same as discharge heating power

density

® From GS theory: stronger nonlinearity for anisotropic waves; here
kj/k. ~ OB/B



MHD-cascade relevant collisions: AVWW+AW — AW

® |[nitial attempts in LAPD (Carter, Boldyrey, et al.): no strong
evidence for daughter wave production/cascade (instead see
beat waves, heating, harmonic generation, etc). Used local
interaction, trying to look for perp. cascade.

® New idea (Howes): have one of the two interacting (pump)
waves be k; = 0, theoretical prediction for stronger NL
interaction in this case B,

Loop
Antenna

5 ASW

Antenna

y
e UCLA Loop antenna (large amplitude) versus U. lowa ASW
antenna (small amplitude but precise k. control)



First laboratory observation of daughter AW
production: consistent with weak turbulence theory

- | |
a) 05 v [ I 7 e) o3 | B
I
0z k =k, 4k, B ASW (pump)
- 450
0.1 . E damn
k 01

@ 2 K. - {250

- \\ -
poof e E O £ s

K - - -

! - 9 . . F {250
o @& ®© . -
i 150
-02 - W

B T L S T - [ T S T— _

0.2 0.2 a1 0 0.1 c2 0.3

k »p
m?: mpl
L) vs 12900 :

W Loop (pump)

10000

vs - o020
- »
~ 0 - denn
-
n 4020
-ue Izoao
na
L3 Dz -1 C 0.1 vz 0% -8 -0z 01 v 0.1 02 U3
K, 13 "

Howes et al., PRL 109,255001 (2012)

® Perpendicular wavenumber spectrum consistent with three-
wave matching (ki + ka2 = k3)



How do we achieve an MHD turbulent cascade
in the lab?

® Have studied interesting AWV interactions, but no success yet in

LAPD in getting multiple collisions/development of inertial
range

® Two issues: (1) LAPD is long, but not long enough (not
enough space for multiple collisions to occur/need to reflect
waves, get a second pass) (2) Damping of pump wave is
significant (we are near dissipation scale with pump)

® Possible remedies: (1) new LAPD regime with higher beta,
higher density (effective LAPD length gets longer, c/wpi

smaller; lowered damping?) (2) Use ETPD to get much
longer plasma length?

® Another approach: cascade driven by instabilities! One

possibility: EM pressure gradient driven instabilities to act as
stirring for cascade?



Goal: Can we excite temperature-anisotropy-driven
modes in the lab: mirror and firehose instabilities
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® |on temperature anisotropy in the solar wind: limits explained by
action of mirror and firehose modes

® Could play important role in solar wind thermodynamics; also thought
to be important in other astrophysical plasmas, e.g. accretion disks



Mirror/Firehose in the laboratory?
® MHD threshold for firehose: (G — 5| > 2

® Resonant mirror/firehose can be triggered below the
MHD threshold, but not far below; need high beta
[Hellinger]

® Need to operate at low field to get high beta, but
need magnetized ions. Also, typical scale size of
firehose instability is ¢/Wypi, need large enough density
to include this scale in the experiment

® Need low collisionality! Growth time for firehose can
be ~ {., need collisionality at least lower than this —
tough when factoring in requirement for high density.



Firehose in LAPD/ETPD?

B = BL 22 Need Mva2to be low enough
kpT) — kpT, > Mvy  (10eV)?

o At LAPD/ETPD densities, this requires very low
field: n=10"3 /cc, B=50G, MvaZ~ 2 eV (He)

Helium Hydrogen
1; ~ 20eV T: ~ 20eV
v;; ~ 13kHz v;; ~ 20kHz
Jei ~ 20kHz fo; ~ T6kHz
pi ~ 13cm p; ~ 9cm

e Difficult, but may be possible to get to these conditions;
need a large plasma to have magnetized ions (need ETPD?)



One idea: use beam populations to drive anisotropy
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® 25 keV, I0A beam of H or He ions can be produced using existing beam

® Beam f large enough to reach firehose threshold at low B
(~100G) [following Chen, et al., Astrophys. ]J. Lett. 825
L26 (2016)]

® Excitation of shear & fast Alfvén waves via Doppler-shifted |IC resonance
observed in low B plasmas



lon Cyclotron Resonance Heating for generation of energetic ions
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fast wave antenna

® High power (~200 kWV) RF driver and fast wave antenna available.

® |nitial experiments: good coupling (~30G wave amplitude), some
evidence of perpendicular ion heating via fundamental minority
resonance (H in He plasma). Can we generate an
energetic tail, excite mirror instability?



Summary/Outline

® Large Plasma Device (LAPD) at UCLA: Upgraded plasma source: LaB6
cathode provides up to 100x increase in plasma pressure + warm ions; with

lowered B, 8 ~ |

® Modification of pressure-gradient-driven turbulence and transport with
increasing 3

® Magnetic fluctuations increase, with parallel magnetic fluctuations
dominant (2x B, at highest B); Observations consistent with Gradient

Driven Coupling (GDC) instability: favorable comparisons with GENE
simulations

® Opportunities to study processes relevant to space/astrophysical plasmas in
LAPD and new device ETPD

® Linear and nonlinear physics of Alfvén waves, MHD turbulence in f ~ |
plasmas

® Pressure anisotropy: can mirror and firehose instabilities be studied in the
laboratory!?



