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This paper is dedicated to Vitaly Shafranov, who became increasingly interested in
stellarators. Stellarators have a steady-state magnetic configuration, robust positional
stability, and consistency with a plasma current below the level at which runaway
electrons become a major issue. The development path for stellarators may be
faster and cheaper than for tokamaks: stellarators are amenable to computer design
validated by moderate scale experiments to circumvent issues that impede fusion
development. This is distinct from the empirical explorations required to find an
acceptable nonlinear, self-organized state of a tokamak. Fusion plasmas can be
designed and controlled in stellarators in ways that are not possible in tokamaks.
This paper outlines computational studies that could be carried at low cost during
the next few years that would clarify the reactor potential of the stellarator and are
needed for rational planning of the fusion program.

1. Introduction
It is an honour to dedicate a paper to Vitaly Shafranov. This paper is on stellarators,

and Shafranov is best known for his contributions to the development of the
tokamak. Nevertheless, he became increasingly interested in the physics of stellarators
(Shafranov et al. 1998; Shafranov 2001), and stellarators were the topic his last paper
(Mikhailov et al. 2012).

Shafranov had cultural interests that went well beyond physics. His poetry is known
to those who knew him well (Velikhov et al. 2014), but he was also interested in art.
His interest both in stellarators and in art became apparent during his attendance at a
conference, Advanced Confinement Concepts and Theory, which I hosted at Columbia
University in 1996. Many of the attendees came to our apartment for supper. When
Shafranov came in the front door, he was immediately transfixed by a painting in
the far corner of the living room. That painting still evokes memories of Shafranov
each time that I look at it. Although having a painting – in particular a painting of
the Adoration – illustrated in a paper on plasma physics, figure 1, may be unique, it
seems appropriate for a paper dedicated to Vitaly Shafranov.

Shafranov was a leader in coupling mathematics with basic principles of physics to
spur and determine the benefits of innovations. A serious program to develop fusion
energy cannot do otherwise. The cost of experiments is so great and the number of
possibilities too large to proceed by an Edisonian approach of trial and error with little
dependence on mathematics.
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2 A. H. Boozer

FIGURE 1. The Adoration by the workshop of Frans Franken II, Antwerp, ca. 1620,
oil on oak, 45 cm× 32 cm.

The demonstration of the feasibility of magnetic fusion energy requires that a
broad range of issues be addressed. Many of these issues are addressed by basic
properties of stellarators: steady-state maintenance of the magnetic configuration; no
possibility of the loss of positional equilibrium, which is associated with disruptions;
and no requirement to have a plasma current greater than 5 MA, where the problem
of runaway electrons becomes severe. An important property, which reduces the
cost and time for fusion energy development, is that stellarator plasmas are subject
to external control rather than being in a self-organized state. This removes many
uncertainties in the extrapolation from smaller experiments to the reactor scale. A
review of stellarators has been recently published by Helander (2014).

Three types of stellarators appear to have reactor potential: (1) quasi-axisymmetric
(QA), which in design space is continuous with the tokamak (Nührenberg et al. 1994;
Garabedian 1996; Reiman et al. 1999), (2) quasi-helical (QH), which tends to have
better energetic particle confinement (Nührenberg & Zille 1988; Canik et al. 2007; Ku
& Boozer 2010a; Nührenberg et al. 2010), and (3) quasi-omnigeneous (QO), which
has properties that are essentially independent of the plasma pressure and may have
no net plasma current (Nührenberg et al. 1995; Cary & Shasharina 1997; Nührenberg
2010; Landreman & Catto 2012). Each of these types has many variants. Large-scale
experiments on the many variants would be prohibitively expensive, but well-organized
computations would not be.
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Stellarator design 3

Stellarators have approximately an order of magnitude more degrees of freedom
in external magnetic fields than axisymmetric tokamaks. The number of degrees
of freedom is far too large to be explored empirically. Design points that exploit
the freedom to circumvent issues in fusion development must be chosen using
well-organized computations.

This paper outlines methods of organizing computations in areas that appear
amenable to major improvements in stellarator design: coils and divertors. Section 2
on coils has two parts. (1) The first deals with efficiency-ordered external magnetic
field distributions, which are both complete and non-redundant. All external magnetic
fields that can be used to support stellarator equilibria are represented, but no more.
(2) The second concerns plasma optimization and sensitivity to external magnetic
perturbations. Plasmas have a wide range of sensitivities to different external
magnetic field distributions, which influences both the design and the control of
toroidal plasmas. Plasma sensitivity and optimization are closely related subjects. The
discussion of optimization will include methods of finding (i) plasma configurations
that are most easily produced by coils at a distance and (ii) the coupling of plasma
properties – for coupled properties, improving one can of necessity degrade the other.

Section 3 on divertors points out that the standard tokamak divertor can be thought
of in two ways, which are distinct in stellarators: (1) resonant or island divertors,
the type of divertor used on the W7-X stellarator; and (2) non-resonant divertors.
The focus of the discussion of this section is on a method for studying non-resonant
divertors since they are relatively unexplored but have distinct advantages, particularly
their potential for being insensitive to the net plasma current.

2. Coils

The difficulty of stellarator coils is legendary in the fusion community, in part due
to the long delays (Risse et al. 2009) in the construction of W7-X and the cancellation
(Feder 2008; Neilson et al. 2009) of NCSX. The design of acceptable coils is clearly
more computationally demanding for stellarators than for the axisymmetric tokamak.
Nevertheless, stellarator coils may be more consistent with reactor requirements than
tokamak coils, in particular maintenance access to the plasma chamber (Brown et al.
2014). One possibility is to produce most of the magnetic field using a helical coil,
which follows the helical trough located on the inboard side of optimized stellarators,
that has as many vertical legs as the stellarator has periods. The remainder of the
magnetic field could be produced by toroidal field coils at the toroidal locations of the
vertical legs together with saddle coils or by pieces of superconductor (Bromberg et al.
2011). Saddle coils and pieces of superconductor would be consistent with the removal
of large sections for easy access to the plasma chamber. The uniqueness theorem of
external magnetic fields, § 2.1.5 of Boozer (2015), ensures that this is in principle
possible. The practicality could in large part be determined by obvious computations.
If practical, open maintenance access to the plasma chamber would have an enormous
effect on the feasibility of fusion energy.

Issues that should be addressed include: (1) coils that are far enough from the
plasma for not only blankets and shields but also for an appropriate divertor; (2) coils
that have forces, bend radii, and current densities significantly below technical limits;
(3) coils that allow open access to the plasma chamber, presumably with large easily
removable sections between coils that encircle the plasma; (4) a coil design that
minimizes construction costs and uncertainties by mitigating the effects of error fields
using auxiliary coils; (5) coils that can support a number of plasma states with
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4 A. H. Boozer

optimal properties and independently drive the external magnetic perturbations to
which the plasma is sensitive.

A paradox in stellarators, which implies a great potential for coil optimization, is
that fewer shape parameters defining the plasma surface are needed in optimization
studies, such as the W7-X optimization, than external B-normal distributions, Bx · n̂,
when these distributions are rank ordered by the efficiency with which they can be
produced at a distance, § 2.1. Since each Bx · n̂ perturbation produces a particular
normal displacement of the plasma surface, usually denoted by ξ , one would naively
expect that the number of normal field distributions and the number of normal
displacements would be comparable. The primary distinction between choosing a
bounding surface and choosing an external magnetic field is that a bounding surface
ensures at least one magnetic surface exists. To obtain any magnetic surfaces, a few
B-normal distributions may be required to cancel the drive for magnetic islands.

There is a duality between the two descriptions of a plasma state: (1) by the
shape of an outer magnetic surface and (2) by the required external magnetic field.
Simplicity in one may give complexity in the other. A simple external magnetic field
and a complicated shape arise when a current I flows along the z axis of Cartesian
coordinates and the external magnetic field is a constant, Bx = B(x)x x̂ + B(z)x ẑ. The
magnetic field lines have a separatrix with an X-point at x= 0, y= 2πB(x)x /µ0I, where
µ0 is the permeability of free space. An X-point, or more correctly an X-line, is
a place where one of the two components of the curvature of a magnetic surface
goes to infinity. A simple non-axisymmetric shape for an outer magnetic surface
and a complicated external magnetic field arise when the bounding surface has a
near-rational rotational transform. A complicated external magnetic field is required
to avoid breaking the magnetic surface by an island. The standard method for
optimizing stellarators specifies the shape, which prejudices the optimization towards
simple shapes. Nevertheless, the practical realization of the plasma state depends on
the simplicity, or more precisely the efficiency, of the external magnetic field. The
simplicity of the description of the shape has no direct relevance to the practical
realization of a plasma state.

Two concepts underlie optimization of coils: (1) efficiency-ordered external
magnetic field distributions, § 2.1, and (2) plasma sensitivity, § 2.2.

2.1. Efficiency representation of the external magnetic field
Simple physics considerations constrain where coils can be located to produce a
given external magnetic field to support a plasma equilibrium, § 2.3 of Boozer
(2015). Efforts to engineer coils for magnetic fields that are not consistent with these
constraints are a needless waste of resources.

A measure of the difficulty of driving a given external magnetic field distribution
is given by the distance d between maxima and minima of Bx · n̂ on a surface. A
simple question addresses the difficulty issue (Boozer & Ku 2011): When equal
positive maximum and negative minimum magnitudes of Bx · n̂ are separated by
a distance d on a surface, can the maximum and minimum be produced by two
oppositely directed magnetic dipoles that are a distance ∆s from the surface? The
answer is no when the distance of the dipoles from the surface satisfies

∆s > 1.284d. (2.1)

The maximum normal magnetic field on the surface produced by an individual dipole
of strength m0 is Bx · n̂ = µ0m0/(2π∆3

s ). When two oppositely directed dipoles are
optimally situated and ∆s= d, the maximum of Bx · n̂ is reduced to 85 % of the value
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Stellarator design 5

of a single dipole. An 85 % efficiency is reasonable; a complete loss of efficiency
occurs over the range 1<∆s/d< 1.284.

To avoid the distraction of trying to engineer the impossible, the optimization
of coils requires an effective way of representing all externally produced magnetic
fields that may be utilizable – the completeness issue – but include no magnetic
field distributions that are too difficult to produce at a distance – the redundancy
issue. Although it is tempting to have an explicit representation of the coils as in
the COILOPT code (Strickler et al. 2002), either Fourier (Strickler et al. 2002) or
spline (Breslau 2015), such representations generally are not complete and have a
large redundancy.

Both the completeness and the redundancy issues are addressed by the efficiency-
ordered external magnetic distributions. In addition, the basis functions of this
representation are easily calculable. The basic idea is to use the ratio of the normal
magnetic distribution on a torus just outside the plasma surface to the normal magnetic
field on a distant toroidal surface. Between the two toroidal surfaces the externally
driven magnetic field is divergence and curl free, so it has the form Bx = ∇φ with
φ a solution to Laplace’s equation ∇2φ = 0. The magnetic field inside a torus due to
current outside is uniquely given by the net poloidal current G0, which produces a
potential φ =µ0G0ϕ/2π, and the externally produced normal field to the torus Bx · n̂,
§ 2.1.5 of Boozer (2015). The toroidal angle ϕ is the angle of cylindrical coordinates
(R, ϕ, Z), where R is the major radius of the torus.

Solutions to Laplace’s equation naturally decay exponentially from their source.
When the two toroidal surfaces are approximated as infinitely long cylinders, the
solution to Laplace’s equation is φ ∝ (sin mθ)/rm, so the relationship between the
radial magnetic field B(a)r (θ) on the surface r = a and the radial magnetic field
B(b)r (θ)=

∑
m Bm sin mθ on the surface r= b> a is

B(a)r (θ)=
∑

m

Bme−m ln(b/a) sin mθ. (2.2)

Let ∆̄ ≡ ln(b/a). Mode numbers with m∆̄ & 3 are driven too inefficiently to be of
practical importance; e3 ≈ 20. For b/a= 1.65, which is a typical reactor coil–plasma
separation, ∆̄≈ 0.5.

The cylindrical model can be generalized to two arbitrarily shaped toroidal surfaces
using the transfer matrix T , which can be defined to give the poloidal and toroidal
Fourier coefficients of the normal magnetic field, B · n̂, on a torus just outside the
plasma in terms of the Fourier coefficients on a distant torus. When the Fourier
terms on the distant torus are indexed by k, so that the normal field to this torus is∑

k Bkei(nkϕ−mkθ), the normal field to the torus just outside the plasma is

B · n̂(θ, ϕ)=
∑

jk

T jkBkei(njϕ−mjθ). (2.3)

A singular value decomposition (SVD) of the transfer matrix T will have singular
values that decrease exponentially. For the cylindrical model, (2.2), the singular
values of T are e−m ln(b/a). The left eigenvectors F(t)

i of T are the normal magnetic
field distributions ordered by the ease with which they can be produced at a distance.
For the cylindrical model, the left eigenvectors are proportional to sin mθ , but they
are more complicated in toroidal geometry. Because of the exponential decrease in
the singular values with the singular value index, the left eigenvectors that belong to
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6 A. H. Boozer

the efficiently produced set quickly converge as the outer torus becomes more distant
from the plasma surface. Any torus that encloses perspective coil sets can be used to
define the efficiency-ordered magnetic field distributions.

A simple method for determining the transfer matrix T uses the current potential
κ(θ, ϕ) (Merkel 1987) on a third toroidal surface, which is outside the outer surface.
The current potential can be interpreted as the density of magnetic dipoles on the
surface (Merkel 1987; Boozer 2015). Consequently, the magnetic dipole formula can
be used to determine B(x) throughout space by any Fourier component of κ(θ, ϕ). In
particular, the transfer matrix T can be determined between any two toroidal surfaces
in the region enclosed by the surface on which κ is defined. The dipole formula can
also be used to determine Bj(x), the magnetic distribution throughout space associated
with the jth left eigenvector of T . This is the jth most efficiently produced magnetic
distribution at the location of the plasma.

A slight generalization in the definition of the transfer matrix makes some
applications simpler. The representation of the normal field on the inner toroidal
surface can be based on any complete set of dimensionless, orthonormal functions on
that surface, which need not be the Fourier functions though they could be:∮

f ∗i (θ, ϕ)fj(θ, ϕ)w dθ dϕ = δij. (2.4)

The normal component of the external magnetic field perturbation can then be written
as the product of two matrix vectors,

δBx · n̂= w
A

f †
·Φ. (2.5)

The function w(θ, ϕ) > 0 is a weight function, A is the area of the surface, the row
matrix vector f † has the f ∗i as its components, and the column matrix vector Φ has
the expansion coefficients

Φi = A
∮
δBx · n̂ fi dθ dϕ (2.6)

as its components. The Φi have units of magnetic flux.
The singular values of the transfer matrix, e−ti , have special importance when the

outer toroidal surface on which B · n̂ is defined so that it coincides with the location
of the coils. The left eigenfunction, which describes Bx · n̂ on the inner surface, is
associated with the singular value e−ti and will be written as F(t)

i (θ, ϕ), and it obeys
the orthonormality condition

∮
F(t)∗

i F(t)
j w dθ dϕ = δij.

The efficiency measure is not unique. Two measures are consistent – in the sense
of giving consistent results – to the extent that the eigenfunctions that are complete
and non-redundant using one measure span those eigenfunctions in the other. Given
an external field described on a torus by Φ of (2.5), the difficulty of producing the
field can be described by Φ† · D ·Φ, where the difficulty matrix D is Hermitian and
positive. The matrix that gives the efficiency of producing the external field is E=D−1.
The difficulty matrix associated with the transfer matrix is D= (T−1)† · T−1, where T
gives Φ = T ·Φb and Φb gives the normal magnetic field on a distant surface b.

Since the external magnetic field increases exponentially with the distance away
from the surface on which Φ is defined, the eigenvalues of any sensible definition
of difficulty will increase exponentially. That is, the eigenvalues of D can be written
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Stellarator design 7

as di= e2∆i , where di+1 > di. The average increase in the eigenvalues ∆̄ is defined by
∆i/i→ ∆̄ as i→∞. As seen from the ∆̄ associated with the cylindrical model of
(2.2), ∆̄ is less than unity for typical coil–plasma separations.

The eigenvectors from two different measures of difficulty are related by a unitary
matrix U, which means U† · U = 1. If the two measures were identical, U would be
the identity matrix. Two measures of difficulty are consistent when the unitary matrix
relating them, U ij, has large elements only near the diagonal, with elements away from
the diagonal decreasing in magnitude exponentially, approximately as exp(−c0∆̄s|i−
j|), where c0 is a constant and ∆̄s≡ ∆̄1∆̄2/(∆̄1+ ∆̄2) is essentially the smaller of the
two ∆̄.

An example of consistent measures of difficulty is based on the transfer matrix
with two separations of the more distant surface b. The greater the separation the
more rapidly the eigenvalues of D increase, and ∆̄ is approximately proportional to
the separation. The eigenfunctions depend on the separation, and only converge to a
definite set of eigenfunctions in the limit ∆̄ � 1. Nevertheless, the changes in the
eigenfunctions are of little practical importance when the separation of the distant
surface b is greater than the coil–plasma separation.

2.2. Plasma optimization and sensitivity
A concept of obvious importance that has nonetheless received little attention is the
plasma sensitivity to the different external magnetic field perturbations. A perturbation
with a high plasma sensitivity changes a desirable property of the plasma, such as
good magnetic surfaces, well-confined particle trajectories, or a magnetic well, by
a large degree at a small amplitude. Toroidal plasmas have orders of magnitude
differences in sensitivity to different external magnetic perturbations, even among
perturbations of comparable wavelength on the plasma surface.

Although only a few sensitivity calculations have been done, there are enough to
illustrate that the plasma sensitivities to different external magnetic perturbations can
decrease exponentially. Park studied the sensitivity of tokamaks to perturbations that
drive magnetic islands (Park et al. 2007, 2008), figure 2. Boozer and Ku studied the
sensitivity of stellarator neoclassical transport (Ku & Boozer 2010b; Boozer & Ku
2011), figure 3. In both studies, the plasma sensitivity was found to drop essentially
exponentially.

Ku & Boozer (2010b) showed that the use of two concepts significantly simplifies
the coils required to support a plasma with given physics properties. These concepts
were external magnetic fields (1) that can be efficiently produced and (2) to which
the plasma is sensitive.

The concept of plasma sensitivity is closely connected, § 2.2.1 and § 12 of Boozer
(2015), with the theory of plasma optimization. Important optimization topics that
will be considered in § 2.2.1 are (1) which physics properties can and cannot be
independently optimized and (2) the determination of the most efficient possible
external magnetic field that is consistent with a given set of plasma properties.

2.2.1. Stellarator optimization
The basic concepts of the modern strategy for stellarator optimization were initiated

in Garching (Chodura et al. 1981; Nührenberg & Zille 1988) in the 1980s. The state
of a plasma with a definite pressure and current profile is fixed by a choice of the
outermost surface (Bauer et al. 1984).

A standard expression for the outermost surface is the Garabedian representation
(Bauer et al. 1984). A Garabedian surface is described in (Rg, ϕ, Zg) cylindrical
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8 A. H. Boozer

FIGURE 2. The external magnetic perturbations normalized to the toroidal field required to
drive islands in ITER of given width for n= 1, black; n= 2, red; n= 3, blue; and n= 4,
light blue. The calculations included all rational surfaces for three equilibria: inductive,
hybrid, and advanced (Park et al. 2008).

FIGURE 3. The singular values associated with the enhancement of the effective ripple of
W7-X by all possible external magnetic perturbations were found (Boozer & Ku 2011)
to decay exponentially. The effective ripple (Nemov et al. 1999) is a measure of the
enhancement of neoclassical transport.

coordinates, xg(θ, ϕ) = RgR̂(ϕ) + ZgẐ, by expressing Rg(θ, ϕ) and Zg(θ, ϕ) using
complex notation,

Rg + iZg =
∑

mn

∆mnei(nϕ−(m−1)θ), (2.7)

where Rg, Zg and ∆mn are all real. A given set of ∆mn defines a surface.
An optimized stellarator is found by minimizing a quantity χ 2 as a function of the

shape parameters ∆mn. Each physical quantity that is to be optimized has a target
value, π(target)

α , and the value πα(∆mn) achieved in a plasma state defined by a set of
shape parameters ∆mn. The definition of χ 2(∆mn) is

χ 2(∆mn)≡
∑
α

χ 2
α

σ 2
α

, (2.8)

χ 2
α(∆mn)≡ (πα(∆mn)−π(target)

α )2. (2.9)
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Stellarator design 9

The σα measure the relative importance of the various measures and ensure
consistency of units. The choice of σα is much of the art of optimization.

The indeterminacy of the weighting σα of different properties is well known
in everyday life. When searching for a new home, a safe neighbourhood, a short
commute, comfortable size and low cost are all desirable features, but they cannot
all be optimized. Despite agreement on desirable features, their relative weighting in
determining the optimal home will vary from family to family.

Each of the χ 2
α represents a simple property. Two that will be used as examples are

(1) the effective ripple in the magnetic field strength on a magnetic surface (Nemov
et al. 1999), which is a measure of the enhancement of neoclassical transport, and
(2) the resonant current driven on a particular rational magnetic surface due to an
ideal MHD perturbation. In a tokamak this current can be calculated by the IPEC code
(Park et al. 2007) and measures the extent to which that perturbation would drive an
island if the resonant current were allowed to relax. A related calculation has been
done for stellarators (Nührenberg et al. 2009). For both examples, the target function
is zero.

A third example of a χ 2
α is a method for determining the most efficient external

magnetic field consistent with the plasma having a given set of physics properties.
Define functions πα = e2tαΦ2

α. The Φα are obtained from the external field required to
support the equilibrium, Bx · n̂(∆mn), by an expansion in the F(t)

α , which are the left
eigenvectors of the transfer matrix T . To exclude highly inefficient magnetic fields,
which have an index greater than ic, a π2

α(∆mn) can be defined by the square of the
amplitude of the field components that are to be excluded, π2

α = e2tic
∑

i>ic Φ
2
i . The

code STELLOPT/COILOPT combines the stellarator physics and coil optimization in
a single code (Strikler et al. 2004) but does so by optimizing coefficients in a Fourier
representation of the coils. STELLOPT/COILOPT could be modified to optimize in
the space of complete and non-redundant set external magnetic fields.

The standard method for calculating stellarator equilibria is the VMEC code
(Hirshman & Whitson 1983), and that code coupled with one of many insights
tied to the name of Shafranov, the virtual casing principle (Shafranov & Zakharov
1972), gives the external magnetic field Bx · n̂(∆mn) required to support a plasma
state defined by a set of ∆mn. The normal field Bx · n̂ can be expanded in the left
eigenfunctions of the transfer matrix to obtain dimensionless amplitude coefficients,

ai ≡ 1
B0

∮
Bx · n̂F(t)

i w dθ dϕ = Φi

B0A
. (2.10)

2.2.2. Sensitivity of an optimum
Once an optimum stellarator configuration is found, the ∆mn can be varied by a

small amount, δ∆mn, away from their optimal values. A small change in the shape
of the plasma, a given δ∆mn, implies a small change in the external magnetic field
required to support the plasma equilibrium, which can be expressed as δBx · n̂ on a
fixed toroidal surface just outside the plasma. Writing the external magnetic field as
δBx · n̂=wf †

·Φ/A, (2.5), changes away from the optimum have the form

δχ 2 =Φ†
· S ·Φ. (2.11)

S is the sensitivity matrix and is what is known as the Hessian matrix in optimization
theory.

The sensitivity matrix is symmetric, its eigenvalues have real positive values, esi ,
and its eigenvectors F(s)

i (θ, ϕ) can be ordered by the magnitude of the associated
eigenvalue – the eigenvector with the largest eigenvalue first.
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10 A. H. Boozer

2.2.3. Sensitivity of individual χ 2
α

Each χ 2
α , which is associated with a simple property, has an eigenfunction fα(θ, ϕ),

which gives the unique distribution of external magnetic field δBx · n̂ ∝ wfα that
produces a small change in that property – whether small changes are quadratic or
linear in the perturbation amplitude.

The dependence of χ 2
α on the perturbation amplitude can be quadratic, as is the case

for the singular current on a particular rational surface in a tokamak. The singular
current is proportional to the driving perturbation and has the form Iα =

∑
i V iΦi,

where α denotes a particular rational surface. The matrix V i is a matrix vector, which
has only one non-zero singular value and that singular value is associated with a
particular eigenfunction fα(θ, ϕ).

Even near a minimum of χ 2, the dependence of a particular χ 2
α can be linear in the

perturbation amplitude, χ 2
α =
∑

i V iΦi. This occurs when a change in the ∆mn about the
optimum of necessity makes one property better and another worse. The matrix row
vector V i has only one non-zero singular value, which is associated with a particular
eigenfunction fα(θ, ϕ).

The eigenfunctions fα(θ, ϕ) from different χ 2
α are not generally independent. Indeed,

the symmetric matrix O of overlap integrals

Oαβ ≡
∮

fαfβw dθ dϕ (2.12)

must have an eigenvalue that is zero for χ 2
α to have a linear dependence on the

perturbation to a plasma state in which χ 2 is at a minimum. When the fα from
different properties are orthogonal, Oαβ = δαβ , and all eigenvalues are unity. The
eigenvalues of O will be written as e−oi and the eigenfunctions as F(o)

i (θ, ϕ). The
coupling between two properties, α and β, is given by the overlap integral Oαβ

between their eigenfunctions.
The number of non-zero eigenvalues of O is the number of the functions F(o)

i
that are independent. When an eigenvalue of O is small, properties coupled in that
eigenfunction are tightly coupled – one cannot be changed without changing another.
The weightings σα in the optimization only determine where in ∆mn space the χ 2

optimized plasma state is located. The choice of the σα has no direct effect on the
coupling between properties, and in particular what types of further optimization of
certain properties are possible, in the neighbourhood of that plasma state.

An area in which improved optimization may be important is the confinement
of energetic alpha particles. Power loss is not the issue: roughly half the alphas
are on passing-particle trajectories, which are well confined when magnetic surfaces
exist. The issue is controlling the damage to the wall surrounding the plasma from
bombardment by energetic alpha particles. An extremely low rate of alpha loss may
not be required. It may be possible to steer the lost alphas into a pool of liquid
metal, which would eliminate the material-damage issue.

An important question is how collections of properties can be independently
controlled. This question is addressed by the singular value decomposition of the
matrix

Cij ≡
∮

e−tiF(t)
i e−ojF(o)

j w dθ dϕ. (2.13)

When a singular value e−c` is small compared to unity, the right eigenvector F (c)
k ,

which is a linear combination of the F(o)
j can only be driven with low efficiency. When
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Stellarator design 11

e−c` is small compared to other singular values, extreme accuracy is required in the
ratio of currents in different coils in order to separately drive this particular collection
of properties.

2.3. Applications to coil design
Distance between the plasma and the coils is critical not only to provide space for
the blanket and shields but also for an adequate divertor that is consistent with a
narrow divertor slot for the plasma states that the device is designed to support, § 3.
In addition, the greater the distance between the coils and the plasma the fewer the
number of error field distributions to which the plasma has unacceptable sensitivity.
For all of these issues, the importance of choosing plasma configurations that not
only have good physics properties but also are consistent with efficient magnetic
field distributions is clear. Features such as easy access to the plasma chamber are
also much easier to design when the coil set need only produce the efficient field
distributions. The coils should be designed so the eigenfunctions of the sensitivity
matrix S with large eigenvalues can be independently controlled. This can be done
using trim coils, which by definition produce only a small magnetic field.

2.3.1. Flexibility for many configurations
Once a desirable plasma state is found that requires only efficiently produced

external magnetic fields, the optimization of the design for supporting ps� 1 plasma
states should be carried out. This can be done by finding the minimal set of efficiently
produced distributions nx that are required to support a large set of plasma states.
The external magnetic fields required to support each of these plasma states can be
designated on an envelope toroidal surface, which is defined so it lies outside the
plasmas in all of the states but close to a plasma in at least one of the states. Each
plasma state p has a set of distributions F p

i of the efficiency-ordered fields on the
envelope surface required to support it, with each at an amplitude ap

i , (2.10). The issue
is how many coils that are independently controllable, nx, are required to provide
most of the required magnetic field to support the ps plasma states. The remaining
fields are either provided by trim coils or perhaps some parts of the remaining fields
are sufficiently small not to require control.

The error in the required magnetic field to support the pth plasma state which is
defined by expansion coefficients ap, (2.10), can be written as

δB(p)
· n̂=w(ap − A ·D)† ·F (t)

, (2.14)

where each element in the matrix column vector D represents the B-normal
distribution on the envelope surface that is produced by a single coil. The matrix Aij

is the amplitude of the ith efficiency-ordered normal field distribution produced by the
jth element of D. With the basic coils, one wishes to minimize the additional fields
that must be supplied by auxiliary coils. That is the coils should be chosen so D can
be adjusted to minimize the root-mean-square (RMS) error in the normal magnetic
field on the control surface. A weighting matrix, such as the sensitivity matrix, can
be added, but for simplicity it will be assumed that one wishes to minimize the
(RMS) field error Ep in each of the ps plasma states, where

E2
p ≡ (ap − A ·D)† · (ap − A ·D). (2.15)
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12 A. H. Boozer

When D is chosen to minimize E2
p for the pth plasma state,

D= A−1
s · ap, (2.16)

E2
p = a†

p · (P
†
· P) · ap, where (2.17)

P ≡ 1− A · A−1
s , (2.18)

1 is the unit matrix, and A−1
s is the pseudo-inverse of the matrix A.

The pseudo-inverse A−1
s is defined by SVD, which means the form A= U · sA · V †,

where U−1=U†, V−1=V †, and sA is diagonal with all elements greater than or equal
to zero. An SVD exists for essentially any matrix. The pseudo-inverse A−1

s ≡U · s−1
A ·

V †, where for any diagonal elements (sA)i > smin, the element (s−1
A )i ≡ 1/(sA)i, but

if (sA)i < smin, then (s−1
A )i ≡ 0. When smin is made smaller, more equilibria can be

supported by a given set of coils, but when smin is too small, the currents may become
too large and accuracy requirements on the currents may be too great to be feasible.

Let ix be the number of efficiency-ordered distributions required to support all ps

plasma states, then A is an ix × iD matrix, where iD is the number of elements in D,
which is the number of independent drivable fields in the main coil set. The matrix A
must have ix − iD singular values that are zero, when ix > iD. What one wishes to do
is to choose the components of A for fixed ix and iD to make the maximum over p of
Ep as small as possible. Ep represents the strength of the field that must be produced
by trim coils. When Ep is too large, either iD must be made larger or the range of
plasma states reduced.

2.3.2. Error-field mitigation
Reducing deviations of the externally provided magnetic field from the design field

by extreme precision of construction increases the cost, time, and the uncertainty of
building fusion experiments. These three factors can be minimized by including field
error mitigation in the design of an experiment. When the magnetic field errors are
too large, too many trim coils are required for practical control and too much current
can be required in the trim coils for a practical design. The basic theory of error-field
mitigation given here follows § 12.3 of Boozer (2015) and is related to the theory of
machine flexibility, § 2.3.1. The theory of plasma control through modification of the
magnetic field distributions to which plasma is sensitive is essentially identical to the
theory of error-field mitigation.

The error in the magnetic field δBm produced by the main equilibrium coils is
determined in the plasma region by the normal component δBm · n̂ to a control surface
just on the plasma side of the coils. That is,

δBm · n̂=w
∑

i

δΦ
(m)
i fi(θc, ϕc), (2.19)

where the fi(θc, ϕc) are an orthonormal set of functions on the coil control surface.
The perturbation to the externally produced field on plasma boundary is then

δΦx = T · δΦm +M · J, (2.20)

where T is a transfer matrix, which relates the magnetic perturbations on the plasma
surface to the perturbations near the coils, and M is a mutual inductance matrix that
gives the effect of currents J in the control coils.
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Stellarator design 13

The plasma sensitivity is measured by δΦ†
x · S · δΦx. The currents J in the trim

coils should be chosen to minimize δΦ†
x · S · δΦx. The answer is M† · S · M · J =

−M† · S · T · δΦm. The optimal trim-coil currents are then

J=−Ck · δΦm, where (2.21)
Ck ≡ (M†

· S ·M)−1
k ·M

†
· S · T , (2.22)

and the subscript k means k singular values are retained in the pseudoinverse of M† ·

S · M . When the currents in the trim coils are set optimally, the sensitivity measure
is

δΦ†
x · S · δΦx = δΦ†

m ·Sk · δΦm, (2.23)
Sk ≡ (T −M · Ck)

†
· S · (T −M · Ck). (2.24)

The number of singular values k retained in Ck can be interpreted as the effective
number of trim coils that can be used for error-field mitigation. The condition number
of Ck, which is the ratio of the largest to the smallest retained singular values, should
be as small as possible since it measures how accurately the coil currents must be
chosen to independently control k error fields. The required construction accuracy is
generally set by having sufficiently few field errors that require mitigation. That is,
δΦ†

x ·S · δΦx must be sufficiently small for a practical value of k, where k is both the
effective number of control coils and the number of error fields requiring correction.

The singular values of Ck generally increase exponentially from one to the next,
so the allowed number of errors that can require correction has a relatively sharp
upper limit. It should be noted that neither Sk nor Ck has a dependence on the actual
magnetic field errors, so an error-field mitigation system can be designed without
knowing the as-built coil errors. Once an error-field mitigation system is designed, the
largest tolerable as-built errors can be determined both in magnitude and form.

3. Divertors
Divertors are considered necessary for particle handling on fusion-grade toroidal

plasmas. The primary purpose of a divertor is to concentrate the region on the wall
in which the plasma particle exhaust occurs so that pumps can be installed at this
location. Covering the whole wall with pumps is not practical.

Although concentrating the particle exhaust is advantageous, concentrating the
plasma energy exhaust is not. It is generally assumed that most of the power can be
radiated. Indeed, the radiated power may become sufficiently large that the plasma
recombines before it has contact with the surrounding structures, which is called a
detached divertor. Of course the flow velocity of the particles from the plasma must
remain sufficiently high that, as plasma crosses the edge of the confinement region,
the particles are swept into the region in which they are to be pumped.

The first question that must be addressed in the design of a divertor is what are the
desirable features. Some of these are as follows. (1) A significant spatial separation
between the region of good plasma confinement and the footpoints of the divertor
field lines on the surrounding structures. This separation makes it more difficult for
sputtered particles to enter the plasma volume and gives room for the beneficial
loss of power by radiation. (2) A location for a slot for field lines to pass into a
divertor chamber that is independent of the plasma state. (3) A controlled spreading
of the heat load. The intersection locations on the wall for field lines that lie just
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14 A. H. Boozer

outside the confinement region tend to be sharp, but spreading of the heat flux is
exponentially sensitive to diffusion when neighbouring magnetic field lines have a
significant exponentiation of their separation.

The optimization of the physics properties of stellarators was originally carried out
at Garching without provision for a divertor. Nevertheless, by 1992 divertor designs
for optimized stellarators were being published by Strumberger (1992), Nührenberg &
Strumberger (1992).

As noted by Nührenberg (2006), stellarators typically have sharp edges, which
locally are similar to the X-point of a tokamak divertor: ‘optimized stellarators have
similar flux surface shape, so in particular, they exhibit helical edges along which
field lines beyond the last closed magnetic surface are preferentially diverted’.

A sharp edge on a magnetic surface must be a magnetic field line. At a sharp edge,
one component of the curvature of the surface goes to infinity. Ampere’s law implies
that the current required to produce a magnetic field must be no further away than of
order one over the curvature of the field lines. The implication is that a sharp edge
cannot be crossed by a magnetic field line.

Unlike the tokamak, the sharp edges on the surface of a stellarator are (1) helical
and (2) need not continue around the full torus. Although the sharp edges on the
surface of a stellarator cannot be crossed by magnetic field lines, they need not
enforce a value of the transform ι when they do not encircle the entire torus.

3.1. Divertor issues
The first step in designing a divertor for a stellarator is the choice of the basic
magnetic configuration. Methods of determining the freedom and the basic conse-
quences of choices are discussed in this paper. Once the choice of the basic magnetic
configuration is made, additional studies are required to answer questions such as
where pumps and baffle plates should be located. These choices are made using
codes, such as the EMC3-EIRENE code (Feng et al. 1997, 2014), but such codes
are not an efficient method to determine the available choices for the basic magnetic
configuration.

In non-axisymmetric systems, knowledge is remarkably limited on the boundary
between a region in which magnetic field lines form nested magnetic surfaces and
confine a plasma and a region in which magnetic field lines strike the surrounding
walls and form a divertor. Knowledge is required on what types of divertors are
feasible for stellarators, especially stellarators that can have a strong net plasma
current, such as quasi-symmetric stellarators.

Magnetic field lines are the trajectories of a one-and-a-half degree of freedom
Hamiltonian, ψp(ψt, θ, ϕ), § 3.3. The boundary issues that need to be understood to
improve stellarator design are also important to a broader field of physics, and the
literature of that broader field is relevant to divertor design.

As discussed in § 3.3, the behaviour of magnetic field lines in the boundary
region can be studied by adding a non-Hamiltonian term to the magnetic field line
trajectories, which causes the lines to spiral outwards at a rate Ds. As Ds→ 0, field
line trajectories are sampled in regions of confining magnetic surfaces as well as in
annuli of stochastic field lines that can lie between annuli of nested surfaces. When
Ds > 0, any magnetic field line trajectory eventually strikes the walls. The Ds → 0
limit provides a definition of both the outermost confining magnetic surface and the
first escaping magnetic field lines.

When many magnetic field lines are followed, the first escaping magnetic field lines
form flux tubes. That is, magnetic field lines do not escape from the vicinity of the
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Stellarator design 15

last confining flux surface at all locations – only at certain locations – and it is the
properties of these first escaping flux tubes that define the basic properties of divertors.
Questions are as follows.

(1) Where do the trajectories of the first escaping flux tubes go? Divertor plates could
in principle be located at any location along, and with any degree of tangency
to, these trajectories.

(2) Can the trajectories of the first escaping flux tubes be made insensitive to the
currents in the plasma? Can divertor plates be located to provide satisfactory
performance for a range of plasma states?

(3) How is the amount of flux in the first escaping flux tubes affected by field line
diffusion? Magnetic field lines do not diffuse, but plasma following those field
lines does. The behaviour of the diffusing plasma can be studied by introducing
magnetic field line diffusion.

(4) How are the properties of the first escaping flux tubes affected by (i) how well
the outermost confining surface approximates a magnetic surface with sharp
edges, (ii) the finite length of the sharp edges, (iii) the rotational transform of
the magnetic field lines of the outermost confining surface, and (iv) the effective
transform of sharp-edge segments?

3.2. Generalizations of tokamak divertors
Modern tokamaks have divertors that are characterized by an X-point, which is
actually a circular sharp edge, or X-line, along which the poloidal magnetic field
vanishes. The separatrix is the toroidal magnetic surface that includes the X-line.
Magnetic field lines enclosed by the separatrix encircle the plasma while those
outside strike the walls.

Divertors on axisymmetric tokamaks can be thought of in two ways, which become
distinct in stellarators, and will be called resonant and non-resonant divertors.

3.2.1. Resonant divertors
In a resonant divertor, the external magnetic field has a resonance on an outer

magnetic surface that has a rotational transform ιd. In a tokamak, the resonance is
ιd = 0, and the magnetic island that forms is axisymmetric. The W7-X stellarator has
a resonant divertor; the resonance is ιd= 5/5, which means that the external magnetic
field has five periods toroidally and has a component that has five periods poloidally.
The 5/5 component splits the ι= 5/5 surface to form a magnetic island, which diverts
the magnetic field lines (Strumberger 1996; Feng et al. 2006). The same divertor plate
locations can be used if the resonant surface is chosen to be at ιd = 5/6 or ιd = 5/4.

The advantages of a magnetic-island or resonant divertor are that (1) the divertor
region is compact staying very close to the body of the plasma and (2) the divertor
has a long connection length because of the slowness with which magnetic field lines
encircle a narrow island.

The resonant divertor has the following two disadvantages.

(1) The formation of a magnetic island requires a fixed resonant rotational transform
ιd be maintained at the plasma edge, which is difficult when the plasma evolution
naturally has a large variation in the net toroidal current.

(2) The intersection points of the magnetic field lines with the surrounding structure
in a resonant divertor are separated by only a small distance from the main
plasma body, despite the many toroidal transits required by a magnetic field line
to go from the plasma edge to the surrounding structure.
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16 A. H. Boozer

3.2.2. Non-resonant divertors
A non-resonant divertor is produced by using the external magnetic field to force

a sharp edge on the plasma surface. The axisymmetric sharp edge on the surface
of a tokamak, the X-line, cannot be crossed by a magnetic field line, which forces
the rotational transform to be zero on the separatrix. This is despite the fact that the
toroidal current enclosed by the separatrix produces a poloidal field that, away from
the X-line, would be associated with a rotational transform ι∼ 1/3.

The magnetic field lines near a sharp edge, even an edge that is just a segment of
a line, resemble those near at tokamak X-line. That is, magnetic field lines are carried
off to the walls, and non-resonant terms in the magnetic field line Hamiltonian, when
sufficiently large, can produce a divertor configuration. Non-resonant divertors have
been discussed for quasi-axisymmetric stellarators (Mioduszewski et al. 2007; Mau
et al. 2008).

Few studies have been made of non-resonant stellarator divertors, but, as in a
tokamak, a non-resonant divertor can be insensitive to the net plasma current, and
the diverted field lines can intersect the divertor structures far from the main plasma
body.

Sharp edges are a requirement for a non-resonant divertor but may or may not be
present in a resonant divertor. Sharp edges are present in the W7-X resonant divertor.
Nevertheless, an island for a resonant divertor can be located on what would otherwise
be a smooth though rational magnetic surface. That is, the location of the place from
which field lines are diverted can be determined either by the global geometry defining
sharp edges, as in a non-resonant divertor, or by a particular rational value of the
rotational transform ιd, as in resonant divertor.

3.3. Hamiltonian method for studying divertors
The primary constraint on magnetic field line behaviour is the Hamiltonian nature of
magnetic field line trajectories, see Kerst (1962), Boozer (1983), and § 5.1 of Boozer
(2015). The use of this constraint allows general studies to be carried out of the
behaviour of magnetic field lines near the plasma edge.

The behaviour of magnetic field lines can be separated, § 5.1 of Boozer (2015),
into a position vector xp(ψt, θ, ϕ) and a magnetic field line Hamiltonian ψp(ψt, θ, ϕ),
which contains the topological information on field lines, dψt/dϕ = −∂ψp/∂θ and
dθ/dϕ = ∂ψp/∂ψt. This separation is implied by the general representation of a
magnetic field 2πB = ∇ψt × ∇θ + ∇ϕ × ∇ψp(ψt, θ, ϕ) in a torus, where ψt is the
toroidal magnetic flux enclosed by a constant-ψt surface and ψp is within a sign the
poloidal magnetic flux outside a constant-ψp surface, § 5.1 of Boozer (2015). The
poloidal and toroidal angles θ and ϕ can be chosen for convenience.

As discussed in § 3.1, the most important issues revolve around the behaviour of
the first escaping flux tubes. The flux tubes can be found (Punjabi & Boozer 2014) by
modifying the field line equations to dψt/dϕ =Dψt − ∂ψp/∂θ and dθ/dϕ = ∂ψp/∂ψt,
which causes the field lines to spiral outwards when D = Ds, where Ds > 0 is a
constant. The properties of first escaping flux tubes can be obtained by following a
large number of trajectories started in the region of good surfaces in the limit as Ds→
0. D can also be chosen to have the form D=±Dd, which causes the magnetic field
lines to diffuse. Diffusion is very slow compared to spiralling and has a reasonable
numerical efficiency only when field lines can be started just inside the last confining
magnetic surface.

In the limit as the spiralling coefficient goes to zero, Ds→ 0, the first escaping flux
tubes contain an infinitesimal magnetic flux, which can be interpreted as a magnetic
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Stellarator design 17

field line. This follows from the theory of turnstiles in Hamiltonian systems, which
was recently reviewed by Meiss (2015). These flux tubes or field lines have definite
trajectories through space and can strike the surrounding walls at any angle from
tangential, which implies a helical stripe, to normal, which implies a point. When the
flux tube is truly infinitesimal, it will always strike the walls at points – one point per
flux tube – but when the flux tube has a finite dimension due either to a non-zero Ds
or more physically to finite diffusion Dd, the strike points partially fill in a helical
segment: the closer to tangential interception the better the helical segment is filled.
For two examples with different diffusion coefficients see figure 6 in Strumberger
(1992). Basic features of divertors, resonant and non-resonant, are determined by the
behaviour of these flux tubes, both their trajectories and the extent of their broadening
in the presence of diffusion, and the tangency of the divertor structures to these tubes.

Without diffusion, non-axisymmetric perturbations to a tokamak divertor modify the
sharp circular interceptions of the field lines just outside the last confining magnetic
surface into complicated lobe-like patterns called tangles. Nonetheless, the footpoint
locations lie on sharp curves (Poincare 1899; Evans et al. 2004, 2009; Boozer 2015).
These curves develop a diffusive width in the presence of a D=±Dd, and the width
can be very sensitive to the magnitude of Dd. Such effects can be efficiently studied
using the methods that have been outlined (Punjabi & Boozer 2014).

In order to study the behaviour of magnetic field lines using a model Hamiltonian
two functions must be specified: a Hamiltonian ψp(ψt, θ, ϕ) and a position vector
xp(ψt, θ, ϕ), which is required to plot the trajectories of the magnetic field line
Hamiltonian in ordinary space.

3.4. Model Hamiltonian for magnetic field lines
In the region of the divertor, the magnetic field is generally close to being curl
free, so the Hamiltonian chosen for topology studies should be consistent with this
requirement. The magnetic field line Hamiltonian that is chosen for the model is

ψp = ψ̄p(ψt)+ δψp(ψt, θ, ϕ), (3.1)

δψp ≡ψc

∑
m,n

αmn

(
ψt

ψc

)m/2

cos(nϕ −mθ), (3.2)

ῑ(ψt)≡ dψ̄p

dψt
; (3.3)

ψc and αmn are constants. The ψm/2
t dependence for the Fourier terms in ψp is what

is expected if the magnetic field is curl free and the ϕ dependence is weak, Ra/n�
∆0,0. The terms with m > 0 are due to currents outside the spatial location being
considered and the terms with m< 0 are due to currents inside. Only cos(nϕ − mθ)
terms are retained because sin(nϕ − mθ) terms break stellarator symmetry, which is
the non-axisymmetric generalization of top–bottom symmetry in a tokamak. Stellarator
symmetry is not required but is a common simplifying constraint.

3.5. Model position vector
3.5.1. Position vector for resonant divertors

The behaviour of the boundary between confined and non-confined magnetic
field lines in a resonant divertor is essentially described by the magnetic field line
Hamiltonian, (3.1), and only a moderate number of the constants αmn need be non-zero.
The position vector can be chosen to be an extrapolated Garabedian surface, (2.7),
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18 A. H. Boozer

xp(ψt, θ, ϕ)= RR̂+ ZẐ, where

R+ iZ =
∑
m,n

∆mn

(
ψt

ψc

)m/2

ei(nϕ−(m−1)θ). (3.4)

3.5.2. Position vector for non-resonant divertors
The position vector and the Garabedian surface, (2.7), have fundamentally different

roles in the modelling of non-resonant versus resonant divertors. For non-resonant
divertors, the position vector can be chosen to have a simple form. The Garabedian
surface determines the constants that appear in the magnetic field line Hamiltonian.
A field line of the Hamiltonian should coincide with the Garabedian surface. That is,
xp(ψt =ψg, θ, ϕ) must equal xg(θ, ϕ) for some choice of the function ψg(θ, ϕ).

A consistent position vector can be defined using ordinary (R, ϕ, Z) cylindrical
coordinates, xp(ψt, θ, ϕ) = R(ψt, θ, ϕ)R̂(ϕ) + Z(ψt, θ, ϕ)Ẑ. The R and Z positions
are real but can be defined by the complex form

R+ iZ = Ra(ϕ)+ iZa(ϕ)+∆0,0

√
ψt

ψc
ei(θ+δθ), (3.5)

where the constant ψc is a characteristic value of the toroidal flux and ∆0,0, a constant
from the Garabedian representation, is the minor radius. The function δθ(ψt, θ, ϕ) is
required for the equation xp(ψg, θ, ϕ) = xg(θ, ϕ) to have a solution for the toroidal
magnetic flux ψt = ψg(θ, ϕ) on the Garabedian surface, (2.7). The equation for the
axis of the poloidal angle is

Ra + iZa =
∞∑

n=0

∆1,neinϕ. (3.6)

3.6. Non-resonant divertor model
3.6.1. Expressions for ψg and δθ

The position vector defined in (3.5) is consistent with the Garabedian position
vector, (2.7), only when the functions ψg(θ, ϕ) and δθ(θ, ϕ) have a certain form.

The equation xp(ψg, θ, ϕ)=xg(θ, ϕ), where ψt=ψg(θ, ϕ) on the Garabedian surface,
implies √

ψg

ψc
eiδθ =

∑
m6=0

∆m,n

∆0,0
ei(nϕ−mθ). (3.7)

This equation for ψg(θ, ϕ) and δθ(θ, ϕ) can be solved by letting

C(θ, ϕ)≡ 1+Σ ′∆m,n

∆0,0
cos(nϕ −mθ), (3.8)

S(θ, ϕ)≡Σ ′∆m,n

∆0,0
sin(nϕ −mθ), (3.9)

where Σ ′ means that the terms (m, n) equal to (0, 0) and (1, n) are omitted from the
sum. One finds that

cos δθ = C√
C2 + S2

, (3.10)
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sin δθ = S√
C2 + S2

, (3.11)

ψg(θ, ϕ)= (C2 + S2)ψc. (3.12)

The Fourier expansions of ψg/ψc and δθ have the general forms

ψg

ψc
= 1+ 2δ(θ, ϕ), (3.13)

δ ≡Σ ′δm,n cos(nϕ −mθ), (3.14)
δθ =Σ ′θmn sin(nϕ −mθ). (3.15)

When all of the Garabedian shape coefficients |∆mn/∆00| that appear in the sum Σ ′
are small, both δmn and θmn are approximated by ∆mn/∆00.

3.6.2. Consistency of the Hamiltonian with the Garabedian surface
On the Garabedian surface, (2.7), the toroidal flux coordinate that appears in the

standard position vector is ψt = ψg(θ, ϕ). The constraint that the Garabedian surface
be a magnetic surface implies

dψt

dϕ
= ∂ψg

∂θ

dθ
dϕ
+ ∂ψg

∂ϕ
(3.16)

when evaluated on the Garabedian surface ψt = ψg. This equation and Hamilton’s
equations imply

∂ψg

∂θ

(
∂ψp

∂ψt

)
g

+
(
∂ψp

∂θ

)
g

+ ∂ψg

∂ϕ
= 0. (3.17)

The required derivatives of the magnetic field line Hamiltonian are(
∂ψp

∂ψt

)
g

= ῑg +
∑
m,n

m
2
αmn(1+ 2δ)(m−2)/2 cos(· · ·), (3.18)

ῑg = ῑ
(
ψa(1+ 2δ)

)
, (3.19)(

∂ψp

∂θ

)
g

=ψa

∑
m,n

mαmn(1+ 2δ)m/2 sin(· · ·), (3.20)

∂ψ
g
t

∂θ
= 2ψaΣ

′mδmn sin(nϕ −mθ), (3.21)

∂ψ
g
t

∂ϕ
=−2ψaΣ

′nδmn sin(nϕ −mθ), (3.22)

where cos(· · ·) = cos(nϕ − mθ). The Fourier terms that are approximately field line
resonant are the ones that are most important to control.

The solution to (3.17) for a set of αmn can be found by an optimization technique.
Optimization algorithms are made more efficient when given an approximate optimum.
An approximate optimum can be found by assuming that all of the Garabedian shape
coefficients |∆mn/∆0,0| that appear in the sum Σ ′ are small, then

αmn ≈ 2
n− ῑgm

m
∆m,n

∆00
, (3.23)

where ῑg = ῑ(ψg) ≈ ῑ(ψc). Note that the toroidal flux dependence of the model
Hamiltonian must be ψm/2

t not ψ |m/2|t to obtain a general solution for αmn.
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3.6.3. Removing islands
As discussed in § 3.1, it is important to be able to investigate the behaviour of

non-resonant divertors in the limit as the last confining magnetic surface closer
approximates a magnetic surface with sharp edges. To carry out this study, it
is necessary to have a way to remove magnetic islands by adjusting the αmn. A
procedure for doing this can be based on a method developed by Greene (1979).

Greene’s method for eliminating islands in a canonical-coordinate region has
three elements: (1) find the closed field line trajectories, called fixed points, of the
Hamiltonian ψp(ψt, θ, ϕ); (2) construct the mapping matrix M for trajectories near
a fixed point; (3) adjust the appropriate coefficient αmn in the Hamiltonian until the
trace of M equals 2.

(i) Find the fixed points. The trajectories of the model Hamiltonian, (3.1), are top–
bottom symmetric in the primary cross-sections, ϕ = 0, π. Letting x ≡√ψt cos θ be
the horizontal and y ≡ √ψt sin θ the vertical coordinate in a primary cross-section,
the fixed points are located along the x axis. To find fixed points, integrate from the
starting point (x = x0, y = 0) at ϕ = 0 to ϕ = 2πM, where the number of toroidal
transits M is an integer, to obtain xM(x0) and yM(x0). A necessary condition for an
Mth-order fixed point is that yM(x0) change sign as x0 is varied, with the fixed point
located at the place where yM(x0)= 0.

To obtain closure at an Mth-order fixed point, the field line trajectory advances from
θ = 0 to θ = 2πN with N an integer. The rotational transform of the magnetic field
line that passes through the fixed point is ιf =N/M.

(ii) Construct the near fixed-point map. Close to a fixed point of order M, the
trajectory map for going from ϕ = 0 to ϕ = 2πM has the form(

δxk+1
δyk+1

)
=M ·

(
δxk
δyk

)
, (3.24)

where δxk is the kth iterate of the horizontal distance, x − xf , of the field line from
the fixed point, and δyk the vertical distance from the fixed point, and the integer k
is given by kM being the number of toroidal transits.

The matrix is constructed by following two trajectories neighbouring the fixed point
from ϕ=0 to ϕ=2πM. The first has the starting point (δx1,0) and ends at (δx11, δy12),
the second has the starting point (0, δy2) and ends at (δx21, δy22). Neighbouring means
|δx1|→ 0 and |δy2|→ 0. The mapping matrix is

M =


δx11

δx1

δy12

δx1

δx21

δy2

δy22

δy2

 . (3.25)

The matrix M should have a unit determinant, D≡M11M22−M12M21= 1, since the
magnetic field line Hamiltonian is area preserving. The trace, T ≡M11 +M22, will be
the important quantity and will have an error ∼|√D− 1|.
(iii) Greene’s trace condition. To understand Greene’s trace condition that the trace
must equal 2 to eliminate islands, first note that the trace T and determinant D give
the eigenvalues of a 2× 2 matrix. That is, the matrix M can be written in the form
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M = P · µ · P−1, where µ is diagonal with its two diagonal elements, µ± = T/2 ±√
(T/2)2 −D, the eigenvalues. For the mapping matrix, D = 1. As T → 2, the two

eigenvalues are µ± = 1±√T − 2.
When the near fixed point mapping is iterated k times, the mapping matrix Mk is a

k-fold product of the matrix M , so Mk=P ·µk ·P−1 where the diagonal elements of µk

are µk± = (µ±)k = e±k
√

T−2 as T→ 2. When T > 2, the trajectories exponentiate away
from the fixed point, so the fixed point is the X-point of an island. When T < 2, the
trajectories orbit the fixed point, so the fixed point is the O-point of an island. Only
when T = 2 can the fixed point lie on a magnetic surface.

4. Summary
The tokamak is a simpler concept and can produce impressive levels of plasma

confinement even without the subtlety of design that requires a supercomputer.
Nevertheless, the path to a fusion reactor using the tokamak requires large experiments
with uncertain outcomes because a burning tokamak plasma is in a nonlinear,
self-organized state, which is both difficult to predict and to control.

The path to a fusion reactor using the stellarator requires a computational
program to design an attractive candidate, and relatively modest experiments for
validation and to address uncertainties of physics, such as the possibility of impurity
accumulation. The reactor issues for stellarators that cannot be addressed in moderate
size experiments are materials issues, which must be faced by the fusion program
whether a fusion reactor is based on a tokamak or a stellarator. Even in that area,
the stellarator may have a fundamental advantage of easier maintenance access to the
highly irradiated components.

A computational program based on concepts explained in this paper could establish
whether stellarators could be made far more attractive for fusion applications than is
apparent from existing designs. Judging from the level of computational effort required
to develop the W7-X configuration, the cost of a program would be small, perhaps
∼10−3 of the cost of just building ITER: computations are very inexpensive compared
to experiments. Rational program planning depends on such calculations being done
as quickly as possible.
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