Astrophysical pair plasmas

Andrei Beloborodov Columbia University

- 1. Sites of pair creation
- 2. Shocks (explosions)
- 3. Magnetic reconnection
- 4. Electric discharge

Pair plasma is created in compact objects:

Persistent sources:

accreting black holes pulsars, magnetars

Explosions:

magnetar flares cosmological gamma-ray bursts (GRBs)

Energy transformation in compact objects

gravity -> kinetic energy -> magnetic fields, heat -> radiation

main ways of particle acceleration

reconnection, shocks, electric gaps

Explosions

Dissipation power up to 10^{54} erg/s in a region as small as 10 km.

Thermalized energy density $U \sim aT^4$ temperatures $kT > m_ec^2 = 0.511$ MeV magnetic fields up to $B \sim 10^{16}$ G

Ultra-dense, neutron-dominated, object (a star or an accretion disk) surrounded by pair-dominated magnetized plasma with kT ~ MeV. Powerful outflows/jets.

In the expanding ejecta: further dissipation of magnetic energy and bulk motions. It is capable of producing high-energy particles and photons. Main mechanism of pair creation: photon-photon collisions $\gamma + \gamma \rightarrow e^+ + e^-$

threshold

cross section near threshold optical depth

compactness parameter

$$E_1 E_2 > (m_e c^2)^2$$
$$\sigma_{\gamma\gamma} \sim 0.1 \sigma_{\rm T}$$
$$\tau_{\gamma\gamma} = \sigma_{\gamma\gamma} n_{\gamma} s$$
$$U_{\rm rad} \sigma_{\rm T} s$$

$$\ell \equiv \frac{U_{\rm rad} \sigma_{\rm T} s}{m_e c^2}$$

Radiative cooling

Compton cooling time < light-crossing time

$$\frac{t_{\rm cool}}{s/c} \sim \frac{1}{\ell \gamma_e}$$

Dissipation processes affected by pair creation

I. Shock waves in GRBs

GRB spectrum

GRB: opaque heated fireball (cf. big bang)

internal shocks — one of a few possible dissipation processes in the outflow (also magnetic dissipation, n-p friction)

 $n_{\gamma}/n_b \sim 10^5$

radiation mediated shocks

Zeldovich, Raizer 1966 Weaver 1976 Blandford, Payne 1981 Budnik et al. 2010 Levinson 2012 AB 2017

Do shocks generate energetic particles? Do shocks create e+- pairs?

Radiation MHD from first principles: "Photon In Cell"

Fluid motion: Lagrangian grid

Radiation: individual photons Monte-Carlo scattering

1D problem: $\sim 10^4$ shells $\sim 10^8$ photons

Radiation mediated shock (B=0)

Bulk Comptonization, Klein-Nishina, and pair creation

$$n_{\pm} \sim 10^{-3} n_{\gamma} \qquad Z_{\pm} \sim 10^2 \left(\frac{n_{\gamma}/n_b}{10^5}\right)$$

AB 2017

Shock in a magnetized flow

Radiation-mediated shock

cold plasma; pair creation without high-energy particles!

Lundman & AB, in preparation

Consequences of pair creation:

- shock thickness shrinks
- pairs increase optical depth and give "grip" to radiation
- energy per electron is reduced

Shocks "carry" the photosphere with them. Velocity profile between upstream and downstream is shaped by radiation pressure + collisionless jump

Pairs in the shock are producers of inverse Compton and synchrotron radiation. Pair creation by GRB radiation in the external medium

Dissipation processes affected by pair creation

II. Magnetic flares near accreting black holes

Radiative magnetic reconnection:

1. Magnetization:

$$\sigma = \frac{B^2}{4\pi\rho c^2} = \frac{2U_B}{\rho c^2} = 1 - 10^3$$

2. Compactness: cooling time vs. light crossing time

$$\frac{t_{\rm IC}}{s/c} = \frac{3}{4\gamma_e \,\ell_{\rm rad}} \qquad \qquad \ell_{\rm rad} = \frac{U_{\rm rad} \sigma_{\rm T} s}{m_e c^2}$$

 $U_{\rm rad}c \sim U_B v_{\rm rec}$

$$\ell_{\rm rad} \sim \frac{v_{\rm rec}}{c} \, \ell_B$$
$$\ell_B = \frac{U_B \sigma_{\rm T} s}{m_e c^2} \sim 10^3$$

Reconnection in the radiative regime (high compactness parameter)

 $\ell \gg 1 \quad \Rightarrow$

 Plasmoids are cooled
Energetic photons (>1 MeV) convert to e+- pairs

Pair creation and optical depth

e+- creation:
$$\dot{n}_{\pm} \sim \frac{Y f_{\text{HE}} U_B}{t_{\text{res}} m_e c^2}$$
 $\dot{n}_{\text{ann}} = \frac{3}{8} \sigma_{\text{T}} c n_+ n_-$

annihilation balance:

$$\tau_{\rm T} \sim \frac{16}{3} \beta_{\rm rec} \times \begin{cases} u, & u < 1 \\ u^{1/2}, & u > 1 \end{cases}$$

$$u = (3/16)Y f_{\rm HE} \,\ell_B$$

$$\Rightarrow$$
 $\tau_{\rm T} \sim 1$

Bulk motion of pair-loaded plasmoids $f_{\text{push}} = \xi \frac{U_B}{w}$ Magnetic stresses push plasmoids: $f_{\rm drag} \approx \beta \gamma^2 U_{\rm rad} \sigma_{\rm T} n_{\pm}$ Radiation exerts drag: Drag-limited motion: $\gamma \approx (\tau_{\star}/\tau_{\rm pl})^{1/2}$ $(\gamma \leq \sigma^{1/2})$ $\tau_{\star} \equiv \xi \, \frac{U_B}{U_{\rm rad}} \approx \frac{\xi}{\beta_{\rm rad}}$

McConnell et al. 2002

III. Rotation-powered pulsars

- beamed coherent radio emission
- X/γ-ray emission
- e+-loaded wind

Crab nebula in X-rays

- beamed coherent radio emission
- X/γ-ray emission
- e+-loaded wind

Kuiper, Hermsen 2015

Pulsar magnetosphere: pair dominated

- Where is plasma created?
- How much plasma is ejected in a wind?
- Where are gamma-rays emitted?
- How are coherent radio waves emitted?

New approach to the old puzzle: global PIC simulations

Chen, AB 2014; Philippov et al. 2014, 2015; Cerutti et al. 2015, 2016; Belyaev 2015

First-principle numerical experiment

- Start with a non-rotating star and spin it up. E will be induced
- Particles lifted from the star will move in the self-consistent electromagnetic field
- E and B: fixed inside the star, calculated from Maxwell equations outside the star
- Accelerated particles emit photons
- High-energy photons convert to e+-

Method: "Particle in cell" (PIC) + pair creation:

- fields calculated on a grid
- particles followed individually
- photon emission, tracing, and pair creation: Monte-Carlo

Time = 0.08

Chen & AB 2014

aligned rotator charge density: - blue + orange

Pair creation rate

- falls short for Crab nebula by 1-2 orders

Alternative plasma source for pulsar wind nebula: a compact shock at a young age (months to years): PWN should contain pair-rich freeze-out

Magnetars

twisted closed magnetosphere: j-bundle formation and slow untwisting

Chen & AB 2017: **PIC simulations**

e+- discharge controls magnetosphere evolution

$$\frac{\partial \mathbf{B}}{\partial t} = -c\nabla \times \mathbf{E}$$

Over-twisted magnetospheres: flares

Parfrey et al. 2013

Summary

- Energy release in compact sources is accompanied by copious pair creation
- Pair creation regulates the dissipation mechanism and dynamics
- Pairs dominate the plasma and shape its observed emission (synchrotron, inverse Compton)

More observational tests: annihilation line, polarization

Energy dissipation in compact objects: shocks, reconnection, electric discharge

More theory: PIC simulations of e+- ion plasma