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ABSTRACT

The magnetospheres of magnetars are believed to be filled with electron-positron plasma generated
by electric discharge. We present a first direct numerical experiment showing how the plasma is
created in an axisymmetric closed magnetosphere. The e± discharge occurs in response to twisting
of the magnetic field lines by a shear deformation of the magnetar surface, which launches electric
currents into the magnetosphere. The simulation shows the formation of an electric “gap” with
unscreened electric field (E · B 6= 0) that continually accelerates particles along the magnetic field
lines and sustains pair creation. The accelerating voltage is self-regulated to the threshold of the e±

discharge. It controls the rate of energy release and the lifetime of the magnetic twist. The simulation
follows the global evolution of the twisted magnetosphere over a long time and demonstrates its
gradual resistive untwisting. A vacuum cavity forms near the star and expands, gradually erasing
magnetospheric electric currents j. The active j-bundle shrinks with time and its footprints form
shrinking hot spots on the magnetar surface bombarded by the created particles.

Subject headings: stars: magnetars — magnetic fields — plasmas — relativistic processes

1. INTRODUCTION

Magnetars are neutron stars with ultrastrong magnetic
fields (B & 1014 G) that display strong activity fed by
dissipation of magnetic energy (see e.g. Mereghetti 2008;
Turolla et al. 2015 for reviews). They produce strong
outbursts and flares as well as bright persistent emis-
sion with a prominent hard X-ray component extend-
ing above 100 keV. These activities are associated with
strong deformations of the external magnetosphere of the
neutron star, resembling the activity of the solar corona
(e.g. Thompson & Duncan 1995). The magnetosphere is
anchored in the solid crust of the star and its deformation
is caused by crustal shear motions driven by ultrastrong
internal magnetic stresses.

The speed of the surface motions is poorly known.
Recent work suggests that the crust yields to internal
stresses through an instability launching a thermoplas-
tic wave (Beloborodov & Levin 2014) or a Hall-mediated
avalanche (Li et al. 2016) In both cases the motion is plas-
tic and should occur on a timescale much longer than the
Alfvén crossing timescale (10−100 ms). It is expected to
be fast enough to efficiently twist the external magneto-
sphere.

The surface shear motion launches Alfvén waves along
the magnetic field lines and generates magnetospheric
twist ∇ × B 6= 0 (Thompson et al. 2002; Parfrey et al.
2013, hereafter PBH13). Plasma is required to supply
the current j = (c/4π)∇ × B. Beloborodov & Thomp-
son (2007, hereafter BT07) found that plasma must be
mainly supplied through e± discharge in the magneto-
sphere rather than through extraction of charges from
the star. They performed simplified one-dimensional
(1D) simulations of the discharge. In the simulations,
the magnetosphere was replaced by a fixed, uniform field
B(x) connecting anode and cathode — metallic plates
at xA and xC . The fixed ∇×B in this setup turns out
equivalent to imposing an electric current through the

plates into the computational box. When pair creation
was not allowed, the system quickly relaxed to a global
“double layer” configuration, with surface charges of the
opposite sign induced on the plates. The electric field
between them gave a huge voltage Φe accelerating par-
ticles to ultra-high energies. When pair creation process
was included in the simulation, the voltage dropped to
a much lower value, just sufficient to sustain pair cre-
ation, and the current was supported through continual
e± discharge. BT07 concluded that pair creation must
be responsible for screening electric fields and regulating
the magnetospheric activity of magnetars.

The simplified 1D model cannot, however, give a com-
pete picture of the magnetospheric activity, for a few
reasons. It does not show how ∇ × B is imparted in
the first place, as the 1D model does not support Alfvén
waves. The exclusion of this important degree of freedom
may also put in question the double layer formation in
the absence of pair creation, the necessity of the onset
of pair creation, and the self-regulation of the discharge
voltage seen in the 1D model. Note also that the electric
field in the 1D (slab) geometry does not decrease with
distance from the charge, and hence one cannot see a re-
alistic distribution of the accelerating electric field along
the magnetospheric field lines. Finally, the 1D model of-
fers no way to follow the gradual resistive “untwisting” of
the magnetosphere — its global evolution as a result of
ohmic dissipation of the twist energy. The expected evo-
lution must occur on the resistive timescale of months to
years (regulated by voltage Φe) and can be tested against
observations.

An axisymmetric electrodynamic model of a resis-
tively untwisting magnetosphere was developed by Be-
loborodov (2009, hereafter B09). This model assumed
that a given fixed voltage Φe is sustained on current-
carrying field lines, without calculating the discharge
that regulates Φe. A surprising result was the forma-
tion of two distinct regions in the untwisting magneto-
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sphere, with a sharp boundary between them, — a “cav-
ity” (j = 0) and a “j-bundle.” In essence, the untwisting
process was found to be the growth of the cavity, eras-
ing the currents in the j-bundle. A curious immediate
implication was the prediction of shrinking hot spots on
magnetars — the footprints of the shrinking j-bundle,
where the stellar surface is heated by bombardment of
accelerated particles. Shrinking hot spots have been ob-
served in seven objects by now (see data compilation in
Beloborodov & Li 2016). All of these objects belong to
the class of “transient magnetars” that show a sudden
outburst and then gradually decay back to the quiescent
state of low luminosity. A key parameter governing the
j-bundle evolution is its poorly known voltage Φe, which
depends on how the e± discharge is self-organized and
may be different on different magnetospheric field lines.

The goal of the present paper is to overcome the limita-
tions of the 1D discharge model and perform a first self-
consistent calculation of the e± discharge in an axisym-
metric twisted magnetosphere. The process can be sim-
ulated from first-principles using a full kinetic descrip-
tion of the magnetospheric plasma as a large number of
charged particles moving in the self-consistent collective
electromagnetic field. Such a direct numerical experi-
ment will show how the twist and the electric current
are created in the magnetosphere in response to crustal
shear, and will follow the ensuing dissipative evolution of
the twist.

The self-organization of the e± discharge should de-
termine where the particles are created and accelerated.
Should this occur near the footpoints of the magneto-
spheric field line or near its apex? Will the acceleration
region be steady or move around? Answers to these ques-
tions may have important implications for nonthermal
emission from magnetars. The voltage drop along the
twisted field lines will control the dissipated power which
feeds the observed emission. We expect to see how parti-
cles are accelerated in the current-carrying magnetic loop
and rain down on the stellar surface to create hotspots.
Finally, the established discharge voltage will determine
the life-time of the magnetic twist and the pattern of its
evolution.

A suitable technique for such direct numerical experi-
ments is the particle-in-cell (PIC) method, with pair cre-
ation implemented. This method has been successfully
applied to the old problem of rotation-powered pulsars
(Chen & Beloborodov 2014, hereafter CB14; Philippov et
al. 2015; Belyaev 2015; Cerutti et al. 2016) The magne-
tar problem is different in important ways and in some
ways easier to study using a global PIC simulation, as
will be described below.

The paper is organized as follows. In Section 2 we de-
scribe the theory of twisted magnetospheres in axisym-
metric geometry, revisit the double-layer configuration
(in the absence of pair creation), describe the mechanism
of pair creation and basic electrodynamics of untwisting.
This will be useful for understanding the simulation re-
sults and also introduces notation used in the paper. Sec-
tion 3 presents the setup of our numerical experiments.
Section 4 describes the results and their implications.
Finally in Section 5 we summarize our conclusions and
provide an outlook for future studies.

2. SUSTAINING CURRENTS IN THE TWISTED
MAGNETOSPHERE

Let us consider a dipole magnetic field around the star,
and assume that its footpoints on the star are sheared in
the azimuthal direction about the magnetic axis. In this
case, the implanted twist is axisymmetric and its ampli-
tude ψ is simply given by the azimuthal angle between
the two footpoints of the magnetic field line. It is conve-
nient to use spherical coordinates r, θ, φ with the polar
axis being the axis of symmetry. The magnetospheric
twist implies a toroidal component of the magnetic field
Bφ 6= 0, and the twist amplitude on a given magnetic
field line is related to Bφ by

ψ =

∫ q

p

Bφ
B r sin θ

d`, (1)

where the integral is taken along the field line, and p, q
are the two footpoints where the field line is anchored to
the surface. As long as the implanted twist ψ is smaller
than unity, the poloidal magnetic field remains close to
dipolar, and the deformation can be thought of as simply
adding a toroidal component Bφ without changing the
poloidal dipole component (B09). This induces ∇×B in
the dipolar configuration that was originally curl-free. It
must be sustained by an electric current in the magneto-
sphere, j. The magnetic energy strongly dominates over
the plasma energy, and hence the currents must be nearly
force-free, j×B = 0, i.e. flowing along the magnetic field
lines.

The origin of the plasma that could carry the current
is a non-trivial issue. The star can have a gaseous at-
mosphere, however for the typical surface temperature
kT < 1 keV the atmosphere scale-height is tiny (cen-
timeters), because of the strong gravity of the neutron
star. The atmosphere does not provide enough plasma
to conduct currents at large altitudes r ∼ R?, where
R? = 10− 13 km is the neutron star radius.

Spinning of the neutron star and its magnetosphere
with velocity vrot = Ω × r implies a “co-rotation” elec-
tric field E = −vrot × B/c and requires charge density
ρGJ = ∇·E/4π = −Ω·B/2πc (Goldreich & Julian 1969).
Magnetars are slow rotators, Ω ∼ 1 Hz, and their ρGJ is
small. The currents demanded by the twisted magneto-
sphere are typically much stronger than cρGJ.

The magnetosphere must make a special effort to avoid
charge starvation and create sufficiently dense plasma to
conduct the current j demanded by the twist. It achieves
this by inducing an electric field E‖ (parallel to the mag-
netic field lines) that can accelerate particles and trig-
ger pair creation. This implies a finite voltage in the
magnetospheric electric circuit and a finite rate of ohmic
dissipation.

2.1. Voltage without pair discharge

In the absence of pair creation, the star is the only
available source of magnetospheric plasma. The lack of
charges leads to induction of an electric field with a com-
ponent parallel to the magnetic field, which can pull out
charges from the star and accelerate them. Then the elec-
tric circuit is expected to relax to a static configuration
similar to the relativistic double layer derived by Car-
lqvist (1982) and observed in the 1D plasma simulations
of BT07. It sustains the opposite surface charges at the
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two footpoints of the magnetic loop where the lifted par-
ticles still move slowly, v � c, and create a large charge
density ρ ∼ j/v.

The high charge density near the footpoints generates
E‖ according to the Gauss law, and E‖ accelerates the

flow on the plasma timescale ω−1p = (me/4πeρ)1/2. The
flow density ρ is reduced to its minimum where its ve-
locity approaches c. As a result, the characteristic thick-
ness of the surface charge layer is the plasma skin depth
λp = c/ωp evaluated for the plasma density ρ ∼ j/c.

The surface charge Σ ∼ (j/c)λp generates the self-
consistent electric field that lifts and accelerates particles
from the footpoint,

E‖ ∼ 4πρλp ∼
4πj

ωp
, (2)

where ωp is the plasma frequency defined by

ω2
p =

4πeρ

me
, ρ =

j

c
. (3)

In other words, the surface charge near the anode and
cathode is organized so that particles extracted from the
star are accelerated to v ∼ c over a length comparable to
the plasma skin depth.

For simplicity, consider a symmetric double layer where
the positive and negative charges have the same mass.
In the 1D model, the electric field is almost constant be-
tween the two surface charges of the double layer, giving
a voltage drop,

eΦe
mec2

=
4πjeL

ωpmec2
=
ωp
c
L =

L

λp
, (4)

where L is the size of the layer (the distance between the
footpoints). Using j ∼ ψB/L, one finds for the typical
parameters of a magnetar,

L

λp
∼ 108 L

3/2
6 ψ−1/2B

−1/2
15 , (5)

which implies a huge voltage Φe.
The estimate in Equation (4) is not valid, however, for

a realistic magnetosphere, which is not one-dimensional.
The current flows along the curved magnetic field lines
and their dipolar geometry significantly changes the dis-
tribution of the net voltage sustained between the two
footpoints.

The corrected voltage may be estimated as follows.
Since λp is small compared with the thickness of the j-
bundle, the surface charge remains thin and its structure
is not changed from the 1D model. The self-consistent
electric field extracting charges from the footpoint is still
described by Equation (2). However, with increasing alti-
tude the electric field must be reduced on a scale compa-
rable to the horizontal size of surface chargeW (thickness
of the j-bundle). The resulting potential drop saturates
at Φe ∼ E‖W , which gives

γDL =
eΦe
mec2

∼ W

λp
. (6)

It is smaller than the 1D estimate by the factor of W/L.
For instance a j-bundle of thickness W ∼ 0.1R? at the

stellar surface and length L ∼ 10R? would sustain a volt-
age∼ 10−2 smaller than predicted by the 1D model. This
is still a huge voltage and particles that tap the full po-
tential drop will be able to induce pair discharge, making
the double layer model inconsistent.

One should also note that E‖ = E · B/B, and hence
the voltage,

Φe =

∫ q

p

E‖ d`, (7)

have a pure inductive origin. One should think of E‖
as c−1∂A‖/∂t, the result of the slow decay of the ultra-
strong twisted magnetic field (BT07). eΦe measures the
energy gain of charge e completing the electric circuit,
and this released energy is extracted from the magnetic
twist energy. A potential electric field would be unable to
support any significant voltage between the footpoints,
as they are connected by an excellent conductor — the
crust.

The induction electric field E still satisfies the Gauss
law ∇ · E = 4πρ; as long as the untwisting process oc-
curs much slower than the light crossing of the system,
one can think of the dissipation as a quasi-steady pro-
cess. The inductive double layer is similar to a normal
electrostatic double layer except that the integral of E
along the full closed circuit (including the part closing
through the crust, where E = 0) does not vanish and in-
stead equals Φe. There is no external emf applied to the
circuit below the stellar surface; the only emf sustaining
the current is the induction emf due to the twist decay
in the magnetosphere itself.

2.2. Voltage with pair discharge

The mechanism of secondary e± creation by relativis-
tic particles in the magnetar magnetosphere involves an
intermediate step of gamma-ray production. It occurs
through resonant Compton scattering of photons flowing
from the star by particles accelerated in the magneto-
sphere. A target photon with energy Et ∼ 1 keV can be
resonantly scattered by an electron with Lorentz factor γ
if the photon energy measured in the electron rest frame
matches ~ωB , where ωB = eB/mec.

1 The resonance
condition reads

γ(1− β cos θX)Et = ~ωB , (8)

where θX is the angle of the target X-ray with respect
to local magnetic field line (the electron moves along the
field line). The energy ~ωB equals mec

2 for the charac-
teristic magnetic field BQ = m2

ec
3/e~ ≈ 4.4×1013 G and

scales linearly with B.
Magnetars supply plenty of keV photons, and the elec-

tron Lorentz factor required for resonant scattering at
B ∼ BQ is moderate, γ ∼ 103. It is far below the elec-
tron Lorentz factors that would be reached in the double
layer discussed in the previous section.

After the scattering, the photon energy is boosted by
a factor comparable to γ2, putting the originally keV
photon into the GeV range, Eγ ∼ 1 GeV. Such energetic

1 This simple resonance condition remains valid in ultrastrong
fields B � BQ when one takes into account the electron recoil in
scattering and the fact that the target photon is propagating almost
parallel to B when viewed in the electron rest frame, because of
the relativistic aberration effect (BT07).
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gamma-rays can easily convert to e± pairs in the strong
magnetic field, as soon as the gamma-ray pitch angle
with respect to the magnetic field, θγ , is large enough to
satisfy the threshold condition,

Eγ sin θγ > 2mec
2. (9)

In the region near the star where B > 1013 G the conver-
sion occurs practically immediately following resonance
scattering (Beloborodov 2013).

The efficiency of pair creation implies a quick develop-
ment of electric discharge until the number of created
particles becomes sufficient to screen the accelerating
electric field. The process develops in a runaway (ex-
ponential) manner and hence the accelerating voltage is
unlikely to grow beyond a characteristic value that makes
particles capable of resonant scattering. This condition
defines a “threshold” for discharge, which corresponds to
a characteristic electron Lorentz factor γthr.

2.3. Characteristic timescales and energy scales

The shortest timescale of interest is the plasma scale
ω−1p . It describes the growth rate of the local accelerating
electric field in response to charge starvation (BT07). It
also determines the thickness of the surface charge c/ωp
in the double-layer configuration.

The characteristic dynamic timescale of the electric cir-
cuit is the light crossing time or the Alfvén crossing time
of the system,

tA =
L

c
∼ 0.3L7 ms, (10)

where L is the length of the magnetospheric field line.
The group speed of Alfvén waves is always directed along
the magnetic field lines and its value is close to c in the
magnetically dominated corona.

The longest timescale in the problem is the lifetime
of the magnetic twist. The finite voltage sustaining the
magnetospheric current implies a finite ohmic dissipation
rate, so the magnetic twist energy Etwist must dissipate
with time,

dEtwist

dt
≈ d

dt

∫
B2
φ

8π
dV ∼ IΦe, (11)

where I is electric current flowing through the magne-
tosphere. The voltage Φe controls the timescale of this
evolution,

tohm ∼
Etwist

IΦe
. (12)

Using the characteristic I <∼ ψ(c/4π)BR? and γthr ∼ 103

one can estimate that tohm is comparable to one year.
This theoretical timescale for untwisting is comparable
to the observed decay timescale in transient magnetars
following an outburst of activity.

Because of the vast separation of timescales, tohm �
tA, the ohmic dissipation of the magnetospheric twist can
be viewed as a quasi-steady process slowly draining the
twist energy. Unsteadiness of the discharge may lead to
strong variability in the electric circuit, however it occurs
on very short timescales, which would be hard to resolve
observationally.

The characteristic scales for energy (or electron
Lorentz factor γ) also have an important hierarchy. The

highest energy corresponds to γDL, which would only be
achieved in the absence of pair creation. It is given by
Equation (6) and can exceed 106. The next character-
istic γ is determined by the threshold for e± discharge
γthr, which is comparable to 103. Both γDL and γthr are
much greater than unity.

2.4. Mechanism of untwisting

An integral form of the Faraday’s induction law
∂B/∂t = −c∇ × E leads to a simple equation describ-
ing resistive evolution of the axisymmetric twist (Be-
loborodov 2011),

ψ̇ = 2πc
∂Φe
∂f

. (13)

Here f(r, θ) is the poloidal magnetic flux function (con-
stant along a magnetic flux surface), which serves to label
the magnetic field lines. For any given point (r, θ), f is
defined as the magnetic flux through the circle about the
axis of symmetry passing through the point; f = 0 on
the axis of symmetry. In particular, for a dipole poloidal
field with a dipole moment µ the flux function is given
by

f =
2πµ sin2 θ

r
, 0 ≤ f ≤ fmax =

2πµ

R?
. (14)

Note that sin2 θ/r = const along a dipole field line. It is
convenient to use the dimensionless flux function

u ≡ f

fmax
= sin2 θ?, (15)

where θ? is the polar angle of the magnetic field line
footprint on the stellar surface.

Equation (13) shows that the twist must decrease
where ∂Φe/∂f < 0 and increase where ∂Φe/∂f > 0. The
fact that Φe(fmax) = 0 (the field line fmax is confined to
the star, which we approximate as an ideal conductor)
implies ∂Φe/∂f < 0 at some f < fmax. This region with
large f , comparable to fmax, corresponds to the inner
magnetosphere near the equator, with short field lines.
B09 showed that this fact leads to immediate formation
of a “cavity” with j = 0 in the equatorial region near
the star, and the cavity expands on the timescale tohm,
erasing the magnetospheric currents. The currents are
“sucked” into the star, so that they close inside the con-
ductor.

From the untwisting equation it is evident that the
profile of Φe(f) plays the key role for the twist evolu-
tion. Voltage regulated by pair discharge is expected to
satisfy the condition eΦe ∼ γthrmec

2. Its variation with
f over a region ∆f = fmax∆u gives the characteristic
twist evolution timescale,

tohm =
ψ

ψ̇
∼ µ

cΦthrR?
ψ∆u. (16)

The dimensionless quantities ∆u and ψ are comparable
to unity, and the characteristic timescale is set by the
ratio µ/Φthr. Note however that tohm can strongly differ
for different magnetic field lines. In particular, if there
is a region with a flat dependence of Φe(f), ∂Φe/∂f =
0, then the local tohm = ∞ and the twist angle ψ is
“frozen”, waiting for the cavity expansion to reach the
region (B09).
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Another interesting implication of Equation (13) is
that on some field lines the twist may grow as the magne-
tosphere untwists. In particular, a decrease of Φe toward
the magnetic axis, ∂Φe/∂f > 0, leads to ψ̇ > 0. This ef-
fect will be observed in the simulations below. Together
with the cavity expansion, this means that the twist re-
locates toward the axis with a decreasing energy Etwist

but possibly with increasing amplitude ψ in some regions
before being completely dissipated.

3. SETUP OF THE SIMULATION

3.1. Implanting the twist

Our simulation starts with a pure dipole magneto-
sphere, with a magnetic moment µ and no magnetic
twist, Bφ = 0. The twist is gradually implanted by
shearing the stellar surface with a latitude-dependent an-
gular velocity ω(θ) ‖ µ. The profile of ω(θ) determines
the profile of the implanted twist; we choose a profile
similar to previous magnetohydrodynamic (MHD) and
force-free electrodynamic (FFE) simulations of twisted
magnetospheres (Mikic & Linker 1994; PBH13),

ω(θ, t) = ω0(t)
Θ

sin θ
exp

[
(1−Θ4)/4

]
, (17)

where Θ = (θ− π/2)/∆θm and ∆θm = π/4 is a measure
of the width of the sheared region. This profile gives a
smooth twist that is centered at θ = π/4 and decreases
to zero at the equator. The prefactor ω0(t) describes the
rate of implanting the twist. It is smoothly increased
from zero at t = 0 to a chosen maximum value, kept at
this value for some time, and then smoothly switched off
back to zero.

As long as the duration tshear of the surface shear ω 6= 0
is shorter than the resistive timescale of the magneto-
sphere, tshear � tohm, ohmic dissipation may be ne-
glected during time tshear. Then the implanted twist
profile is given by

ψ(θ) =

∫ tshear

0

ω(θ, t) dt. (18)

We choose tshear = 40R?/c. Then the shearing stage
is sufficiently short compared with the total duration of
our simulation tsim = 350R?/c but longer than or com-
parable to the Alfvén crossing time tA of the sheared
region, so that twist implanting is a relatively gentle
process. The maximum shear angle (near θ = π/4) is
ψmax ≈ 1.6 radian in the simulations presented below.

After the twist implantation is finished, ω is kept at
zero and the boundary condition at the stellar surface
becomes simply a perfect static conductor. Magnetars
are slow rotators, and their light cylinders RLC

>∼ 104R?
are well beyond the twisted, dissipative region. The slow
spinning of the star is neglected in the present paper,
which corresponds to RLC =∞.

The implanted twist ψ ∼ 1 is moderate and expected
to result in moderate inflation of the poloidal magnetic
field lines. The main effect of surface shearing is cre-
ating a strong Bφ in the magnetosphere. Analytical
arguments (e.g. Uzdensky 2002) and FFE simulations
(PBH13) show that a stronger ψ >∼ 3 will result in a
global instability of the magnetosphere, which we do not
intend to study in this paper and defer to future work.

3.2. Surface atmospheric layer

We start the simulation with a complete vacuum
around the star and create a dense neutral atmospheric
layer at the stellar surface by injecting warm electron-ion
plasma at R?. The atmosphere scale-height h is deter-
mined by the particle injection temperature and gravity
of the star. We choose a Maxwellian injection velocity
with the mean value v0 ≈ 0.1c and the gravitational ac-
celeration g = g0/r

2 with g0 = 0.5R?c
2. This gives the

hydrostatic scale-height

h ≈ v20
2g0
≈ 0.01R?. (19)

This is a much thicker atmospheric layer than the mag-
netar would have at a surface temperature kT <∼ 1 keV.
However, it is sufficiently thin and still resolved by our
numerical grid (see below). The characteristic time it
takes to form the atmosphere is short, tatm ∼ h/v0 =
0.1R?/c. Throughout the simulation particles are con-
tinually injected and absorbed by the star, sustaining a
steady atmosphere at t� tatm.

The injection rate is chosen high enough to ensure a
high density at the base of the atmosphere,

natm �
j

ev0
. (20)

The density is exponentially reduced with altitude on
the scale h, and steeply drops to a low value below j/ec.
Therefore, in the absence of E‖ the hydrostatic plasma is
not capable of conducting the electric current j required
in the twisted magnetosphere.

Where the atmospheric density n(r) falls below j/ec,
electric field E‖ is expected to develop in response to
charge starvation and lift particles from the atmosphere.
The thin and dense atmospheric layer merely makes
plasma available, with no special injection assumptions
at the stellar surface. The numerical experiment must
show how the system responds to the surface shear
described in Section 3.1 and whether the induced E‖
will self-organize to conduct the magnetospheric currents
that allow the twist to be implanted.

3.3. Creation of e± pairs

If E‖ accelerates the lifted electrons to high Lorentz
factors γ > γthr, pair creation will be ignited. In this
paper, we use the simplest implementation of this pro-
cess: we choose a fixed value for γthr and let a new e±

pair be instantaneously created every time an electron
(or positron) reaches γthr. This may be a reasonable
approximation for the e± discharge near the star where
B � 1013 G (Beloborodov 2013). However, it becomes
poor at larger distances where the magnetic field is weak
and resonantly scattered photons have lower energies.

An additional simplification in our implementation is
the prescription for the energy of the created pair. We
will assume that the pair takes a fixed energy ∆E from
the primary particle, and shares it equally, i.e. the new
e+ and e− each receives ∆E/2 (including the rest mass).
Total energy and momentum parallel to B is conserved
in the pair creation process.

Thus, we do not track the propagation of any high-
energy photons, which is significantly simpler than the
discharge model of CB14 developed for pulsars. The
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simplified version appears adequate for the first axisym-
metric PIC model of magnetars. It should be suffi-
cient to demonstrate some basic features of plasma self-
organization in response to shearing of the magneto-
spheric footpoints, followed by ohmic dissipation of the
twist. The results may be used as a benchmark for fu-
ture more advanced simulations. Future simulations will
have explicitly implemented resonant scattering process ,
so that ∆E will be the energy of the resonantly scattered
photon, which may convert to e± with a delay. Both γthr
and ∆E will vary with the local magnetic field, see Be-
loborodov (2013) for a detailed discussion.

3.4. Rescaling of large numbers in the problem

Any PIC simulation must resolve the plasma skin
depth λp = c/ωp, which is a demanding condition on the
computational grid, as λp is a microscopic scale and the
ratio R?/λp is huge (comparable to 108 in magnetars).
Similar to the PIC simulations of rotation-powered pul-
sars, this issue is resolved by rescaling the parameters of
the problem so that λp remains much smaller than the
stellar radius, λp ∼ 10−2R?, but becoming sufficiently
large to be well resolved. This rescaling has two main
implications:
(1) Similar to the pulsar problem, the increased λp im-
plies a reduction of the energy scales (cf. CB14). In
particular, the maximum voltage that can be induced in
a magnetar magnetosphere is given by γDL (Equation 6),
which now becomes moderate, γDL ∼ 102. To respect the
hierarchy of the energy scales 1 � γthr � γDL, a good
choice for the discharge threshold in the numercial exper-
iment is γthr ∼ 10. Secondary pairs receive the energy
∆E, which must be a fraction of γthrmec

2. We will fix
∆E = 3.5mec

2 for all simulations presented below.
(2) The rescaling of λp changes the lifetime of the im-
planted twist, as seen from the following estimate. The
value of λp = c/ωp is related to the electric current den-
sity j by Equation (3), and the characteristic value of j
scales with the magnetic dipole moment of the star µ:
j ∼ ψ (c/4π)(µ/R4

?). This gives,(
λp
R?

)2

∼ mec
2R2

?

eµψ
. (21)

Combining this relation with Equation (16) for the resis-
tive evolution timescale, one obtains

tohm ∼ γ−1thr

(
R?
λp

)2
R?
c
. (22)

One can see that the rescaling of λp to ∼ 10−2R? reduces
the resistive timescale to tohm ∼ 103(R?/c) when γthr ∼
10. This is fortunate, as the untwisting evolution can
now be observed during a reasonably long simulation.
With the realistic λp/R? ∼ 10−8 and γthr ∼ 103 one
would have tohm ∼ 1013R?/c.

Another large number that should be rescaled in the
simulation is the ion-to-electron mass ratio mi/me ≈ 2×
103. We use mi/me = 10. This rescaling is useful for
two reasons: (1) The characteristic ion plasma frequency
ωp,i = (4πnie

2/mi)
1/2 is not very much smaller than ωp,

so that ωp,i < r/c is well satsified, and (2) mic
2 becomes

comparable to γthrmec
2. The latter coincidence is also

expected for the real magnetar discharge.
It is also useful to evaluate the surface magnetic field

B? ∼ µ/R3
?, which can be expressed from Equation (21),

and then estimate the characteristic gyro-frequency,

ωB =
eB?
mec

∼ c

R?

(
R?
λp

)2

, (23)

where λp corresponds to the current density support-
ing a twist ψ ∼ 1. One can see that the particles are
very strongly magnetized, ωB ∼ 104c/R?, and hence ex-
pected to move along the magnetic field lines, similar
to real magnetars. The characteristic gyro-frequency is
also related to another important parameter of the mag-
netosphere — the ratio of magnetic and plasma energy
densities,

q =
B2

4πγnmec2
=

ω2
B

γω2
p

. (24)

For real parameters of magnetars this ratio is q ∼ 1017.
The characteristic parameters chosen in our simulations
give q ∼ 103. This is still very much above unity, so the
magnetosphere is nearly force-free as it should be.

The parameter q also determines the Lorentz factor of
Alfvén waves, γA ≈ q1/2. For a real magnetar, this gives
γA � γ ∼ γthr. This condition is satisfied in our rescaled
numerical experiment as long as γthr � 30.

3.5. Evolving the fields and the plasma: Aperture

The particle-in-cell (PIC) method provides an efficient
technique to simulate plasma from first principles. The
electromagnetic fields are evolved on a grid according
to Maxwell equations with the source (electric current
and charge density) provided by the plasma that is self-
consistently evolved in the electromagnetic field. The
plasma is represented directly as a large number of in-
dividual particles. The simulation follows the motion of
each particle by calculating the applied forces. The mo-
tion of the plasma particles creates electric current which
is interpolated onto the grid and then used as the source
term in the Maxwell equations to update the electro-
magnetic field. The method well describes the plasma
behavior at the microscopic kinetic level as long as the
plasma skin depth is well resolved by the grid and the
number of particles per grid cell is much larger than one.

Our simulations are performed using the PIC code
Aperture.2 The code was originally developed for the
PIC simulations of rotationally powered pulsars (CB14).
The code can follow pair creation with or without ex-
plicit tracking of high-energy photons. In the present
work we use the simplified implementation of pair cre-
ation (Section 3.3) and do not use the radiative transfer
module. The code is fully relativistic and designed to
work on curvilinear grids. This is particularly important
for problems with natural spherical geometry, such as
the plasma dynamics around a spherical star in a region
extending far beyond the stellar radius.

The simulations presented below are done in 2.5D,
which means that our grid is 2D (in the poloidal plane)

2 Aperture is a recursive acronym: Aperture is a code for Par-
ticles, Electromagnetic fields, and Radiative Transfer at Ultra-
Relativistic Energies.
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but all vector quantities are fully 3D, and we solve the full
Maxwell equations assuming axisymmetry. Particles in
the simulation may be thought of as rings with poloidal
and toroidal velocity components. We use a spherical r, θ
grid with logarithmic spacing in r and uniform spacing
in θ. For all of the simulations shown in this paper, the
grid size is 384× 384 and the timestep ∆t = 10−3R?/c.

The outer boundary of the simulation box is set at
rout = 30R? and employs a damping condition that lets
outgoing electromagnetic waves and particles escape the
box, preventing reflection. We did not detect any appre-
ciable reflection of waves from the outer boundary. Note
also that most of the active (current carrying) field lines
are closed well inside the box and do not cross the outer
boundary.

The shear motion of the stellar surface during the twist
implantation stage t < tshear = 40R?/c is equivalent to
imposing a tangential electric field at the boundary. The
field corresponding to the surface motion with velocity v
in the lab frame is given by E = −v×B/c. It corresponds
to zero electric field in the comoving frame of the stellar
crust, which is assumed to be an ideal conductor. This
gives the following boundary condition at r = R?,

E(t, θ) = − (ω(t, θ)× r)×B

c
. (25)

The initial state is a dipole field and the normal com-
ponent of the magnetic field at the surface remains un-
changed during the simulation.

3.6. Units

A set of natural units can be defined as follows. All
lengths are measured in units the stellar radius R? and
time is measured in R?/c. The corresponding velocity
unit is the speed of light c. We define the dimensionless
electromagnetic field and current density as

Ẽ =
eR?E

mec2
, B̃ =

eR?B

mec2
, ̃ =

4πeR2
?j

mec3
. (26)

Hereafter we will use tilde to denote dimensionless quan-
tities, e.g. r̃ = r/R?, t̃ = ct/R? etc.

4. RESULTS

In all simulations presented below the magnetic field
strength at the pole of the star is B̃pole = 4 × 104. It
corresponds to ω̃B = 4×104. We focus on the simulation
with γthr = 10, as it gives the best re-scaled model of real
magnetars (Section 3.4). Simulations with different γthr
are only discussed in Section 4.3.

4.1. Initial relaxation

During the initial stage of the simulation t̃ < t̃shear =
40 the dipole magnetosphere is twisted by the surface
shearing motion described in Section 3.1. The surface
motion induces a parallel electric field E‖, which lifts
charges from the atmospheric layer into the magneto-
sphere and accelerates them. The electron Lorentz fac-
tors quickly reach γthr and e± discharge is triggered
within a single Alfvén time of the twisted field line bun-
dle.

The e± plasma created by the discharge screens E‖,
and the voltage along the current loop temporarily drops,

shutting down the discharge. As the created pairs are lost
to the star on the light-crossing time, a charge-starved
region with significant E‖ develops again. This first hap-
pens near the equatorial plane. As a result, an equato-
rial gap with strong E‖ emerges and begins to accelerate
particles, sustaining the pair creation process. The gap
structure and how the e± discharge is sustained will be
described in more detail in Section 4.2.

It is clear from the simulation that a magnetospheric
source of pair plasma is established in the twisted mag-
netosphere on a timescale not much longer than the light
crossing time, before the surface shearing ends at tshear.
Pair creation becomes the dominant source of plasma;
the extraction of particles from the atmospheric layer
is only important at the initial stage igniting the e± dis-
charge. After the pair discharge is activated, only a small
fraction of the magnetospheric current is carried by the
particles lifted from the surface. In particular, we ob-
served that less than 1% of the current is carried by the
ions.

We also observed that the twist implantation at t <
tshear is accompanied by excitation of Alfvén waves,
which bounce back and forth along the magnetospheric
field lines.3 Similar waves were observed in FFE simu-
lations (PBH13). The waves are damped in the magne-
tosphere at later times, and the initial relaxation period
is followed by the gradual evolution on a much longer
timescale t̃ohm � 100.

After the surface shearing stopped at tshear, the elec-
tric discharge persisted for the rest of the simulation. It
continually supported the electric current in the slowly
untwisting magnetosphere, and the created particles con-
tinually bombarded the star. The duration of the simu-
lation t̃sim = 350 was approximately 9 times longer than
tshear and comparable to the expected resistive timescale
tohm estimated in Section 2. The observed gradual evo-
lution of the magnetospheric twist and currents on the
timescale ∼ tohm will be described in Section 4.4.

4.2. The equatorial gap

A key aspect of the discharge self-organization is how
and where particles are accelerated. The simulation
clearly shows the formation of a quasi-steady “gap” with
a strong E‖ concentrated around the equatorial plane
(Figure 1). The gap thickness `gap is smaller than radius,
and its voltage is near the threshold for e± discharge,

Φgap ≈ `gapEgap, eΦgap ≈ γthrmec
2. (27)

Particles are accelerated in the gap and most of the pair
creation events happen around this region.

As seen in Figure 1, the gap has a rather sharp bound-
ary; E‖ is screened outside it by the created e± plasma.
The drop of E‖ across the two boundaries of the gap is
sustained by the layers of positive and negative charge
(±Σ above and below the equatorial plane, respectively),
according to Gauss law ∇ · E = 4πρ. The charged lay-
ers are self-consistently sustained by the difference in ve-
locities of positive and negative charges passing through
them in the self-organized E‖.

3 Alfvén waves are reflected from the rigid sphere and trapped
in the magnetosphere. Our simulation neglects the fact that the
crustal material has a finite strength, which can lead to plastic
damping of Alfvén waves in the crust (Li & Beloborodov 2015).
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Figure 1. Electric gap in the twisted magnetosphere. Magnetic
field lines are shown by the green curves (poloidal cross section),
and color shows the parallel electric field, defined as E‖ = E ·B/B,
in our standard units defined in Section 3.6. The plot shows the
average of a series of snapshots centered around t̃ = 200. The gap
voltage is self-regulated to the discharge threshold γthr; γthr = 10
in the simulation.

In essence, the gap is a double layer. It has been com-
pressed toward the equatorial plane to a minimum thick-
ness `gap that is still capable of sustaining particle accel-
eration to γthr. Similar to the double layer described in
Section 2.1, the charge layers sandwiching the gap have
the thickness comparable to the local plasma skin depth
λp (evaluated for charge density ∼ j/c) (Figure 2). The
electric field in the gap is Egap ∼ 4π(j/c)λp and its volt-
age is

eΦgap ∼
`gap
λp

mec
2. (28)

The self-regulation of the gap voltage to Φgap ≈ Φthr

controls the gap thickness `gap ∼ γthrλp.
Unlike normal double layers, particles accelerated in

the gap are not brought from outside; instead, the gap
feeds itself with particles. The accelerated particles cre-
ate secondary e± of lower energies near the gap exit, and
some of the secondary particles are reversed by E‖ and
accelerated toward the opposite boundary of the gap,
where they create new pairs, etc.

The multiplicity of the pair plasma is defined byM =
(ρ+ − ρ−)/j, where ρ+ and ρ− are the charge densities
of the positrons and electrons, respectively. One can see
in Figure 3 that M in the gap is close to 1, i.e. the
gap contains the minimum amount of plasma needed to
conduct the electric current. This is consistent with no
screening in the gap that allows the strong E‖ to be sus-
tained. Pair multiplicity in other parts of the j-bundle is
close to 2, just sufficient to screen E‖. Apparently, the
discharge in the simulation is self-organized to carry the
current with the minimum voltage Φe ≈ Φgap ≈ Φthr and
the minimum rate of pair creation.

Figure 4 shows the average hydrodynamic momenta of
electrons and positrons. It is apparent that both species

Figure 2. Charge density in the magnetosphere, averaged in the
same way as in Figure 1. Note the thin charged layers bounding the
equatorial gap across the magnetic field lines. The layers extend
into the inner magnetosphere along the inner boundary of the j-
bundle. The charged structure observed on the field lines extending
to r̃ ∼ 9 approximately corresponds to the outer boundary of the
j-bundle (see Figure 6).

Figure 3. Pair multiplicity M = (ρ+ − ρ−)/j.

are accelerated across the equatorial gap to the thresh-
old Lorentz factor γthr = 10. The move with almost
speed of light in the opposite directions and make ap-
proximately equal contributions to the current density,
consistent with M ≈ 1. Outside the gap, M ≈ 2 to-
gether with the charge neutrality condition n+ ≈ n− im-
plies that the current is carried by one species while the
other creates the neutralizing, nearly static, background.
This is indeed observed in Figure 4.

The gap voltage is not exactly steady and shows quasi-
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periodic “breathing” with time. This must assist the
gap in reversing some of the secondary particles so that
they can cross the gap and accelerate to γthr, sustaining
the pair creation cycle. Most of the accelerated particles
escape the gap and get absorbed by the star.

Since the magnetosphere was set up to be symmet-
ric about the equatorial plane, the fact that the current
is strongly dominated by created pairs implies symmet-
ric bombardment of the two footprints of the j-bundle.
Thus, our simulation shows two symmetric hot spots (or
rather rings, due to the axial symmetry) in the northern
and southern hemispheres of the star.

As discussed in BT07 and Section 2.1, the voltage Φe
in the magnetospheric circuit is purely inductive. The
parallel electric field E = −c−1∂A/∂t is associated with
the slow dissipation of Bφ rather than an electrostatic po-
tential. Note also that the dissipation rate E · j = E‖j is
localized in the gap while the untwisting ofBφ also occurs
outside the gap. The re-distribution of the dissipated Bφ
along the j-bundle into the screened region with E‖ ≈ 0
occurs through the Alfvén mode, which can propagate
without dissipation. The Alfvén timescale tA ∼ r/c is
much shorter than the untwisting timescale tohm, and so
the magnetosphere slowly evolves through the sequence
of global twist equilibria of a decreasing energy Etwist,
even though the magnetic energy is converted to heat
only near the equator.

4.3. Dependence on the threshold voltage

While the simulation with γthr = 10 is the most ade-
quate re-scaled version of the magnetar magnetosphere
(Section 3.4), we also performed simulations with γthr =
20, 100, and ∞ (no pair creation). All other parameters
of the four simulations were identical.

Figure 5 shows the evolution of the twist energy Etwist

in the simulations with the four different values of γthr.
An obvious trend is observed: a higher threshold voltage
for discharge, eΦthr = γthrmec

2, leads to a higher dissi-
pation rate and a shorter lifetime of the magnetic twist.
When γthr � 10, the dissipation becomes so strong that
it affects the initial stage of the twist implantation at
t̃ < t̃shear = 40, so that a substantial part of the twist
amplitude (and the corresponding energy Etwist) is lost
before it could be implanted.

The extreme model with γthr =∞ gives so strong dis-
sipation that Etwist does not reach even 10% of its tar-
get value. It is instructive to compare this simulation
with the expected dissipation rate in the pair-free con-
figuration described in Section 2.1. From equation (6),
we can estimate the voltage drop of the double layer as
γDL = Φ̃e ∼

√
̃ W̃ . The initial width of the j-bundle near

the star is W̃ ∼ 1. The target current density reaches
̃ ∼ 3 × 104 if the twist is fully implanted. This esti-
mate gives γDL comparable to 200; the actual voltage
in the simulation reaches somewhat higher values. The
high voltage develops early during the shearing stage and
results in strong dissipation, which does not allow j̃ to
approach 3× 104.

The simulation with γthr = 100 enables the pair dis-
charge, which buffers the voltage growth in the j-bundle
and allows a stronger twist to be implanted. The sim-
ulations with γthr = 20 and, in particular, γthr = 10,
allow almost full implantation of the target twist with

small ohmic losses. The subsequent slow resistive evolu-
tion is similar in the two models, as both have Φthr well
below the double-layer voltage and sustain a long-lived
discharge activity in the j-bundle. As expected, the un-
twisting timescale tohm is reduced by a factor of 2 as γthr
is increased from 10 to 20 (see Equation 16).

These results unambiguously demonstrate that the en-
ergy dissipation timescale is controlled by the pair cre-
ation threshold, confirming the conclusion of BT07. In
real magnetars, we expect γthr � γDL (Section 2).
Therefore, the most relevant model is the one with low
γthr = 10, which is still high enough to accelerated parti-
cles to ultra-relativistic energies and produce relativistic
secondary e±.

4.4. Expanding cavity

Figure 6 shows the resistive evolution of the j-bundle.
The untwisting of the magnetic field lines proceeds as
anticipated in Section 2.4, through formation of a cav-
ity j = 0 that expands from the inner magnetosphere
near the equator (large flux function u). Figure 7 shows
the evolution of the poloidal current jp until the end of
the simulation at t̃sim = 350. We chose to show jp/Bp
because this quantity is constant along the magnetic
field lines (after averaging over short-timescale fluctua-
tions), as expected in a nearly force-free magnetosphere
— currents flow along the magnetic field lines. There-
fore, jp/Bp is a function of the magnetic field line, which

we label by the parameter u = sin2 θ? (see Equation 15).
Note the expansion of the region where jp = 0 toward
the magnetic axis, from u ≈ 0.75 to u . 0.55.

Figure 8 shows the evolution of the integrated twist an-
gle ψ defined in Equation (1). The untwisting proceeds
from near the equator, where the twist angle decreases
over time, but the twist angle is not simply erased, but re-
located from the inner magnetosphere to the outer parts,
as expected from the untwisting Equation (13).

A curious feature is observed to develop on the mag-
netic field lines with u around 0.22: the twist angle ψ
grows and approaches 3.5 toward the end of the simula-
tion. This feature is also seen in the current structure
shown in Figures 6 and 7. The strongly twisted, narrow
bundle of field lines is inflating with time and eventu-
ally opens up, causing a magnetospheric instability (cf.
PBH13). Our simulation stopped right at the onset of
this development, since we would like to limit our study
to the quasi-steady untwisting regime. An important dif-
ference from over-twisting studied in PBH13 is that here
it is not driven by excessive surface shear. Instead, it re-
sults from resistive evolution of the implanted twist while
the crust is static.

5. DISCUSSION

We have performed the first axisymmetric particle-in-
cell simulations of the twisted magnetospheres of magne-
tars. The simulations demonstrate from first principles
that electric e± discharge is self-organized in the magne-
tosphere to sustain the electric current j demanded by
the magnetospheric twist.

The results of our numerical experiment may be sum-
marized as follows.

1. Shear motion of the stellar surface on a timescale
tshear < tohm successfully implants a magnetic twist
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Figure 4. Average hydrodynamic momentum of electrons (left) and positrons (right).
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Figure 5. Evolution of the twist magnetic energy Etwist. Four
simulations are shown with discharge thresholds γthr = 10, 20, 100,
∞. We use the exact expression for Etwist =

∫
(B2 − B2

0)/8π dV ,
where B0 is the initial dipole field. It takes into account that
besides B2

φ/8π part of the twist energy is stored in the inflated

poloidal magnetic field, which becomes important when the twist
amplitude ψ exceeds unity.

in the magnetosphere. The twist is supported by
continual electric current due to self-organized e±

discharge.

2. Particles are accelerated along the magnetic field
lines to Lorentz factors γ ≈ γthr, just sufficient
to ignite pair creation. The voltage sustaining the
electric circuit, the dissipation rate, and the life-
time of the twist are all regulated by γthr.

3. Particle acceleration is localized in a gap near the
equatorial plane (Figure 1). The gap has the elec-
tric field E‖ ∼ 4π(j/c)λp and width `gap ∼ γthrλp,
where λp = (mec

3/4πej)1/2 is the local plasma

skin-depth. The plasma density in the gap is close
to the minimum value n = j/ec required to conduct
the electric current. Continual e± creation occurs
near the two exits from the gap.

4. The magnetospheric current is carried by electrons
and positrons created in the magnetosphere rather
than electrons and ions extracted from the atmo-
spheric layer on the stellar surface. The created
particles rain onto the footprints of the j-bundle,
creating two hot spots.

5. Resistive untwisting of the magnetosphere occurs
on the timescale tohm estimated in Equation (16),
in agreement with theoretical expectations. The
evolution proceeds as predicted in B09: a cavity
with j = 0 quickly forms in the inner magneto-
sphere and gradually expands, erasing the remain-
ing electric currents.

6. A curious feature was observed in the untwisting
process: while the twist energy was decreasing as
expected from ohmic dissipation, the twist ampli-
tude ψ grew in a narrow bundle of field lines at the
outer boundary of the twisted region. This over-
twisted bundle inflated so much that it eventually
opened up.

Our results confirm that the untwisting magneto-
spheres naturally create shrinking hot spots (footprints
of the shrinking j-bundle), which have been detected in
7 transient magnetars. The evolution timescale inferred
from the simulations (Equation 16) is consistent with the
decay timescale observed in transient magnetars (months
to years).

One unknown in the setup of our numerical experi-
ment is the profile of the surface shear. However, basic
features observed in the simulation, in particular voltage
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Figure 6. Color plot showing the evolution of the poloidal current density jp in the simulation with γthr = 10. Four snapshots are shown:

(a) t̃ = 30, (b) t̃ = 120, (b) t̃ = 230, and (d) t̃ = 350. Note that when jp = 0 then also j = 0.
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Figure 7. Evolution of the poloidal current distribution in the
magnetosphere in the simulation with γthr = 10. The ratio
jp/Bp (constant along the magnetic field lines) is shown versus
the poloidal flux function defined in Equation (15); θ? is the polar
angle of magnetic field line footprint on the star. The different
curves show snapshots at times t̃ = 50, 100, 150, 200, 250, 300,
and 350.

regulation through e± discharge and the cavity expan-
sion, should be generic and independent of the details
of the twist profile. It is less clear how generic is the
formation of the narrow over-twisted bundle. This could
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Figure 8. Evolution of the twist angle ψ in the simulation with
γthr = 10.

be further explored with simulations of different shear
profiles.

An important caveat in the simulation setup is the sim-
plified “on the spot” prescription for pair creation, with
the created e± pair taking a significant energy fraction
from the primary particle. As briefly discussed in Sec-
tion 3.3, this prescription is reasonable if the twist is
confined to the region of ultrastrong magnetic field near
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the star, B >∼ BQ. Pair creation in weaker fields tends to
occur with high multiplicities, which can launch a dense
e± outflow and efficiently screen E‖ in the equatorial re-
gion (Beloborodov 2013). Then the gap may have to split
into two gaps and move away from the equator, closer to
the star.

How the discharge will self-organize in this case can
only be explored using a more detailed implementation
of the pair creation process. The future simulation will
directly track the high-energy photons produced by res-
onant scattering and their conversion to pairs, without
prescribing any γthr. This will be the focus of our future
work, and we expect it to establish the gap location on
magnetic field lines extending far from the star. This
part of the magnetosphere is interesting for two reasons:
(1) the j-bundle activity tends to concentrate on the ex-
tended field lines, and (2) the nonthermal emission is
able to escape the outer magnetosphere while almost all
resonantly scattered photons in the region B � 1013 G
convert to pairs (Beloborodov 2013). Gap location on
the extended field lines influences the hard X-ray spec-
trum emitted by the twisted magnetosphere, and thus
can be tested against observations. Phase-resolved hard
X-ray spectra have been measured for several magnetars
and fitted by the e± outflow model (e.g. Hascoët et al.
2014; An et al. 2015), which assumes an electric gap near
the star. Direct PIC simulations of the e± discharge of
high multiplicity can verify or disprove this assumption.

We did not study in this paper what happens when
the magnetosphere is over-twisted and becomes unsta-
ble. This phenomenon is associated with the observed
giant flares of magnetars, an extreme analogy of solar
flares. The over-twisted magnetosphere inflates and cre-
ates a thin current sheet separating magnetic fluxes of
opposite polarities. The current sheet becomes unstable
to the tearing mode, which leads to magnetic reconnec-
tion and ejection of plasmoids from the magnetosphere
(Lyutikov 2003; PBH13), resembling the mechanism of
coronal mass ejections from the sun (e.g. Mikic & Linker

1994). Our preliminary studies using Aperture show sim-
ilar behavior. One difficulty encountered by such simu-
lations is the huge pair creation rate in the dissipative
current sheet, which must result in quick thermalization
of the released magnetic energy. A scheme describing
this transition needs to be developed and will be a topic
for future work.

This work was supported by NASA grant
NNX13AI34G and a grant from the Simons Foun-
dation (#446228, Andrei Beloborodov). Some of our
simulations were run on the HPC cluster Yeti at
Columbia University.
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Hascoët, R., Beloborodov, A. M., & den Hartog, P. R. 2014, ApJ,

786, L1
Li, X., Levin, Y., & Beloborodov, A. M. 2016, arXiv:1606.04895
Li, X., & Beloborodov, A. M. 2015, ApJ, 815, 25
Lyutikov, M. 2003, MNRAS, 346, 540
Mereghetti, S. 2008, A&A Rev., 15, 225
Mikic, Z., & Linker, J. A. 1994, ApJ, 430, 898
Parfrey, K., Beloborodov, A. M., & Hui, L. 2013, ApJ, 774, 92
Philippov, A. A., Spitkovsky, A., & Cerutti, B. 2015, ApJ, 801,

L19
Thompson, C., & Duncan, R. C. 1995, MNRAS, 275, 255
Thompson, C., Lyutikov, M., & Kulkarni, S. R. 2002, ApJ, 574,

332
Turolla, R., Zane, S., & Watts, A. L. 2015, Reports on Progress

in Physics, 78, 116901
Uzdensky, D. A. 2002, ApJ, 574, 1011

http://arxiv.org/abs/1605.09077
http://arxiv.org/abs/1606.04895

	ABSTRACT
	1 Introduction
	2 Sustaining Currents in the Twisted Magnetosphere
	2.1 Voltage without pair discharge
	2.2 Voltage with pair discharge
	2.3 Characteristic timescales and energy scales
	2.4 Mechanism of untwisting

	3 Setup of the simulation
	3.1 Implanting the twist
	3.2 Surface atmospheric layer
	3.3 Creation of e pairs
	3.4 Rescaling of large numbers in the problem
	3.5 Evolving the fields and the plasma: Aperture
	3.6 Units

	4 Results
	4.1 Initial relaxation
	4.2 The equatorial gap
	4.3 Dependence on the threshold voltage
	4.4 Expanding cavity

	5 Discussion

