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Abstract

Observational evidence in space and astrophysical plasmas suggests
that more massive charged particles are preferentially heated. One possi-
ble mechanism for this is the turbulent cascade of energy from injection
to dissipation scales, where the energy is converted to heat. Here we
consider a simple system consisting of a magnetized plasma slab of elec-
trons and a single ion species with a cross-field density gradient. We show
that such a system is subject to electron drift wave instabilities that are
stabilized only when the electron and ion thermal speeds are equal. For
unequal thermal speeds, we find that the instability gives rise to turbu-
lent energy exchange between ions and electrons that acts to equalize the
thermal speeds. Consequently, turbulent heating tends to equalize the
component temperatures of pair plasmas and to heat ions to much higher
temperatures than electrons for conventional mass-ratio plasmas.

1 Experimental observations

On a fundamental level, we are interested in determining whether heating due
to turbulence drives the plasma toward or away from an equal temperature
equilibrium. This is important for plasmas in which the collisional mean free
path is much longer than the system size so that thermalization due to colli-
sions is negligible over time scales of interest. Such plasmas include the solar
wind and certain accretion flows such as the one at the center of our galaxy.
In the case of the solar wind, direct measurements indicate that ions are hotter
than electrons and that heavy ions are hotter than light ions. Various possi-
ble local heating mechanisms have been proposed, including cyclotron heating,
stochastic heating, and reconnection. Furthermore, there are complications due
to observed temperature anisotropy which can drive kinetic instabilities such as
mirror and firehose. In the case of accretion flows, there is indirect evidence that
ions may be much hotter than electrons. If Bondi accretion rate and all gravi-
tational potential energy is converted to thermal energy during accretion, then
the estimated temperature is well below that inferred from the observed electron
radiation. In this case, either the thermal energy has gone predominantly into
the ions or the accretion rate must be much lower than expected.
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In what follows we will consider a simple model system in which we can
cleanly study the mass and temperature ratio dependence of turbulent heat-
ing. Please note that this is currently a work-in-progress. If you are primarily
interested in the punchline, see Figs. (3) and (4) and associated discussion.

2 Model system

We consider a system with a straight, homogeneous magnetic field B = Bẑ and
a density gradient perpendicular to the field in the x-direction. We restrict our
attention to electrostatic fluctuations whose frequency is small compared with
the Larmor frequency and adopt the gyrokinetic ordering:

ω

Ωs
∼
k‖

k⊥
∼ ρs
Ln
∼ δfs

fs
∼ qsϕ

Ts
∼ ε, (1)

where ϕ is the electrostatic potential fluctuation, fs is the distribution function
for species s, δf is the fluctuating component of f , ω is the characteristic fre-
quency of the turbulent fluctuations, k‖ and k⊥ are the associated wavenumbers
along and across the mean field, Ωs is the Larmor frequency for species s, ρs its
thermal Larmor radius, Ts its temperature, qs its charge, and Ln is the mean
density gradient scale length.

Applying these orderings to the Vlasov equation and averaging over the rapid
gyration of particles about the mean magnetic field results in the gyrokinetic
equation,

∂hs
∂t

+v‖
∂hs
∂z

+
c

B
{〈ϕ〉Rs

, hs} =
qs
Ts

∂ 〈ϕ〉Rs

∂t
FM,s+

c

B

∂ 〈ϕ〉Rs

∂y

∂ lnn0,s
∂x

FM,s, (2)

where hs = δfs + (qsϕ/Ts)FM,s is the non-Boltzmann piece of δfs, t is time, v‖
is the parallel component of the particle velocity, c is the speed of light, FM,s is
the Maxwellian velocity distribution associated with the mean component of f ,
n0 is the mean density, {} indicates a Poisson bracket, and 〈ϕ〉Rs

is the average
of ϕ over Larmor angle at fixed guiding center position R.

The gyrokinetic system is closed by imposing quasineutrality:∑
s

qs

∫
d3vδfs = 0. (3)

2.1 Turbulent heating

At next order in the small parameter ε, one obtains an equation for the slow
evolution of the mean temperature T0:

3

2
n0
dT0,s
dt

= Hs + Cs, (4)
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where Cs represents collisional temperature equilibration, and the turbulent
heating Hs is given by

Hs =
1

V

∫
d3R

∫
R

d3vqshs
∂ 〈ϕ〉Rs

∂t
. (5)

Here V is the volume over which the spatial average is performed and the sub-
script R on the velocity integration indicates that it is carried out at fixed R.
For systems with a sufficiently long collisional mean free path, the collisional
temperature equilibration rate can be ignored, and the temperature of each
plasma species will be determined solely by the turbulent heating Hs. Express-
ing Eq. (7) in terms of Fourier modes gives

Hs = qs
∑
k

∂ϕk

∂t

∫
d3vĥ∗k,sJ0(αk⊥,s), (6)

where αk⊥,s
.
= k⊥v⊥/Ωs and J0 is a Bessel function of the first kind.

When the turbulence is in a steady state, one is interested in the time average
of Hs. Averaging Eq. (5) over a timescale long compared to the nonlinear time
provides an alternative expression for Hs:

Hs =
1

2V

∫
d3R

∫
R

d3vqs

(
hs
∂ 〈ϕ〉Rs

∂t
− ∂hs

∂t
〈ϕ〉Rs

)
, (7)

with the overline denoting a time average. The form for turbulent heating given
by Eq. (7) ensures that the net (species-summed) turbulent heating is zero in
the absence of an external energy injection mechanism at each instant in time.

3 Linear analysis

If we consider small amplitude perturbations, we may neglect the quadratic non-
linearity and carry out a linear analysis of the gyrokinetic equation. Assuming
solutions of the form hs =

∑
k ĥk,s(v‖, v⊥) exp(ik ·Rs − iωt), we obtain

ĥk,s =
qsϕ̂k

Ts
J0(αk⊥,s)

(
ω + ω∗,s
ω − k‖v‖

)
FM,s, (8)

where ms is species mass, vth,s = 2Ts/ms, ρs = vth,s/|Ωs|, Ln,s = −∂ lnn0,s/∂x,
and

ω∗,s =
kyρsvth,s

2Ln,s

qs
|qs|

. (9)

From quasineutrality ∫
d3v (hi − he) =

e2n

Te
(1 + τ)ϕ, (10)
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where τ
.
= Te/Ti, and we have restricted our attention to a single ion species

with proton charge e. Substituting Eq. (8) into Eq. (10) results in the dispersion
relation

ε(ω,k) = 1+τ+

(
ζe −

kyρe
2k‖Ln

)
Γ0(kyρe)Z (ζe)+τ

(
ζi +

kyρi
2k‖Ln

)
Γ0 (kyρi)Z (ζi) = 0,

(11)
where ζs

.
= ω/k‖vth,s,

Z(x)
.
= i
√
πe−x

2

erfc (−ix) (12)

is the plasma dispersion function, erfc is the complementary error function, and

Γ0(x)
.
= exp

(
−x

2

2

)
I0

(
x2

2

)
, (13)

with I0 a modified Bessel of the first kind. Note that we have used quasineu-
trality to set Ln,i = Ln,e

.
= Ln.

3.1 Quasilinear energy exchange

Using Eq. (8) for ĥk,s in Eq. (7), we get a quasilinear approximation for the
energy exchange:

Hs =
∑
k

Hk = − q
2
s

Ts

∑
k

iω |ϕk|2
∫
d3v

(
ω∗ + ω∗,s
ω∗ − k‖v‖

)
FM,sJ

2
0 (αk⊥,s)

=
q2sns
Ts

∑
k

iω |ϕk|2 Γ0(k⊥ρs)

(
kyρs

2k‖Ln

qs
|qs|

+ ζ∗s

)
Z(ζ∗s ).

(14)

This expression will be dominated by the mode with the largest linear growth
rate and its complex conjugate:

Hs ≈ 2Re (Hkm
) = −2

q2sns
Ts
|ϕkm

|2 Γ0(k⊥,mρs)Im

(
ωm

(
kyρs

2k‖Ln

qs
|qs|

+ ζ∗s,m

)
Z(ζ∗s,m)

)
,

(15)
where km indicates the wavevector at which the maximum growth rate occurs
and ωm = ω(km). From Eq. (15), we see that the quasilinear estimate for
the turbulent energy exchange depends on the frequency of the fastest grow-
ing mode. In the following subsections we obtain numerical and approximate
analytical solutions for these frequencies in various limits.

3.2 Comparable thermal speeds

We first show that there is no instability, and thus no turbulent heating, if
vth,e = vth,i. To find the condition for marginal stability, we seek solutions for
which γ

.
= Im (ω) = 0. In this case, the plasma dispersion function simplifies to
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Z(ζ) =
√
π exp(−ζ2)(i − erfi (ζ)), with erfi the imaginary error function. The

constraint Im (ε) = 0 then gives(
ζe −

kyρe
2k‖Ln

)
Γ0(kyρe) exp(−ζ2e ) = −τ

(
ζi +

kyρi
2k‖Ln

)
Γ0 (kyρi) exp(−ζ2i ).

(16)
Substituting this expression into the constraint Re (ε) = 0 gives

0 = 1 + τ + τ

(
ζi +

kyρi
2k‖Ln

)
Γ0 (kyρi)π

1/2 exp(−ζ2i ) (erfi (ζe)− erfi (ζi)) . (17)

When vth,e = vth,i, as would be the case for an equal temperature pair
plasma or for a more conventional mass ratio plasma with ions much hotter
than electrons, then ζe = ζi, and Eq. (17) has no solution. Such a plasma is
therefore universally stable.

Next, we consider how marginal stability is modified when vth,e = vth,i (1 + δ),
with |δ| � 1. In this limit, the constraint Eq. (17) becomes

0 ≈ 1 + τ − 2τζiΓ0(kyρi)

(
ζi +

kyρi
2k‖Ln

)
δ, (18)

with solutions given by

ζi = − kyρi
4k‖Ln

±

√
(τkyρiΓ0(kyρi)δ)

2
+ 8δ(1 + τ)τΓ0(kyρi)(k‖Ln)2

4τk‖LnΓ0(kyρi)δ
. (19)

In order for the solutions to be real (as we assumed when we considered marginal
stability), the term inside the square root must be positive definite. This con-
straint is satisfied when δ > 0 or when τ(kyρi)

2Γ0(kyρi)|δ| > 8(1 + τ)(k‖Ln)2.
The latter constraint can always be satisfied for large enough values of ky/k‖.
Consequently, we see that there can be instability for all values of δ; i.e., for all
plasmas with vth,i 6= vth,e.

We now consider the two cases of pair plasmas (me = mi) and conven-
tional mass ratio plasmas (me � mi) separately to determine how the plasma
instability affects the turbulent heating and thus the electron-ion temperature
ratio.

3.3 Conventional mass ratio

For plasmas with mi � me, there will be disparate thermal speeds vth,i � vth,e
for temperature ratios satisfying me/mi � τ � mi/me. In this case, we can
look for solutions to the dispersion relation that satisfy |ζe| � 1 � |ζi|. With
this restriction, the plasma dispersion functions appearing in Eq. (11) can be
greatly simplified. In particular, we use

Z (ζe) ≈ i
√
π (20)
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Figure 1: Comparison of exact (solid lines) and approximate analytical (dashed
lines) growth rates for the case τ = 1 and mi/me = 337824 (tungsten ions).

and
Z(ζi) ≈ −1/ζi, (21)

giving the following approximate dispersion relation:

ζi (1 + τ) + ζi

(
ζe −

kyρe
2k‖Ln

)
Γ0(kyρe)i

√
π − τ

(
ζi +

kyρi
2k‖Ln

)
Γ0 (kyρi) = 0.

(22)
We next consider wavelengths much shorter than the ion Larmor radius but
much longer than the electron Larmor radius; i.e., k⊥ρi � 1 � k⊥ρe. In this
limit we can approximate Γ(kyρe) ≈ 1 and Γ(kyρi) ≈ 1/(

√
πk⊥ρi) in Eq (22) to

obtain

ζi (1 + τ) + ζi

(
ζe −

kyρe
2k‖Ln

)
i
√
π − τ√

π

(
ζi
k⊥ρi

+
ky
k⊥

1

2k‖Ln

)
= 0. (23)

Seeking solutions for which ζi ∼ k⊥ρe/k‖Ln allows us to neglect the ζe and
ζi/k⊥ρi terms. The resultant solution for ω is

ω =
τk‖vth,i√

π

2k‖Ln (1 + τ) sgn(ky) + i
√
πk⊥ρe

(1 + τ)
2 (

2k‖Ln

)2
+ πk2⊥ρ

2
e

. (24)

In Fig. (1) we show an example comparison of the exact and analytical expres-
sions for ω. In Fig. (2) we give the growth rates as a function of mass ratio for
τ = 1 and as a function of τ for an electron-proton plasma.

Eq. (24) indicates that for k‖ > 0 there is an instability with peak growth
rate γ at wavelengths satisfying ∂γ/∂k‖ = ∂γ/∂k⊥ = 0. These constraints give

k⊥,mρe =
2√
π
k‖|Ln| (1 + τ) , (25)
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Figure 2: Linear growth rates normalized by k‖vth,e from GS2 as a function of
(left) ion-electron mass ratio with Te = Ti and (right) electron-ion temperature
ratio with a proton-electron plasma.

so that
ωm =

τ

4
√
π (1 + τ)

vth,i
|Ln|

(i + sgn(kyLn)) , (26)

with ωm the complex frequency evaluate at km.
Plugging Eq. (26) for ωm into Eq. (15) for turbulent heating and using the

appropriate approximations for Γ(kyρs) and Z(ζs) gives

Hi = −He ≈ −
2e2n

Te
|ϕkm

|2 Re (ωm)
ω∗,e
k‖vth,e

√
π

=
e2n

Ti
|ϕkm

|2 1

2
√
π

vth,i
|Ln|

> 0.

(27)

So ions are heated and electrons are cooled; i.e., the instability acts to equalize
vth,e and vth,i and thus stabilize the mode. This is shown in Fig. (3), where the
quasilinear heating calculated from linear GS2 simulations is given as a function
of mi/me for τ = 1 and as a function of τ for an electron-proton plasma. We
see that the ion heating is positive-definite for both cases, in agreement with
our approximate analytic result.

3.4 Pair plasmas

We have shown analytically that there can only be instability – and thus tur-
bulent heating – for pair plasmas when the component temperatures are un-
equal. This is confirmed by linear simulations from GS2 for an electron-positron
plasma, as shown in Fig. (4). The quasilinear estimate for turbulent heating
taken from linear GS2 simulations is also shown in Fig. (4), as well as some
preliminary results for turbulent heating taken from nonlinear simulations. In
both cases, the turbulent heating is such that it drives the thermal speeds of
the electron and positrons together; i.e., it acts to shut off the instability.
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Figure 3: Ratio of ion turbulent heating Hi to |ϕ|2 from linear GS2 simulations
weighted by the corresponding max linear growth rates. (Left): electron-ion
mass ratio scan with Ti = Te; (Right): temperature ratio scan for an electron-
proton plasma.

Figure 4: (Left): Linear growth rates normalized by k‖vth,e from GS2 as a
function of electron-ion temperature ratio with an electron-positron plasma.
(Right): τ dependence of turbulent heating for an electron-positron plasma from
a quasilinear estimate (green) with turbulent heating normalized by |ϕ|2 for the
max linear growth rate and from preliminary nonlinear simulations (blue).
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4 Conclusions

The analytical and numerical results shown in this paper indicate that turbu-
lent heating driven by the electron drift wave instability present in an inhomo-
geneous, magnetized plasma acts to stabilize the mode. Stabilization occurs
when the ion and electron thermal speeds are equal. For a conventional mass
ratio plasma with Ti ∼ Te, this leads to the ions being heated and the electrons
cooled; for a pair plasma, the turbulent heating acts to equalize the ion and
electron temperatures.

These conclusions are largely based on linear theory and simulations. Work
is currently under way to verify these results with nonlinear simulations.
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