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Abstract. Impurity transport is a subject of fundamental and practical interest
in magnetically confined non-axisymmetric plasmas. An impurity transport mecha-
nism that has received considerable recent attention is that due to the radial E×B
advection of the variations of impurity density along the flux surfaces. We discuss
some of the general characteristics of this mechanism that make it an interesting
potential tool to counteract the accumulation of impurities in stellarators. The size
and sign of this term is expected to depend on the collisionality regime as well
as on the relative phase of the variations of the electrostatic potential and the
impurity density along flux surfaces. Here we will discuss the size and parity un-
der stellarator-symmetry transformations of the variations of electrostatic potential
for low-ion-collisionality regimes. The investigation of the corresponding behavior
of the impurity density and the identification of conditions for favorable coupling
between the two are in progress and will be addressed in future work.

1. Introduction: recent developments in impurity transport

The transport of impurities in three dimensional toroidal magnetic fields has re-
ceived much attention from the stellarator community. The accumulation of impu-
rities in the center of the confinement region has been observed to often limit the
discharge duration and is considered to be a potential handicap for the development
of stellarator reactors. In the framework of neoclassical theory, this accumulation
has been generally ascribed to the inward convection caused by the radial electric
field acting on the high-Z ions in the absence of a so-called temperature screen-
ing effect in non-axisymmetric systems†. In a qualitative sense, these expectations
are consistent with the general trend observed in the impurity confinement time
[Burhenn et al., 2009].

On a quantitative level, the question of whether or not the observed impurity
fluxes agree with the neoclassical estimations based on the solution of approximate

† Recently, both the prevalence of the radial electric field in the transport of impurities
[Helander et al., 2017] and the absence of impurity screening in three dimensional magnetic
fields [Velasco et al., 2017, Helander et al., 2017] has been brought into question for some
relevant collisionality regimes.
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versions of the drift kinetic equation is more difficult to answer, for these compar-
isons are often fragmented, dealing with a reduced number of plasma profiles and
based on different measuring techniques. The fundamental output of the neoclassi-
cal modeling of impurities is the spatially resolved radial particle flux of a charge
state of a certain impurity species, frequently denoted by Γz, and it is often the
case that this very quantity is not experimentally accessible, which complicates
the direct quantitative comparisons. The experimental determination of impurity
fluxes is nevertheless possible from the measurements of absolute density‡ of three
consecutive charge states of the impurity species [Langenberg et al., 2017] with X-
ray or VUV spectrometers, which allows to estimate the source term of the central
charge state. Charge exchange spectroscopy provides measurements of the density
of fully striped medium-low-Z impurities like C6+. In as much as the plasma condi-
tions (namely, the electron density and temperature) allow to assert that only the
fully striped species is present in significant numbers, these measurements provide
a zero-flux density profile in stationary conditions or allow to compute fluxes from
the evolution of the profiles [Ida et al., 2009].

The kinetic modeling of impurity dynamics and transport has undergone recent
improvements with the inclusion of terms usually considered of secondary impor-
tance for the calculation of, e.g., ion or electron heat fluxes, but whose charge de-
pendence make them relevant for impurity dynamics [Garćıa-Regaña et al., 2013].
These terms relate to the modification of the trajectories of highly charged ion
species in a spatially varying electrostatic potential field. As a matter of fact, this
has brought up the relevance of the measurement of the electrostatic potential
variations along the flux surfaces [Pedrosa et al., 2015], often termed ϕ1, and the
benchmarking of its numerical computation [Garćıa-Regaña et al., 2017]. These ex-
tended neoclassical models have started to be used to revisit some of the previous
calculations of neoclassical fluxes and have shown substantial deviations for some
machines and plasma conditions [Garćıa-Regaña et al., 2017].

In Calvo et al. [2017] the ion heat flux in the low-collisionality regimes below
the so-called 1/ν-regime have been revisited with a self consistent treatment of
the electrostatic potential variations in the drift kinetic and the quasi-neutrality
equations. In this contribution we summarise previous results on the size of ϕ1 in
several low collisionality regimes and discuss its parity under stellarator-symmetry
transformations. This will be shown to determine the corresponding parity of the
impurity density variations that will effectively couple to the former to produce a
net radial transport through the E ×B associated to ϕ1. In section 2 we introduce
the mechanism of radial E×B impurity transport, discuss some of its properties and
motivate the analysis of the partiy of ϕ1 under stellarator-symmetry transformation.
This analysis is presented in section 3 for the so-called 1/ν,

√
ν and plateu regimes.

Section 3 does not fully answer the question of the title of this contribution: there
remain to be studied the size and parity of the variations of the impurity density
along flux surfaces for the relevant collisionality regimes. This will be addressed in
future work to complete the analysis of the expected size of the transport driven
by the E ×B advection of the variations impurity density along the flux surfaces.

‡ The determination of the absolute number density of a impurity requires an absolute
calibration. When only a relative calibration is available, the flux divided by the den-
sity Γz/nz, with units of velocity, can be estimated, which also lends itself to a direct
comparison with simulations.
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Figure 1. Illustration of the radial flux caused by the coupling of electrostatic potential
and impurity density variations.

2. How tangential electric fields can cause radial transport of
impurities

In hot magnetically confined plasmas, the electrostatic potential ϕ(x) is approx-
imately constant along the field lines, just like the distribution functions of the
plasma particles are kept approximately a constant Maxwellian along them by the
fast parallel streaming of particles. The corrections to the distribution functions
that are responsible for the transport of particles and energy across the field lines
do display parallel variations. For the size of these for ions and electrons would be
different by a factor

√
mi/me (with mi and me the ion and electron masses re-

spectively), were ϕ perfectly constant along the flux surface, a parallel variation in
this function is needed to keep local charge neutrality. This variation will produce
a local E×B drift with a radial component. If impurity plasma particles are found
in somewhat greater number in the regions where the radial component of this drift
is outward directed, on a flux-surface-average sense, impurities will drift out due to
the variations of ϕ. This is illustrated in figure 1.

2.1. Spatial coordinates

To make this heuristic description somewhat more rigorous, we will introduce the
magnetic coordinates and geometric definitions. Let

B = Ψ′t(r)∇r ×∇(θ − ι(r)ζ) (2.1)

be the magnetic field, where r is a radial coordinate labeling magnetic surfaces,
θ and ζ are, respectively, poloidal and toroidal Boozer angles parameterizing the
surface, ι(r) is the rotational transform, Ψt(r) is the toroidal magnetic flux over
2π, and a prime indicates a derivative with respect to r. In covariant coordinates,
B takes the form

B = β∇r + It(r)∇θ + Ip(r)∇ζ. (2.2)

In Boozer coordinates, the volume element J := (∇r · (∇θ×∇ζ))−1 is conveniently
written in terms of B, the magnitude of the magnetic field B,

J =
V ′(r)

4π2

〈B2〉
B2

, (2.3)

where 〈(·)〉r stands for the flux-surface average

〈(·)〉 = V ′(r)−1
∫ 2π

0

dθ

∫ 2π

0

dζ J (·) (2.4)
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and

V ′(r) =

∫ 2π

0

dθ

∫ 2π

0

dζ J (2.5)

is the radial derivative of the volume V (r) enclosed by the flux surface labeled by
r.

In low collisionality regimes (see subsections 3.3 and 3.4), the expressions result-
ing from a drift-kinetic calculation are often written in terms of coordinates adapted
to the magnetic field lines, α and l. The coordinate α ∈ [−π, π] is an angle that
labels field lines on the surface. For us, it will be defined by the curve ζ = 0. We
take α = 0 at θ = π(1 − ι) because the stellarator-symmetry transformation will
take a simple form with this choice (see subsection 3.1). Once a value of α has been
fixed, the coordinate l, the arc length of the magnetic field line, locates a point
along the line labeled by α. For each α, the value l = 0 is defined by the curve
ζ = 0. The maximum value of l for each α, denoted by Lα, is determined following
the line until it hits the curve ζ = 0 again.

In these coordinates the magnetic field reads

B = Ψ′t(r)∇r ×∇α (2.6)

and the expression for the flux-surface average is recast into

〈(·)〉 = V ′(r)−1
∫ π

−π
dα

∫ Lα

0

dlΨ′tB
−1(·), (2.7)

with

V ′(r) =

∫ π

−π
dα

∫ Lα

0

dlΨ′tB
−1. (2.8)

We will be often using (α, l) coordinates in section 3.

2.2. Radial impurity flux and the expected size of the radial E ×B advection

An expression for the radial flux of a plasma species z of charge qz = Zze (e is the
proton charge) can be obtained from its momentum balance equation

∇ ·Πz = Zzenz (−∇ϕ+ uz ×B) + Rz , (2.9)

dotted with the covariant poloidal basis vector, eθ = ∂θx, of a magnetic coordiante
system like the Boozer coordinates introduced before, and flux-surface averaged

〈Γz · ∇Ψt〉 = −〈nzeθ · ∇ϕ〉+
1

Zze
(〈eθ ·Rz〉 − 〈eθ · ∇ ·Πz〉) . (2.10)

In these expression Γz = nzuz is the particle flux, nz is the particle number density,
uz is the fluid velocity, Πz is the pressure tensor, the collisional friction of the species
z with all other plasmas species is Rz =

∑
s Rzs and ϕ(x) is the electrostatic

potential.

For the interpretation of the transport terms it is convenient to add to equation
(2.10) the projection of (2.9) on a vector uB defined such that ∇ · (eθ + uB) = 0.
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Then, defining h = eθ + uB one gets to the more familiar form†

〈Γz · ∇Ψt〉 = −〈nzh · ∇ϕ〉+
1

Zze

(
〈h ·Rz〉+

〈
(pz‖ − pz⊥)h · ∇B

B

〉)
, (2.11)

where pz‖ and pz⊥ are the parallel and perpendicular components of the traceless
part of the gyrotropic pressure tensor. The first term of the RHS of (2.11) is the
radial E × B advection of impurity density that we described heuristically before.
If we split both the electrostatic potential and density in a part constant on flux
surfaces plus a smaller correction,

ϕ = ϕ0(r) + ϕ1 + . . . , nz = nz0(r) + nz1 + . . . , (2.12)

we see that this term involves only the non-constant parts of the impurity density
nz1 and electrostatic potential ϕ1, for h · ∇ϕ0 = 0 and 〈h · ∇ϕ1〉 = 0. That is,
the lowest-order non-zero contribution from the first term in the RHS of (2.11) is
−〈nz1h · ∇ϕ1〉.Therefore, the amplitude and the relative phase of the variations
ϕ1 and nz1 will determine the size and direction of the radial flux produced by this
term. A situation in which impurities would be transported outwards is depicted
in figure 1.

We note that expression (2.11) is valid also for main ions but, nevertheless, the
first term in equation (2.11) does not cause main ion transport. This is due to
the fact that, in a plasma of low impurity content with similar electron and ion
temperatures like those of relevance of nuclear fusion, ϕ1 is determined by the
variations of the main ion density as ϕ1 = (Te/Zie)(ni1/ni0), where sub-indices e
and i denote electrons and main ions respectively and Te is the electron temperature.
This follows from the quasineutrality condition with the electron density variation
given to leading order by its adiabatic response.‡

For the purpose of interpreting experimental observations it is useful to know
about the expected charge Zz and mass mz dependence of a transport term and
whether it would contribute to the diffusion D or convection V in the usual split
Γz = −D(d 〈nz〉 /dr) + V 〈nz〉. In the case of the 〈nz1h · ∇ϕ1〉 term, for a given
ϕ1 determined by the ion drift-kinetics, the dependencies are implicit in the size
and phase of the impurity density variations, nz1 and will in general depend on the
collisionality regime and the size of the E × B poloidal drift relative the impurity
thermal velocity. As an illustration of a particular situation, in Alonso et al. [2016]
a fluid model of nz1 showed relatively small dependencies on Zz and mz due to a
partial compensation of the inertia and friction terms for the collisional, medium−Z
impurities characteristic of the plasma conditions of the neutral-beam-heated plas-
mas in the TJ-II stellarator. In that same reference, nz1 was mainly dependent
on the radial electric field and main ion pressure gradient and its radial E × B
transport would therefore account as convection. This is due to the fact that, in

† In fact h is closely related to the poloidal covariant basis vector of a magnetic coordi-
nate system with constant Jacobian known as the Hamada coordinates (see e.g. Sugama
and Nishimura [2002, Appendix A]). We note here that, as it is easy to show, the funcion
u(r, θ, φ) is stellarator symmetric in the sense defined in section 3.
‡ At this point it is interesting to note that the two regimes of ‘anomalous’ expulsion

of impurities known as the high-density H-mode [McCormick et al., 2002] and impurity
hole [Yoshinuma et al., 2009] regimes, display remarkably steep gradients in the main
ion profiles associated with transport barriers. In the interperation of those conditions,
turbulence is often put forward as the cause of the degradation of the impurity confinement
without an articulation of how is that turbulence species-selective.
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the fluid modeling, the dependency on the impurity radial density gradient enters
through the impurity diamagnetic velocity, which is usually smaller than the ion
diamagnetic and the poloidal E ×B velocities [Alonso et al., 2016].

To actually affect the radial transport of a impurity species through the term
under discussion here, it has to be able to compete with the radial fluxes caused by
the friction with other species and the viscosity (second and third terms respectively
in the RHS of equation (2.11)). Defining the normalised gyroradius of a species s
as ρs∗ = vts/ΩsR0 with the termal velocity vts =

√
Ts/ms , the gyrofrequency

Ωs = ZseB/ms and R0 the major radius of the device, the flux caused by the
〈nz1h · ∇ϕ1〉 term is of order

1

Ψ′tnz0
〈nz1h · ∇ϕ1〉 ∼

(
Zz
Zi

R0

r
ρi∗

)
ρ2z∗vtz , (2.13)

where Te ∼ Tz has been assumed; that is, roughly smaller than the other two
terms in the RHS of equation (2.11) by a normalised ion gyroradius factor. While
this fact would appear to make it difficult for this term to compete with friction
and/or viscosity, the stellarator-specific low-collisionality regimes [see e.g. Calvo
et al., 2017] in conjunction with impurity-specific parallel dynamics [see e.g. Braun
and Helander, 2010], can bring up the size of the density variations considerably
above their nominal size (2.13).

As a first step to assess if and when this term can become competitive in the
next section we will discuss the expected size of ϕ1 in asymptotic low-collisionality
regimes. Furthermore, we will show that the leading order ϕ1 in those regimes has
a definite parity with respect to the stellarator symmetry transformation (θ, φ) 7→
(−θ,−φ). This is of relevance for the question at hand, for according to equation
(2.11), for a given parity of ϕ1, only variations of impurity density nz1 with opposite
parity will effectively couple to them to give a net radial transport. The sign or
direction of this flux depend on the relative phase phase between the two being +π/2
(as in figure 1) or −π/2. Advancing results from the next section, it is interesting
to note that the sign of ϕ1 will depend on specific relations of the thermodynamic
forces, which, in principle, would allow to revert the flux direction by profile shaping.
This is of course somewhat constrained by the relationship of the thermodynamic
forces introduced by the ambipolarity condition.

3. Parity of ϕ1 under stellarator-symmetry transformations

In this section we introduce the stellarator-symmetry transformation and compile
results on the size and parity of ϕ1 for the 1/ν,

√
ν and plateu collisionality regimes.

The results of this section are summarized in figure 2.

3.1. Stellarator-symmetry transformation

Given a magnetic surface r and Boozer angles θ and ζ, we define the stellarator-
symmetry transformation s, acting on points on the surface, by

s(θ, ζ) = (−θ,−ζ). (3.1)

Taking (θ, ζ) ∈ [0, 2π] × [0, 2π], it is easy to realize that s can be viewed as a
reflection across the point (θ, ζ) = (π, π).

Stellarator magnetic fields are designed such that B(θ, ζ) (we frequently omit
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Figure 2. Summary of the parity and size of ϕ1 in the low-collisionality regimes in a
diffusivity versus collsionality plot. The parameter δ is the size of the deviation of the
magnetic field strength from omnigeneity (see section 3.4).

the dependence on r) is stellarator symmetric (sometimes we will simply say “sym-
metric”); that is, such that s∗B = B, where the pullback of B by s is defined
as

s∗B(θ, ζ) = B(s(θ, ζ)). (3.2)

Throughout this section we assume that B is symmetric.
The transformation s in coordinates α and l (we do not change its name; no

confusion is expected) becomes

s(α, l) = (−α,Lα − l). (3.3)

Note that if B is symmetric, then Lα = L−α. Analogously, if lb1(α) and lb2(α)
are the left and right bounce points of a trapped trajectory, then s(α, lb1(α)) =
(−α, lb2(−α)) and s(α, lb2(α)) = (−α, lb1(−α)).

Equipped with the notation above, it is straightforward to prove the following
result. Let

F (α, v, λ, σ) =

∫ lb2 (α)

lb1 (α)

K(B(α, l), v, λ)f(α, l, v, λ, σ)dl (3.4)

be a function defined for trapped trajectories. Then,

s∗F (α, v, λ, σ) =

∫ lb2 (α)

lb1 (α)

K(B(α, l), v, λ) s∗f(α, l, v, λ, σ)dl. (3.5)

Here, v is the magnitude of the velocity, λ = v2⊥/(v
2B) is the pitch-angle coordinate,

v⊥ is the component of the velocity perpendicular to B and σ is the sign of the
component of the velocity parallel to the magnetic field,

v|| = σ
√

1− λB, (3.6)
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whereas lb1 and lb2 are the bounce points corresponding to the trajectory defined
by λ.

Equation (3.5) says, in particular, that if f is symmetric (resp. antisymmetric),
then F is symmetric (resp. antisymmetric).

3.2. Quasineutrality equation

In this section, we assume that the plasma consists of adiabatic electrons and only
one species of ions. As said before, we expand the electrostatic potential as

ϕ = ϕ0(r) + ϕ1 + . . . , (3.7)

where ϕ0 ∼ Ti/Zie. The size of the correction ϕ1 depends on the collisionality
regime. We write the piece of the quasineutrality equation determining ϕ1 as(

Zi
Ti

+
1

Te

)
ϕ1 =

2π

eni

∫ ∞
0

dv

∫ B−1

0

dλ
v3B

|v|||
1

2
(gi(σ = 1) + gi(σ = −1)) . (3.8)

Here, we have used that, for gyrophase-independent functions,∫
(·)d3v ≡

∑
σ

∫ ∞
0

dv

∫ B−1

0

dλ
πBv3

|v|||
(·)dvdλ. (3.9)

In equation (3.8) gi is the dominant piece of the non-adiabatic component of the
deviation of the ion distribution function from a Maxwellian distribution. The equa-
tion for gi and its size also depend on the collisionality regime. Finally, we choose
ϕ1 such that 〈ϕ1〉r = 0 and gi such that the right side of (3.8) has vanishing flux-
surface average. We have also emphasized that only the component of gi that is
even in the parallel velocity contributes to the right side of (3.8).

3.3. Parity of ϕ1 in the 1/ν regime

Low collisionality regimes are those in which the parallel streaming term is the
largest term of the drift-kinetic equation. This implies that gi does not depend
on l and, typically, that gi in the passing region is negligible compared to gi in
the trapped region. Since ∂lgi = 0, continuity at the bounce points of trapped
trajectories implies that gi in the trapped region is even in σ.

In order to find gi in the trapped region, one has to solve the drift-kinetic equation∑
σ

ZieΨ
′
t

mic

∫ lb2

lb1

dl

|v|||
C`ii[gi] = ∂αJBΥifMi, (3.10)

where mi is the ion mass, c is the speed of light,

JB = 2

∫ lb2

lb1

|v|||dl (3.11)

is the second adiabatic invariant,

fMi(r, v) = ni(r)

(
mi

2πTi(r)

)3/2

exp

(
− miv

2

2Ti(r)

)
(3.12)

is a Maxwellian distribution,

Υi =
n′i
ni

+
T ′i
Ti

(
miv

2

2Ti
− 3

2

)
+
Zieϕ

′
0

Ti
(3.13)
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and C`ii is the linearized collision operator written in coordinates v and λ, whose
explicit expression is not needed here. We simply point out that it depends on α
and l only through B evaluated at α and l. Therefore, we can apply the result (3.5)
to deduce that the left side of (3.10) conserves the parity of gi. Again, due to (3.5),
JB is symmetric and therefore ∂αJB is antisymmetric. Hence, gi is antisymmetric†
under s.

From (3.10), it is clear that gi has a size

gi ∼
ρi∗
νi∗

fMi. (3.14)

where νi∗ = νiiR0/vti is the ion collisionality and νii is the ion-ion collision fre-
quency.

The quasineutrality equation (recall (3.8)) reads(
Zi
Ti

+
1

Te

)
ϕ1 =

2π

eni

∫ ∞
0

dv

∫ B−1

B−1
max

dλ
v3B

|v|||
gi, (3.15)

where Bmax is the maximum value of B on the magnetic surface. In order to write
(3.15), we have used that gi is even in σ and that gi in the passing region is
negligible. Now, it is obvious that in the 1/ν regime

ϕ1 ∼
ρi∗
νi∗

ϕ0. (3.16)

Finally, recalling that gi is stellarator antisymmetric, equation (3.15) implies that
ϕ1 is antisymmetric as well.

3.4. Parity of ϕ1 in the
√
ν regime

In Calvo et al. [2017] it has been shown that the rigorous derivation of the
√
ν

regime requires some assumptions on the magnetic configurations. For example, it
can be obtained if the stellarator is close to omnigeneity; that is, if B can be written
as

B = B0 +B1, (3.17)

where B0 is omnigeneous and |B1| � |B0|. If the stellarator has large aspect ratio,
the
√
ν regime can also be obtained, even if it is not close to omnigeneity. Here,

we assume that the stellarator is close to omnigeneity and that the expansion in
δ ∼ |B1|/|B0| � 1 has been carried out. We do not repeat the details of the
derivations, but refer the reader to [Calvo et al., 2017]. We also assume that both,
B0 and B1 are stellarator symmetric.

In the
√
ν regime, the sizes of gi and ϕ1 are

gi ∼ δfMi (3.18)

and

ϕ1 ∼ δϕ0. (3.19)

Of course, the
√
ν regime is a low-collisionality regime and therefore ∂lgi = 0, gi

in the passing region is negligible for our interests and gi in the trapped region is
even in σ.

† Equation (3.10), in principle, allows a non-zero stellarator-symmetric component for
gi that is a Maxwellian constant on flux surfaces. However, this Maxwellian has to be zero
due to the condition that we chose to impose on gi, explained after (3.9).
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After expanding in δ, the quasineutrality equation reads(
Zi
Ti

+
1

Te

)
ϕ1 =

2π

eni

∫ ∞
0

dv

∫ B−1

B−1
0,max

dλ
v3B0

|v(0)|| |
gi, (3.20)

where a superindex (0) indicates that the corresponding quantity has been written
including only B0 (instead of B). For example,

v
(0)
|| = σv

√
1− λB0 . (3.21)

The drift-kinetic equation for gi in the
√
ν regime† incorporates the effect of the

tangential drifts. Namely,

−∂rJ (0)∂αgi + ∂αJ
(1)ΥifMi =

∑
σ

ZieΨ
′
t

mic

∫ lb20

lb10

dl

|v(0)|| |
C
`(0)
ii [gi], (3.22)

where

∂rJ
(0) = −

∫ lb20

lb10

λv∂rB0 + 2Zie/(miv)ϕ′0√
1− λB0

dl (3.23)

is a flux function and

J (1) = −
∫ lb20

lb10

λvB1 + 2Zie/(miv)ϕ1√
1− λB0

dl. (3.24)

The largest piece of gi is found by dropping the collision term in (3.22), giving

gi =
J̃ (1)

∂rJ (0)
ΥifMi (3.25)

with

J̃ (1) = J (1) − 1

2π

∫ 2π

0

J (1)dα, (3.26)

where we have chosen
∫ 2π

0
gi dα = 0 (it is easy to check that this condition implies

that the right side of (3.20) vanishes). Although (3.25) gives no contribution to the
radial neoclassical fluxes, it provides the dominant contribution to the quasineu-
trality equation (3.20).

Inserting (3.25) in (3.20) and rearranging a bit, we find(
Zi
Ti

+
1

Te

)
ϕ1 −

2π

eni

∫ ∞
0

dv

∫ B−1

B−1
0,max

dλ
v3B0

|v(0)|| |
ΥifMi

∂rJ (0)
J̃ (1)
ϕ

=
2π

eni

∫ ∞
0

dv

∫ B−1

B−1
0,max

dλ
v3B0

|v(0)|| |
ΥifMi

∂rJ (0)
J̃
(1)
B , (3.27)

where

J
(1)
B = −λv

∫ lb20

lb10

B1√
1− λB0

dl, (3.28)

† In order to truly be in the
√
ν regime, we need not only to have sufficiently small νi∗.

It is also required that ∂rJ
(0) never vanish or that it vanish for v � vti, as explained in

[Calvo et al., 2017].
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J (1)
ϕ = −2Zie

miv

∫ lb20

lb10

ϕ1√
1− λB0

dl, (3.29)

J̃
(1)
B = J

(1)
B − 1

2π

∫ 2π

0

J
(1)
B dα (3.30)

and

J̃ (1)
ϕ = J (1)

ϕ − 1

2π

∫ 2π

0

J (1)
ϕ dα. (3.31)

Invoking (3.5), we straightforwardly realize that the term on the right side of
(3.27) is symmetric and that the operator acting on ϕ1 on the left side conserves
parity under s. Hence, ϕ1 is stellarator symmetric.

3.5. Parity of ϕ1 in the plateau regime

In the plateau regime, we can derive an analytical expression for ϕ1, and we do it
in detail in this section.

The relevant drift-kinetic equation in this case is

v||b̂ · ∇gi + ΥivM · ∇rfMi = C`ii[gi]. (3.32)

Using (2.1), one gets the expression

b̂ · ∇ =
Ψ′t
B

1

J
(∂ζ + ι∂θ) (3.33)

for the parallel streaming operator.
Employing that θ and ζ are Boozer coordinates, we can write the radial magnetic

drift as

vM · ∇r =
v2

ΩiB2

(
λB

2
− 1

)
1

J
(Ip∂θB − It∂ζB) . (3.34)

The plateau regime is a collisionality regime in which radial transport (and also
ϕ1) is determined by a small layer in phase space around v|| = 0. As a consequence,
the pitch-angle piece of the collision operator dominates,

C`ii[gi] ≈
νλv||

v2B
∂λ
(
v||λ∂λgi

)
, (3.35)

where νλ(v) is defined in [Calvo et al., 2017].
Typically, the solution of the plateau regime is obtained using the coordinate

ξ = v||/v, in which the form of the assumptions and the calculation itself are
simpler. Denote by ḡi the function gi expressed in coordinates v and ξ. Then,

v||b̂ · ∇gi = ξvb̂ · ∇ḡi −
v

2B
b̂ · ∇B(1− ξ2)∂ξ ḡi (3.36)

and

C`ii[ḡi] ≈
νλ
4
∂ξ
[
(1− ξ2)∂ξ ḡi

]
. (3.37)

In coordinates v and ξ, the radial magnetic drift reads

vM · ∇r = − v2

2ΩiB2

(
1 + ξ2

) 1

J
(Ip∂θB − It∂ζB) . (3.38)

The plateau regime only exists if the inverse aspect ratio, ε = r/R0, is small. If
this is the case, one can write

B(r, θ, ζ) = B00 + B̃(r, θ, ζ), (3.39)
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where B00 is constant and B̃ ∼ εB00. From (2.3), it is clear that

J = J1 +O(ε2R2
0), (3.40)

where J1 ∼ εR2
0. Hence, the right side of (3.38) does not scale with ε.

A large, localized distribution function around ξ = 0 can happen when the first
term on the right side of (3.36) balances the right side of (3.37), whereas at the
same time the first term on the right side of (3.36) is much larger than the second
term on the right side of (3.36). This happens when† νi∗ � 1 and

ε3/2

νi∗
� 1. (3.41)

Then, the size of the layer is

δξ ∼ ν1/3i∗ . (3.42)

Finally (from now on, we drop the bar from ḡi), the equation to be solved in
order to find the dominant piece of gi is

Ψ′t
B00J1

ξv(∂ζ + ι∂θ)gi −
νλ
4
∂2ξgi = −ΥivM · ∇r

∣∣∣ξ=0

ε=0
fMi, (3.43)

with

vM · ∇r
∣∣∣ξ=0

ε=0
= − v2

2(Ωi)00B2
00

1

J1

(
Ip∂θB̃ − It∂ζB̃

)
(3.44)

and (Ωi)00 = ZieB00/(mic).
We solve (3.43) in Fourier space. We denote

B̃ =
∑
m,n

B̃mne
i(mθ+nζ), (3.45)

gi =
∑
m,n

gmne
i(mθ+nζ), (3.46)

and so on. Thus, (3.43) becomes

4Ψ′tR0

B00J1
ξi(n+ ιm)gmn − νλ∗∂2ξgmn = −4R0

v
Υi

(
vM · ∇r

∣∣∣ξ=0

ε=0

)
mn

fMi, (3.47)

where νλ∗ := νλR0/v and(
vM · ∇r

∣∣∣ξ=0

ε=0

)
mn

= − v2

2(Ωi)00B2
00

1

J1
i (Ipm− Itn) B̃mn. (3.48)

Note that, since B̃ is stellarator symmetric (and, of course, real), B̃mn is real and
B̃−m,−n = B̃mn. Then,(

vM · ∇r
∣∣∣ξ=0

ε=0

)
−m,−n

= −
(
vM · ∇r

∣∣∣ξ=0

ε=0

)
mn

(3.49)

and, obviously, the coefficients (
vM · ∇r

∣∣∣ξ=0

ε=0

)
mn

(3.50)

are imaginary.

† Note that νi∗ ∼ νλ(vt)R0/vti.
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It is convenient to employ the rescaled coordinate

ξ = ν
1/3
λ∗ Aη, (3.51)

with

A =

(
B00J1

4R0Ψ′t(n+ ιm)

)1/3

(3.52)

and write (3.47) as (we do not change the notation for gi)

iηgmn − ∂2ηgmn =
iSmn

ν
1/3
λ∗ A

, (3.53)

where

Smn =
1

2(Ωi)00B00Ψ′t

Ipm− Itn
n+ ιm

B̃mnvΥifMi. (3.54)

The solution of (3.53) written in the coordinate ξ is

gmn =
iSmn

ν
1/3
λ∗ A

∫ ∞
0

e−z
3/3 exp

(
−i ξz

ν
1/3
λ∗ A

)
dz. (3.55)

The expression for ϕ1 is found by using (3.55) in (3.8). Writing the integral on
the right side of (3.8) in coordinates v and ξ, one gets(

Zi
Ti

+
1

Te

)
ϕ1 =

4π

eni

∫ ∞
0

dvv2
∫ v

0

dξ
1

2
(gi(σ = 1) + gi(σ = −1)) . (3.56)

Employing (3.55) and the identity

lim
k→0+

1

k

∫ ∞
0

e−z
3/3 cos

(
1

k
xz

)
dz = πδ(x), (3.57)

we obtain an explicit solution for the largest piece of ϕ1 in an asymptotic expansion
in νi∗ � 1,

ϕ1 =
i2π2

eni

(
Zi
Ti

+
1

Te

)−1 (∫∞
0
v3ΥifMidv

)
(Ωi)00B00Ψ′t

∑
m,n

Ipm− Itn
|n+ ιm|

B̃mn e
i(mθ+nζ).(3.58)

In particular, we learn that

ϕ1 ∼ ρi∗ϕ0 (3.59)

and that ϕ1 is stellarator antisymmetric.
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J Geiger, M Landreman, K J McCarthy, F Medina, B Ph Van Milligen, M A
Ochando, F I Parra, the TJ-II Team, and the W7-X Team. Parallel impurity
dynamics in the tj-ii stellarator. Plasma Physics and Controlled Fusion, 58(7):
074009, jun 2016. URL http://stacks.iop.org/0741-3335/58/i=7/a=074009.

S Braun and P Helander. Pfirsch–Schlüter impurity transport in
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