CMS0/CMPD Winter School 2006.

Lecture # 1. Frozen Field Lines and Diffusion.

Steve Cowley UCLA.
These notes contain many details that cannot be treated in the lecture.

1 Introduction.

In this lecture I will introduce the concept of frozen field lines. T will also discuss in genersl terms the conditions
for field lines to be frozen and how they "break” or "reconnect”. We cannot really start talking about reconnection
until we understand when lines don't reconnect. Many of you know this material but you may find a review helpful.
Thave gone beyond the usual material treated in MHD text books — as you will see. T will not treat the Lagrangian
description of field line motion (see Plasma Astrophysics by Russell Kulsrud, Princeton, 2004.), the Hamiltonian
description of field structure (see JR Cary and RG Littlejohn, Ann. Phys. (NY) 151, 1 (1882)) or the description
of magnetic fields in terms of potentials.

First consider how we define a field line ot o fived instant of time. The unit vector b(r,t) = B/|B] is tangent
to the field line at & point r. Thus a small vector along the field line ér is parallel to b(r,t) and we can follow the
field line by taking small steps in the direction of b(r,t). Mathematically we can find the field line passing through

some point rp by integrating the equation:
dr

= b(r, )

where di = |dr| and ¢ is fixed.

Figure 1: Field line integration passing through rg.
The evolution of the magnetic field comes, of course, from Faraday’s law:
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While we can always define field lines at a fixed time, it is not possible to define how they move in general. However
in many situations it is possible to define field line motion because the behavior of electrons constrains the form
of the electric field — this is the subject of this lecture. First we examine the electron equations and how they
constrain the form of E.

2 Electron Dynamics — Ohm’s Law.

The electron fluid momentum equation (the v moment of the electron Fokker-Planck equation) can be rearranged
as an equation for the electric field — this is usually referred to as the generalized Ohm'’s law.
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where

+ I is the collisional momentum exchange between the electrons and the ions. In the collisional limit it is
usually replaced by nJ where the resistivity is 17 ~ Metei/(ne€?) and v, is the electron ion collision rate.

e P is the electron pressure tensor. In the collisional limit it becomes isotropic (P = p.I = n.T.I) and
Y-P, _ ¥pe
e ETlg
In principle we substitute E from Eq. {2) into Faraday's law to find the evolution of B — in many applications some
of the terms in Ohm’s law are small and can be ignored. For definiteness let us consider a solar flare of size I and
timescale v with parameters:

B~10%73G, To~ Ty~ 1006V, Le107m, 701008 me~ 2 x 10Mm™3,

Thus assuming the plasma moves roughly the size I in time 7 the typical velocity is v ~ v, ~ LfT ~ 10%ms—!
which is also typical of the ion thermal velocity, vi;. The mean free path is ~ 6 x 10°m and the ion larmor radius
~ p; ~ 0.1m and the plasma beta f ~ 1072, Let’s estimate the size of various terms relative to the vo x B term:

. V:‘iBI r~ %‘/—L ~ 1071? where we have used Ampere’s law V x B = j1oJ.

Vpe

* GrifvoBl ™ 3{%% ~ 1073 the plasma is collisional enough that the pressure is isotropic.

o me (3 1 Va- Vva) /(e]va x Bl) ~ B2 8 ~ 5 x 10712,

Thus to a very good approximation we have E + v, ¥ B = 0 — as we shall see this implies the field is frozen to the
electrons. The plasma, is roughly charge nentral since L is much larger than the Debye length — 4.e. using Poisson’s
equation we have &V - B/n, ~ (n; — n.)/n. < 10713, Thus ve = v{ — J/{en.) and we can write the collisional
Ohm'’s law as:

E+vixB=nJ—
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The extra term, L ’:}f’, is usually referred to as the Hall Term and it is a noniminal factor #~' bigger than the
electron pressure term but still much smaller (by a factor of 107%) than the v x B term. ITn MHD we denote v,

the mass flow, by v. Thus we arrive at the conclusion thet to a very good approximation:




E+vxB=0 (4)

This equation is often called the Ideal Ohms Law. Tt is easily shown from relativity that in this approximation
the electric field in the frame moving with the plasma (i.e. at velocity v) is zero — in this sense the plasma is a
perfect conductor. Substituting Eq. (4) into Faraday’s law Eg. (1) we obtain an evolution equation for the magnetic
field:

B

2 =V x(vxB). (5)

This is the ideal MHD equation for the evolution of magnetic field. Since Eq. (22) is approximately correct for
many plasmas we need to understand it's consequences in detail.

3 Flux Freezing and Line Freezing.

In &his section we examine the consequences of Eq. (4). Suppose we consider a plasma moving at a constant
velocity v. In the frame moving with the plasma the electric field is zero and therefore by Faraday’s law (Eq. (1)
the magnetic field is constant in this frame. This is trivial and obvious but we can generalize this for velocities
that are not constant in time or space — i.e. v(r,f). There are two useful theorems.

3.1 Frozen Flux.

The first theorem we want to prove is:

Flux Freezing. If E-+ v x B = 0 the magnetic flux through a loop that moves with the plasma flow, v(r, ),
is congtant in time,

We should clarify what we mean by & loop moving with the plasma flow. Every point on the loop r(t) satisfies
the dynamical equakion % = v(r,t). You know what this means intuitively if you imagine a thin loop of cotton
thread in a stream moving and being deformed by the flow.

Proof of Flux Freezing. Consider the magnetic flux through a loop L spanned by a surface S at time &
B(t) = f dA - B(x, £). (6)
g

Where dA is an element of the surface. This is illustrated in Fig. (2). Note that becaunse ¥V« B = 0 this flux is
independent of the choice of surface spanning the loop. Now consider the loop an infinitesimal time §t later after
it has been moved with the flow. Each point on the loop has moved a distance v(r,)}dt. The moving loop traces
out a tube joining the original loop to the current position of the loop. The flux through the loop at time £ + 8¢
can be calculated through a surface which consists of the original surface S plus the surface of the tube which we
call 85. Thus the flux through the loop at time ¢ + 64 can be written:

(I)(t+6t)=[SdA-B(r,t+5t)+/£SdA-B(r,t+5t). (7)



See Fig. (3). To first order in 6 an element of surface area of the tube can be written as dA = v(r, )t % dl where
dl is an element of length around the original loop (see Fig. (3)). Thus expanding Eq. (7) to first order in é¢ and
using Eq. {6) we obtain the rate of change of flux through the moving loop:

dd B
E:/;dA._a?—ygdl.[va], (8)

where the second integral is taken around the loop. The final step is to use Fraradey’s law (Eq. (1)) to climinate

% and Stoke’s theorem to write the surface integral of V x E as a line integral. Thus,

%=_j£d1.[E+va]. ©)

Clearly when Eq. {{) holds the flux through the loop remains constent — thus our proof is complete. An important
point (that we return to later) is that we have taken the velocity of the loop to be the plasma velocity v; however
Eq. (9) holds for any velocity of the loop if we replace v with the loop velocity.

Figure 2: Diagram illustrating flux through in loop in plasma. See text for explanation.

1The concept of frozen Aux in MHD is due to Hannes Alfvén in 1945. The proof is the same as the much earlier proof by Cauchy
and Kelvin that vorticity is frozen inta Buler flows — see Horace Lamb’s book Hydrodynamics Dover.



Loop at time 1.

| Loop at time t +&t.

dA = vit x dl

Figure 3: Diagram iflustrating new spanning surface for loop at time ¢ + 6t. See text for details.



3.2 Frozen Field Lines.

A second theorem follows directly from the frozen in flux theorem. This is:

Frozen Field Lines. If E+v x B = 0 the magnetic field lines change as though they are simply convected
with velocity v. Thus we say that the field lines are frozen to the plasma flow.

Proof Consider a narrow tube surrounding a field line at time £ — we call such a tube a fluz tube (see Fig. (4).
The sides of the tube are parallel to the field and therefore no flux passes through any patch on the side of the
tube. We follow the tube of plasma until a time 7" later. Since the flux through any patch on the surface is zero at
all times from the Frozen Fluz Theorem the ficld inside the tube cannot leave the tube through the sides. The flux
through the end of the tube stays constant. Thus we can say that the field line is always inside the tube moving
with the plasma. Shrinking the tube to zero thickness we can say that the field line is moving with the plasma.
flow.

| Fux Tube at time t|

%

Patch at timeﬂ

| Fux Tube at time t + H

%

|Patch at time t + T

Figure 4: A tube of plasma with field line inside moving with plasma. The field line cannot leave the tube as there
can be no flux through any of the moving ”patches” on the surface. Thus we say that the field line is frozen into
the plasma.

The flux freezing and frozen field line concepts are enormously helpful to intuition — for example if a flux tube
narrows in time the field must be getting stronger to preserve flux through the ends. They also show that as long



as the plasma flow v is single valued, field lines cannot pass through each other, join or break when E4+vx B =0,
To reconnect field lines we must include af least one of the terms in the Ohms low that we neglected.

4 Resistive Evolution.

Perhaps the simplest non ideal effect that allows the reconnection of field lines is the resistive term. It was also the
first to be considered in the 1950s by Dungey, Parker, Sweet and others. The resistive Ohms law is:

E+vxB=nl (10)
In most cases reconnection is non-relativistic and one can ignore the displacement current. Thus,
V x B = . (11)
Substituting for E in Faraday’s law (Eq. (1) we obtain:

OB

E=Vx(va)—anJ=Vx(va)+uonV2B. (12)
As we have discussed the v x B term convects the field lines. The resistive term, porVZB, diffuses the field lines
— without the v x I3 term the equation becomes the diffusion equation. 2 Tt is common to define a dimensionless
number that expresses the relative size of the resistive term. Actually there are two such numbers:

8§ = Val Lunquist Number, {13)
Ho?

Ry = if% Magnetic Reynolds Number. (14)
0

Where V4 = +/B2/{op) is the Alfvén velocity, v is a typical fow velocity and I a typical length. In many cages
both dimensionless numbers are large — in the solar corona case (see above) Ras ~ 102 and § ~ 10'%. Some papers
normalize Eq. (12) so that lengths are measured in units of L, velocity in units of V4 and time in units of I/V,.
Then 58

— 1o
S =V x(vxB)+ V2B, (15)

Consider a simple problem where v = 0 and B = Bo(t) exp ik - r. Substituting in Eq. (12) we obtain:
B = Bgexp(ik - ¥ — ponk®t). (16)

The field decays due to resigtive diffusion — slowly unless k is large and the field is at very small scale. Ty make
magnetic field lines reconnect when resistivity is small we must create o small scale variation in B so that the
diffusion term is enhanced. All reconnection mechanisms have a narrow layer where the actual breaking and
joining of lines takes place.

2For a hydrogen plasma. {with the Coulomb logarithm taken to be 15) upn ~ 103Te_3/ 2m2s~1 where Te is the electron temperaturs
in electron volts.



5 Hall and Pressure Terms.

In most tokamak turbulence and some astrophysical turbulence the turbulent scales become of order the ion larmor
radius. Do we expect the field lines in this turbulence to reconnect? In this section I will show you that although
the Ohms law must include the Hall and electron pressure terms the field lines do not recomnect. This is also a
useful result to keep in mind when you hear about Hall reconnection later in the week. Taling typical scales for
Ton Temperature Gradient Turbulence in the JET tokamak we can simplify the electron equation, Eq. {2), to:

Vpe
E+vex B=—22, (17)
N
We can also use the fact that the conduction of electron heat along the field line is so fast that:
B- VT, =0. (18)
‘We expand the pressure term as:
_% _ vT. L V{T:lnn,) lon, VT,
ene e e e
VI, V(T.lnn.) Inn, )
= S 4 R (VIL X B) X B (19)
Where we have used Eq. (18) to write the last term as a cross product with B. We can write Eq. (17) as:
E+4%xB=-Vy. (20}
where we have defined the field line velocity v as:
- Inn.
V=ve+ @-(VTE x B}, (21)
and x = T.(1 4 Inn,)/e. Substituting Eq. (20) into Eq. (1) we obtain,
B
%'=VX({FXB). (22)

Thus the fluz and field lines are frozen to o fictitious substence moving with the velocity ¥ — which s neither the
plasme nor electron velocity. Clearly in this approzimation, where we include both the Hall and pressure terms,
reconnection is impossible. Note this conclusion is independent of the ion dynamics, which for tokamak turbulence
can be guite complicated. Of, course when we include the other terms in Ohms law recormection is allowed —~ but
these terms are generally small in tokamaks.

6 Conclusions

In this lecture we have looked at the consequences of simplified electron dynamics on the evolution of the magnetic
field. We have proved the frozen in flux and field line theorems for the simple ideal Ohms law. The importance of
including resistivity at small scales is also discussed. Finally in Section. (5) we have shown that when the pressure
and Hall terms are included (and B - VT, = 0) the field is frozen into & fictitions substance moving with a velocity
¥ defined in Eq. (21).



7 Homework

Question 1.: 2D Reconnection. Suppose we have a 2D resistive case with E+vx B = nJ. We take v =
(ve(, 9, 1), vy(2, 9,1}, 0) and B = (B.(z,1,t), By(z,7,1),0). Use Ampere’s law to show that J = (0,0, J,(z, %, 1)).
Show that we can find a ¥ such that: B 3% x B = 0 — give an expression for ¥v. Does this mean there is no
reconnection in two dimensions? If not why not.

Question 2.: Line Conservation. Does line conservation imply flux conservation? If not, construct a
counter example.

Question 3.: Helicity Conservation. Show that the helicity f @*r(A -B) (where the vector potential
is defined by V x A =B) is constant if E+ v x B = 0 and the integration is over a domain such that B is tangent
to the solid boundary.







Lecture # 3. Introduction to Gyrokinetics.
Steve Cowley UCLA.

"This lecture is meant to introduce the simplest ideas in gyro-kinetics. It would take at least 5 lectures to develop
the theory in all its detail, but hopefully the key ideas can be communicated in 1 hour. We shall be examining the
approximation in a non-uniform slab in the electrostatic approzimation since the full electromagnetic gyro-kinetic
treatment in general geometry is far too complicated. Hence I will derive the equation in a non-uniform equilibrinm
with straight field lines - 7.e. we take the slowly evolving equilibrium to be Fy = Fy(z,v,t) and By = By(z,t)z. We
shall take the plasma to be in a periodic box in the y and # planes and effectively infinite in . Even this simplified
geometry is algebraically complex and I shall skip some details where the derivation is obvious but tediously long.
These notes provide considerable detail — a lot of this detail is impossible to convey in the lecture
but I hope you will read the notes at your leisure.

- By=B,z

Figure 1: Slab equilibrium with straight field. Periodicity in y and z is assumed. The plasma is non-uniform in the
% direction.



1 Gyro-kinetic Ordering

Length Scales. There are two basic length scales:
& Macroscopic length L — might be size of plasma, or the density gradient length (n/|Vn|) ete..
+ Microscopic length, the larmor radius p ~ usually the lon larmor radius p;.

For example in ITER these lengths are approximately: L ~ n/|Vn| ~ 2m and p; ~ x1073m. We use these
length scales to define the fundamental small parameter of the theory:

P
= — 1 1
€ L<< ()

In ITER ¢ < 1072 — a good expansion parameter.

Time Scales. There are three basic frequency scales:
e The fast cyclotron frequency — €. On ITER Qg ~ 2 x 108rad/s.

o The medium frequency — w = vy, /L ~ €. This is roughly the frequency of the turbulent fluctuations and
the rate at which particles sense the inhomogeneity. On ITER wy; ~ x10°rad/s '

" @ The slow transport rate — 1/7 = (v, /L)e ~ Q. On ITER 7 ~ 3s.

The fuctnating density and electric field in current fusion devices is small — én/ng < 0.01. Therefore we split the
distribution functions and fields into slowly varying (in time and space) equilibrium parts and medium time-scale
fiuctuating parts that vary fast in space. I will suppress any species label and deal for simplicity until we need to
discuss electrons and ions separately. We define for the distribution functions:

f(rs V,t) = F0($,V, t) + Jfl(rz V1t) -+ +5f~2(r,v,t) """""" (2)
and for the fields

B(r,t} = Bo(z,t)z, E{r,t)=0E(rt)=—Vé(r,t) (3)

Now we outline the ordering of all the quantities and their variations in time and space.



Constant Potential
¢ Surface

Figure 2: Gyro-kinetic fluctuations, space-scales. Typical electrostatic fluctuation makes cigar shaped potential
surface with L >»> Ay ~ p;. Particle drift off field line gives a step of order the larmor radius, £, ~ p

Small Fluctuations The fluctuations are order € in the gyro-kinetic expansion 4.e.
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Slowly varying Equlilibrium The equilibrium varies in space on the macroscopic length scale and in time
on the transport time 7, i.e.

F[] BO
Oy Fo Uth 9 dBo Be Vth 9
at O( ) O(fe Fg), ot O( = ) O( 7 € BO)a (6)
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Fast Spatial Variation of Fluctuations across By. The variation of the fluctuating quantities across the
magnetic field is on the microscopic length scale, i.e.
af

[bo x V55|~ O(),  [bo x VIR ~ O

iE
?)1 (7)

where bg ~ % is the unit vector along Bg. We will often loosely write k) to mean the approximate inverse

perpendicular socale, thus kg~ 1.

Slow Spatial Variation Along Bg The variation of the fluctuating quantities along the magnetic field is on
the macroscopic length scale, i.e.

af E :
) be-VSE~O(T), (®)

note that 6B ~ O{edE, ) follows directly from applying these orderings to ¢.

bo - V&f ~ O

Medium Time Scale Variation of Fluctuations, The fluctuating quantities vary en the mediinm time
scale, i.e.
asf -
ot

'Uthé‘f O6E ‘UthﬁE

o(™2h), S ot (©)

Optional. Collisions Act on the Medium Time Scale. We make this specific specific ordering of the
collision rate that is consistent with the physical situations we wish to describe.

v O(f (10)

These orderings have the simple consequences for the fluctuations illustrated in Figure 2. Specifically: the
typical perpendicular flow velocity, roughly the E x B velocity, is of order evyp; the typical fluid displacement is
roughly &, ~ p. Note also that Véf ~ O(Vf) — i.e. the perturbed gradients are comparable with the equilibrium
gradients. Thus the fluctuations can locally flatten the gradients driving the turbulence.

2 Field Equations.

Since, V - §E = —V2¢, Maxwell's equations reduce to Poisson’s equation for the fluctuations.

Poisson’s Equation.
Vip = —Ei(qni —ene) = —El(q/d:svc?fi - e/d3v6fe) (1)
0 0

where n; and n, are the ion and electron densities. When kIl is long compared to the Debye length one can drop
the left hand side of Poisson’s equation and obtain quasi-neutrality — i.e. gn; = en,.

Clearly we must solve for the distribution functions of ions and electrons to obtain the charge. In the slab
equilibrium we have equilibrium currents in the y direction and these should be balance the variation of By, This
just gives the equilibrium relation p(z) 4 B3(z)/(2u,) = constant and it will not be needed here. I have dropped
the equilibrivm Electric Field Eig. since because the variation of By is slow in time does not enter the equations at
the order we want to keep.



3 Gyro-Kinetic Particle Motion

Before we plough through the derivation of the gyro-kinetic equation and sweat over the algebra we can gain a
little physical insight by looking at the single particle motion in the gyro-kinetic ordering. I will start this in a
general slowly varying field and then give the non-uniform slab result. First we define the gyro-center position by
a vector version of the simple uniform field (slab) result.

»T patticle position
" W R gyro-center
3

.....

Citealar Orbit in Unifonn B
2 « T Y r

Figure 3: Defining the Gyro-center.

The exact gyro-center position is not actually a well defined quantity. However to lowest and first order our
ordering shows that the particle orbit looks locally to be like the orbit in a uniform field. Thus we define (see
Figure 2.} the gyro-center position R, in terms of the particle position r and particle velocity v:

vV X b()
Qo
where (as before} by = by(r) = Bo/By is the unit vector along the local equilibrium field and Qy = Qp(r) = ¢By/m
is the local equilibrinm gyro-frequency. The transformation to gyro-center position is sometimes called the Catto

Transformation after its inventor. We define the perpendicular, vi, and parallel, vy, and gyro-angle, 6 with respect
to the equilibrium field from the expression:

R=r+

(12)

v :u"b0+v_1_(cos€el +sinfe,). (13}

The unit vectors by, €1 and ez form a local right handed coordinate basis i.e. e; x &3 = by, and they vary on the
macroscopic, L, spacial scale and the slow, 7, time scale. Now we specialize to the straight field (electrostatic) case
so that by =7, e) = x and e; = y. The fastest motion is the gyro-motion and indeed;

% =+ O(S). (14)

We will show shortly that both vy and v are slowly varying and therefore can be considered constant on the fast
(Q) time scale. Now consider the evolution of R. We differentiate Eq. (12) with respect to time:

dR dv by d ,bg
=V+—0X_—~-

& 7 “a. Y ala, (15)



now using the equation of motion:
dv

=GB +v x B), (16)

m

we obtain,
dR b[} bg V- VB()
— =u;b Ex—)— —= .
g b TUEX ) - (VX )y

Note that the dominant gyro-center motion is along the field lines and the cross field motion comes from the
perturbed E cross B drift and, as we shall see, the prad B drift.

(17)

Particle and Gyro-center orbit

Gyre-average <R >

.

Deviation from circle ig small

during one orbit

Figure 4: Motion of Gyro-center R and its Average. Note that in one orbit the gyro-center moves a small distance
of order ep. However over €~* gyro-orbits the gyro-center ”drifts” a distance O{p).



We wish to know the motion of the gyro-center, R, over the medium time scale (times of order L/v;h). The
right hand side of Eq. (38) oscillates on the fast time scale 2=! but when we integrate the perpendicular motion
this averages out 4.e.:

i
b[) bg V°VBOj|
iR :/ [5EX——V><——— dt
+ 0 By Qo) By

i .
_ by by, v - VB
_/0‘ [< 0E x B_o g — < {v X Q_o) By >R] dt + Clep). (18]
where the gyro-average (ring average) at fixed R is defined by:
27
<A, t) sr= — | AR—=XPO L e, (19)
27 0

In Eq. (19} the # integration is done keepin R, v, and vy fixed. Thus this gyro-average is an AVERAGE OVER
A RING CENTERED ABOUT R OF RADIUS v, /Qy. Thus we think of the gyro-center motion as the
motion of this ring obeying the equation:

dR by by, v VB
22 < b Ex -2 >g — 20yY V0 20
<dt < bp > + <4 xBD>R <(v><QO) By >R (20)
After some straightforward algebra we obtain:
dR d<¢>r _ by vi VB
— >—yby — — TR0y L b 21
S o i R By T M By < @)

and we have dropped the O(ew,) corrections to the parallel motion as they are small compared to the cl by term
and they are not needed. The expression, Eq. (20) is almost very familiar except that the perpendicular motion is
the E cross B drift in the ring overaged field (potential) plus the grad B drift in the equilibrium field.

Note that the perpendicular drift is Ofevys,) in the gyro-kinetic ordering. We keep this because perpendicular
structures are small scale and this small drift can move the gyro-center across the potential structure on the
turbulent time-scale.

To complete our derivation of the particle motion we need the equations for the variation of v, and v). The
variation of energy, £ = %mﬂu2 + g(r,t), follows in a similar manner to the derivation above, specifically:

d€  Od<¢>n

a T a
note that £ varies on the medium time scale whereas the kinetic energy has an ©(¢) variation on the fast time scale
due to the variation of ¢ over the gyro-orbit. The net heating of a particle over the medium time scale and longer
comes from integrating the right hand side of Eq. (39) over time. Note the same ring averaged perturbed quantity
< ¢ >g euters the energy and gyro-center evolution — you might suspect that this is due to some underlying
property of the equations, indeed it is related to the Hamiltonian properties of the collisionless motion. I will not
elaborate on this here as it docs not illuminate the physical picture. We have kept energy variations up to Ofe)
{they are needed), but we shall only need the (1) part of the magnetic moment variation. Thus:

(22)

mu;
2BO (R: t)

To the order that is required Eqgs (21), (39) and (23) provide a set of equations to find the particle orbits and
energy variation.

o= = constant. ‘ (23)



Fipure 5: Gyro-average of the fluctuations over a ring of radius the larmor radius p = v, /Q. For small radii the
average is almost the same as the value at the center, for large radii the average tends to cancel and is almost zero.
Electrons have smaller rings by the factor +/m./m;

4 Ordered Fokker-Planck Equation.

For convenience we write (see last lecture) §f = df1 + 0 fa......efc.. We use the orderings stated in the last lecture.
The FP eguation with order (relative to vy, Fp/L) under each term is:

OFy 98 an
a—;)+a—tf+V'VF0+VL-vcsf-}-‘U"Z-VCSf-I—% —Vep+vxB 5—\:]
\\;./ N’ 1 1 —V—"E 1 1
+2 | VérvxB -@—G(F Fo) + (5, Fo) + C(Fo, )+ C(6.5),6)) (24)
T\ o= T ov *\._E;.._DJ \-_...\,’_.E.J \......,0,’_.....4 \..._,,__/
€ 1 € € =

Now the process of simplifying the equations involves equating orders and solving the resulting equations. In
principle we need to go to O(e?) to get the long transport time evolution of Fy — in fact we will only go to O(e)
and then use the moment equations to get the evolution of Fy.



4.1 O
At this order from Eq. (24) we have simply:

YNNG A
vxB- a—v = QQ(CC) ( a0 )r’u,ﬂl =0 (25)

from which we deduce that Fy is independent of gyro-angle 8 (any initial dependance would be wiped out by the
fast gyration) so that:
Fy = Fo{v,v1,1) (26)

and recall that Iy depends only on the long transport time scale. Now we proceed to ¢{1):

4.2 O(1):
From Eq. (24) we obtain:

a2 a6
vvR v ECe G0 () o m) (1)

This looks like a horrendous equation to solve - it involves two unknowns Fy and df — 1. In such cases we must
isolate one unlmown at a time and solve. A trick inspired by Boltzmann’s H theorem allows us to solve for £y, We
multiply Eq. (27) by In Fy and integrate over all velocities to obtain:

V-/d3v(v6f1 th[])+/d3V(1DFU)C(FU,F[]) =0 (28)

The first term is a fluctuating term and varies over short distances — the second term is slowly varying, If we
average this equation over all z and ¢ and a region in x that is big compared to the small scale but small compared
to the big scale we can average out the first term. Then we know from Boltzinann’s I theorem that the second
term being zero implies that Fy is a Maxwellian — we will take it to be a stationary Maxwellian, i.e.

2
n v
Fy=s7——zexp—(—=%) (29)
Vth

(vV&ven)?

where v, = +/(20/m) and n and T depend on the long time scale and the long x space scale. Essentially this
result shows that there is no entropy production at this order. Eq. (27} becomes:

94 f1
og

V_{_-Vts‘fl—ﬂ{]( ) :—V-V(%) Fo+v-Vig (30)
0,00

To this order we can drop the factor vz - V(g%) gy from the right hand side. Then this equation has the simple
particular solution:

=) Ry~ p VA, ()

Where p = 25¥ is the larmor radius. The particluar solution is sum of the perturbed Boltzmann response of the

particles to the potential and the expansion of Fy about R. The potential is static on the gyration time scale and




therefore the energy £ = (1/2)mwv? 1 q¢ is conserved to this order. Thus this part of the response can be captured
by replacing the Maxwellian with the Maxwellian times the Boltzmann factor, i.e.

Ly — Fy exp—(%b) (32)

With the density and temperature functions of R not r. It remains to solve for the Homogeneous Solution of
Eq. (30). We note that the operator on the right hand side of Eq. (30) is particular part of the collisionless motion
in a constant uniform field thus we expect to find the gyro-center variable useful. Indeed we note that:

] d
Q.[) (39) 90(86) —V_]_-v (33)
and thus the homogeneous part of § f1, é fin, satisfies the equation:
a5f1h: _
( o )R =0, (34)

Thus the homogeneous part is independent of gyro-angle at fixed R, (not r) .e.,

5fin = h(R,E,mt). (35)

h(R,wv,v1,t) is sometimes called the Guiding center distribution. As we show in next order h satisfies the
gyro-kinetic equation.

It is convenient to redefine 4 f2 slightly to pull out the full Boltzmann response (see Eq. (32)) and to write the
maxwellian as a function of R. Thus to O(c?)

3/2
m £
=ntR) | ———— h({R,&E o 36
Foo) =t R) (Gims ) onp (=gl + B, t) + 5 (36)
Where we have written £ = (1/2)mv® + g¢. While this is the form of the distribution function we still need to
derive equations for g(R, v, v 1), n{¢, R} and T{¢,R). Now we proceed to O(e) where we obtain the gyro-kinetic
equation as a solubility constraint for & fo:

4.3 Ofe):
Substituting the form Eq. (36) into Eq. (24) and dropping terms ©(c?) and higher we obtain:
Bh dR Oh  dE Bh  dp Oh _ 84 fa dR O0Fy, d€ BFO
7 m T a 8_€+ e —C(h, Fo) — C(Fo, h) —C(Fo, Fp) = o ( 20 ) T am ‘@ (37)

where (see Lecture # 1) we have

dR. bo bg,v- VBD
i BEx 2
p v bg + 6F x By (v x o) B (38)
and dS (qb)
@~ o (39)
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We note that because our form of Iy is not quite a maxwellian we have a collisional term C{Fp, /) which to this
order is C(Fy, —p - VFy) — this gives classical transport terms which we ignore. To obtain an equation for h we
must annihilate ¢ fs from Eg. (38) — to do this we average over 8, the gyro-angle, at fixed R, £ and y. Thus we
define the gyro or ring average, (see in Lecture # 1) at fixed R, € and p as:

{a(r,v,L}) :—j{dﬂ R.— ,v t),

where the @ = ¢gB/m and the # integration is done keeping R, £ and u fixed. Note, these gyro-averages are
functions of R, £ and p and ¢ — the sign of v”

‘We note that to this order the a”' a.nd telzms average out. The ring distribution A(R, g, £, 7, ) satisfies the
Gyro-kinetic equation:

ah  Oh Bh  d<¢>m by, O Fga(qb)R d<d>n b, OF
Gty tvo g~ R X (g,) ar ~ CWIR =g —p; m () wm WO
and

'Ui V By 1 dBO

YD = T o0 By ”7230(90 az

is the equilibrium grad B drift. In some loose sense the Gyro-kinetic equation is the kinetic equation for

rings of charge centered at R(?) of radius v, /Q. It is important to note that ¢ and h have zerc spatial average
over the box. The physical interpretation of the terms in Eq. (40) is straight forward, for example:

ah

® vy - g 18 the convection of the perturbed ring distribution by the equilibrium grad B dritt.

3—%“%—“ X (B—z) - @ is the convection of the perturbed distribution by the ring averaged E cross B drift.

This is the only nonlmeal term.
qgo a(gt} B is the work done on the particles by the field.

- 3<¢>R X (b[) . BFU

i ) I8 the convection of the equilibrivun distribution by the ring averaged E cross B drift.

‘We define a second ring average at fixed r as:

1 VX%
(CL(R,E,}),, a, 6: t));- = '2_,”_- %dea’(r + T1 g:)‘-“’: g, H:t);

This average arises in Maxwell’s equations where for example the charge at r is due to particles with gyro-centers
on a circle of radius v, /€ about r. Maxwell’s equations (assuming a plasma with one species of ion and electrons)
become:

Quasi-Neutrality. We ignore the left hand side of Poisson’s equation to obtain:

nig> ¢ nee’ P
Tt 2rqy vidvido) ((R, €, p,o,t)), = . T 27“320: vidvidyy (he(R,E, 1, 0,1)), (41}
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Figure 7: Perpendicular motion of the guiding center is the E cross B drift plus the equilibrium grad B drift.

The two equations, Eq. (40) and Eq. (41) are essentially an autonomous set on the turbulent time-scale. They
are the Blectrostatic Gyro-kinetic system. Of course Fy must also be known, this requires calculating evolution
on the long transport time-scale and is outside the purview of this lecture. However on the turbulent time-scale Fy
must be kept fixed and we can simply take it as known.

5 Gyro-averages and Bessel Functions

Strictly speaking the Eq. (40) and Eq. (41) are an integro-differential system in space since they involve the
gyro-averages. It is common to use a fourier basis in both r and R since this ”diagonalizes” the gyro-average.

Specifically
LA

< expik-r >r= Jo( Q Yexpik-R (42)
) kivy .
< expik-R >.= Jy( a Jexpik - r (43)

Where Jy(x) is the zeroth order Bessel function of the first kind. Thus in the fourier space gyro-averaging just
becomes multiplication by a Bessel function (that depends an ).
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