

The (noble) liquid route to dark matter detection

Nigel J. T. Smith

STFC Rutherford Appleton Laboratory

N.J.T.Smith

RAS 07 - Liquid noble gas dark matter detection

Where are we going?

Ellis et al hep-th/0502001

CMSSM Example

- Required sensitivity is ~10⁻⁷ 10⁻¹⁰ pb
 - may not need to go all the way for discovery...

N.J.T.Smith

RAS 07 - Liquid noble gas dark matter detection

What are the challenges?

- To cover lower reaches of parameter space:
 - Event rate is small, energy deposited is small
- Large scale detectors
 - target masses of tonne scale to provide count rate
- Low (keV) energy threshold for nuclear recoils
- Low background, especially neutrons
 - intrinsic activity from detector
 - external activity from surroundings
- Good background rejection
 - (α), β , γ rejection
 - control/rejection of surface events
 - position sensitivity, segmentation, fiducialisation / self shielding

How noble in reason

- Why use liquid nobles?
 - Reasonable/good discrimination power
 - scintillation & scintillation/ionisation
 - Single electron extraction / high light yield
 - Excellent prospects for large scale detectors
 - cheap and dense
 - Easily purified... and re-purified
 - Good (potential) control on surfaces
 - Excellent self shielding capability
 - Excellent self vetoing capability
 - Good position reconstruction (two phase detectors)
 - Potential for A² WIMP-neutron comparison

(Liquid) Noble Gas detectors

	Gas	Single phase	Double phase	noble gas interaction process					
The second second	Xenon	ZEPLIN I, XMASS	ZEPLIN, Xenon, Xmass	Electron/nuclear recoil +Xe Xe ₂ ⁺					
	Argon	DEAP, Clean	WARP, ArDM	wavelength Xo* Xo** + Xo					
	Neon	CLEAN	SIGN	depends on gas e.g. Xe 175nm Ar 128nm +Xe					
 Single phase - scintillation recombination occurs singlet/triplet ratio 10:1 nuclear:electron Double phase - ionisation/scintillation 									

0

0

ZEPLIN I

- Single phase Xe detector
- Test for u/ground ops
- 5kg target volume
- PSD only on scintillation
- 91 day livetime, 290kg.days data
- Limit on xsection set: 1.6 x 10⁻⁶pb

RAS 07 - Liquid noble gas dark matter detection

XMASS / CLEAN / DEAP

100

8 10

0.2

0.4

- Single phase Xe/Ar/Ne
 - p-p solar neutrino objective as well as DM
 - single phase discrimination demonstrated
 - self-shielding, low background
 - oposition sensitivity from PMT hits
- XMASS (Xe)

science & Technology acilities Council

0

- 10kg two phase target operated
- 100 kg single phase prototype operated (800kg now funded)
- CLEAN (Ar/Ne)
 - pico(200g)/micro(4kg) completed
 - o quenching factor tests underway
 - mini(100kg) under construction. deployment underground 2008
- DEAP 10nkg(Ar)
 - DEAP-0: high light yield (6p.e./keV)
 - Iow threshold, low background
 - neutron discrimination demonstrated
 - DEAP-1 under construction

pico-CLEAN detector

40 to 60 photoelectrons

N.J.T.Smith

(Liquid) Noble Gas detectors

	Gas	Single phase	Double phase	noble gas interaction process					
Marrie William	Xenon	ZEPLIN I, XMASS	ZEPLIN, Xenon, Xmass	Electron/nuclear recoil +Xe Xe ₂ ⁺					
	Argon	DEAP, Clean	WARP, ArDM	wavelength Xo* Xo** + Xo					
	Neon	CLEAN	SIGN	depends on gas e.g. Xe 175nm Ar 128nm +Xe					
 Single phase - scintillation recombination occurs singlet/triplet ratio 10:1 nuclear:electron Double phase - ionisation/scintillation 									

0

0

First science run complete

30kg target mass

Science & Technology Facilities Council

- PTFE volume definition
- 7 PMTs in gas phase
- 0.55 p.e./keV (with field)
- Spatial resolution ~1cm
- Fiducial volume 7.2kg

Neutron/Gamma pulses

Neutron/Gamma pulses

Gamma pulse

RAS 07 - Liquid noble gas dark matter detection

ZEPLIN II Results

- AmBe (upper) & Co-60 (lower)
 - Used to define acceptance window
 - 50% n.r. acceptance shown
 - Uniform population across plots
 - high rate coincidences

98.5% γ discrimination at 50% n.r. acceptance

Data runs veto top plot

- Second population seen
- Due to radon-progeny events on walls
- Acceptance window as before
- 29 events seen, 28.6±4.3 expected
- 10.4 n.r 90%c.l. upper limit ->
 6.6e-7pb

cience & Technology icilities Council

XENON

XENON 10

- 22kg target mass, 15kg active
- 89 low b/g 1" PMTs in liquid and gas phase
 - 48 in gas, 41 in liquid
 - ~mm position reconstruction in x,y
- Deployment at LNGS
- Pulse tube cooling
- XENON 100
 - 100kg target mass
 - background assessments completed

	Goal (Rates for Current Shield Design)	DM NR Signal Rate Xe @ 15 keVr	Soudan 2.0 kmwe	Gran Sasso 3.0 kmwe	Home- stake 4.3 km/s
1	High Energy Neutron Relative Flux (from muons)		x1	X1/6	x1/30
2	XENON10 (σ ~ 2 10 ⁻⁴⁴ cm ²)	400 dru	x 20 x 2	x 120 x 12	x 600 x 60
	XENON100 (σ ~ 2 10 ⁻⁴⁵ cm ²)	40 dru			
	XENON1T (σ ~ 2 10 ⁻⁴⁶ cm ²)	4 dru	× 0.2	×1	x 6

Discrimination power

- 2.2 p.e./keVee
- 99.5% discrimination at 50% acceptance
- improved discrimination (99.9%) below 5keV_{ee}

Blind analysis on 58.6 days Acceptance window ● 50% n.r., 2-12 keV 23 events in n.r. window 13 events removed by 0 'gamma-X' cut 10 events after all cuts 6.8 expected from gamma leakage events Yellin maximal gap analysis minimum 4.5e-8 pb 0

cience & Technology acilities Council

 'Canonical' halo model
 Spin independent interaction
 normalised to nucleon

DATA listed top to bottom on plot DAMA 2000 58k kg-days NaI Ann.Mod. 3sigma,w/o DAMA 1996 limit KIMS 2007 - 3409 kg-days CsI CRESST 2004 10.7 kg-day CaWO4 Edelweiss I final limit, 62 kg-days Ge 2000+2002+2003 limit ZEPLIN I First Limit (2005) WARP 2.3L, 96.5 kg-days 55 keV threshold ZEPLIN II (Jan 2007) result CDMS (Soudan) 2004 + 2005 Ge (7 keV threshold) XENON10 2007 (Net 136 kg-d) Ruiz de Austri/Trotta/Roszkowski 2007, CMSSM Markov Chain Monte Carlos (1 Ruiz de Austri/Trotta/Roszkowski 2007, CMSSM Markov Chain Monte Carlos (1 Ellis et. al Theory region post-LEP benchmark points

http://dmtools.berkeley.edu/limitplots/ Gaitskell/Mandic

ххх

cience & Technology acilities Council

RAS 07 - Liquid noble gas dark matter detection

N.J.T.Smith

ZEPLIN III

- 8kg fiducial mass
- PMTs in liquid to improve light collection
- 3.5 cm drift depth higher E-field
- 0.5 cm electroluminescent gap
- 31 small PMTs for fine position sensitivity
- open plan no surfaces reduced feedback
- Lower-background PMTs available
- Copper construction
- Low-background xenon

RAS 07 - Liquid noble gas dark matter detection

High field operation

- ITEP Test chamber (7 PMTs, Z-III configuration)
- Operation at 4.5 kV/cm
- Excellent discrimination observed
- Full analysis underway
 - Significant implications for future design

ZIII Position reconstruction

CHANNELS [H00-H30] -0.2 -0.4 amplitude, V -0.5 -0.6 -0.8 -1 — нз -1.5 LSx10 -1.2 time, ns > -2.5 У amplitude, -3.5 -4.5 х 3M -5.5 -6.5 time, ns

Science & Technology Facilities Council

SUM [H00-H30], SUM 10x[L00-L30]

"First dark" pulses

- Neutron shielding in place
- Full gas system operation
- Full PMT/DAQ operations
- Slow control operations
- Commissioning underway
- Expected full operations in the new year
- Veto + lower background PMT upgrades in construction

WARP / ArDM

- Two phase LAr detectors
- WARP
 - Dual discrimination (S2/S1 + PSD)
 - Results posted from 2.31 test cell
 - PMT (with TPB λ shifter)
- ArDM
 - 1 tonne prototype in construction
 - Thick LEM for charge 500µm holes, 800µm pitch • PMTs (with λ shifter) for light (30%)

N.J.T.Smith

ELIXIR/LUX

ELIXIR

- FP7 Design study for tonne scale xenon detectors
- all EU xenon groups involved (ZEPLIN, XENON10)
- LUX: 300 kg Xe TPC with 100 kg fiducial
 - XENON10 (part) + US ZEPLIN + SuperK/SNO
 - 3D-imaging TPC eliminates surface activity, defines fiducial
- Backgrounds:
 - Internal: strong self-shielding of PMT activity
 - $\gamma/\beta < 7x10^{-4}$ /keVee/kg/day, from PMTs (Hamamatsu R8778 or R8520).
 - Neutrons (α, n) & fission subdominant
 - External: large water shield with muon veto.
 - Very effective for cavern γ +n, and HE n from muons
 - Very low gamma backgrounds with achievable purity.
- LUXcore: Final engineering for large-scale det.
- Clear route to tonne scale detectors
 - Caveat: high field discrimination

Complementarity of targets

 Comparison of rates in LXe and LAr detectors
 Shows effect of A² and form factor

RAS 07 - Liquid noble gas dark matter detection

N.J.T.Smith

Liquid noble gas detectors

- Noble gas DM detectors address many aspects required for next generation detectors
 - Large scale targets possible
 - High purity targets
 - Surface and volume contaminant control
 - Self-shielding and fiducialisation
- Noble '(r)evolution' underway
 - ZEPLIN-II posted leading EU sensitivity curve
 - XENON sensitivity (in review) leading sensitivity curve
- Future plans well advanced
 - Strategy dependent on high field performance
 - Detailed R&D of low energy response underway