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this is what our universe actually looks like out to ~600 Mpc

Is it justified to approximate it as perfectly homogeneous?
To consider all directions as equivalent? All observers the same?



Special relativity

ds2 =
�

gijdxidxj . . . interval between events xi and xj(i, j = 0, 1, 2, 3)
gij(x) � gji(x) ⇥ 10 independent functions

Minkowski metric

⇥ij =

�

⇧⇧⇤

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

⇥

⌃⌃⌅ ,
�gij

�xk
= 0 ⇥ ds2 = dt2 � dx2 � dy2 � dz2

… invariant under Lorentz velocity transformations, i.e. equivalent to 
local inertial coordinates of Newtonian mechanics

General relativity

Now gij is related to the distribution of matter … but gij = ηij is a solution in 
the absence of matter – contrary to Mach’s principle*!

* inertial frames are determined relative to the matter (distant stars) in the universe  



Newton's experiment with the rotating water bucket teaches us only that the rotation of 
water relative to the bucket walls does not stir any noticeable centrifugal forces; these 
are prompted, however, by its rotation relative to the mass of the Earth and the other 
celestial bodies. Nobody can say how the experiment would turn out, both quantitatively 
and qualitatively, if the bucket walls became increasingly thicker and more massive –
eventually several miles thick.                                      Ernest Mach (1883)

... the surface of the water will at first be plain, as before the vessel began to move; but 
the vessel by gradually communicating its motion to the water, will make it begin 
sensibly to revolve, and recede by little by little, and ascend to the sides of the vessel, 
forming itself into a concave figure (as I have experienced), and the swifter the motion 
becomes, the higher will the water rise, till at last, performing its revolutions in the 
same time with the vessel, it becomes relatively at rest in it …

Isaac Newton: Principia (1689)

Newton’s rotating bucket experiment

Why does the surface of the water becomes concave? Certainly the shape of the 
surface is not determined by the spin of the water relative to the bucket.

Newton believed that there had to be “absolute space” to define such motion. 
Leibniz disagreed - but he had no solution to the problem of the rotating bucket. 

Berkeley claimed that the water became concave not because it was rotating w.r.t.
absolute space but rather because it was rotating with respect to the fixed stars



Einstein (1919) saw two possible ways out: 

* add suitable boundary conditions to eliminate anti-Machian solution, viz. let gij take 
some pathlogical form (rather than becoming ηij) when far away from all matter
… however de Sitter pointed out obvious observational problems with this idea!

* Postulate that the matter distribution is homogeneous (in the average) and that 
matter causes space to curve so as to close in on itself (3D analogue of a 2D balloon)
è Spatial volume finite but no boundaries and a non-singular metric everywhere  

✗

✔

Einstein’s world model

Homogeneity � dN
dm ⇥ 100.6m . . . as observed later (Hubble 1926)

… incorporating Milne’s ‘Cosmological Principle’

ds2 = dt2+g�⇥dx�dx⇥ . . . synchronous gauge (dense set of comoving observers)

This is still the ‘standard model’we use today to interpret all observations



Picture the spatial part as S3 (3D analogue of balloon, embedded in flat 4D space)

Set of points defining S3: R2 = x2 + y2 + z2 + w2

where: r2 = x2 + y2 + z2

Line element: dl2 = dx2 + dy2 + dz2 + dw2

i.e.     dl2 = dx2 + dy2 + dz2 + r2dr2/(R2-r2)

Note interesting visual effects in curved space (when r ~ R), e.g. the angular size 
δ = D/Rsinχ reaches minimum at χ = π/2 and diverges to fill the entire sky when χ = π

(this point is the just the ‘Big Bang’ – the antipodal point of the hypersphere)

Also the parallax, ε = Acotφ/R, vanishes at χ = π/2  

Polar coordinates (z=rcosθ, x=rsinθcosφ, y=rsinθsinφ): 

dl2 = dr2 +  r2 (dθ2 + sin2θdφ2) + r2dr2/(R2-r2)
= dr2/(1 - r2/R2) + r2 (dθ2 + sin2θdφ2)

or, ds2 = dt2 - R2 [dχ2 + sin2χ (dθ2 + sin2θdφ2)],
where, r = Rsinχ, χ⇒ polar angle of hypersphere



The 3 geometries of maximally-symmetric space

= 180° > 180° < 180°

(However there is no correspondence in general with whether the space is finite)



Could the universe have non-trivial topology?
(... as has been suggested e.g. to explain observed anomalies in the CMB)

see: Luminet, arXiv:0802.2236, Phys. Rep. 254:135,1995, arXiv:1601.03884

https://arxiv.org/abs/1601.03884


The expanding universe (Friedmann 1922, Lemaitre 1931)

Generalise line element:
R (t) = R0 a(t)

To describe a spatially open expanding universe, change: χ → iχ, R0→ iR0 , so 
ds2 = dt2 - a2(t) R0

2 [dχ2 + sinh2χ (dθ2 + sin2θdφ2)]

ds2 = dt2 - a2(t) R0
2 [dχ2 + sin2χ (dθ2 + sin2θdφ2)]

… a spatially closed expanding universe

This is the Robertson-Walker line element (maximally-symmetric space-time):

ds2 = dt2 � a2(t)
�

dr2

1�kr2 + r2d�2 + r2sin2�d⇥2
⇥

k = -1 k = 0 k = +1



Homogeneous and isotropic world models

For other interesting possibilities, see Thurston & Weeks: “The Mathematics of Three-
dimensional Manifolds”, Sci. Am. 251:108,1984 (https://www.jstor.org/stable/10.2307/24969417)



Everything is not expanding (how would we know?) … certainly not bound structures 
like atoms or planets or galaxies – it is only the large-scale smoothed space-time 

metric which is stretching with cosmic time (and there is no restriction on the rate!)

The ‘expansion’ is in a sense illusory … because we can always transform to a 
“comoving” coordinate system where galaxies are at rest wrt each other

The redshift happens because, for null geodesics:   � t0
t

dt
a(t) =

� r
0

dr⇥
1�kr2 = const

… for a galaxy (in co-moving coordinates), so  
crests of adjacent waves, separated by Δt at 
emission, will be received with separation, Δt0: 

�t0
�t = 1 + ��

�0
� 1 + z = a(t0)

a(t)

This is the cosmological time dilation or 
redshift - z = ∞ is the ‘Big Bang’ at t = 0 
(the antipodal point of the hypersphere) … 
the furthest we can look back in principle  



Einstein’s field equations

Ideal fluid:

Poisson’s equation:

Birkhoff’s theorem: If Tij = 0 in some region within a spherically symmetric 
distribution of matter, then the solution in the hole ⇒ flat space-time

Tij =

�

⇧⇧⇤

� 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⇥

⌃⌃⌅

⇥.g = �4�GN(⇥ + 3p)

For the RW metric, the 00 and 11 components simplify to the Friedmann equations: 
�

ȧ
a

⇥2 = 8�GN
3 � � k

a2

�
ä
a

⇥
= � 4�GN

3 (� + 3p)

Rij + 1
2gijRc = 8�GNTij , where Rij � g�kRµ⇥�k and Rc � gµ⇥Rµ⇥



‘Newtonian’ Cosmology

Consider sphere of radius l embedded in homogeneous background (McCrea & Milne 1934):

⇥̈ = �GNM/r2 = � 4�
3 GN(� + 3p)⇥; also dU ⇥ �dV + V d� = �pdV

⇥ �̇ = �(� + p) V̇
V = �3(� + p) �̇

� ... energy eq. for ideal fluid

So, ⇥̈ = 8�
3 GN�⇥ + 4�

3 GN�̇ ⇥2

⇥̇
� ⇥̇2 = 8�

3 GN�⇥2 + K

To obtain a static solution (Einstein’s “greatest blunder”) we have to set:

� + 3p = 0 i.e. p = �⇥
3 (!) ⇥ universe of radius: R2 = � ⇤2

k = [8�
3 GN�]�1

The static solution is in fact unstable (metric perturbations grow exponentially fast)
but we do not have the freedom, as Einstein said, to “do away with the cosmological 

constant” … it is a necessary consequence of general coordinate invariance which 
allows any arbitrary constant multiplying the metric tensor to be added to the l.h.s. 

So must modify the field equations to: Rij + 1
2gijRc � �gij = 8�GNTij

… which can be interpreted (when moved to r.h.s.) as a fluid with: ρΛ = -pΛ = Λ/8πGN



FLRW Dynamics

ä

a
= �4�GN

3
(⇥ + 3p) ± 1

a2R2
⇥ �4�GN

3
(⇥b + 3pb) ± 1

a2R2
+

�
3

Two interesting solutions describing an expanding universe:

The de Sitter universe was “motion without matter” (violating Mach’s 
Principle!) cf. Einstein’s static universe which was “matter without motion”

b ⇒ ‘background’ (i.e. “ordinary” matter/radiation)

⇥
�

ȧ

a

⇥2

� H2 =
8�GN

3
⇥b ± 1

a2R2
+

�
3

, where + is open/- is closed universe

Conservation of energy-momentum: �̇b = �3(�b + pb)
ȧ

a

Einstein-De Sitter:

De Sitter: �b = pb = 0 � a(t) = exp (H�t), where H� =
�

�
3

pb � ⇥b,� =
1

a2R2
= 0 ⇥ a(t) ⇤ t2/3, t =

2
3H

=
1⌅

6�GN⇥



De Sitter (1917) presented a third (apparently) static solution:

But De Sitter showed later (1933) that the redshift-distance relationship is in fact linear 
(as it should be for inertial observers in any homogeneous space-time) since observers 

in this (De Sitter) space are in fact accelerating … meanwhile observers (Stromberg, 
Lundmark, Wirtz, Silberstein et al) were misled into looking for the “De Sitter effect”.

Hubble (1929) tried to fit the redshift-distance data to a quadratic relationship (in 
fact he never mentioned the ‘expanding universe’ which is widely attributed to him! 

ds2 =
�
1 � r2

R2

⇥
dt2 � dr2/

�
1 � r2

R2

⇥
� r2(d�2 + sin2 �d⇥2)

For a clock at rest at a particular point (dr = dθ = dφ = 0), the time-like interval, 
ds2 = dt2 (1 – r2/R2) now depends on the radial distance, and becomes smaller 

as r increases ⇒ redshift of light from distant sources, but with:

dt
dt0

=
�

1 � r2

R2 = �
�0

= 1 + ��
�0

⌅ z ⇤ 1
2

r2

R2 , for r ⇥ R

Later Hubble (1931) wrote to De Sitter: “The interpretation, we feel, should be left to 
you and the very few others who are competent to discuss the matter with authority”



By construction most FRW
models will be Λ-dominated at late times

(since all else has redshifted away)

But at early times e.g. when 
the CMB decoupled, E-deS is 

an excellent description 

A child’s garden of cosmological models 



The R-W metric does not reduce to the Minkowski form when r →∝ (cf. the 
Schwarzchild metric), however when written in terms of the conformal time 
dη = dt/a(t), it is globally conformal to the Minkowski metric (for k = 0):

For example, a less symmetric possibility is the Lemaitre-Tolman-Bondi metric 
describing an universe that is inhomogeneous but isotropic around our position

ds2 = a2(�)
�
d�2 � dr2/(1 � kr2) � r2(d⇥2 + sin2 ⇥d⇤2

⇥

This is (relatively) easy to work with, however should we not consider less 
symmetric metrics which describe our (inhomogeneous) universe better? 

The problem is that very few exact cosmological solutions are known … so we 
tend to use ‘toy models’ rather than attempt a more realistic description

ds2 = �dt2 + a2
⇤�

1 + r
a

�a
�r

⇥2 dr2/(1 � k(r)r2) + r2(d�2 + sin2 �d⇥2
⌅

This requires us to be in a special position i.e. exactly at the centre of a radial 
inhomogeneity as specified by k(r) (e.g. a void), but can completely change the 
interpretation of the data (in particular there is no need then to invoke Λ ≠ 0

to explain the SN Ia Hubble diagram in terms of cosmic acceleration!



Using the RW metric we can define observational quantities to be measured

Expand in Taylor series:

Invert to obtain:

a(t)

a(t0)
= 1 +H0(t� t0)�

1

2
q0H

2
0 (t� t0)

2 + . . . ,

H0 ⌘ ȧ(t0)/a(t0), q0 ⌘ �ä(t0)a(t0)/ȧ
2(t0)

z = H0(t0 � t) + (1 + q0/2)H
2
0 (t0 � t)2 + . . . ,

) (t0 � t) = H
�1
0

⇥
z � (1 + q0/2)z

2 + . . .
⇤

Coordinate distance: re = a
�1(t0)H

�1
0

⇥
z � (1 + q0/2)z

2 + . . .
⇤

using:

Z to

te

dt

a(t)
=

Z re

0

drp
1� kr2

= re, for k = 0

= sin�1
re, for k = 1

= sinh�1
re, for k = �1

`Hubble law’: H0dL = z + 1
2 (1� q0)z2 + . . .

where : dL ⌘ a
2(t0)r2e (1 + z)2 ) “luminosity distance”



The apparent luminosity of a source of absolute luminosity L is:

` = L
4⇡a(t0)2r2e (1+z)2

Since a(t) is dynamically determined by the F-L equations, this 
yields the relationship (Mattig 1958):

a0r =
c

H0q
2
0(1 + z)

h
q0z + (q0 � 1)

⇣p
1 + 2q0z � 1

⌘i

for q0 > 0, where H0 ⌘ ȧ0/a0, and q0 ⌘ �ä0/a0H
2
0

Hence the intrinsic luminosity is related to the apparent luminosity as:

L = 4⇡`c2H�2
0 q

�2
0

h
q0z + (q0 � 1)

⇣p
1 + 2q0z � 1

⌘i



… which gives the magnitude-redshift relation:

m = 5 log q�2
0

h
zq0 + (q0 � 1)

⇣
�1 +

p
2zq0 + 1

⌘i
+ C

' 5 log z + 1.086(1� q0z) +O(z2) + . . . , for z . 0.3

Rewriting Friedmann’s equation as:
✓
da

d⌧

◆2

= 1 + ⌦m(a
�1 � 1) + ⌦⇤(a

2 � 1), a ⌘ 1/(1 + z), ⌧ ⌘ H0t

where ⌦m ⌘ 8⇡GN

3H2
0

⇢m0 , and ⌦⇤ ⌘ ⇤/3H2
0 ,

We see that:

i.e. measurement of the present expansion rate H0 and its rate of change 
q0 yields the dynamical parameters of the FRLW cosmology

… so astronomers like Sandage embarked on a quest to measure these 

q0 = ⌦m/2� ⌦⇤



His programme was however unsuccessful because a complete understanding 
of evolutionary effects is essential to determine cosmological parameters

so will obtain wrong answer for q0 if unaware of possible luminosity evolution

e.g. galaxy counts:
dNgal

dzd⌦
=

nc(z)

H
3
0a

3
0(1 + z)3q40

⇥
zq0 + (q0 � 1)

�p
2q0z + 1� 1

�⇤2
p

1� 2q0 + 2q0(1 + z)

e.g. angular diameter: H0dA =
1

q
2
0(1 + z)2

h
zq0 + (q0 � 1)

⇣p
2q0z + 1� 1

⌘i

' z � 1

2
(3 + q0)z

2 + . . . , where dA ⌘ D

�
= a(te)re

… and other such tests (e.g. surface brightness) but all these are biased 
by evolutionary effects 

e.g. if L(t) = L0 [1 + ↵(t� t0)]

then, ` = L

4⇡

�
H0
z

�2 ⇥
1 + (q0 � 1)z � ↵H

�1
0 z + . . .

⇤

There have been several claims for negative q0 (⇒ L > 0) from such ‘classic’ 
cosmological tests – which were however discounted subsequently

(see e.g. Peebles & Ratra, RMP 75 (2013) 559, Sahni & Starobinsky IJMPD 9 (2000) 73)



Recently it has proved possible to routinely detect SN Ia in distant galaxies and 
use them as ‘standard candles’ to trace the Hubble expansion out to z ~ 1 

These observations have been 
interpreted to mean that the 

expansion rate is accelerating as 
if driven by a dominant 

Cosmological Constant term 



The data have been interpreted more generally as implying ‘dark energy’ with negative pressure 
(w = p/ρ ≃ -1) but there is no direct evidence yet (e.g. late ISW effect) for this unique property   
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Along with other geometric measurements this implies a Cosmological Constant today with 
Λ ≃ 2H0

2 ⇒ ΩΛ ≃ 0.7 (e.g. Weinberg et al, Phys.Rep.530:87,2013) … but this is yet to be 
confirmed by dynamical measurements (i.e. making no assumptions about the metric)



The SN Ia data can in fact be fitted equally well without Λ
… by simply adopting a different metric (Celerier, A&A 353:63,2000)



… in fact the evidence for cosmic acceleration is <3s

Nielsen et al, Sci. Rep. 6:35596,2016 

1𝛔

3𝛔
2𝛔

Joint Lightcurve Analysis (JLA) dataset: 740 SN Ia (Betoule et al, A&A 568:222014)
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Even more worryingly the acceleration is in just one direction …

Colin et al, A&A 631:L13,2019 

Joint Lightcurve Analysis (JLA) dataset: 740 SN Ia (Betoule et al, A&A 568:222014)

The significance of qo
being negative has now 
decreased to only 1.4s

2 Cosmological analysis

We nowcompare the distance modulus (eq.1) obtained from the JLA sample with the apparent

magnitude (eq.2) using the Maximum Likelihood Estimator 25. For the luminosity distance we

use its kinematic Taylor series expansion up to the third term 40 since we wish to analyse the data

without making assumptions about the matter content or the dynamics:

dL(z) =
cz

H0

⇢
1 +

1

2
[1� q0]z �

1

6
[1� q0 � 3q20 + j0 +

kc
2

H
2
0a

2
0

]z2
�

(5)

where q ⌘ �äa/ȧ
2 is the cosmic deceleration parameter in the Hubble flow frame, defined in terms

of the scale factor of the universe a and its derivatives w.r.t. proper time, j0 is the cosmic ‘jerk’

j = ˙̈a/aH3, and �kc
2
/(H2

0a
2
0) is just ⌦k. Note that the last two appear together in the coefficient

of the z
3 term so cannot be determined separately. In the ⇤CDM model: q0 ⌘ ⌦M/2� ⌦⇤.

To look for a dipole in the deceleration parameter, we allow it to have a direction dependence:

q = qm + ~qd.n̂F(z, S) (6)

where qm and qd are the monopole and dipole components, while n̂ is the direction of the dipole

and F(z, S) describes its scale dependence. We consider four representative functional forms:

(a) No scale dependence: F(z, S) = 1 independent of z,

(b) ‘Top hat’: F(z, S) = 1 for z < S, and 0 otherwise,

(c) Linear: F(z, S) = 1� z/S, and

(d) Exponential: F(z, S) = exp(�z/S).

9

standard 
LCDM⤳

The inferred acceleration may therefore be an artefact of our being non-Copernican 
observers embedded in a ‘bulk flow’, rather than evidence for a Cosmological Constant 
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Whether the expansion rate is accelerating will be tested by the 
Extremely Large Telescope by measuring the  ‘redshift drift’

Li
sk

e
et

 a
l,

M
N

RA
S 
38

6:
11

92
,2

00
8


