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Abstract. 
A single particle tracking technique for studying nondiffusive transport is implemented in a new 

particle-in-cell gyrokinetic simulation of the entropy mode in a Z pinch geometry. Radial transport 
is characterized in terms of the time dependence of the variance of displacements. The vertical 
zonal flow dynamics of the nonlinear phase of the instability seem to cause subdiflfusive transport 
for ions during the simulation lengths used here. Electrons follow subdiffusive transport, except 
for later times in the case of the largest gradient, where the transport becomes superdiffusive. 
The probability distribution of displacements shows a positive skew and long tails relative to the 
Gaussian distribution for both ions and electrons. 
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INTRODUCTION 

The transport of particles and heat in a turbulent plasma is an area of research with 
relevance to fusion energy and astrophysical topics. It has been proposed [1, 2, 3, 4] that 
the nature of the transport is more complex than allowed by a simple Brownian random 
walk. In particular, it may be necessary to relax the Markovian and Fickian assumptions 
of locality in time and space to explain the nondiffusive transport of particles inferred 
in some magnetic fusion devices. Here, we examine the self consistent transport of 
particles driven by the gyrokinetic entropy mode in a Z pinch [5, 6] as an example 
of a simplified geometry with curvature and VB drifts without the added complexity of 
trapped particles. We look at equal temperature kinetic electrons and ions in the recently 
developed gyrokinetic 5f particle-in-cell code, GSP [7]. A density gradient is used to 
drive the entropy mode, which displays a fast linear growth phase with streamers in the 
radial direction followed by a nonlinear zonal flow state with radial transport inhibited. 
The metric used here for nondiffusive transport is the value of y for the scaling of the 
variance of particle displacements in the radial direction, o]:{t) r^ t^. The value of y is 
related to the parameters of certain models for nondiffusive transport [8, 3]. 

Z PINCH ENTROPY M O D E 

The Z pinch, in which a straight vertical current creates a cylindrically symmetric 
magnetic field, is a useful intermediate step between slab and tokamak geometry. It 
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FIGURE 1. Geometry for tiie Z pinch is a mapping of the {x,y,z) code coordinates to the {r,z,^) 
coordinates of the Z pinch. The current is in the z direction, and the B field in purely in the — ̂  direction. 

requires less computational expense because of periodicity in the fleld direction and, 
thus, elimination of one spatial dimension. At the same time, the Z pinch includes both 
the VB and curvature drifts that produce important instabilities in a tokamak. As shown 
in Fig. 1, the Z pinch is essentially a cylinder wrapped around so that the B fleld lines 
are periodic. The static magnetic fleld is in the toroidal direction, BQ = — (/>, with a radial 
dependence B r-^ l/r. A combination of the VB and curvature drifts gives a drift that 
is always perpendicular to both the r and (/> directions and depends on the sign of the 
charged particle. The E x B drift, on the other hand, is generally in both the r and z 
directions. 

The entropy mode in the Z pinch has been studied by Ricci, et al [6, 9] using gyroki-
netic theory and nonlinear calculations with the continuum gyrokinetic code GS2 [10]. 
This mode exists at weaker pressure gradients than the ideal magnetohydrodynamic in
terchange mode, and can have growth rates comparable to the ideal mode when the 
density gradient scale length, L„ = —n'/n is in the proper range (2/7 < Ln/Rc < ^ / 2 , 
where Re is the radius of curvature). It was shown that the entropy mode creates radial 
E X B flows in the linear phase, which break up into zonal flows in the z direction during 
the nonlinear phase because of a Kelvin-Helmholtz instability (KHI). 

CODE METHODOLOGY 

Particle-in-cell (PIC) methods for numerical solution of the gyrokinetic-Poisson system 
are in wide use [11, 12]. Several groups have developed sophisticated PIC codes with 
a range of capabilities, some with the evolution of the full distribution function (full 
F =Fo-\- df) and some that evolve only the difference (df [13]) between a Maxwellian 
background distribution (FQ). We use the recently developed and benchmarked df gy
rokinetic PIC code, GSP [7]. GSP employs the flux tube approximation and computes 
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the nonlinear evolution of particle weights, Wj = ** ^'^ |R,,V ,̂,V||P using the method of char
acteristics. Here, ()^ is the gyro-average at fixed gyro-center position i?. Normalization 
of the perpendicular coordinate is given by 1/p,, the parallel coordinate by I/a, (p by 
qa/TiPi and time by Vf^i/a. Here, p, is the singly-charged ion Larmor radius, vj-, is the 
ion thermal velocity, q is the charge on the ions and electrons and Tt is the ion tempera
ture. Notably, in gyrokinetics, parallel (to b) wavelengths are ^(e^^) larger than perpen
dicular wavelengths. The order parameter for the gyrokinetic expansionis e = pt/a [14], 
where a is a typical macroscopic length scale. The gyrokinetic equation is taken to ^(e) 
in this work. 

GSP has been benchmarked against GS2 and has been shown to have good paralleliza-
tion for both strong and weak scaling. Two important advances in GSP, which distinguish 
it from other 5 / PIC codes, are the implementation of a pitch-angle scattering collision 
operator and a spectral-space evaluation of the gyro-averages. Utilization of the colhsion 
operator is not within the scope of this exploratory study. However, exphcit Jo(^±v^/Q) 
evaluation for a more efficient and exact gyro-average is of critical importance for the 
entropy mode. Many PIC codes use a discrete ring average, with four points to represent 
the ring, which is only accurate for values of ^^p < 1. This is insufficient for the entropy 
mode in a Z pinch {c.f. [15]), for which a significant portion of the turbulent energy is 
contained in short-wavelength structures. 

NONDIFFUSIVE TRANSPORT INDICATIONS 

For the results presented here, GSP is run with 20 million particles, which is equivalent 
to 1220 particles per {r,z, (p) grid point for a 128 x 128 x 1 run. Assuming a 16x16 reso
lution in velocity space, this is 4 particles per phase space cell. The box dimensions are 
Lr = Lz= 125.66,Z0 = 6.28 and the timestep 5t = 0.05 for the second-order predictor-
corrector method used for solving the ODEs from the method of characteristics. Two ki
netic species are used: electrons and singly-charged ions with equal temperature, Ti = Te 
and mass ratio me/nii = 5.4 * 10 '̂*. Since we are interested in following the trajectories 
of unique particles, it is necessary to track their positions after they leave the box. This 
is achieved by recording particle positions at a specified time interval without taking the 
modulus of the position with the box size. This allows particles to travel further than one 
box length but retains the periodicity of (/). We also output the particle weights after each 
time interval and multiply the weight by the position to get the density of particles at 
that position. A more thorough discussion of the physical meaning of the displacement 
of a simulation particle with a time-varying weight will be presented elsewhere. 

Nondiffusive transport in the radial direction is characterized the mean M{t) = 
{5r{t)-*w{t)) and variance (7^{t) = ({5r{t) -*w{t) — {5r{t) -*w{t)))^) of particle dis
placements 5r{t) = r{t) — r(0) multiplied by the particle weights, M>{t). For diffusive 
transport, the distribution of step sizes for the random walk is given by a Gaussian dis
tribution and the waiting times between steps are given by a Poisson distribution. This 
leads to a linear scahng in the variance and the mean, such thatM(/) r^ t and C7̂  '-̂  /. If 
transport is nondiffusive, the distributions of step sizes and waiting times are possibly 
power laws. The scahng in the variance for power law distributions would therefore be 
o^{t) r^ f, where j <\ indicates subdiffusive transport and j>\ indicates superdiffu-
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FIGURE 2. (Color online) Electrostatic potential, (j), during the nonlinear phase at time points / = 150 
and / = 250. The vertical zonal flow is apparent, but the kz ̂  2K structure seems to allow some radial 
transport. From left the right, as the gradient increases from Ln/Rc = { 1.0,0.75,0.5}, the wavenumber for 
the zonal flow decreases and the amplitude of the field becomes stronger. 

sive transport. 
The parameter we are varying in this study is the scale length of the density gradient, 

Ln, such that a larger scale length gives a weaker gradient. Figure 2 shows the electro
static field, (/), for three different values of Ln/Rc'- 1-0, 0.75 and 0.5, at two time points 
in the nonlinear phase, after the KHI has created the vertical zonal flows. The wave 
number of the zonal flow is always krpt ^ 1, but it decreases as Ln decreases. This is 
consistent with the result in Fig. 4 of [9]. Also consistent with linear gyrokinetic theory 
is the relative magnitude of (/) at a given time point, which shows that the growth rate of 
the entropy mode increases with the strength of the gradient. It seems that some struc
ture appears in the kz direction at Ln/Rc = 0.75. This may have an effect on the radial 
transport since it opens gaps in the zonal flows. 

Direct observation of the full particle distribution function (PDF) shows that the 
spreading of particles is skewed in the +r direction. The tails of the PDF for the largest 
gradient are extended beyond the Gaussian shape of diffusive transport, as shown in 
Fig. 3. The second moment of the PDF indicates that the spreading of displacements 
are nondiffusive, as shown in Fig. 4. During the linear phase of the entropy mode, the 
variance of displacements grows extremely quickly because of the radial streamers. As 
the KHI appears in the nonlinear phase, the zonal flows slow the spreading for both 
electrons and ions. The ion spreading is subdiffusive for each value of the gradient 
studied, with two distinct values of 7 as listed in Table 1 and shown in Fig. 4. 

CONCLUSIONS 

Grid resolution for r-z space must be carefully checked for GSP simulations. Higher 
spatial resolution will significantly increase the number of particles required in the 
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FIGURE 3. (Color online) Probability distribution of radial displacements for 40 000 ions and 40 
000 electrons in the Z pinch for the nonlinear phase of the entropy mode. The 8f particle positions 
are multiplied by the weights. From outside to inside, the strength of the gradient decreases, from 
L„IRc = {0.5,0.75,1.0}. Ions are on the right panel, electrons are on the left. Displacements are measured 
relative to the particle positions at the end of the linear growth phase of the instability. A positive skew is 
seen for all values of the density gradient, and long tails are also apparent. 

FIGURE 4. Variance of displacements in the radial direction during the nonlinear phase of the entropy 
mode instability. The 8f particle positions are multiplied by the weights. Two distinct regimes in time are 
noticed, both with nondiffusive values of j . The strength of the gradient decreases from top to bottom, 
fromZ,„/_/?;, = {0.5,0.75,1.0}. The electrons are shown by traces with markers and are always shifted up 
from the ions. Straight lines indicate the values of j listed in Table 1. 

simulation. If the weights are observed to be growing too fast (because of large fluxes), 
the pitch-angle scattering collision operator can be used to control that growth without 
being forced into using very large numbers of particles. 
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TABLE 1. Nondiffusive transport 
exponents in the nonlinear phase 
for electrons and ions separated into 
two regimes in time. 

Ln/Rc 

1.0 
0.75 
0.5 

ri.i 

0.5 
0.2 
0.2 

72,,-

0.8 
0.6 
0.2 

ri, . 

0.45 
0.2 

0.25 

r2,e 

1.2 
0.55 
0.25 

Fast growth of the radial variance in the linear phase comes from the presence of radi
ally directed velocity streamers, which give way to vertical zonal flows and subdiffusive 
radial spreading. The nonlinear phase shows nondiffusive transport, with two distinct 
values of y at different times for stronger gradients, and only one value for the weakest 
gradient. The ions show strictly subdiffusive spreading. The electrons in the strongest 
gradient experience a transition from subdiffusive to superdiffusive spreading. Future 
work will show how collisions affect the nondiffusive transport metrics, since collisions 
tend to decrease the coherence of zonal flows [9]. 
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