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To faithfully simulate ITER and other modern fusion devices, one must re-

solve electron and ion fluctuation scales in a five-dimensional phase space and time.

Simultaneously, one must account for the interaction of this turbulence with the

slow evolution of the large-scale plasma profiles. Because of the enormous range of

scales involved and the high dimensionality of the problem, resolved first-principles

global simulations are very challenging using conventional (brute force) techniques.

In this thesis, the problem of resolving turbulence is addressed by developing ve-

locity space resolution diagnostics and an adaptive collisionality that allow for the

confident simulation of velocity space dynamics using the approximate minimal nec-

essary dissipation. With regard to the wide range of scales, a new approach has been

developed in which turbulence calculations from multiple gyrokinetic flux tube sim-

ulations are coupled together using transport equations to obtain self-consistent,

steady-state background profiles and corresponding turbulent fluxes and heating.

This approach is embodied in a new code, Trinity, which is capable of evolv-
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ing equilibrium profiles for multiple species, including electromagnetic effects and

realistic magnetic geometry, at a fraction of the cost of conventional global simula-

tions. Furthermore, an advanced model physical collision operator for gyrokinetics

has been derived and implemented, allowing for the study of collisional turbulent

heating, which has not been extensively studied. To demonstrate the utility of the

coupled flux tube approach, preliminary results from Trinity simulations of the

core of an ITER plasma are presented.
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Chapter 1
Introduction

1.1 Motivation

We are now approaching a significant milestone in the fusion program. Over
the next eight years, a multi-billion dollar magnetic confinement device (the Inter-
national Thermonuclear Experimental Reactor, or “ITER”) will be built to demon-
strate the feasibility of fusion as an alternative energy source. The design for this
experiment reflects a myriad of advances made through experimental, theoretical,
and numerical studies in our understanding of fundamental plasma processes. How-
ever, there are still many issues critical to the success of ITER and to the economic
and scientific feasibility of future fusion devices that are not well understood.

The main goal of this thesis is to present a set of numerical tools and a sound
numerical framework within which we can study one of the key fundamental physics
issues for magnetic confinement fusion devices: the presence of anomalously high
levels of particle, momentum, and energy transport observed in hot, magnetized
plasmas. This anomalous transport, which is due to small-scale turbulence driven by
localized instabilities (or “microinstabilities”), has been the subject of intense study
within the fusion program for decades. Without this turbulence the performance of
magnetic fusion devices would be considerably improved. For example, a turbulence-
free Joint European Torus (JET) would reach fusion ignition.

The presence of turbulence is certainly not inevitable. Indeed, JET, TFTR,
DIII-D and other fusion devices have demonstrated operation with regions of the
plasma essentially turbulence-free. Understanding, controlling, and ultimately re-
ducing turbulence in magnetic fusion experiments is thus a formidable but achievable
challenge for the fusion program. Much progress has been made in our qualitative
understanding of turbulent transport, and in some cases quantitative agreement be-
tween numerical simulations and experiment is remarkably good. However, plasma
turbulence and equilibrium profile evolution are both complex problems, and first-
principles simulations with experimentally relevant plasma parameters have by ne-
cessity only addressed either the effect of turbulence on the equilibrium or vice
versa.

In this thesis, we present a rigorous theoretical and numerical framework that
allows for the efficient simulation and routine study of the self-consistent interaction
between plasma turbulence and equilibrium profiles. While our approach provides a
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significant savings over direct global simulations, it is still very challenging numer-
ically. We have therefore implemented velocity space resolution diagnostics and an
adaptive collisionality that allow us to resolve simulations with an approximately
minimal number of grid points in velocity space. Furthermore, our collision opera-
tor is an improvement over previous operators: it possesses a number of desirable
properties, including local conservation of particle number, momentum, and energy,
and satisfaction of Boltzmann’s H-Theorem. The latter property is of particular
importance when considering equilibrium evolution, since it is necessary to ensure
that system entropy is increased and equilibrium profiles are heated by collisions
(instead of cooled). Our use of a theoretically sound collision operator also allows
us to conduct quantitative studies of the effect of collisional heating on equilibrium
profile evolution – a topic that has received little attention from the plasma physics
community.

We do not claim to have developed a numerical fusion device. There are
a number of important processes currently neglected in our model (most notably
the development of equilibrium shear flows and the physics of the edge pedestal,
which critically affect the power output of fusion devices). However, the approach
presented here provides a platform for studying novel effects that may arise from the
self-consistent interaction between turbulence, transport, and heating. Furthermore,
the code we have developed (named Trinity) is capable, within broad parameter
ranges, of providing quantitative predictions of microstability thresholds, turbulent
fluctuations and tokamak performance from first principles.

1.2 Multiple scales

The hot, magnetized plasmas present in magnetic confinement fusion devices
are rich and complicated physical systems. They support an enormous spectrum
of processes whose time and space scales span many orders of magnitude: heated
to millions of degrees, charged particles spiral tightly around curved magnetic field
lines at a significant fraction of the speed of light; the same particles drift slowly
across magnetic field lines, transporting particles, momentum, and heat across the
length of the device; a multitude of waves propagate through the plasma, from light
waves to Alfvén waves to drift waves; kinetic instabilities give rise to a sea of small-
scale, rapidly fluctuating turbulence, and fluid instabilities can lead to bulk motion
of the plasma and catastrophic disruptions. The time and space scales for some of
the important processes that affect the performance of magnetic confinement fusion
devices (in particular, ITER) are presented in Tables 1.1 and 1.2.

Each of these processes requires often complex modeling. Consequently, it is
neither analytically nor numerically feasible to work with a single model that simul-
taneously describes all of the physical processes present. Instead, we must determine
which processes are of greatest interest and identify reasonable approximations that
will allow us to develop simplified models of their behavior. Occasionally, we may
gain insights from these simplified numerical models that allow further reductions
of the problem, but this cannot always be achieved because of the large number of
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parameters and interactions that are known to be important experimentally.
There are many important issues that must be addressed in order to develop

a scientifically and economically viable fusion reactor. Fundamentally, however, we
are interested in achieving high core pressures with minimal power input. This
requires minimizing the radial heat transport, which is due primarily to turbulence.

In order to address the challenges associated with turbulent transport, it is
generally believed that one must take into account the close coupling between the
slow (∼ 1 s) evolution of large-scale (∼ 1 m) variations in equilibrium density,
temperature, and flow profiles and the rapid (∼ 1 MHz) fluctuations of small-
scale (∼ 10−5 m) plasma turbulence. This interaction of vastly disparate temporal
and spatial scales renders direct numerical and analytical approaches intractable;
instead, more sophisticated multiscale models are required. One such model is
derived in Chapter 3, with the notable absence of equations describing the evolution
of equilbrium flows. These flows are believed to play a critical role in the formation
of the edge pedestal and internal transport barriers, thus limiting the immediate
applicability of Trinity to core plasmas.

To overcome the difficulty associated with the presence of a wide range of
scales, different models have typically been applied to address turbulence and trans-
port separately [1, 2, 3, 4, 5, 6, 7]. Slowly-evolving, large-scale plasma transport
has been widely modeled as a diffusive process, with theoretically and numerically
derived diffusion coefficients. The magnetic equilibrium is typically modeled with
the equations of magnetohydrodynamics (MHD), which treat the plasma as a single
magnetized fluid. These approaches are generally inadequate for accurately describ-
ing the rapidly-evolving, small-scale turbulence responsible for anomalous transport
in fusion devices. The instabilities driving microturbulence arise, in part, due to
the development of nontrivial structure in the distribution of plasma particle veloc-
ities (which can be present due to the long collisional mean free path in hot fusion
plasmas). Since this structure is not easily captured by conventional fluid models
or tractable analytical approaches, a numerical description of kinetic, small-scale
plasma turbulence is necessary. An example illustrating this point is provided in
Chapter 2.

1.3 Kinetic nature of magnetized plasma tur-

bulence

In order to address the complexities of plasma turbulence with existing com-
puter technology, the full kinetic description must be simplified. This can be ac-
complished by exploiting the separation of time and space scales in fusion plasmas.
In this thesis, we employ the widely-used δf gyrokinetic model [8, 9, 10], which
takes advantage of the following scale separations: the turbulence and resultant
fluxes are calculated in a stationary equilibrium, exploiting the separation of the
fast turbulence time scale and the slow profile evolution time scale; the variation of
equilibrium gradient scale lengths perpendicular to the magnetic field line is ignored

3



Physics Space scale Time Scale

Electron Energy
Transport from

Scale perpendicular to B is
∼ ρe − ρi ∼ 0.001 cm− 0.1 cm

ETG modes Scale parallel to B is
qR ∼ 15 m

ω∗e ∼ 500 kHz− 5 MHz

Ion Energy
Transport from

Scale perpendicular to B is
∼ ρi −

√
ρiLT ∼ 0.1 cm− 8 cm

ITG modes Scale parallel to B is qR ∼ 15
m

ω∗i ∼ 10− 100 kHz

Transport
Barriers

Unknown scaling of
perpendicular scales.
Measured scales suggest width
∼ 1− 10 cm

Lifetime 100 s or more in
core? Relaxation oscilla-
tions for edge barrier with
unknown frequency.

Magnetic
islands,

Island width ∼ 10ρi ∼ 1 cm. Growth time ∼ 1 − 100 s.

Tearing modes
and NTMs.

Eigenfunction extent ∼ Lp ∼
100 cm. Turbulent correlation
length near island ∼ 1 cm?

Island frequency ∼ 100 Hz−
1 kHz. Turbulent frequency
near island ∼ 100 kHz

Table 1.1: Some important tokamak space and time scales. Numerical values refer
to ITER.

(local assumption), exploiting the separation of the short perpendicular turbulence
scale and the long perpendicular profile scale; and the dynamics of the turbulence
itself is calculated assuming the particles gyrate about the ambient magnetic field
lines infinitely fast, exploiting the difference in time scales between the dynamics of
interest and a host of much faster processes that occur in magnetized plasmas. Fur-
thermore, a distinction is made between fluctuations along the equilibrium magnetic
field, which are assumed to have long (device size) wavelengths, and cross-field fluc-
tuations, which have short (Larmor radius) wavelengths. Finally, the experimentally
observed and theoretically well-founded expectation that the turbulent correlation
lengths in the directions perpendicular to the magnetic field are small compared to
the device dimensions (for large enough devices, high enough magnetic fields, and
suitable distances from edge boundary layers) allows one to simulate small volumes
of plasma surrounding individual magnetic field lines, called flux tubes, and to ex-
trapolate the results from these small volumes to nearby flux tubes [11]. [See Sec.
1.6 for a more detailed discussion.] This is an assumption of statistical homogeneity
among patches of plasma that are many turbulent correlation lengths apart. It is
a particularly well-motivated and unsurprising approach for axisymmetric confine-
ment devices such as tokamaks. It would be unwise to ignore this opportunity to
reduce the simulation effort, choosing instead to simulate a large number of sta-
tistically identical regions of plasma, absent an expectation of something such as
important intermittent fluctuations.
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Physics Space scale Time Scale

Sawteeth Reconnection layer width
∼ 0.05 cm

Crash time 50µs − 100µs
Real frequency ∼ 100 Hz −
1 khz.

Eigenfunction extent ∼ Lp ∼
100 cm.

Ramp time 1− 100s

Discharge Profile scales Lp ∼ 100 cm Energy confinement time 2−
4s

Evolution Burn time unknown

Table 1.2: Some important tokamak space and time scales. Numerical values refer
to ITER.

Figure 1.1: Illustration of the flux tube simulation domain used in Trinity. Colors
represent the amplitude of perturbations in the electrostatic potential. Notice that
the turbulence is long wavelength along the equilibrium magnetic field and short
wavelength in the plane perpendicular to it. Graphic courtesy of D. Applegate.

These assumptions allow for the reduction of the problem from the long-time
evolution of fast, gyroradius-scale turbulence throughout the full device, to the slow
evolution of a few coupled magnetic flux tubes, each filled with fast, small-scale
turbulent fluctuations. The fundamental validity of this approach for sufficiently
large device size (ρ∗ ∼ 0.003) has been demonstrated [12] by comparing results
from flux tube simulations with results for the same cases from global simulations
(Fig. 1.2), which allow for radial variation of equilibrium profiles within a turbulence
simulation.

Despite the significant simplifications granted by these gyrokinetic assump-
tions, plasma turbulence simulations are still computationally challenging. Tur-
bulence in conventional, neutral fluids is already a complex phenomenon; under-
standing it has proven to be one of the great scientific challenges of our time. Ki-
netic plasma turbulence, which may be characterized as particles interacting pri-
marily with electromagnetic waves and occasionally with one another via collisions,
possesses an additional level of complexity. For instance, a fundamental concept
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Figure 1.2: Comparison of ion thermal diffusivity χi calculated from local (GS2) and
global (GYRO) simulations as a function of ρ∗ ≡ ρ/a, where ρ is the gyroradius and
a is the minor radius of the device. For sufficiently small ρ∗, the local and global
calculations of thermal diffusivity are in excellent agreement. Figure taken from
Ref. [12].
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Figure 1.3: (Left): Cascade of entropy from large to small physical space struc-
tures (Wφ ∼

∑
|k⊥|=k⊥ q

2n0 |Φk|2 /2T0 and Wh ∼
∑
|k⊥|=k⊥

∫
d3v T0 |hk|2 /2F0 are

the entropy generation arising from the Boltzmann and non-Boltzmann responses
of the perturbed distribution function, respectively). Solid black lines are theoreti-
cal predictions [15], and colored lines are data taken from 4D (k‖ = 0), electrostatic
turbulence simulations at different resolutions [16]. (Right): Spectra characteriz-
ing the cascade of entropy in velocity space, with Êg(p) =

∑
k p |ĝk(p)|2, where

ĝk(p) =
∫
d3v J0(pv⊥)gk(v) is the Hankel transform of the guiding center perturbed

distribution function, g. Solid black line is the theoretical prediction [18], and col-
ored lines are data taken from same runs as the figure on the left. Figures taken
from Ref. [16].

in fluid turbulence is the cascade of energy from large-scale to small-scale spatial
structures. In gyrokinetic turbulence, the three-dimensional cascade is replaced by
a five-dimensional cascade of entropy from large-scale to small-scale phase space
structures [13, 14, 15, 16, 17]. This is illustrated in Fig. 1.3.

It is well known that in weakly collisional plasmas, Landau and Barnes damp-
ing of electromagnetic fluctuations leads to the development of small-scale structure
in the distribution of particle parallel velocities. This is a result of mixing in phase
space, where particles streaming along magnetic field lines transfer spatial structure
into velocity structure. [The potential development of infinitesimally small scales
in velocity space is illustrated in Appendix B, where we consider the simple case of
collisionless Landau damping of the ion acoustic wave.] In addition to this paral-
lel phase mixing arising from linear convection, there exists a perpendicular phase
mixing process due to the averaged E × B particle motion [13]. A cartoon of this
process is shown in Fig. 1.4. As particles rapidly gyrate about equilibrium magnetic
field lines, they see spatially varying electromagnetic fluctuations that are essentially
static in time. The E × B drift they experience is thus a result of the gyroaver-
aged electromagnetic fields they see. Particles at the same guiding center position
experience different gyroaveraged fields depending on their Larmor radius (which
depends on perpendicular particle velocities) and thus drift with different guiding
center velocities. This results in a mixing of particles with different perpendicular
velocities in the gyrocenter distribution function and the generation of small scales
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in the perpendicular velocity space.
Because of the tendency of weakly-collisional plasmas to develop fine struc-

tures in velocity space, one must pay careful attention to numerical resolution in
velocities. This is ideally done by conducting a grid convergence study in velocity
space. However, this is a numerically expensive process, so it is not always done.
We have developed computationally cheap velocity space resolution diagnostics that
allow us to monitor resolution at virtually no additional cost. When coupled with an
adaptive collisionality, we are able to confidently simulate velocity space dynamics
with the approximate minimal number of grid points in velocity space necessary for
resolution. This is detailed in Chapter 4.

1.4 Turbulent heating and the importance of

collisions

The evolution of equilibrium pressure profiles is determined by a balance be-
tween transport processes and local heating. The net heating consists of contribu-
tions from a number of sources, including external heating, atomic heating, Ohmic
heating, and thermal energy exchange between species. Most of these phenomena
have been extensively studied, both analytically and through the use of numerical
transport solvers. However, little attention has been given to anomalous heating
arising from microturbulence. The gyrokinetic turbulent heating of species s can be
defined in various ways. In Refs. [19] and [20] it is defined to be

H̃ ≡
∫
d3r
(
δJ‖ · δE‖ + δJD · δE⊥

)
, (1.1)

where δJ‖ is the perturbed parallel current, δJD is the current perturbation due
to particle drifts, and δE‖ and δE⊥ are the parallel and perpendicular perturbed
electric fields, respectively. In Chapter 3, we derive an equation for the evolution
of the equilibrium pressure that leads us to a somewhat different definition for the
turbulent heating. We show, however, that both definitions lead to a net (species-
summed) turbulent heating of zero.

While the net turbulent heating is zero, the turbulent heating for each species
(or equivalently, the turbulent energy exchange between species) is not necessarily
zero. It is formally the same order as the heat transport, so there is a possibility
of significant turbulent energy exchange between species. In the cases considered
in Ref. [20], it was found that the parallel and perpendicular contributions to the
turbulent heating nearly cancel, giving only a 10% adjustment to the net heating.
However, to our knowledge, no additional cases have been considered, and the def-
inition used for the turbulent heating does not contain all of the turbulent heating
terms appearing in the equations we derive in Chapter 3 for the time evolution of
the equilibrium pressure. Turbulent heating therefore deserves further careful study.

In Chapter 3, we also express the turbulent heating as the sum of a positive-
definite quantity describing collisional entropy generation and a term representing
energy exchange between the equilibrium and the turbulence. Because the collisional
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Figure 1.4: Cartoon illustrating nonlinear perpendicular phase mixing, which leads
to the development of small-scale structures in both physical and velocity space.
When the separation between particle gyroradii with the same guiding center be-
comes comparable to the characteristic wavelength of the turbulence, the motion of
the particles become decorrelated. Since the size of the gyroradii are proportional
to the particles’ perpendicular velocities, this indicates a decorrelation in velocity
space as well, leading to the development of small-scale structure. Figure taken from
Ref. [18].
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entropy generation term is positive definite, it is generally easier to obtain a con-
verged statistical average for it in numerical simulations than for the δJ · δE terms,
which tend to have large amplitude oscillations associated with particles “sloshing”
back and forth in plasma waves. To calculate the collisional entropy generation, we
have developed a model gyrokinetic collision operator that retains the key properties
of physical collisions.

In general, collisional physics are not carefully treated (if treated at all) in
gyrokinetic simulations of turbulence [21, 22]. In principle, one would like to in-
clude the full linearized Landau operator [23], but numerical implementation and
calculation of the so-called “field-particle” part of this operator is quite challenging.
Approximate models for the collision operator have been derived [24, 25], but they
do not possess all of the properties one would like a collision operator to possess [21].
Consequently, we have derived a new model collision operator for use in gyrokinet-
ics, which is an improvement over previous operators. Some of the key properties
of our operator are: local conservation of particle number, momentum, and energy;
satisfaction of Boltzmann’s H-Theorem; efficient smoothing in velocity space; and
reduction to the full linearized Landau operator in the short wavelength limit (where
dissipation primarily occurs). The derivation of this operator is presented in Chap-
ter 5, and numerical implementation in Trinity and tests are presented in Chapter
6.

1.5 Stiff transport

Kinetic microinstabilities depend on a large number of plasma parameters.
However, the dominant microinstabilities in most magnetic confinement fusion de-
vices are driven unstable primarily by sufficiently strong temperature gradients.
Since these microinstabilites cause high levels of heat transport, they effectively
limit temperature gradients to be at or below the critical gradient at which the
kinetic modes go unstable (unless the temperature near the edge of the plasma is
low or the external heating is very large) [26, 27, 28]. Below the critical gradi-
ent, there is a low level of transport due to neoclassical effects (see e.g. Ref. [29])
that has a relatively weak dependence on temperature gradient scale length. Above
the critical gradient, the level of transport increases dramatically because turbulent
transport has a stiff dependence on temperature gradient scale length. For relatively
high temperature plasmas with reasonable external heating power, this feature (stiff
transport) leads to profiles adjusting so that their gradients are stuck at the critical
gradient. Consequently, the core temperature depends sensitively on the tempera-
ture at the edge of the device (Fig. 1.5). Without high edge temperatures, ITER will
not likely achieve its target core temperature, for instance [30]. The edge plasma is
not modeled in this thesis because of the complicated physics involved and because
sharp gradients occur near the edge of the device (in what is known as the edge
pedestal), challenging the applicability of the gyrokinetic ordering we consider.

This stiff dependence of the fluxes on the driving gradients and the sharp
transition between neoclassical and turbulent transport at the critical gradient have
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!MSE" as input. Both internal q values agree within error
bars !flat central q profile" and stay at a constant value
slightly above 1 throughout the discharge, in agreement with

earlier studies.
2
The corresponding values from an ASTRA

transport simulation, taking into account the expected off-

axis beam driven and the bootstrap current density, drop be-

low 1 which is clearly not consistent with the absence of

sawteeth. The small-amplitude NTM activity present during

these high performance phases !see also Fig. 2" has been
suggested as a cause to keep the current profile stationary.

9,12

A monotonic increasing q profile is prone to NTM insta-

bility, especially !3,2" and !2,1" modes, but the specific q
profile of the improved H mode allows a benign MHD be-

havior at high !N with improved confinement even in the

presence of NTM activity. First, the absence of sawteeth re-

moves the main trigger of large-amplitude NTMs. Further

on, for high plasma pressures a low magnetic shear at the

!3,2" surface reduces the NTM drive and, consequently, leads

to a significantly smaller amplitude of the !3,2" NTM.13 In
addition higher m ,n NTMs are often destabilized which fur-

ther reduce via nonlinear mode coupling the amplitude of

this mode and lead to the frequently interrupted FIR modes

allowing higher ! values !Figs. 1 and 2". Finally, the NTM
stability is improved at higher triangular plasma shapes by

reducing "!.
In the course of documenting the stationary operation of

the low collisionality, improved H mode over a broad range

of q95=3.2–4.5 !Ref. 14" !Sec. V", the maximum attainable !
has been assessed by continuously ramping up the heating

power under feedback control until a severe degradation of

confinement was observed. This happened at !N around 3,

almost independently of q95. An example with q95=4.3 is

shown in Fig. 2 including the spectrogram of the MHD ac-

tivity. !3,2" and !4,3" modes are present throughout the
power ramp. At worst only a soft ! limit with degraded

confinement is caused by the !3,2" mode !see Fig. 1". The
final ! limit is given here by the occurrence of a !2,1" mode
at 5.6 s that quickly locks and causes a strong reduction of

plasma pressure despite the fact the heating power is strongly

increased. The mode locking, however, does not lead to a

major current disruption. Generally, improved H-mode plas-

mas have a very low probability to disrupt, except in cases

with strong central impurity accumulation.

IV. TRANSPORT, IMPURITY CONTROL, AND
COMPATIBILITY WITH TUNGSTEN-COATED
STRUCTURES

The improved confinement with respect to global

H-mode scaling is not caused by a reduced anomalous heat

transport. Heat transport is still governed by drift-wave tur-

bulence driven by ITG and TEM which sets in above a criti-

cal value of !T /T !Ref. 15", resulting in “stiff” temperature
profiles, i.e., a fixed ratio between the central and edge tem-

perature. In Fig. 3 Ti!##0.4" is plotted versus Ti!##0.8" for
a subset of recent improved H-mode data together with some

data from standard H modes. Obviously, ion temperature

profiles in improved H modes are stiff with the same gradi-

ent length as in standard H modes, confirming the results of

an earlier study.
3,15

This is corroberated by a detailed trans-

port analysis of the improved H mode shown in Fig. 1 based

on ASTRA simulations.
16
A similar conclusion is reported

from the analysis of similar DIII-D discharges.
9
In agree-

ment, resilient Te profiles are observed and electron heat

transport is consistently described by a transport model with

a threshold in !Te /Te, above which the electron heat trans-
port is increased, both in power balance and transient re-

sponse analyses to modulated electron cyclotron resonance

heating !ECRH" of low-density improved H modes.17 Stabil-
ity calculations and experiments indicate that for low density,

low collisionality plasmas TEM is the most unstable mode

FIG. 2. !Color online". !-limit discharge during power ramp caused by the
!2,1" mode !q95=4.3". Top: spectrogram of MHD activity from Mirnov

coils; bottom: !N and NBI power.

FIG. 3. !Color online". Ti near center !normalized toroidal flux radius #t
#0.4" vs pedestal Ti at #t#0.8 for standard and improved H modes dem-

onstrating stiff Ti profiles.
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Figure 1.5: Plot of the core temperature as a function of the edge temperature in
the High-confinement mode of operation (H-mode) on ASDEX-U. Note the linear
scaling, which indicates that the temperature gradient scale length across the device
is fixed (at the critical gradient) and independent of temperature. The tendency of
profile gradients to stay near the critical gradient implies a stiff dependence of the
heat flux on equilibrium gradients. Figure taken from Ref. [31].
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another unfortunate consequence: they make turbulent transport simulations very
challenging. Stiff systems are notoriously difficult to address numerically because
the sensitivity of the equations to small perturbations can lead to extreme restric-
tions on the time step size. In order to avoid (or at least limit) these restrictions, one
should treat the transport equations implicitly. Developing such an implicit scheme
is a nontrivial problem since the transport is described by a set of coupled, nonlinear
partial differential equations. However, implicit techniques for nonlinear equations,
such as Newton’s method, have successfully been applied to plasma transport equa-
tions with model fluxes [32]. We derive an implicit technique for solving the plasma
transport equations with nonlinear, gyrokinetic fluxes in Chapter 7.

1.6 Multiscale simulations of turbulent trans-

port and heating

Assuming no intermediate time or space scales are present, a direct numerical
simulation resolving fine (turbulence) time and space scales throughout the volume
of a fusion device for an entire discharge is not necessary. Instead, one can use
the separation of scales embodied in the gyrokinetic turbulence and transport equa-
tions derived in Chapter 3 to embed small regions of fine grid spacing in a coarse,
equilibrium-scale mesh (Fig. 1.6). We adopt this approach by calculating turbulent
fluxes and heating in a series of flux tubes, each of which is used to map out an
entire magnetic flux surface (Fig. 1.7). These flux surfaces are coupled together as
radial grid points in the one-dimensional equations describing the evolution of radial
profiles of equilibrium density and pressure.

The computational savings from using our multiscale scheme can be quite
large. The use of field line-following coordinates decreases the number of grid points
necessary along the equilibrium magnetic field since parallel turbulence wavelengths
are much longer than perpendicular wavelengths. The use of a flux tube simulation
domain to map out an entire flux surface decreases the number of grid points nec-
essary in the direction perpendicular to the field (but lying near the flux surface).
Although the radial domain covered by a series of coupled flux tubes is comparable
to the domain of a conventional global approach, the spacing of the radial grid points
is more optimal. This is because the range of wavenumbers (or equivalently, the grid
spacing) necessary to resolve the turbulent fluctuations varies across the large-scale
radial profile due to variations in density, temperature, and magnetic geometry.
Each flux tube is naturally able to simulate a range of wavenumbers independent of
the other flux tubes, constituting an adaptive radial grid. Finally, evolution of the
turbulence and transport on separate time scales using the gyrokinetic hierarchy of
Chapter 3 allows for simulation of the entire discharge while sampling only a frac-
tion of the total discharge time. [Note that the algorithms derived and implemented
here can be used to simulate the time-dependent evolution of the equilibrium, even
for “fast” phenomena, such as heat and cold pulses; steady-state transport is not
assumed.] Taking into account all of these contributions, the rough savings estimate
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Figure 1.6: (Center): Fine scale grid in space and time. (Top left): Coarse equi-
librium grid spacing in time, with regions of fine grid spacing embedded. Each
horizontal red strip represents simulation of turbulent dynamics to steady-state,
keeping equilibrium quantities constant. (Top right): Coarse equilibrium grid spac-
ing in radius, with regions of fine grid spacing embedded. Each vertical green strip
represents simulation of turbulent dynamics in a narrow flux tube, assuming no ra-
dial variation of equilibrium profiles or gradients across the domain. (Bottom left):
Combination of the multiscale space and time grids. (Bottom right): Small blue
squares are the simulation domain resulting from the multiscale mesh in space and
time.
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Figure 1.7: Illustration of flux tubes from Trinity simulations. Using statistical
periodicity of the turbulence, a single flux tube (top left) several decorellation lengths
long can be used to map an entire flux surface (3 flux tubes at top right, 6 at bottom
left, and 8 at bottom right). Colors represent the amplitude of perturbations in the
electrostatic potential. Graphics courtesy of D. Applegate.
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given for ITER in Chapter 7 is a factor on the order of 1010. These savings can be
used to include additional physics, such as coupled electron-ion dynamics, electro-
magnetic fluctuations, multiple ion species, etc., in each flux tube. Furthermore,
they place coupled turbulence, transport, and heating calculations within reach on
current computing resources.

At the time of this writing, it is possible to obtain millions of CPU-hours on
parallel computers with O(105) processors. For a global simulation of a steady-state
ITER core plasma, Trinity might require 16 flux tubes, each running turbulence
simulations requiring ∼ 4000 processors – enabling multispecies, electromagnetic
turbulence simulations in each flux tube, for example. The algorithm derived below
can spawn 2-4 copies of each flux tube simultaneously to estimate the fluxes and their
main dependencies; the precise number can be determined at run time to match the
available resources. Assuming 2 copies of each of the 16 flux tubes, each running on
4000 processors, such a simulation would utilize 128,000 cores, with nearly perfect
linear scaling, and should run to completion in a few hours. Thus, the algorithms
presented here will allow routine simulations to study a range of physical conditions
and magnetic configurations on existing computers, not just an annual “stunt run”
with limited physics content and limited scientific value.
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Chapter 2
Microstability

2.1 Introduction

Kinetic theory is complicated, but sometimes necessary. In the hot, magne-
tized plasmas of magnetic confinement fusion experiments, the collisional mean free
path can be many kilometers – distances much greater than the device size. This
leads to the development of nontrivial structure in the distribution of particle ve-
locities, as we discuss in detail in Chapter 4. Conventional fluid models do not
accurately describe drift-type instabilities under these circumstances [33]. Because
drift instabilities typically induce strong energy transport when the driving gradient
is pushed beyond the threshold of the given instability, knowledge of the threshold
criterion is key to the interpretation of much experimental data.

In this chapter we illustrate the necessity of a kinetic treatment for the insta-
bilities leading to small-scale plasma turbulence. We do so by calculating a kinetic
stability threshold and comparing with stability thresholds from various fluid theo-
ries [34, 35, 36, 37]. What we will find is that fluid theory significantly underesti-
mates the range of instability [38].

As our example system, we choose to consider the entropy mode [39] in a
Z-pinch magnetic field configuration [40]. This configuration consists of a current
running through the plasma in the ẑ direction, generating a radially varying equilib-
rium magnetic field in the φ̂ direction. Here, we are using cyclindrical coordinates,
i.e. (R, φ, z). For strong pressure gradients, the plasma is unstable to magneto-
hydrodynamic (MHD) instabilities with fast growth rates [34, 41]. If the pressure
gradient is sufficiently weak, the plasma is stable to MHD instabilities, but poten-
tially unstable to the entropy mode. To demonstrate the importance of the kinetic
approach, we calculate the stability threshold of the low-β (electrostatic) entropy
mode and compare with the results obtained from a number of fluid theories.

2.2 Linear stability analysis

For our linear stability analysis, we will be working within the framework of
δf gyrokinetics, which is described in detail in Chapter 3. The distribution function
f for species s is given by

fs = F0s + hs + f2s, (2.1)
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where hs is the non-Boltamann part of the lowest order perturbed distribution func-
tion, f2s contains higher order terms, and F0s = FMs (1− qsΦ/T0s), with FM a
Maxwellian, qs the particle charge, Φ the electrostatic potential, and T0s the equi-
librium temperature. With these definitions, the electrostatic version of the linear,
collisionless gyrokinetic equation is

∂hs
∂t

+ v‖b̂ · ∇hs + 〈vE〉R · ∇F0s + vB · ∇hs =
qsF0s

T0s

∂ 〈Φ〉R
∂t

, (2.2)

where b̂ ≡ B0/B0 is the unit vector in the direction of the equilibrium magnetic
field, B0,

vE ≡
c

B0

b̂×∇Φ (2.3)

is the E ×B velocity,

vB ≡
b̂

Ω0

×
(
v2
‖ +

v2
⊥
2

)
∇B0

B0

− 4π

cB0Ω0

v2
‖J⊥ (2.4)

is the sum of the curvature and ∇B drift velocities, Ω0 = qB0/mc is the particle
gyrofrequency, J⊥ is the equilibrium perpendicular current, and the angled brackets
〈.〉R denote an average over gyroangle at fixed guiding center position R.

To proceed, we use the form of the equilibrium magnetic field, B0 = B0(r)φ̂, to
compute J⊥ and to determine an MHD equilibrium condition. After some algebra,
we find

4π

c
J⊥ =

B0

R

(
1 +

R

B0

∂B0

∂R

)
(2.5)

∇B0

B0

= − 1

R

(
1− β R

2Lp

)
R̂, (2.6)

where β = 8πp0/B
2
0 is the plasma beta, p0 is the equilibrium pressure, and L−1

p =
−∂ ln p0/∂r is the inverse pressure gradient scale length. In the low β limit, we find
∂B0/∂R ≈ −B0/R, giving J⊥ ≈ 0 and

vB ≈
1

RΩ0

(
v2
‖ +

v2
⊥
2

)
ẑ. (2.7)

We now return to the linear gyrokinetic equation (2.2). For simplicity, we
take the ion and electron temperature gradients to be zero. Assuming perturbed
quantities are of the form h = h̃ exp[ikzz− iωt], we obtain an algebraic equation for
h: [

ω − kz
RΩ0s

(
v2
‖ +

v2
⊥
2

)]
h̃s =

q
〈

Φ̃
〉

R

T0s

(ω − ω∗s)F0s, (2.8)

where

ω∗s =
ckzT0s

qsB0Ln
(2.9)
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is the diamagnetic drift frequency. Defining the normalized quantities ωNs ≡ ω/ω∗s
and x ≡ v/vth,s and solving for hs, we have

h̃s =
q
〈

Φ̃
〉

R

T0s

ωNs − Sgn[qs]T0s/T0e

ωNs − Sgn[qs] |Ln/R|
(
x2
‖s + x2

⊥s/2
)
T0s/T0e

F0s. (2.10)

We currently have an additional unkown: Φ. We can obtain an expression for Φ by
using Poisson’s equation and asserting quasineutrality (i.e.

∑
s qsns = 0). In terms

of h and Φ, quasineutrality gives∑
s

qs

∫
d3v

(
〈hs〉r −

qsΦ

T0s

FMs

)
= 0, (2.11)

where 〈.〉r represents a gyroaverage at constant particle position r.
Substituting Eq. (2.10) into Eq. (2.11), we obtain

∑
s

q2
sΦ

T0s

∫
d3v

J0(as)
2 ωNs − Sgn[qs]T0s/T0e

ωNs − Sgn[qs] |Ln/R|
(
x2
‖s + x2

⊥s/2
)
T0s/T0e

− 1

FMs = 0,

(2.12)
where J0 is a Bessel function of the first kind, and a = kzv⊥/Ω0. The velocity
integration in Eq. (2.12) is nontrivial. To simplify the analysis, we focus on the
limit in which k⊥ρs � 1 (the drift-kinetic limit). In this case, J0(a) ≈ 1. We are
then interested in evaluating an integral of the form

I ≡
∫
d3v

exp[−x2]

ωN − Sgn[qs]ξ
(
x2
‖ + x2

⊥/2
) , (2.13)

where ξ ≡ |Ln/R|(T0s/T0e). Defining ω̃ ≡ ωN/ξ+Sgn[qs]x
2
⊥/2 and IN ≡ −Iξ/2πv3

th,s,
and using cylindrical velocity space coordinates, our integral takes the form

IN =

∫ ∞
0

dx⊥ x⊥ exp[−x2
⊥]

∫ ∞
−∞

dx‖
exp[−x2

‖]

ω̃ + Sgn[qs]x2
‖
. (2.14)

Focusing on the x‖ integral, we take an aside and consider

Ĩ ≡
∫ ∞
−∞

dx‖
exp[−αx2

‖]

ω̃ + Sgn[qs]x2
‖
, (2.15)

where α is a velocity-independent parameter. Differentiating Ĩ with respect to α
gives

dĨ

dα
= −

∫ ∞
−∞

dx‖ x
2
‖

exp[−αx2
‖]

ω̃ + Sgn[qs]x2
‖
. (2.16)
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Now we integrate this expression by parts:

dĨ

dα
= Sgn[qs]

(
−
∫ ∞
−∞

dx‖ exp[−αx2
‖] + ω̃

∫ ∞
−∞

dx‖
exp[−αx2

‖]

ω̃ + Sgn[qs]x2
‖

)

= Sgn[qs]

(
ω̃Ĩ −

√
π

α

)
.

(2.17)

This differential equation has two distinct solutions depending on the value of
Sgn[qs]. They are

Ĩ− = exp[−αω̃]

C1 + π
Erfi

[√
αω̃
]

√
ω̃

 (2.18)

Ĩ+ = exp[αω̃]

C2 − π
Erf
[√

αω̃
]

√
ω̃

 , (2.19)

where the subscript on Ĩ denotes the sign of qs, Erf is the error function, Erfi is the
imaginary error function, and C1 and C2 are unspecified constants.

In order to determine C1 and C2, we must go back to Eq. (2.15), set α = 0,
and perform the resulting integral. We find

Ĩ(α = 0) =

∫ ∞
−∞

dx‖
(
ω̃ + Sgn[qs]x

2
‖
)−1

= π

√
Sgn[qs]3

ω̃
.

(2.20)

Once again, this splits into two solutions depending on the value of Sgn[qs]:

Ĩ−(α = 0) = Sgn[Im[ωN ]]i
π√
ω̃

(2.21)

Ĩ+(α = 0) =
π√
ω̃
, (2.22)

where Im[ωN ] denotes the imaginary part of ωN . Applying these results to Eqs. (2.18)
and (2.19), we obtain the following expressions for C1 and C2:

C1 = Sgn[Im[ωN ]]i
π√
ω̃

(2.23)

C2 =
π√
ω̃
. (2.24)

The solutions for Ĩ− and Ĩ+ are then

Ĩ− = exp[−αω̃]
π√
ω̃

(
Sgn[Im[ωN ]]i+ Erfi[

√
αω̃]
)

(2.25)

Ĩ+ = exp[αω̃]
π√
ω̃

Erfc[
√
αω̃], (2.26)
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where Erfc is the complementary error function. To get the parallel integral in IN
[Eq. (2.14)], we simply take the limit of Ĩ as α→ 1. We then obtain the following:

IN,− =

∫ ∞
0

dx⊥ x⊥ exp[−x2
⊥]

[
exp[−ω̃]

π√
ω̃

(
Sgn[Im[ωN ]]i+ Erfi[

√
ω̃]
)]

(2.27)

IN,+ =

∫ ∞
0

dx⊥ x⊥ exp[−x2
⊥] exp[ω̃]

π√
ω̃

Erfc[
√
ω̃]. (2.28)

Each of the terms in Eqs. (2.27) and (2.28) can be evaluated in a straightfor-
ward manner (using a handbook of integrals or a symbolic integration package, for
instance). The resulting equations are

IN,− = −
√
π32 exp[−ω̂]

(
Erfc[

√
−ω̂]

)2

(2.29)

IN,+ =
√
π32 exp[ω̂]

(
Erfc[

√
ω̂]
)2

, (2.30)

where ω̂ ≡ −ωN/ξ. Plugging these expressions into the original integrals of interest
from Eq. (2.12), we get∫

d3v
ωN + 1

ωN + |Ln/R|
(
x2
‖ + x2

⊥/2
)FMe = n0e

π

2
(ωN + 1)

∣∣∣∣ RLn
∣∣∣∣ exp[−ω̂]

(
Erfc[

√
−ω̂]

)2

(2.31)
for electrons and∫

d3v
ωN − τ

ωN − |Ln/R|τ
(
x2
‖ + x2

⊥/2
)FMi = −n0i

τ

π

2
(ωN − τ)

∣∣∣∣ RLn
∣∣∣∣ exp[ω̂]

(
Erfc[

√
ω̂]
)2

(2.32)
for ions, with τ ≡ T0i/T0e the ratio of ion to electron temperatures. Substitut-
ing Eqs. (2.31) and (2.32) into the quasineutrality expression (2.12) results in the
following dispersion relation:

1 + τ− (τ − ωN)
π

2τ

∣∣∣∣ RLn
∣∣∣∣ exp[ω̂]

(
Erfc[

√
ω̂]
)2

− τ (1 + ωN)
π

2

∣∣∣∣ RLn
∣∣∣∣ exp[−ω̂]

(
Erfc[

√
−ω̂]

)2

= 0.

(2.33)

The presence of the complementary error functions in the above dispersion
relation makes analysis complicated. We simplify matters by assuming |ω̂| � 1 (i.e.
|ωN | � |ξ|) and taking τ = 1. To lowest order in ωN , we find

√
ωN =

π |R/Ln| − 2
√

8π |R/Ln|3/2
(
1−
√
−1
)
. (2.34)

This expression must be treated carefully. Depending on the choice of branch cut,√
−1 = ±i. The choice of branch cut, coupled with an assumption about the sign of

Im[ωN ], also sets a restriction on the signs of the real and imaginary parts of
√
ωN .
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First, we take a branch cut along the negative real axis, so that the arguments
of complex numbers are defined on the interval [−π, π). In this case,

√
−1 = −i and

√
ωN =

π |R/Ln| − 2
√

8π |R/Ln|3/2
(1 + i) . (2.35)

If Im[ωN ] > 0, then Re[
√
ωN ] > 0 and Im[

√
ωN ] > 0. Consequently, Eq. (2.35) is

only valid when |R/Ln| > 2/π. If we instead assume that Im[ωN ] < 0, then we have
Re[
√
ωN ] > 0 and Im[

√
ωN ] < 0. This is clearly not possible in Eq. (2.35) since

Re[
√
ωN ] = Im[

√
ωN ], so no damped waves exist for this choice of branch cut.

Now we take our branch cut along the positive real axis, so that the arguments
of complex numbers are defined on the interval [0, 2π). For this case,

√
−1 = i, and

the equation for
√
ωN becomes

√
ωN =

π |R/Ln| − 2√
8π |R/Ln|3/2

(1− i) . (2.36)

If Im[ωN ] > 0, then Re[
√
ωN ] > 0 and Im[

√
ωN ] > 0. Since Re[

√
ωN ] = −Im[

√
ωN ]

in Eq. (2.36), no growing modes are allowed for this choice of branch cut. For
Im[ωN ] < 0, we get Re[

√
ωN ] < 0 and Im[

√
ωN ] > 0. This is only satisfied for

|R/Ln| < 2/π.
Combining the results of Eqs. (2.35) and (2.36) and keeping in mind their

range of validity, we obtain our solution for ωN :

ωN =
(π |R/Ln| − 2) |π |R/Ln| − 2|

4π |R/Ln|3
i, (2.37)

which indicates instability for gradients steeper than the critical gradient, given
by |R/Ln|crit = 2/π. A similar, if somewhat messier, calculation can be done for
arbitrary temperature ratio and with lowest order finite Larmor radius effects in-
cluded [38]. The result is

ω
|Ln|
vth,i

=

[
(1 + τ)

(
π
2
|R/Ln| − 1

)
− k2

⊥ρ
2
i |R/Ln| (π/2− 1)

]2
2π (1 + τ 3)2 |R/Ln|3

(
τ 2 − 1± 2τ 3/2i

)
k⊥ρi,

(2.38)
where the + sign applies for |R/Ln| > |R/Ln|crit and the − sign applies for |R/Ln| <
|R/Ln|crit, where

|R/Ln|crit =
2 (1 + τ)

π (1 + τ)− k2
⊥ρ

2
i (π − 2)

. (2.39)

2.3 Comparison with fluid theory

Previous studies [42, 43, 34, 35, 36, 37] of the low-β Z-pinch system considered
here have identified two distinct linearly unstable modes. The first mode is the well-
known ideal interchange mode described by MHD, which is the dominant instability
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(with growth rate scaling like γ ∼ cs/
√
RLn, cs =

√
(T0e + T0i)/mi) in the strong

gradient regime. However, the ideal interchange mode becomes stable at moderate
gradients, leaving only the shorter wavelength entropy mode. This mode consists
of perturbations to both the plasma density and temperature, but not the plasma
pressure.

In Fig. 2.1, the dependence of the growth rate on the density gradient scale
length is considered for a number of different models. Collisional and collisionless
MHD equations accurately predict the growth rate in the regime of strong density
gradient, but they do not describe the dynamics of the entropy mode and thus
are not applicable for sufficiently weak gradients (where the interchange mode is
stabilized). Fluid models capture the correct qualitative behavior for the entropy
mode, but they do not provide good quantitative agreement with the growth rate
and they underestimate the critical gradient determined from the gyrokinetic model
by a factor of approximately two.

We see in Fig. 2.2 why a fluid description is not necessarily sufficient for this
system: the distribution of particles in velocity space possesses nontrivial structure.
In particular, there is an energy resonance in the velocity space arising from the
presence of curvature drifts. Additionally, fine scale structure is present in the
distribution of perpendicular velocities. The development of such fine scale structure
is discussed in more detail in Chapter 4.

As a final note, we point out that even for this highly simplified system, the
kinetic stability calculation was quite involved. To accurately model linear physics
for kinetic systems of practical interest to the fusion community, we would need to
retain finite Larmor radius effects, finite temperature gradients, trapped particles,
magnetic shear, and a host of other important features. Such calculations are bur-
densome at best and quite often analytically intractable. Furthermore, while linear
analysis is undoubtedly useful in providing qualitative insight into the gross charac-
teristics of plasma behavior, a nonlinear treatment is of course necessary to address
turbulent dynamics. The inherent difficulties of analytic calculations make com-
puter simulations a critical component in advancing our understanding of plasma
turbulence.
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Figure 2.1: Growth rate of the interchange and the entropy mode as a function of
Ln/R for two different values of kρs (both with τ = 1). The collisionless gyrokinetic
growth rate (red ”×” marks) is compared to the growth rates from the gyrofluid
model (black dotted-dashed line), the ideal collisional (green dashed line) and col-
lisionless (gree solid line) interchange mode, and the collisional (blue dashed line)
and collisionless (blue solid line) fluid entropy mode. The kinetic model is necessary
to obtain the correct stability boundary and to obtain the correct growth rate for
weak to moderately strong gradients. Figures taken from Ref. [38].
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Figure 2.2: Real (a,b) and imaginary (c,d) parts of the ion (a,c) and electron (b,d)
velocity distribution functions for the case of a moderate density gradient (Ln/R =
0.5) and large kρs (= 38). Axes are normalized to vth,s. We see significant structure
in v⊥ for ions in addition to an energy resonance arising from the curvature drift.
Figures taken from Ref. [38].
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Chapter 3
Turbulent transport hierarchy for gyrokinetics

3.1 Introduction

As noted in Chapter 1, a full treatment of turbulent transport in weakly col-
lisional plasmas involves the interaction of slowly evolving, large scale profiles and
rapidly evolving, small scale turbulence. It is not straightforward to neglect either
process, because the large scale profiles and small scale turbulence are dynamically
coupled. The evolution of the profiles is governed by the turbulence, and the in-
stabilities that give rise to the turbulence respond sensitively to the profiles. The
parameter space that characterizes these interactions is very large, limiting the ulti-
mate applicability of parametric fits [27, 44]. The analytic and numerical difficulties
associated with this wide range of time and space scales are compounded by the
kinetic nature of the instabilities driving the turbulence; in principle, one must con-
sider a six-dimensional phase space consisting of three dimensions each for physical
and velocity space. Such a system is both analytically and numerically intractable.
Consequently, it is necessary to work with a reduced model.

In this chapter, we will derive such a reduced model by taking advantage of the
wide space and time scale separations present in many weakly-collisional plasmas.
In particular, we closely follow the treatment of Refs. [45, 46] to introduce a set of
ordering assumptions (the δf gyrokinetic ordering [8, 9, 10]) that leads to a reduction
of the phase space and to the development of a hierarchical set of equations, in which
equations describing the turbulent fluctuations and equilibrium profiles are coupled,
but evolved separately. This represents a significant simplification of the system,
which we show in later chapters allows for computationally efficient, first-principles
simulations of turbulent transport evolution over long time scales.

3.2 Ordering assumptions

We take the Fokker-Planck equation as the starting point from whence we will
derive our hierarchical set of equations describing turbulent transport:

∂fs
∂t

+ v · ∂fs
∂r

+
qs
ms

(
E +

v ×B

c

)
· ∂fs
∂v

=
∑
u

C[fs, fu], (3.1)

where fs represents the distribution of particles of species s in position r and velocity
v, qs is particle charge, ms is particle mass, E and B are the electric and magnetic
fields, c is the speed of light, and C[fs, fu] is a bilinear operator describing the effect
on particles of species s of collisions with particles of species u. For convenience
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of notation, we shall henceforth drop the species subscript s where it leads to no
ambiguity.

Assuming the potential energy of nearest-neighbor interaction is much less
than the kinetic energy of the particles, this equation describes the full range of
dynamics in a six-dimensional phase space and time for particles of species s moving
in a self-consistent electromagnetic field. It does not take into account the effect
of external sources of particles, momentum, energy, etc. These will certainly be
present in fusion devices, but they are local processes, and their time and space
scales are associated with thermodynamic processes. Consequently, we neglect them
in our analysis and insert them ad hoc when we consider the slow evolution of
thermodynamic quantities such as density and temperature.

Unfortunately, the comprehensive nature of the Fokker-Planck equation makes
theoretical analysis burdensome and numerical simulations computationally infeasi-
ble. To make progress, we simplify our model by adopting a variant [45, 46] of the
δf gyrokinetic ordering [8, 9, 10], which exploits scale separation in time and space.
We first separate quantities into equilibrium and fluctuating parts:

f = F0 + δf, B = B0 + δB, E = δE, (3.2)

with
δf

F0

∼ δB

B0

∼ ε� 1. (3.3)

Formally, we define the smallness parameter ε as a ratio of small to large spatial
scales within the plasma:

ε ≡ ρ

L
, (3.4)

where L is a typical scale length associated with the equilibrium and ρ is the radius
of particle gyration in the equilibrium magnetic field. We separate spatial scales
by assuming cross-field fluctuations vary on the gyroradius scale, while all other
quantities vary on the equilibrium scale:

∇⊥δf ∼
δf

ρ
(3.5)

∇F0 ∼
F0

L
, ∇‖δf ∼

δf

L
. (3.6)

We separate temporal scales by assuming gyromotion is faster than the dynamic
frequencies of interest, which are themselves much faster than the evolution of the
equilibrium profiles:

τ−1 ∼ ε2ω ∼ ε3Ω0i, (3.7)

where Ω0i = |q|B0/mic is the ion gyrofrequency and

∂F0

∂t
∼ F0

τ
,
∂δf

∂t
∼ ωδf. (3.8)

Additionally, we take the the E×B velocity to be an order smaller than the thermal
velocity:

c δE

B
∼ εvth, (3.9)
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where we have assumed no background electric field (and therefore no equilibrium
flow). We can express the fields in terms of potentials as follows:

E = −∇Φ− 1

c

∂A

∂t
(3.10)

B0 = ∇×A0 (3.11)

δB = ∇× δA (3.12)

where Φ is the electrostatic potential and A is the vector potential. Note that our
ordering requires δA/A0 ∼ ε2 (since ∇A0 ∼ A0/L, ∇δA ∼ δA/ρ, and δB/B0 ∼ ε),
so that the electric field is primarily electrostatic in nature.

The final ordering assumptions we make are that the collision frequency ν is
comparable to the fluctuation frequency and that the distribution function varies in
velocity space on the scale of the thermal velocity:

ν ∼ ω,
∂fs
∂v
∼ fs
vth,s

. (3.13)

Note that this choice of ordering does not prevent us from considering the cases
ν � ω and ν � ω as subsidiary orderings [14]. In general, subsidiary orderings can
be applied using a large number of plasma parameters as the expansion parameter.
While most of the potential expansion parameters have order unity variations across
many experiments, some, such as the electron-ion mass ratio, the plasma beta, and
the aspect ratio of the device, are good expansion parameters for a large class of
systems. However, we are interested in deriving a set of equations that are widely
applicable to turbulent transport studies, so we do not consider such subsidiary
expansions, which would limit the range of validity of our model.

With these ordering assumptions, we can now expand the Fokker-Planck equa-
tion (3.1) in the smallness parameter ε. What we find is a set of ordered equations
that ultimately provides us with information about the evolution of the equilibrium,
instabilities, fluctuations, and transport. In what follows, the ordering is taken rel-
ative to vthF0/L.

3.2.1 F0 does not depend on gyrophase

The lowest-order equation in our ε expansion is

q

mc
v ×B0 ·

∂F0

∂v
= −Ω0

∂F0

∂ϑ
= 0, (3.14)

where ϑ denotes the gyroangle. Thus, the equilibrium distribution function is in-
dependent of gyroangle. We note that in obtaining the first equality in the above
equation, it is convenient to use cylindrical (v⊥, ϑ, v‖) or spherical (v, ϑ, ξ) coor-
dinates in velocity space (ξ ≡ v‖/v is the pitch-angle). Both of these coordinate
systems will be used frequently in this and later chapters.
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3.2.2 F0 is Maxwellian and δf can be decomposed use-
fully

At the next order (ε0), we find

v·∇F0+v⊥ ·∇f1+
q

m

(
E1 +

v ×B1

c

)
· ∂F0

∂v
+

v ×B0

c
· ∂f1

∂v
=
∑
u

C[F0, F0u], (3.15)

where we are using the notation δf ≡ f1+f2+..., etc., with fn/F0 ∼ εn. Multiplying
this equation by 1 + lnF0 and manipulating, we have

∇ · (F0 lnF0) v + (1 + lnF0) v⊥ · ∇f1 +
∂

∂v
·
[
q

m

(
E1 +

v ×B1

c

)
F0 lnF0

]
= (1 + lnF0)

(
Ω0
∂f1

∂ϑ
+
∑
u

C[F0, F0u]

)
.

(3.16)

Integrating this expression over all velocities gives∫
d3v

(
∇ · (F0 lnF0) v + (1 + lnF0) v⊥ · ∇f1 =

∑
u

lnF0C[F0, F0u]

)
, (3.17)

where we have used the divergence theorem to eliminate the third term in Eq. (3.16),
and we have used the fact that collisions locally conserve particle number to assert∫
d3v C[F0, F0u] = 0.

Before proceeding, we need to define an intermediate spatial average, which we
will see is equivalent to a flux-surface average. We restrict our attention to axisym-
metric equilibrium magnetic field configurations (Fig. 3.1), which can be represented
in the following general form (a fuller discussion of the magnetic geometry is given
in Appendix A):

B0 = I(ψ)∇φ+∇ψ ×∇φ, (3.18)

where ψ = (2π)−2
∫
dV B · ∇θ is the poloidal flux, dV is the volume element, and

θ and φ are the physical poloidal and toroidal angles respectively. The quantity
I(ψ) = RBT is a measure of the toroidal magnetic field, where R is the major
radius and BT is the toroidal magnetic field strength.

The intermediate spatial average of any quantity F(r) is then defined as fol-
lows:

〈〈F(r)〉〉 ≡ 1

V

∫ 2π

0

dφ

∫ π

−π
dθ

∫ ψ0+∆ψ/2

ψ0−∆ψ/2

dψ F(r), (3.19)

where

V ≡
∫ 2π

0

dφ

∫ π

−π
dθ

∫ ψ0+∆ψ/2

ψ0−∆ψ/2

dψ J (3.20)

J ≡ (∇ψ ×∇θ · ∇φ)−1 , (3.21)

and ψ0 denotes location in the radial coordinate ψ. Formally, we define the in-
termediate spatial length ∆ψ to be order ε1/2L (i.e. ρ � ∆ψ � L). Note that
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Figure 3.1: Schematic of an axisymmetric magnetic field configuration. The flux
surface, labeled by pressure p or toroidal/poloidal flux Ψ has no variation in the
toroidal (ϕ) direction. Figure taken from Ref. [47].

in the limit where the volume V becomes vanishingly small, the spatial average of
Eq. (3.19) reduces to the usual flux surface average. We also point out that the
spatial averaging is done about a fixed point in space so that it does not depend on
time. It is possible to define the spatial average so that it is taken with respect to a
fixed flux surface. However, since the flux surfaces themselve evolve in time on the
equilibrium time scale, this would require additional terms to account for the time
dependence.

We now apply the intermediate spatial average to Eq. (3.17). The divergence
theorem applied to the first term gives

〈〈∇ · (F0 lnF0) v〉〉 =

∫
dA

V
· vF0 lnF0, (3.22)

where dA is the area element whose vector direction is normal to the surface bound-
ing the volume integral (the flux surface). Since the magnetic field lies within the
flux surface, dA ·B0 = 0, so that∫

d3v

∫
dA

V
· vF0 lnF0 =

∫
d3v

∫
dA

V
· v⊥F0 lnF0 = 0. (3.23)

The last equality follows from the fact that F0 is independent of gyroangle, and v⊥
is an odd function of gyroangle.

The second term in Eq. (3.17) can be integrated by parts: the surface term
is zero at this order and the remaining term is dropped in ordering by ε1/2. Conse-
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quently, we find 〈〈∫
d3v lnF0

∑
u

C[F0, F0u]

〉〉
= 0. (3.24)

From Boltzmann’s H-Theorem, the only solution to this equation is F0 = FM , where
FM is a Maxwellian in velocity.

Plugging F0 = FM into Eq. (3.15), we find

v⊥ · ∇f1 − Ω0
∂f1

∂ϑ
= −v · ∇FM − v⊥ · ∇

(
qΦ

T0

)
FM , (3.25)

where T0 ≡ mv2
th/2 is the equilibrium temperature, and the v‖∇‖

(
qΦ
T0

)
FM term has

been neglected at this order. The velocity space derivatives thus far have implicitly
been taken at fixed particle position r. However, it is now useful to switch to the
guiding center variable R ≡ r− ρ, where ρ = b̂× v/Ω0 is the gyroradius vector:(

∂

∂ϑ

)
r

=

(
∂

∂ϑ

)
R

+

(
∂R

∂ϑ

)
r

·
(
∂

∂R

)
ϑ

=

(
∂

∂ϑ

)
R

+
v⊥
Ω0

· ∇, (3.26)

where subscripts on the derivatives denote quantities that are held constant during
the differentiation. It should be noted that there is no ambiguity in the use of the
∇ notation, since ∂/∂r = ∂/∂R. Using this result in Eq. (3.25), we have

− Ω0

(
∂f1

∂ϑ

)
R

= −v · ∇FM − v⊥ · ∇
(
qΦ

T0

)
FM . (3.27)

The homogeneous solution h satisfies(
∂h

∂ϑ

)
R

= 0, (3.28)

telling us that h is independent of gyroangle at fixed guiding center position.
We next proceed to find the particular solution. Applying Eq. (3.26) to the

righthand side of Eq. (3.27) and remembering that F0 is independent of gyroangle,
we find

− Ω0

(
∂f1

∂ϑ

)
R

= Ω0

(
∂

∂ϑ

)
R

[
FM

(
1 +

qΦ

T0

)]
− v‖b̂ · ∇FM . (3.29)

Upon gyro-averaging, we obtain

b̂ · ∇FM = 0, (3.30)

which is simply a statement that the equilibrium distribution function is constant
on a flux surface. Using this result in Eq. (3.25), we have

v⊥ · ∇f1 − Ω0
∂f1

∂ϑ
= −v⊥ · ∇

[
FM

(
1 +

qΦ

T0

)]
, (3.31)
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which has the particular solution

f1p = −qΦ
T0

FM − ρ · ∇FM . (3.32)

If we redefine our equilibrium distribution function by absorbing this term, we see
that we have the beginning of a Maxwell-Boltzmann distribution for guiding centers:

F0 ≡ FM(R) exp

(
−qΦ
T0

)
. (3.33)

Our solution then has the form

f = F0 + h+ f2 + ... (3.34)

3.2.3 The gyrokinetic equation

At order ε1, we derive the gyrokinetic equation. It is convenient to transform
to gyrokinetic variables, which is easier if we start again with the Fokker-Planck
equation:

∂f

∂t
+
dR

dt
· ∂f
∂R

+
dε

dt

∂f

∂ε
+
dµ

dt

∂f

∂µ
+
dϑ

dt

∂f

∂ϑ
=
∑
u

C[f, fu], (3.35)

where ε ≡ mv2/2 + qΦ is the particle energy and µ ≡ mv2
⊥/2B is the magnetic

moment. The O(ε) terms yield

∂h

∂t
+
dR

dt
· ∂
∂R

(F0 + h)− F0

T0

dε

dt
− Ω0

∂f2

∂ϑ
= C[h+ ρ · ∇FM ], (3.36)

where we define
C[f ] ≡

∑
u

(C[f, FM,u] + C[FM , fu]) . (3.37)

We take the gyroaverage of this equation (at constant R) to eliminate the f2 term:

∂h

∂t
+

〈
dR

dt

〉
R

· ∇(F0 + h)− F0

T0

〈
dε

dt

〉
R

= 〈C[h]〉R , (3.38)

where we have used the fact that both FM and h are independent of gyroangle at
fixed guiding center position. To the order we will need, the guiding center velocity
and power are 〈

dR

dt

〉
R

= v‖b̂ + 〈vD〉R (3.39)

and 〈
dε

dt

〉
R

= q
∂ 〈χ〉R
∂t

− q

c
v · ∂A0

∂t
, (3.40)

where

〈vD〉R ≡
b̂

Ω0

×
[
q

m
∇〈χ〉R + v2

‖b̂ · ∇b̂ +
v2
⊥
2

∇B0

B0

]
(3.41)
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is the gyroaveraged guiding center drift velocity. Substituting Eqs. (3.39) and (3.40)
in Eq. (3.38), we obtain

∂h

∂t
+ v‖b̂ · ∇h+ 〈vD〉R · ∇(F0 + h) = 〈C[h]〉R +

qF0

T0

(
∂ 〈χ〉R
∂t

− v

c
· ∂A0

∂t

)
. (3.42)

To obtain the gyrokinetic equation in a standard form, we first split h into two
pieces: one that varies on the equilibrium spatial scale (called the neoclassical part)
and one that varies on the gyroradius scale (called the turbulent part):

h ≡ ht + hnc. (3.43)

We then apply the intermediate spatial average defined previously to obtain an
equation for the evolution of hnc:

∂hnc
∂t

+ v‖b̂ · ∇hnc + vB · ∇F0 = 〈C[hnc]〉R −
qF0

T0

v

c
· ∂A0

∂t
, (3.44)

where

vB ≡
b̂

Ω0

×
[
v2
‖b̂ · ∇b̂ +

v2
⊥
2

∇B0

B0

]
(3.45)

consists of the sum of the curvature and ∇B drifts. Subtracting the neoclassical
equation (3.44) from Eq. (3.42) yields the gyrokinetic equation for the evolution of
the turbulent distribution function:

∂ht
∂t

+ v‖b̂ · ∇ht + 〈vχ〉R · ∇(F0 + ht) + vB · ∇ht = 〈C[ht]〉R +
qF0

T0

∂ 〈χ〉R
∂t

, (3.46)

with
vχ ≡

c

B0

b̂×∇χ (3.47)

being the generalized E ×B drift velocity.

3.2.4 Transport equations; thermodynamics

The O(ε2) equation includes terms involving f2, for which we have no expres-
sion. The goal in this subsection is to manipulate the equation to eliminate second
order quantities in favor of products of first order quantities. We will accomplish
this by taking a moment approach and averaging over intermediate space and time
scales. The result, as we will see, is a closed set of fluid equations for the evolution
of the equilibrium density and temperature profiles. Because of the time and space
averaging, these equations are only valid when there are no important time or space
scales between the turbulence and equilibrium scales.

Before we begin the moment approach, we define the intermediate time average
of a quantity F(t) in a manner analogous to the intermediate spatial average of
Eq. (3.19):

F(τ0) ≡ 1

∆τ

∫ τ0+ ∆τ
2

τ0−∆τ
2

dt F(t), (3.48)

where ω−1 � ∆τ � τ , and we formally define ∆τ ∼ ετ .
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3.2.4.1 Slow density profile evolution

To obtain an equation for the evolution of the equilibrium density profiles, we
first take the density moment of the Fokker-Planck equation. The term involving
the Lorentz force vanishes because it is a perfect divergence in velocity space, and
the collisional term vanishes because of local particle conservation. We are left with
the usual continuity equation:∫

d3v

[
∂f

∂t
+∇ · (vf)

]
= 0. (3.49)

Applying the gyrokinetic ordering from the beginning of the chapter, we see that
both ∂f2/∂t and ∇ · (vf2) enter at order ε2. Since we do not want to solve for f2,
we must eliminate it from the equation. We will accomplish this by averaging over
intermediate scales in space and time.

Performing the intermediate spatial average of Eq. (3.19) and using the diver-
gence theorem, we can write

〈〈∇ · (vf)〉〉 =

∫
dA

V
· vf =

∫
dA

V

∇ψ
|∇ψ|

· vf. (3.50)

By inspection, one can see that this can in turn be written∫
dA

V

∇ψ
|∇ψ|

· vf =
1

V

∂

∂ψ
〈〈V∇ψ · vf〉〉 . (3.51)

We can manipulate this into a more useful form in a couple of steps. First, we use
the expression for the axisymmetric magnetic field given in Eq. (3.18) to get

(v · ∇ψ) f = −R2∇φ · (v ×B0) f. (3.52)

Noting that v × B0 = −Ω0
∂v
∂ϑ

and integrating the righthand side of the above
expression by parts in gyroangle, we obtain∫

d3v (v · ∇ψ) f =

∫
d3v

(
R2∇φ · v

) [
(v ×B0) · ∂f

∂v

]
. (3.53)

Using Eqs. (3.50), (3.51), and (3.53) in Eq. (3.49), we obtain〈〈∫
d3v

∂f

∂t

〉〉
+

1

V

∂

∂ψ

〈〈
V

∫
d3v

(
R2∇φ · v

) [
(v ×B0) · ∂f

∂v

]〉〉
= 0. (3.54)

Substituting for (v ×B0) · ∂f/∂v from the Fokker-Planck equation (3.1), we have〈〈∫
d3v

∂f

∂t

〉〉
− 1

V

∂

∂ψ

〈〈
V

∫
d3v

mc

q

(
R2∇φ · v

)(∂f
∂t

+ v · ∇f

+
q

m

(
E +

v × δB
c

)
· ∂f
∂v
−
∑
u

C[f, fu]

)〉〉
= 0.

(3.55)
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We now apply the intermediate time average defined by Eq. (3.48), plug in our
expression (3.34) for f , and examine each of the resulting terms up to order ε2.

The first term in Eq. (3.55) becomes〈〈∫
d3v

∂f

∂t

〉〉
=

〈〈∫
d3v

(
∂F0

∂t
+
∂h

∂t
+
∂f2

∂t

)〉〉
. (3.56)

Since h and f2 both vary on the fluctuation time scale, the only term that survives
the time average is the one involving F0:〈〈∫

d3v
∂f

∂t

〉〉
=
∂n0

∂t
, (3.57)

where n0 ≡
〈〈∫

d3vF0

〉〉
. Because of the slow time variation of F0, this term enters

at O(ε2). The other term in Eq. (3.55) involving ∂f/∂t is treated analogously.
However, the prefactor multiplying it is of order ε, dropping the overall order to ε3.
Consequently, we may neglect it.

We next treat the term containing v · ∇f . Employing Eq. (3.34) for f , we
have

1

V

∂

∂ψ

〈〈
V

∫
d3v

mc

q

(
R2∇φ · v

)
(v · ∇f)

〉〉
=

1

V

∂

∂ψ

〈〈
V

∫
d3v

mc

q

(
R2∇φ · v

)
(v · ∇ [F0 + h+ f2])

〉〉 (3.58)

Since F0 = FM(ψ) and ∇φ · ∇ψ = 0, the term in the integrand containing F0 is
odd in velocity space and therefore integrates to zero. Integrating the f2 term by
parts in space, we see that the gradient operator is transferred to the equilibrium
quantity R. Due to the slow cross-field spatial variation of equilibrium quantities,
this drops the term to O(ε3), so it does not contribute at this order.

We can also integrate the h term by parts in space, and we find that the
turbulent piece vanishes due to periodicity. All that is left is a term involving the
neoclassical piece of h, which we address now. First we define the neoclassical
pressure tensor:

P ≡
∫
d3vvvhnc =

∫
d3v

[
v2
‖b̂b̂ +

v2
⊥
2

(I− bb)

]
hnc + P̃, (3.59)

where I is the identity tensor and P̃ =
∫
d3v

(
v‖v⊥ + v⊥v‖

)
hnc is an antisym-

metric tensor containing the off-diagonal components of the pressure tensor. The
neoclassical term from Eq. (3.58) can then be written

1

V

∂

∂ψ

〈〈
V

∫
d3v

mc

q

(
R2∇φ · v

)
(v · ∇hnc)

〉〉
=

1

V

mc

q

∂

∂ψ

〈〈
V
[
∇ ·
(
P ·R2∇φ

)
−P : ∇

(
R2∇φ

)] 〉〉
,

(3.60)
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where the double dot tensor product is defined

A : B ≡
∑
i

∑
j

AijBji. (3.61)

The first term on the right in Eq. (3.60) vanishes upon application of the divergence
theorem due to periodicity in toroidal and poloidal angles. Because ∇ (R∇φ) =
(R∇φ−∇φR) is an antisymmetric tensor, the symmetric part of the pressure tensor
vanishes in the second term on the right, leaving

1

V

∂

∂ψ

〈〈
V

∫
d3v

mc

q

(
R2∇φ · v

)
(v · ∇hnc)

〉〉
= − 1

V

mc

q

∂

∂ψ

〈〈
V
[
P̃ : ∇

(
R2∇φ

)] 〉〉
= 0.

(3.62)

To obtain the final equality, we made use of the identity
∫
d3R

∫
R
d3v =

∫
d3r
∫
r
d3v,

where the subscripts on the integrals denote the variable to be held fixed. Since hnc
is independent of gyroangle at fixed R and (v‖v⊥ + v⊥v‖) is odd in gyroangle, we

see that the P̃ inside the spatial average of Eq. (3.62) vanishes.
Now we examine the term containing the Lorentz force:

1

V

∂

∂ψ

〈〈
V

∫
d3v

(
R2∇φ · v

)
(cδE + v × δB) · ∂f

∂v

〉〉
=

1

V

∂

∂ψ

〈〈
V

∫
d3v

(
R2∇φ · v

)
(cδE + v × δB) · ∂

∂v
(F0 + h+ δf2)

〉〉
(3.63)

First, we consider the terms containing F0. For the magnetic force term we find∫
d3v

(
R2∇φ · v

)
(v × δB) · ∂F0

∂v
∼
∫
d3v

(
R2∇φ · v

)
(v × δB) · vF0 = 0. (3.64)

For the electric force term, we have∫
d3v

(
R2∇φ · v

)
δE · ∂F0

∂v
=

∫
d3v

(
R2∇φ · v

) ∂

∂v
· (F0δE)

=

∫
d3vR2∇φ ·

[
∇Φ +

1

c

∂

∂t
(A0 + δA)

]
F0,

(3.65)

where we have integrated by parts and substituted Eq. (3.10) for the electric field
between lines one and two. Upon application of the intermediate time average, the
δA term drops in ordering. We next apply the intermediate spatial average:〈〈

R2∇φ · ∇ΦF0

〉〉
=
〈〈
R
∂Φ

∂φ
F0

〉〉
= 0, (3.66)

where the final equality follows from the fact that the equilibrium is axisymmetric
and all other quantities are periodic in torodial angle φ.
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Now we consider the term involving h. Integrating by parts in velocity space,
we get∫
d3v

(
R2∇φ · v

)(
δE +

v × δB
c

)
· ∂h
∂v

=

∫
d3v

(
R2∇φ · v

) ∂

∂v
·
[(
δE +

v × δB
c

)
h

]
= −

∫
d3vR2∇φ ·

(
δE +

v × δB
c

)
h.

(3.67)

Rewriting δE and δB in terms of the potentials Φ and A, we have

δE +
v × δB

c
= −∇Φ− 1

c

∂A

∂t
+

v

c
× (∇× δA)

= −∇Φ− 1

c

∂A

∂t
+

1

c
[∇ (v · δA)− (v · ∇) δA]

= −∇χ− 1

c

∂A

∂t
−
(v

c
· ∇
)
δA,

(3.68)

where χ is defined in Eq. (4.5). The terms involving v‖b̂ · ∇δA and ∂A/∂t are
higher order and can thus be neglected (the ∂A/∂t term was retained earlier when
multiplied by F0, but here it is multiplied by h). Further, only the fluctuating part
of h contributes, since the intermediate spatial average of Eq. (3.67) drops the order
of the hnc part. The v⊥ · ∇δA term vanishes by integrating by parts in space and
using the identity from Eq. (3.26):〈〈∫

d3v R2∇φ · [(v⊥ · ∇) δA]h
〉〉

= −
〈〈∫

d3v R2∇φ · δA (v⊥ · ∇h)
〉〉

= −
〈〈∫

d3v R2∇φ · δA
(
∂h

∂ϑ

)
r

〉〉
= 0,

(3.69)

where we have used the fact that h is independent of gyroangle at fixed R and δA
is independent of gyroangle at fixed r.

The only part of the distribution function contributing to the collisional term
is

h̃nc ≡ hnc − ρ · FM (3.70)

because ht vanishes upon spatial average and C[FM ] = 0. Collecting results, we
have the equation for the evolution of the equilibrium density:

∂n0

∂t
=

1

V

∂

∂ψ

〈〈
V

∫
d3vR2∇φ ·

(
∂A0

∂t
F0 + ht∇χ−

mv

q
C[h̃nc]

)〉〉
. (3.71)

3.2.4.2 Slow temperature profile evolution

The equation for the evolution of the equilibrium temperature profiles is de-
rived in a manner analagous to the equation for the equilibrium density profiles.
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We begin by taking the energy moment of the Fokker-Planck equation (3.1) and
performing the intermediate spatial average of Eq. (3.19):〈〈∫

d3v
mv2

2

[
∂f

∂t
+ v · ∇f +

q

m

(
E +

v ×B

c

)
· ∂f
∂v

]〉〉
=

〈〈∫
d3v

mv2

2

∑
u

C[f, fu]

〉〉
.

(3.72)

We then substitute Eq. (3.34) for f into Eq. (3.72), average over the intermediate
time scale, and consider the order of each of the terms.

As before with density evolution, the terms involving time derivatives of h and
δf2 do not contribute at this order. The contribution to the first term of Eq. (3.72)
from F0 is 〈〈∫

d3v
mv2

2

∂f

∂t

〉〉
=

3

2

∂n0T0

∂t
, (3.73)

where T0 ≡
〈〈∫

d3v mv2F0

〉〉
/2n0.

The term in Eq. (3.72) containing v · ∇f can be manipulated as it was in
Eqs. (3.50)-(3.53) to obtain〈〈∫

d3v
mv2

2
v · ∇f

〉〉
=

1

V

∂

∂ψ

〈〈
V

∫
d3v

mv2

2
R2∇φ · v

[
(v ×B0) · ∂f

∂v

]〉〉
.

(3.74)
Substituting for (v ×B0) · ∂f/∂v from the Fokker-Planck equation (3.1), we have〈〈∫

d3v
mv2

2
v · ∇f

〉〉
= − 1

V

∂

∂ψ

〈〈
V

∫
d3v

mv2

2

mc

q

(
R2∇φ · v

)(∂f
∂t

+ v · ∇f

+
q

m

(
E +

v × δB
c

)
· ∂f
∂v
−
∑
u

C[f, fu]

)〉〉
.

(3.75)

Using the same methods employed to derive the density evolution equation, one can
show that the terms involving ∂f/∂t and v · ∇f do not contribute at this order.

We focus first on the Lorentz force term. As before with density evolution, we
use f = F0 +h+ δf2 and examine each term. First, we consider the terms involving
F0. The magnetic force term is zero since ∂F0/∂v ∼ vF0 and (v × δB) ·v = 0. The
electric force term gives〈〈∫

d3v
(
R2∇φ · v

) mv2

2
cδE · ∂F0

∂v

〉〉
= −

〈〈∫
d3vcR2∇φ ·

[
mv2

2
δE + (v · δE) v

]
F0

〉〉
,

(3.76)

where we have integrated by parts in velocity space. Writing the electric field in
terms of potentials and noting that the intermediate spatial average of fluctuating
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quantities is zero, we find〈〈∫
d3v

(
R2∇φ · v

) mv2

2
cδE · ∂F0

∂v

〉〉
=
〈〈∫

d3vR2∇φ · mv
2

2

∂A0

∂t
F0

〉〉 (3.77)

Next we consider the term involving h:〈〈∫
d3v

(
R2∇φ · v

) mv2

2
(cδE + v × δB) · ∂h

∂v

〉〉
= −

〈〈∫
d3vR2∇φ ·

[
mv2

2
(cδE + v × δB) +mcv (v · δE)

]
ht

〉〉
,

(3.78)

where we have integrated by parts in velocity space and neglected the hnc terms
because the spatial average makes them higher order. Also, only the electrostatic
part of the electric field contributes at this order. Rewriting the above expression
in terms of potentials, we have〈〈∫

d3vR2∇φ ·
[
(c∇χ+ v⊥ · ∇⊥δA)

mv2

2
+mcv (v · ∇Φ)

]
ht

〉〉
, (3.79)

where the term involving v‖b̂ · ∇δA has been dropped since it is higher order. The
v⊥ ·∇δA term can be neglected following the same argument given after Eq. (3.68).
The part of the collision operator that contributes at O(ε2) in Eq. (3.75) is the same
as for particle transport, C[h̃nc].

Next, we consider the Lorentz force term in Eq. (3.72). The magnetic force
term can be written as a perfect divergence in velocity space and subsequently
vanishes upon integration. However, due to the presence of the v2 factor, the electric
force term is nonzero. Integrating this term by parts in velocity gives∫

d3v
mv2

2

q

m
E · ∂f

∂v
= −

∫
d3v qE · vf. (3.80)

Considering the electrostatic part of E, we have

q

∫
d3v (v · ∇Φ) f = q

∫
d3v

[
v · ∇ (Φf) +

∂ (Φf)

∂t
− f ∂Φ

∂t
− Φ

(
∂f

∂t
+ v · ∇f

)]
= q

∫
d3v

[
v · ∇ (Φf) +

∂ (Φf)

∂t
− f ∂Φ

∂t

]
,

(3.81)

where we used the continuity equation (3.49) to obtain the final equality. The
intermediate time average eliminates the second term and the F0 piece of the final
term on the last line. Performing the intermediate spatial average eliminates the
neoclassical terms and the F0 part of the first term, leaving

q

〈〈∫
d3v (v · ∇Φ) f

〉〉
= q

〈〈∫
d3v

[
v · ∇ (Φht)− ht

∂Φ

∂t

]〉〉
. (3.82)
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We can place the first term in a more convenient form by first using Eqs (3.50)-(3.53):〈〈∫
d3v qv · ∇ (Φht)

〉〉
=

1

V

∂

∂ψ

〈〈
V

∫
d3v

(
R2∇φ · v

)
qΦ

[
(v ×B0) · ∂ht

∂v

]〉〉
(3.83)

Noting that (v ×B0) · ∂ht/∂v = −B0(∂ht/∂ϑ)r and using Eq. (3.26), we get〈〈∫
d3v qv · ∇ (Φht)

〉〉
= − 1

V

∂

∂ψ

〈〈
V

∫
d3v

qB0Φ

Ω0

(
R2∇φ · v

)
v · ∇ht

〉〉
,

(3.84)
where we have used (∂ht/∂ϑ)R = 0. Integrating by parts in space then gives〈〈∫

d3v qv · ∇ (Φht)

〉〉
= − 1

V

∂

∂ψ

〈〈
V

∫
d3v

(
R2∇φ · v

)
mc htv · ∇Φ

〉〉
,

(3.85)
which cancels with the last term in Eq. (3.79).

We now consider the inductive part of the electric field, EI . Since FM is
isotropic in velocity space, we have∫

d3v q (v · EI)FM

(
1− qΦ

T0

)
= 0. (3.86)

The term involving f2 does not enter at this order, so we are left with∫
d3v q (v · EI) (ρ · ∇FM − h) =

∫
d3v

q

c

(
v · ∂A

∂t

)
(h− ρ · ∇FM) . (3.87)

Applying the intermediate spatial average, we obtain〈〈∫
d3v q (v · EI) (ρ · ∇FM − h)

〉〉
=

〈〈∫
d3v

q

c

[(
v · ∂δA

∂t

)
ht +

(
v · ∂A0

∂t

)
h̃nc

]〉〉
.

(3.88)

Combining this expression with the one remaining term from the electrostatic part
(i.e. the last term in Eq. (3.82)) gives〈〈∫

d3v
q

c

[
−∂χ
∂t
ht +

(
v · ∂A0

∂t

)
h̃nc

]〉〉
. (3.89)

The final term to evaluate in Eq. (3.72) is the inter-species collisional energy
exchange. It has the following standard form (see e.g. Ref. [67]):〈〈

d3v
mv2

2

∑
u

C[f, fu]

〉〉
=
∑
u

n0ν
su
ε (T0u − T0) , (3.90)

where

νsuε ≡ 6.88
(msmu)

1/2 q2
sq

2
unu ln Λsu

(msTu +muTs)
3/2

= 1.55νsu

(
mu

ms

)1/2(
Tu
Ts

+
mu

ms

)−3/2

,

(3.91)
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with

νsu ≡
4πnuq

2
uq

2
s ln Λsu

m
1/2
s (2Ts)

3/2
(3.92)

the collision frequency, q the particle charge, and ln Λsu the Coulomb logarithm.
Collecting results, we have an equation for the evolution of the equilibrium pressure,
p0 = n0T0:

3

2

∂p0

∂t
=

1

V

∂

∂ψ

〈〈
V

∫
d3v

mv2

2
R2∇φ ·

[
∂A0

∂t
FM + ht∇χ−

mv

q
C[h̃nc]

]〉〉
+

〈〈∫
d3v q

[
ht
∂χ

∂t
− v · ∂A0

∂t
h̃nc

]〉〉
+
∑
u

n0ν
su
ε (T0u − T0)

(3.93)

3.2.4.3 Species-summed pressure equation and turbulent heating

The term
〈〈∫

d3v qsht,s(∂χ/∂t)
〉〉

in Eq. (3.93) describes turbulent heating of
the equilibrium. In order to illuminate the nature of this turbulent heating, we sum
Eq. (3.93) over species and consider the evolution of the total pressure, pT =

∑
s p0s:

3

2

∂pT
∂t

=
1

V

∂

∂ψ

〈〈
V

(
−QT · ∇ψ + pTR

2∇φ · ∂A0

∂t

)〉〉
−
∑
s

1

V

∂

∂ψ

〈〈
V

∫
d3v

msv
2

2

R2ms

qs
(∇φ · v)C[h̃nc,s]

〉〉
+
∑
s

〈〈∫
d3vqs

[
ht
∂χ

∂t
− v · ∂A0

∂t
h̃nc

]〉〉
,

(3.94)

where

QT ≡
∑
s

∫
d3v

msv
2

2
vχht,s (3.95)

is the species-summed turbulent heat flux. We now proceed to show that species-
summed turbulent heating term,

∑
s

〈〈∫
d3v qsht,s(∂χ/∂t)

〉〉
is zero for steady-state

turbulence.
First, we consider the electrostatic component of χ:〈〈

∂Φ

∂t

∑
s

qs

∫
d3v ht,s

〉〉
=

〈〈
q2
s

2T0s

∂Φ2

∂t

〉〉
, (3.96)

where we have used quasineutrality. Upon time averaging, this term vanishes. Next
we consider the inductive component of χ:〈〈

1

c

∂δA

∂t
·
∑
s

qs

∫
d3v vht,s

〉〉
=

〈〈
1

c

∂δA

∂t
· δJ
〉〉

= −〈〈δEI · δJ〉〉 ,
(3.97)
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where δJ is the perturbed current, and δEI is the inductive part of the fluctuating
electric field. Applying Ampere’s Law and using the Coulomb gauge, Eq. (3.97)
becomes〈〈

1

c

∂δA

∂t
·
∑
s

qs

∫
d3v vht,s

〉〉
= −

〈〈
1

c

∂δA

∂t
· ∇2δA

〉〉
=

〈〈
1

2

∂

∂t

(
∇δA : (∇δA)T

)〉〉
,

(3.98)

where the superscript T denotes the matrix transpose. This term also vanishes upon
time averaging. Consequently, we have∑

s

〈〈∫
d3vqsht,s

∂χ

∂t

〉〉
= 0, (3.99)

where the usual intermediate time average is implied. Therefore there is no species-
summed turbulent heating. Using Eq. (3.99) in the pressure evolution equation
(3.94), we obtain

3

2

∂pT
∂t

=
1

V

∂

∂ψ

〈〈
V

(
−QT · ∇ψ + pTR

2∇φ · ∂A0

∂t

)〉〉
−
∑
s

1

V

∂

∂ψ

〈〈
V

∫
d3v

msv
2

2

R2ms

qs
(∇φ · v)C[h̃nc,s]

〉〉
.

(3.100)

While there is no net turbulent heating, this does not rule out the possib-
lity of significant turbulent energy exchange between species (the turbulent heating
species by species is the same order as the turbulent heat transport term, for in-
stance). Few studies have been conducted investigating the effects of turbulent
energy exchange [19, 20], and in these studies, the turbulent heating was defined as
〈〈δJ · δE〉〉. Examining Eqs. (3.80)-(3.89), we see that this is not quite equivalent
to the turbulent heating defined here (the difference between them is the additional
term appearing in Eq. (3.85)). Consequently, the impact of the turbulent heating
term in Eq. (3.93) on the evolution of equilibrium pressure profiles deserves further
study.

As an aside, we note that the net turbulent heating defined in Refs. [19] and [20]
is also zero. From Poynting’s Theorem (using low-frequency Maxwell’s equations
for the fluctuating fields), we have

∂

∂t

∫
d3r

δB2

8π
+

c

4π

∮
dS · (δE× δB) = −

∫
d3r δJ · δE. (3.101)

Using statistical periodicity of the fluctuations to eliminate the surface integral and
applying the intermediate time average, we find∫

d3r δJ · δE = 0. (3.102)
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Therefore, net turbulent heating of the equilibrium defined in this alternate way (as∫
d3r δJ · δE) is also zero.

In numerical simulations, it is often the case that the turbulent heating term
as written in Eq. (3.93) has large amplitude oscillations in time, making it difficult
to quickly obtain a steady-state time average. Before we finish our derivation, we
would like to rewrite the turbulent heating term in a more convenient form for
simulation. Making use of the fact that ht is independent of gyroangle at fixed R,
we can change variables from r to R in our phase space integration to get∫

d3r

V

∫
d3v qht

∂χ

∂t
=

∫
d3R

V

∫
d3v qht

∂ 〈χ〉R
∂t

. (3.103)

Multiplying the gyrokinetic equation (3.46) by htT0/F0, averaging over phase space
(with R as our spatial variable), and averaging over the intermediate time scale, we
find that most terms do not contribute at this order. We are left with〈〈∫

d3v q
∂χ

∂t
ht

〉〉
=

〈〈∫
d3v

htT0

F0

(vχ · ∇F0 − 〈C[ht]〉R)

〉〉
. (3.104)

The first term on the righthand side in Eq. 3.104 is the energy exchange between
the equilibrium and the turbulence, which is generally cooling the equilibrium. The
second term is the collisional heating, or entropy generation, which is a positive-
definite quantity. This sign-definiteness facilitates quick calculation of converged
steady-state values for the turbulent heating.

Using these results in Eq. (3.93), we obtain the final form of our equation for
the equilibrium pressure evolution for each species:

3

2

∂p0

∂t
=

1

V

∂

∂ψ

〈〈
V

∫
d3v

mv2

2
R2∇φ ·

[
∂A0

∂t
FM + ht∇χ−

mv

q
C[h̃nc]

]〉〉
+

〈〈∫
d3v

htT0

F0

(vχ · ∇F0 − 〈C[ht]〉R)− qv · ∂A0

∂t
h̃nc

〉〉
+
∑
u

n0ν
su
ε (T0u − T0)

(3.105)

3.3 Summary

In this chapter, we began with the Fokker-Planck equation and introduced a set
of ordering assumptions that allowed us to derive a closed set of equations describing
the self-consistent evolution of turbulence and thermodynamics processes (transport
and heating). The ordering assumptions are a variant of the standard δf gyrokinetic
ordering. In particular, we assumed that all quantities could be split into (well-
separated) slowly and rapidly varying parts in space and time, choosing a definite
space-time ordering in terms of the expansion parameter ρ/L. The amplitude of
of the rapidly varying parts were assumed much smaller than that of the slowly
varying ones. Furthermore, we chose a definite ordering for the scale of velocity
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space structures (δv ∼ vth) and for the collision frequency (ν ∼ ω). Our ordering
and procedure for deriving the hierarchical equations follows closely the treatment
of Refs. [45] and [46]. A similar hierarchical set of equations, with the inclusion of
low Mach-number, long-wavelength flows, is derived in Ref. [48].

For convenience in later chapters, we collect the key results from our calcula-
tions here. The single-particle distribution function is written in the form

f = F0 + h+ f2, (3.106)

where h is the non-Boltzmann part of the lowest-order perturbed distribution func-
tion, f2 represents higher-order corrections, and

F0 = FM(R) exp

[
−qΦ
T0

]
, (3.107)

with FM a Maxwellian in velocity space. The slowly-varying, equilibrium part of the
distribution function, FM , is independent of gyroangle and does not vary spatially
within a magnetic flux surface:

∂FM
∂ϑ

= 0, (3.108)

b̂ · ∇FM = 0. (3.109)

The non-Boltzmann part of the lowest-order perturbed distribution function (rep-
resenting rapid fluctuations in space and time), h, is also independent of gyroangle
at fixed guiding center position, R:(

∂h

∂ϑ

)
R

= 0. (3.110)

The evolution of the part of h associated with turbulent dynamics is given by the
well-known gyrokinetic equation:

∂h

∂t
+ v‖b̂ · ∇h+ 〈vχ〉R · ∇(F0 + h) + vB · ∇h = 〈C[ht]〉R +

qF0

T0

∂ 〈χ〉R
∂t

. (3.111)

To close the system, we need information about the electromagnetic fields and the
evolution of equilibrium (thermodynamic) quantities. In the gyrokinetic ordering
used here, the low-frequency Maxwell’s equations become:∑

s

qs

∫
d3v

(
〈hs〉r −

qsΦ

T0s

FMs

)
= 0 (3.112)

∇2δA‖ = −4π

c
J‖ = −4π

c

∑
s

qs

∫
d3v v‖ 〈hs〉r (3.113)

∇2
⊥δB‖ = −4π

c
b̂ ·

[
∇⊥ ×

∑
s

qs

∫
d3v 〈v⊥hs〉r

]
. (3.114)
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The first expression above is Poisson’s equation, with the assumption of quasineu-
trality, and the remaining expessions are the parallel and perpendicular components
of Ampere’s Law. Finally, the equations describing the evolution of the equilibrium
thermodynamic quantities (assuming no equilibrium flows) are

∂n0

∂t
=

1

V

∂

∂ψ

〈〈
V

∫
d3vR2∇φ ·

(
∂A0

∂t
F0 + ht∇χ−

mv

q
C[h̃nc]

)〉〉
, (3.115)

3

2

∂p0

∂t
=

1

V

∂

∂ψ

〈〈
V

∫
d3v

mv2

2
R2∇φ ·

[
∂A0

∂t
FM + ht∇χ−

mv

q
C[h̃nc]

]〉〉
+

〈〈∫
d3v

htT0

F0

(vχ · ∇F0 − 〈C[ht]〉R)− qv · ∂A0

∂t
h̃nc

〉〉
+
∑
u

n0ν
su
ε (T0u − T0) .

(3.116)
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Chapter 4
Resolving velocity space dynamics in gyrokinetics

4.1 Introduction

Many plasmas of interest to the astrophysical and fusion communities are
weakly collisional. For such plasmas, velocity space dynamics are often impor-
tant, and a kinetic description is necessary. Since the kinetic description requires a
six-dimensional phase space, simulating weakly collisional plasma processes can be
computationally challenging. Employing the gyrokinetic ordering [8, 9, 10] reduces
the dimensionality by eliminating gyrophase dependence, but we are still left with
a relatively high-dimensional system. Consequently, one would like to know how
many grid points are necessary along each dimension, particularly in velocity space,
in order to resolve a given simulation.

In the absence of collisions or some other form of dissipation, the distribution of
particles in velocity space can develop arbitrarily small-scale structrues. Clearly, this
presents a problem for gyrokinetic simulations, as an arbitrarily large number of grid
points would be necessary to resolve such a system. Of course, all physical systems
possess a finite collisionality, which sets a lower bound on the size of velocity space
structures and, therefore, an upper bound on the number of grid points required
for resolution. We would like to know how sensitive the plasma dynamics are to
the magnitude and form of the velocity space dissipation. In particular, we would
like answers to the following set of questions: Given a fixed number of grid points,
how much dissipation is necessary to ensure a resolved simulation? Alternatively,
given a fixed amount of dissipation, how many grid points are necessary to ensure a
resolved simulation? Futhermore, what measurable effect, if any, does the addition
of dissipation have on collisionless plasma dynamics?

These questions have been addressed for very few plasma processes [49, 50],
in large part due to the computational expense involved with such a study. In this
chapter, we propose computationally efficient diagnostics for monitoring velocity
space resolution and apply these diagnostics to a range of weakly-collisional plasma
processes using the continuum gyrokinetic code GS2 [51]. With the aid of these
diagnostics, we have implemented an adaptive collision frequency that allows us to
resolve velocity space dynamics with the approximate minimal necessary physical
dissipation [52]. We find that the velocity space dynamics for growing modes are well
resolved with few velocity space grid points, even in the collisionless limit. Including
a small amount of collisions (ν � ω) is necessary and often sufficient to adequately
resolve nonlinear dynamics and the long-time behavior of linearly damped modes.

The chapter is organized as follows. In Sec. 4.2 we discuss velocity space
dynamics in gyrokinetics and provide examples illustrating the development of small-
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scale structure in collisionless plasmas. Sec. 4.3 contains a brief overview of the
Trinity velocity space grid and its dissipation mechanisms. We describe diagnostics
for monitoring velocity space resolution in Sec. 4.4 and apply them to a number of
plasma processes. In Sec. 4.5, we introduce an adaptive collision frequency and
present numerical results. We discuss our findings in Sec. 4.6.

4.2 Gyrokinetic velocity space dynamics

Trinity solves the coupled system consisting of the low-frequency Maxwell’s
equations and the nonlinear, electromagnetic gyrokinetic equation with a model
Fokker-Planck collision operator:

∂h

∂t
+

K︷ ︸︸ ︷(
v‖b̂ + vχ + vB

)
· ∇h = 〈C[h]〉R +

qF0

T

∂ 〈χ〉R
∂t

− vχ · ∇F0︸ ︷︷ ︸
S

, (4.1)

where

h = f1 +
qΦ

T
FM (4.2)

is the non-Boltzmann part of the perturbed distribution function,

vB =
b̂

Ω
×
[
v2
‖

(
b̂ · ∇

)
b̂ +

v2
⊥
2

∇B0

B0

]
(4.3)

is the sum of the curvature and ∇B drift velocities,

vχ =
c

B0

b̂×∇χ (4.4)

is the generalized E ×B velocity,

χ = Φ− v

c
·A (4.5)

is the generalized electromagnetic potential, 〈·〉R denotes a gyro-average at fixed
guiding center position R, and

F0 = FM

(
1− qΦ

T

)
(4.6)

is the lowest order expansion of a Maxwell-Boltzmann distribution. The exact form
of the collision operator, C[h], used in Trinity is discussed briefly in Sec. 4.3 and
described in detail in Chapters 5 and 6.

We can group the various terms in the gyrokinetic equation (4.1) into three
distinct categories: source terms, labeled by S, which typically drive large-scale
structures in velocity space; convection terms, labeled by K, which lead to phase-
mixing and the development of small-scale structures in velocity space; and dis-
sipation, given by the collision operator, which smooths the distribution function
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towards a shifted Maxwellian velocity distribution. In general, the structure that
develops from the balancing of these terms can be quite complicated. However,
we can gain insight into how small-scale velocity structures develop by considering
simplified collisionless systems.

In the absence of collisions, arbitrarily small scales can develop in velocity
space. This is a result of phase-mixing, arising due to convection in real space [53,
15]. As a simple example of this phenomenon, we include in Appendix B a calcu-
lation of the perturbed distribution function for the collisionless ion acoustic wave
in a slab. The result, quoted here, illustrates the tendency of collisionless plasma
processes to drive small-scale velocity space structures:

f̄1(z, v‖, t) = eik‖(z−v‖t)G(v‖) +H(z, v‖, t), (4.7)

where the overbar on f1 indicates an average over perpendicular velocities. The
quantities G and H are explicitly derived in Appendix B. Here, it is sufficient to
note that both G and H are smooth functions of the parallel velocity. The presence
of the oscillatory factor e−ik‖v‖t in the first term (often called the ballistic term) leads
to the development of a characteristic wavelength in velocity space that decreases
inversely with time. The amplitude of this ballistic term remains comparable to the
second term in Eq. (4.7) for all time, leading to the development of large amplitude
oscillations of the distribution function at arbitrarily small-scales in velocity space.

A snapshot of this behavior at t = 10
(
k‖vt,i

)−1
is shown in Fig. 4.1.

The same calculation carried out for the collisionless ITG mode in a slab yields
a distribution function with a similar ballistic term component. However, since this
mode is linearly unstable, there is also a term describing large-scale structure in
velocity space whose amplitude grows in time to dominate the distribution function.
As a result, no significant small-scale structure develops. This is a typical feature
of linearly growing modes in the collisionless limit.

Of course, all physical systems have a finite collisionality. The dissipation
arising from this collisionality is critically important: It is a necessary requirement
for the existence of a statistically steady state [54, 53], and it sets a lower bound
on the scale-size of structures in velocity space [15]. A simple estimate for the
scale-size of velocity space structures can be obtained by assuming a steady state
and balancing the collisional term with the other terms in the gyrokinetic equation.
Noting that C ∼ νv2

th∂
2
v (see e.g. Ref [24] or Ref [25]), we find

δv

vth
∼
√
ν

ω
, (4.8)

where ν is the collision frequency, ω is the dynamic frequency of interest, vth ≡√
2T/m is the thermal velocity, and δv is the scale-size of fluctuations in velocity

space. This estimate predicts that velocity space structures much smaller than the
thermal velocity develop in the weakly collisional limit, ν � ω, as we would expect
from our consideration of simplified collisionless systems.
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Figure 4.1: Plot of f̄(v‖) (normalized by F0) at t = 10
(
k‖vt,i

)−1
. The parallel veloc-

ity on the horizontal axis is normalized by vth and f̄(v‖) was initially a Maxwellian.
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4.3 Trinity velocity space

In order to understand the velocity space resolution diagnostics described in
later sections, it is necessary for the reader to have a basic knowledge of the way
in which velocity space dynamics are treated in Trinity. To that purpose, we now
give a brief explanation of the velocity space coordinates and dissipation mechanisms
employed in Trinity.

4.3.1 Velocity space coordinates

Only two velocity space coordinates are necessary in gyrokinetics because gy-
roaveraging has eliminated any gyrophase dependence. Fundamentally, Trinity

uses kinetic energy, ε, and a quantity related to magnetic moment, λ = µ/ε, as its
velocity space coordinates. This choice eliminates all velocity space derivatives from
the collisionless gyrokinetic equation and simplifies the discretization of derivatives
in the model collision operator. Consequently, the spacing of the velocity space
grid points is chosen to provide accurate velocity space integrals while satisfying the
necessary boundary condition at particle bounce points.

4.3.1.1 Energy grid

The volume element in velocity space can be written∫
d3v =

B0

2

∑
σ

∫ 2π

0

dϑ

∫ 1/B0

0

dλ√
1− λB0

∫ ∞
0

dv v2 (4.9)

where ϑ is the gyroangle and σ denotes the sign of v‖. Until recently, the energy
grid in GS2 followed the treatment of Ref. [55], which places energy integrals in a
convenient form by a change of variables to

X(x) = − 2√
π
xe−x

2

+ Erf [x] , (4.10)

where x ≡ v/vth. This transforms the range of integration from x ∈ [0,∞) to
X ∈ [0, 1): ∫

d3v =

√
π

8
B0v

3
th

∑
σ

∫ 2π

0

dϑ

∫ 1/B0

0

dλ√
1− λB0

∫ 1

0

dX ex
2

. (4.11)

The integration domain is split into the subintervals [0, X0) and [X0, 1), with the
perturbed distribution function assumed to be approximately Maxwellian on [X0, 1).
Gauss-Legendre quadrature rules [56] are then used to determine the location of the
grid points in the interval [0, X0).

This energy grid provides spectrally accurate energy integrals (i.e. error ∼
(1/N)N , where N is the number of energy grid points), provided the integrand
is analytic over the integration domain (see e.g. Ref. [57]). Unfortunately, this
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Figure 4.2: Plot of normalized velocity x over the entire X domain. The func-
tion x(X) has singularities at the boundaries of the domain due to a branch cut
originating at X = 0 and to x going to ∞ at X = 1.

is seldom the case. To understand why, we consider the functional form of x(X).
Taylor expanding X about x = 0, we find X ∼ x3, or equivalently, x ∼ X1/3. This
indicates a branch cut in x originating from X = 0, so that most functions of x are
non-analytic at X = 0. In Fig 4.2, we examine x(X). We see that not only is x
non-analytic at X = 0, but also at X = 1, where x→∞. The fact that x possesses
singularities at the endpoints of the domain in X means that the integration scheme
is not spectrally accurate for most integrands of interest (especially since the Bessel
functions J0(k⊥v⊥/Ω) and J1(k⊥v⊥/Ω), which are non-analytic at X = 0 and X = 1,
appear in all integrals of the distribution function at fixed particle position r). This
is demonstrated in Fig. 4.3, where we examine the accuracy of the numerical integral
of h(R) = FM (at fixed r) as we vary the number of velocity space grid points.

In order to achieve spectral accuracy, we have implemented a new energy grid.
We begin by splitting the velocity integration into two separate integrals:∫ ∞

0

dx x2G(x) =

∫ x0

0

dx x2G(x) +

∫ ∞
x0

dx x2G(x), (4.12)

where x0 is a free parameter and G(x) is the function we wish to integrate. On the
first interval, (0, x0), we use Gauss-Legendre quadrature rules in x to obtain grid
locations. Note that use of x as our integration variable ensures that the integrand
x2G(x) will be analytic as long as G is analytic in x over the interval.
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Figure 4.3: Plot showing absolute error in numerical integral of J0(k⊥v⊥
Ω0

). The inte-

gration scheme of Ref. [55] has error proportional to negrid−3.25, while our scheme
has error proportional to 0.6∗negrid−0.6∗negrid. Note that the minimum error in the
non-spectral scheme is on the order of 10−6, while in our scheme it is on the order
of 10−16, which is a limitation imposed by double precision evaluation of the Bessel
function.
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For the interval (x0,∞) we make the change of variable y ≡ x2−x2
0 to transform

the integral to ∫ ∞
x0

dx x2G(x) =
1

2

∫ ∞
0

dy e−y
[
ey
√
y + x2

0G(x)

]
. (4.13)

We then use Gauss-Laguerre quadrature rules in y to obtain grid locations. Note
that the volume element is analytic within the domain of integration, as is x(y) =√
x2

0 + y, so that the integrand will be analytic as long as G is an analytic function
of x.

Our use of spectral integration techniques (i.e. Gaussian quadrature), coupled
with the analyticity of our integrand for well-behaved functions G(x), ensures the
spectral accuracy of our integration scheme. While an exponential order of con-
vergence is assured, the rate of convergence depends on the exact nature of the
integrand and our choice of the parameter x0. In general we choose x0 & 2.5 so that
the branch cut at y = −x2

0 is sufficiently far from the domain of integration in y to
minimally impact the rate of convergence. We demonstrate the spectral accuracy of
the scheme and determine the rate of convergence for a number of test functions in
Figs. 4.3 and 4.4. It is worthwhile to note that for few grid points (. 8 in Fig. 4.3)
the grid given in Ref. [55] may be more accurate. This is because the energy variable
X eliminates velocity-dependence of the volume element (when solving for the nor-
malized distribution function h̃ ≡ h/F0), while the new v-space integrals described
here have the velocity-dependent volume element x2e−x

2
that must be integrated

regardless of the form of h̃.

4.3.1.2 Lambda grid

For systems with curved magnetic field lines, special care is also required
when dealing with λ [51]. There are two reasons for this: the grid points provided
by Gaussian quadrature rules are concentrated near the endpoints of the domain,
whereas one would like them to be concentrated at the trapped-passing boundary;
and one must ensure that the proper boundary condition (i.e. f(v‖ = 0+) = f(v‖ =
0−)) is satisfied at each of the bounce points. Consequently, the λ-grid is divided
into two regions corresponding to trapped and untrapped particles, respectively.

For values of λ such that 0 ≤ λ < 1/Bmax, the corresponding particles are
untrapped by the magnetic potential well. In this region of velocity space, the
integration variable ξ̃ ≡

√
1− λBmax is chosen. It is similar to pitch-angle, but

it has no spatial dependence. Similarly to the energy, Gauss-Legendre quadrature
rules are used to obtain the location of grid points in ξ̃. This naturally provides a
concentration of gridpoints near the trapped-passing boundary.

For values of λ such that 1/Bmax < λ < 1/Bmin, the corresponding particles
are trapped by the magnetic potential well. In the trapped region, grid points are
chosen to fall on bounce points in order to allow for the enforcement of boundary
conditions. Mathematically, this means that for each value of θ, there must be a
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Figure 4.5: Typical velocity space grid used in Trinity. Grid points are concen-
trated near the trapped-passing boundary (whose location varies with θ) and at
lower energy values where the Maxwellian weighting dominates.

corresponding λ such that

ξ(θ) =
v‖(θ)

v
=
√

1− λB0(θ) = 0, (4.14)

where θ gives the position along the unperturbed magnetic field line and ξ is the
pitch-angle. This choice of λ values also leads to a concentration of grid points near
the trapped-passing boundary. A typical Trinity grid layout for a system with
trapped particles is shown in Fig. 4.5. It should be noted that the λ integrals, like
the energy integrals, are spectrally accurate, provided the distribution function is
analytic in ξ.

4.3.2 Velocity space dissipation

Some form of dissipation is often necessary to prevent the formation of arbi-
trarily small-scale structures in velocity space. This can be achieved either through
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artificial numerical dissipation or through implementation of a model collision op-
erator. Both options are available in Trinity.

4.3.2.1 Model collision operator

Trinity uses a model Fokker-Planck collision operator that includes the ef-
fects of pitch-angle scattering and energy diffusion while satsifying Boltzmann’s
H-Theorem and conserving particle number, momentum, and energy [21, 22]:

C[h] = L[h] +D[h] +M[h], (4.15)

where

L[h] =
νD
2

(
∂

∂ξ

(
1− ξ2

) ∂h
∂ξ

+
1

1− ξ2

∂2h

∂ϑ2

)
(4.16)

is the Lorentz collision operator,

D[h] =
1

4x2

∂

∂x

(
νsx

2F0
∂

∂x

h

F0

)
(4.17)

is the energy diffusion operator, andM[h] contains momentum- and energy-conserving
corrections. We defer a detailed discussion of the collision operator to Chapter 5.
Here we simply present the gyroaveraged collision operator in spectral form:

〈C[h]〉k =
νD
2

∂

∂ξ

(
1− ξ2

) ∂hk
∂ξ

+
v2
th

4v2

∂

∂v

(
νsv

2F0
∂

∂v

hk
F0

)
− k2

⊥ρ
2

8Ω2
0

(
2v2

v2
th

νD
(
1 + ξ2

)
+ νs

(
1− ξ2

))
hk + νEv

2J0(a)F0

∫
d3v νEv

2J0(a)hk∫
d3v νEv4F0

+ νDF0

(
J0(a)v‖

∫
d3v νDv‖J0(a)hk∫
d3v νDv2

‖F0

+ J1(a)v⊥

∫
d3v νDv⊥J1(a)hk∫
d3v νDv2

‖F0

)
−∆νF0

(
J0(a)v‖

∫
d3v ∆νv‖J0(a)hk∫
d3v ∆νv2

‖F0

+ J1(a)v⊥

∫
d3v ∆νv⊥J1(a)hk∫
d3v ∆νv2

‖F0

)
(4.18)

where k is the wavenumber and a ≡ kv⊥/Ω0. The velocity-dependent collision
frequencies νs, νD, νE, and ∆ν are given by

νs =
2νsu
x3

(
Erf[x]− 2xe−x

2

√
π

)
(4.19)

νD =
1

x2

(
νsu

Erf[x]

x
− νs

4

)
(4.20)

νE =
2νsu
x3

(
Erf[x]− 4xe−x

2

√
π

)
(4.21)

∆ν = νD − νs, (4.22)

with νsu the frequency of collisions of particles of species s with particles of species
u. Details on numerical implementation of the collision operator (4.18) are given in
Chapter 6.
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4.3.2.2 Numerical dissipation

Numerical dissipation enters in Trinity through two mechanisms. The first
is the optional decentering of spatial and temporal finite differences, as described in
Ref. [51]. The lowest order contribution to dissipation due to decentering in time
and space is

∂2h

∂t∂θ

[
∆θ

(
δ − 1

2

)
+
(
v‖
)
j+1/2

∆t

(
β − 1

2

)]
− ∂2 〈χ〉R

∂t∂θ

[
∆θ

(
δ − 1

2

)
qF0

T

]
,

(4.23)
where ∆θ is the grid spacing along the field line, ∆t is the time step size, and δ and β
are parameters that allow for the variation of the spatial and temporal discretization
schemes between fully explicit (δ or β = 0) and fully implicit (δ or β = 1)1

In order to see how this term leads to dissipation, we consider the simplified
system governed by the equation

∂h

∂t
+ v

∂h

∂θ
= 0. (4.24)

Finite differencing this equation using the scheme given in Ref. [51], we find that
numerically we are solving the equation

∂h

∂t
+ v

∂h

∂θ
≈ − ∂2h

∂t∂θ

[
∆θ

(
δ − 1

2

)
+ v∆t

(
β − 1

2

)]
. (4.25)

Assuming h = h̃(t)eikθ, we obtain the solution

h̃(t) ∼ exp

[
kvt

i− k (∆θ (δ − 1/2) + v∆t (β − 1/2))

]
, (4.26)

which is damped unless β = δ = 1/2, as show in Fig. 4.6. While decentering of
finite differences can sometimes improve numerical stability, care must be taken
to ensure such artificial dissipation does not lead to unphysical behavior. This is
typically done by monitoring the ratio of artificial to physical dissipation, which,
ideally, should be small.

The second source of numerical dissipation arises in systems with sheared
magentic fields due to the necessity of a ’twist-and-shift’ parallel boundary condi-
tion [11]. This non-periodic boundary condition couples modes at opposite ends of
the simulation domain along the field line. Since only a finite number of modes can
be kept in a simulation, some modes will eventually couple to modes that are not
present, and this information is lost. The information that is lost is replaced by a
smoothed distribution function, leading to a loss of entropy. If a sufficiently large
number of modes are kept in the simulation, the energy contained in the highest
modes, and therefore the lost entropy, should be negligible. Currently, this entropy
loss is not regularly diagnosed in Trinity. In principle, it could (and should) be
diagnosed in order to verify that the entropy lost is small compared to the entropy
generated by collisions.

1Trinity actually uses β̃ = β − 1/2, but we choose to use β here for simplicity.
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4.4 Velocity space resolution diagnostics

There are numerous ways in which one could try to determine whether or
not a particular simulation is well-resolved in velocity space. Ideally, one would
perform a grid convergence study for each simulation; if quantities of interest are
unchanged by doubling the number of grid points, one can feel relatively confident
in the simulation results. However, this process is computationally expensive, as
it involves running a simulation multiple times with an excessive number of grid
points. Consequently, it is not desirable to perform a grid convergence study for
every simulation. In practice, one tests convergence for a problem thought to be
resolution intensive and posits that other simulations, which likely require fewer grid
points, are therefore resolved. Unfortunately, one seldom knows in advance how fine
the structure in velocity space will become, so one can’t be fully confident that every
simulation is resolved.

An alternative approach that has recently gained popularity in the computa-
tional plasma physics community involves monitoring entropy balance in the sys-
tem [49, 50]. Multiplying the gyrokinetic equation (4.1) by hT0/F0 and integrating
over all phase space gives the desired relation for entropy balance:

1

2

∂S

∂t
= X + Γ +H, (4.27)

where

S =

∫
d3r

∫
d3v

T0

F0

h2 (4.28)

is a lowest order expression for the perturbed entropy,

X =

∫
d3r

∫
d3v q

∂ 〈χ〉
∂t

h (4.29)

describes turbulent heating,

Γ = −
∫
d3r

∫
d3v hT0vχ · ∇ lnF0 (4.30)

is the entropy flux due to background inhomogeneity, and

H =

∫
d3r

∫
d3v

hT0

F0

〈C[h]〉 (4.31)

describes entropy change due to collisional heating.
Since the gyrokinetic equation itself is automatically satisfied by a gyrokinetic

solver, the only possible sources of inbalance in Eq. (4.27) come from numerical
dissipation and errors in the numerical approximations to phase space integrals. If
the change in entropy due to numerical dissipation is also diagnosed and included
in the entropy balance, as is often the case, then we are left with errors due only
to phase space integration. Since the errors in these particular integrals are not di-
rectly related to errors in the calculation of the distribution function at the newest
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timestep, they do not necessarily correlate with the simulation resolution. In par-
ticular, one could easily define a poorly-resolved system for which this diagnostic
predicts perfect entropy balance. One such example is the linear, collisionless ion
acoustic wave in a slab (treated in detail in Appendix B). For this case, we numer-
ically find entropy balance despite the fact that the numerical damping rate goes
bad due to poor resolution in velocity space.

Of course, one could simply produce plots or movies of the distribution function
in velocity space over the course of the simulation to see if structure develops at the
gridscale. This is undoubtedly useful and possibly sufficient in some cases. However,
what exactly one sees depends on how the data is visualized; for data on irregularly
spaced grids, the interpolation scheme used to generate the images often introduces
erroneous or misleading structure. Furthermore, for simulations involving non-trivial
spatial structure, one would have to examine movies of the distribution function at
each point in physical space. This is a memory- and time-intensive approach that
is rarely feasible.

We would like to have computationally cheap diagnostics that provide real-
time information on velocity space resolution that is easy to analyze and interpret.
In the following subsections, we present two such diagnostics developed for imple-
mentation in Trinity that could easily be adapted for use in other continuum kinetic
simulations.

4.4.1 Integral error estimates

Upon consideration of the collisionless gyrokinetic-Maxwell’s system of equa-
tions, one finds that the only nontrivial operation in velocity space is integration,
which enters in the calculation of the electromagnetic fields. Consequently, resolu-
tion in velocity space is limited only by the accuracy with which the velocity space
integrals are calculated. By calculating the error in our numerical integration, we
are thus able to monitor velocity space resolution.

In particular, when we discretize the gyrokinetic equation, we obtain an equa-
tion of the form

gj+1 = G [gj,Φj,Φj+1, χj, χj+1] , (4.32)

where g ≡ 〈f1〉 is the perturbed, guiding center distribution function, Φ is the
electrostatic potential, χ is the generalized electromagnetic potential defined in
Eq. (4.5), G is a function that depends on the details of the numerical scheme,
and the subscript denotes the timestep. We assume that the time-converged solu-
tion for g is independent of the initial condition. Since using the calculated gj and Φj

is equivalent to specifying a new initial condition, we find that the time-converged
solution is independent of errors in g and Φ at earlier timesteps. This is convenient
because it means we can monitor resolution merely by calculating the error made
in the latest timesteps of a time-converged simulation.

Ideally, we would accomplish this by calculating estimates for the error in
Φj+1 and χj+1 and plugging these into Eq. (4.32) to obtain an error estimate for
gj+1. This might be feasible for linear systems, but the presence of nonlinear terms
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makes this approach computationally prohibitive. Consequently, we must define an
alternative quantity whose error estimate is cheaper to compute, but that can still
be used as a means of monitoring velocity space resolution. There are numerous
possible candidates; we choose to compute two quantities, vΦ and vA, related to
∇⊥Φ and ∇⊥A‖: (

vΦ

vA

)
= max{kx, ky}

(
Φ(θ, kx, ky)
A‖(θ, kx, ky)

)
, (4.33)

where kx and ky are the wavenumbers corresponding to the x − y coordinates x ≡
(ψ − ψ0) q0/B0r0 and y ≡ − (α− α0) r0/q0 [11]. Here, ψ is the poloidal flux, α is
the field line label, B0 is the background magnetic field at the magnetic axis, r0 is
the distance from the magnetic axis to the center of the simulation domain, and q0

is the safety factor on the field line of interest, labeled by (ψ0, α0). The quantities
in Eq. (4.33) were chosen because, with the exceptions of the parallel convection
term and one source term, Φ and A‖ always enter the gyrokinetic equation for
g multiplied by either kx or ky. Therefore, it is reasonable that this k-weighted
quantity is most likely to be responsible for errors in gj+1. Although not considered
here, the expression (4.33) could potentially be improved by including k‖ in the
max operator. This would take into account the effect of the parallel convection
term. However, there is recent theoretical [15] and numerical [16, 17] evidence
which suggests that velocity space structure is primarily generated by nonlinear
perpendicular phase mixing (instead of linear, parallel phase mixing).

Having chosen appropriate indicators of velocity space resolution, we must
devise a method for estimating the error in these quantities. This error depends on
the particular numerical integration scheme used. For the energy and untrapped λ
integrals, which use Gaussian quadrature, the error, εG, is given by

εG = γmf
(2m)(ζ), (4.34)

where f is the integrand, m is the number of grid points, and ζ is some unkown
point in the interval of integration. The quantity γm is

γm =
22m+1 (m!)4

(2m+ 1) [(2m)!]3
(4.35)

for the untrapped λ and finite domain energy integrals that use Gauss-Legendre
quadrature and

γm =
(m!)2

(2m)!
(4.36)

for the semi-infinite domain energy integral that uses Gauss-Laguerre quadrature.
The error, εL, for the trapped λ integrals, which use a newly upgraded integration
scheme based on Lagrange interpolating polynomials (see, e.g. Ref. [56]), is given
by

εL =
1

m!

∫
f (m)(ζ)π(x)dx, (4.37)
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where

π(x) =
m∏
i=1

(x− xi) , (4.38)

with xi the ith grid point. It should be noted that ζ in Eqn (4.37) is an unknown
function of x whose domain is some subset of the interval of integration.

From Eqns (4.34) and (4.37), we see that Gaussian quadrature gives exact
results for polynomials of degree less than 2m, while the Lagrangian method gives
exact results only for polynomials of degree less than m. We say that the two
schemes have degrees of precision 2m − 1 and m − 1, respectively. This difference
arises because the grid points in the Lagrangian method are fixed by boundary
conditions, whereas the grid points in Gaussian quadrature are free parameters
optimally chosen to improve the scheme’s degree of precision.

Unfortunately, the formal error expressions (4.34) and (4.37) are not very
useful in practice: they require information about high-order derivatives of the dis-
tribution function, which is unavailable. As an alternative estimate for the error, we
choose to compare multiple integral approximations computed with different degrees
of precision, a common technique in numerical analysis.

4.4.1.1 General description of the scheme

Given the value of a function f(x) at N fixed points on the interval [a, b],

we would like to find two different approximations to the integral
∫ b
a
f(x)dx. In

our earlier discussion, we stated that an approximation with degree of precision
N − 1 can be found using a technique based on Lagrange interpolation; we call this
approximation Ah. If we instead choose to use only M of the given functional values
(M < N), we can use the same technique to find another integral approximation,
Al, with degree of precision M − 1. An estimate for the absolute error εa in the less
accurate of these two approximations is obtained by taking the difference between
the two:

εa = |Ah − Al| . (4.39)

Making the reasonable assumption that the approximation with higher degree of
precision is more accurate, εa represents the error in Al. However, it can also be
used as a more conservative error estimate for Ah.

If the N points are chosen according to Gaussian quadrature rules, then one
can find an integral approximation with degree of precision 2N − 1. As before,
a second approximation can be obtained by using only M of the N grid points.
However, due to the uniqueness of the grid points used for Gaussian quadrature,
the M -point grid no longer satisfies Gaussian quadrature rules. As a result, this
second approximation once again has degree of precision M − 1. Since the degrees
of precision of the two approximations differ by greater than a factor of two, the
resulting error estimate is likely to be very conservative when applied to Ah. The
factor of approximately two difference in degree of precision makes this error estimate
similar to that obtained by comparing results from runs with N and N/2 grid points,
respectively (for which the degrees of precision would be 2N − 1 and N − 1).
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The conservative nature of the error estimate for Ah depends upon our assump-
tion that a higher degree of precision results in a more accurate integral approxima-
tion. For Gaussian quadrature, it can be shown that the error in the integral ap-
proximation can be made arbitrarily small by choosing the degree of precision large
enough [56]. The same result does not necessarily hold for the Lagrangian method
with arbitrary grid spacing because the weights in this case are not all guaranteed
to be positive. However, the error εM in an M -point integral approximation satisfies

εM ≤ 2 ε

M∑
i=1

∣∣∣w(M)
i

∣∣∣ (4.40)

≤ 2εM max
i=1,M

|wi| (4.41)

= 2εMκ(M), (4.42)

where ε can be chosen arbitrarily small for large enough M , and w
(M)
i is the weight

corresponding to the ith grid point out of M . From this result, we see that as long
as κ is bounded when M → ∞, then εM → 0 as M → ∞. This cannot be verified
in advance, but one can gain confidence by checking a posteriori. In practice, we
calculate κ for the chosen M and subdivide the integration domain into subintervals
with fewer points if κ is larger than some reasonable value.

4.4.1.2 Implementation in Trinity

In Trinity, we must compute two-dimensional integrals over energy and λ.
As stated in Sec. 4.3, each of these integrals is effectively separated into two by
splitting the λ integration into trapped and untrapped regions. Since the number of
grid points in energy and both λ regions can be varied independently of each other,
we wish to monitor resolution in each of these three variables individually. This
entails computing three separate integral error estimates: one for energy integrals,
one for untrapped λ integrals, and one for trapped λ integrals.

These integral error estimates are calculated using the technique described in
the previous subsection. For energy and untrapped λ integrals, Gaussian quadrature
is used to obtain the two-dimensional integral approximation Ah. This approxima-
tion has degree of precision 2Nε − 1 for the energy integration and 2Nu − 1 for the
untrapped λ integration, where Nε and Nu are the number of energy and untrapped
λ grid points, respectively. To obtain the second approximation, Al, we fix the grid
and weights for one variable and drop one grid point for the other variable, recom-
puting the weights. As an example, we choose to drop an untrapped λ grid point.
The degree of precision for Al is then 2Nε− 1 for the energy integration and Nu− 2
for the untrapped λ integration. Since there is nothing special about the particular
grid point we drop, we repeat the process a total of Nu times, each time dropping a
different point and computing a different set of weights. The final error estimate is
an average of these error estimates.

For the trapped λ integrals, Lagrangian quadrature is used to obtain Ah, which
has degree of precision Nt − 1. We obtain the approximation Al by dropping two
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Figure 4.7: Red grid points are sample trapped λ grid points that are dropped when
calculating integral approximation with lower degree of precision.

points symmetrically about v‖ = 0, as shown in Fig. 4.7. We drop an additional point
here because it provides a slightly more conservative error estimate and because
maintaining the symmetry of the grid points provides better stability for the weights
associated with the Lagrange interpolation scheme. As before, we repeat this process
for each possible grid point pair and take the average of the individual error estimates
to get the final error estimate.

All modified grids and weights necessary for the integral error estimates are
computed once at initialization and need not be computed again. The additional
integrations necessary to obtain our error estimates are computationally cheap when
compared to the expense of solving for the distribution function and fields at each
time step. Furthermore, we do not need an error estimate at each time step, so
the diagnostic can be used sparingly. Consequently, our error estimate comes at
essentially no extra cost.
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4.4.2 Spectral method

An alternative method for testing v-space resolution is to expand the velocity
space distribution function in an appropriate basis set and monitor the amplitude
of the basis function coefficients. Whenever the highest mode number coefficients
that can be accurately calculated in the simulation acquire appreciable amplitudes,
we can no longer feel confident that the simulation is resolved. Since we choose
our grid points according to Gauss-Legendre quadrature, it is convenient (and most
accurate) to choose the Legendre polynomials as our basis functions. The coefficient
of the mth Legendre polynomial in the expansion of h is given by

cm =
2m+ 1

2

∫ 1

−1

h(s)Pm(s)ds (4.43)

≈ 2m+ 1

2

nε−1∑
i=1

wih(si)Pm(si), (4.44)

where Pm is the mth Legendre polynomial, and {wi} are the weights associated with
Gauss-Legendre quadrature. The integral approximation in Eq. (4.44) has degree
of precision 2N − 1. Assuming h has a degree of at least m (otherwise cm = 0), our
approximation for cm is only exact for m < N .

There are various ways in which one could use these {cm} to estimate the error
in velocity space resolution. We assume locality of interaction between the various
modes so that we only have to monitor the amplitudes of the few highest modes. At
each (θ, kx, ky)-point, we find the maximum amplitude of the three highest mode
number spectral coefficients, ch,max, and the maximum amplitude of all the spectral
coefficients, cmax. We then use the following normalized sum as a relative estimate
for the error:

εc =
∑
θ,kx,ky

ch,max(θ, kx, ky)

/ ∑
θ,kx,ky

cmax(θ, kx, ky). (4.45)

When the normalized amplitude εc grows too large, we can no longer be confident
that the simulation is resolved. Of course, how large εc can get before resolution
suffers varies from problem to problem. As before with the integral method, we
determine a scaled estimate of the error based on empirical evidence from a wide
range of simulation data.

4.4.3 Application of error diagnostics

We have applied both the integral and spectral error diagnostics to a diverse
set of simulations, including: linearly growing modes such as the electron drift
wave and the ITG mode; linearly damped modes such as the ion acoustic wave and
kinetic Alfven wave; neoclassical transport; and nonlinear dynamics of slab ETG
and toroidal ITG modes. From these simulations, we have determined empirical
scaling factors for our conservative error estimates. Here, we present typical results
from a cross-section of the above simulations.
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Figure 4.8: Comparison of actual and (unscaled) estimated error in wave frequency
due to insufficient resolution in energy (top left), untrapped λ (top right), and
trapped λ (bottom). The actual wave frequency, ω, is determined from a higher
resolution run with 64 grid points in energy and both trapped and untrapped λ.

The actual relative error, ε, is then defined to be ε =
√
|ω−ωn|2

|ω|2 , where ωn is the

approximation to ω obtained from a run with n grid points.
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Figure 4.9: Non-Boltzmann part of the perturbed distribution function, normalized
by F0(a/ρi). The use of a polar grid in velocity space minimizes the number of grid
points necessary for resolution.

Fig. 4.8 compares the unscaled error estimates in energy and λ with the actual
errors in growth rate as we vary the number of grid points in a linear simulation of
the collisionless toroidal ITG mode (using Cyclone base case parameters [30]). The
simulation remains well-resolved down to very few grid points, and, qualitatively,
the error estimates agree well with the actual error. The error due to resolution
in untrapped λ is still small for as little as four grid points due to our choice of
velocity variables, as illustrated by the snapshot of the distribution function shown
in Fig. 4.9.

Figs. 4.10 and 4.11 show the damping of A‖ and the corresponding scaled error
estimates for the simulation of a collisionless kinetic Alfven wave. The collisionless
damping rate in Fig. 4.10 agrees with theory until sub-gridscale structure devel-
ops in velocity space, at which point damping ceases. The onset of sub-gridscale
structure corresponds to the peak in scaled error in Fig. 4.11. The addition of a
small collisionality prevents sub-gridscale structure, as shown in Fig. 4.10, where the
damping rate of A‖ agrees well with theory indefinitely. This is accurately predicted
by the error estimates of Fig. 4.12, which never reach appreciable magnitude.
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Figure 4.10: Barnes damping of the kinetic Alfven wave. In the absence of collisions
(left), sub-grid scale structures develop in velocity space, and the damping rate
goes bad. A small collisionality (ν � γ) prevents the development of sub-grid
scale structures in velocity space, and the damping rate remains correct indefinitely
(right).

Figure 4.11: Integral (left) and spectral (right) error estimates for the collisionless
kinetic Alfven wave.
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Figure 4.12: Integral and spectral error estimates correctly indicate that the weakly
collisional kinetic Alfven wave simulation is well resolved.

4.5 Adaptive collision frequency

As stated earlier, we would like to know what combination of dissipation and
grid spacing is necessary for a resolved simulation. One way to approach this prob-
lem is to fix the dissipation and vary the number of grid points to find how many
are required to get an accurate result. This is the general idea behind the error
estimation diagnostics described in the previous section. However, if we wanted to
use this approach to ensure that the simulation remains resolved, we would have
to implement an adaptive grid, which is difficult to do for massive, multi-processor
calculations.

Instead, we choose an alternative approach: we fix the number of grid points
and vary the dissipation until we have a well-resolved result. In particular, we
have implemented an adaptive collision frequency in Trinity that allows for the
independent variation of the collisionality associated with pitch-angle scattering and
energy diffusion. Given an acceptable error tolerance for velocity space calculations,
a scaled version of the integral error estimate described in the previous section is
used to determine whether or not the simulation is well-resolved. The collision
frequency is then adjusted using a feedback process until the scaled estimate of the
error converges to within some pre-specified window of the desired error tolerance.
In this way, the approximate minimum possible dissipation is used to achieve an
acceptable degree of resolution in velocity space.

Of course, the amount of dissipation necessary to resolve a simulation at a fixed
number of grid points may be quite large if a coarse grid is used. Consequently, the
collisionless dynamics may be modified. As a result, it is necessary to compare the
converged collision frequency with dynamic frequencies of interest in the problem.
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Figure 4.13: (Left): Normalized electron heat flux vs. time for a nonlinear simulation
of ETG turbulence. Scaled estimates of the error in energy and λ resolution increase
during nonlinear saturation, but are kept within the specified error tolerance of
0.01 with the use of an adaptive collision frequency. (Right): Collision frequency
(normalized by k‖vth,e) vs. time.

As an example we consider a nonlinear simulation of electron temperature
gradient (ETG) turbulence in slab geometry (i.e. straight background magnetic
field). In the nonlinear phase, small scales are expected to develop in velocity
space, potentially challenging numerical resolution. In Fig. 4.13, we see that this is
indeed the case. Our velocity space resolution diagnostics indicate that the errors in
velocity space begin to increase sharply during the transition from linear instability
to turbulence. However, our use of an adaptive collision frequency prevents the
estimated error from exceeding the user-defined relative error tolerance (in this case,
0.01). We see that the error remains on the threshold of the error tolerance, while
the collision frequency for energy diffusion increases to a steady-state value of ν ≈
0.27 k‖vth,e, which is well below the dynamic frequency in the system. Consequently,
the collisionless dynamics are unaltered.

4.6 Summary

In this chapter, we discussed the development of small-scale structure in ve-
locity space, presented a set of velocity space resolution diagnostics for use in gy-
rokinetic simulations, and introduced an adaptive collisionality that allows us to
resolve simulations with an approximate minimal necessary dissipation for a fixed
number of grid points in velocity space. In Sec. 4.2 we demonstrated the tendency of
collisionless plasmas to develop increasingly fine scales in the distribution of particle
velocities and discussed the phase mixing processes that lead to such behavior.
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In Sec. 4.3 we described the treatment of velocity space in the gyrokinetic
code Trinity. We gave details on the choice of velocity space variables (energy
and pitch-angle) and discretization scheme, which is chosen to minimize the error of
the numerical integrals necessary to obtain the electromagnetic fields. This included
presentation of a newly implemented energy grid, which provides spectrally accurate
integrals over particle energies. Additionally, we gave a brief discussion of both the
physical and numerical dissipation mechanisms available for use in Trinity.

We discussed common approaches to monitoring velocity space resolution in
Sec. 4.4 and the difficulties associated with each. We then proposed two new mea-
sures of velocity space resolution and detailed implementation in Trinity. One of
the proposed resolution diagnostics involves obtaining estimates for the error in field
integrals by comparing numerical integrals obtained using integration schemes with
differing degrees of precision. The other resolution diagnostic involves decomposing
the perturbed distribution function into spectral components in velocity space and
monitoring the amplitude of the spectral coefficients. Both diagnostics should be
quite conservative.

We then applied our resolution diagnostics to a number of example problems,
including Landau damping of the ion acoustic wave, Barnes damping of the ki-
netic Alfven wave, and linear instability of the toroidal ITG mode. We found that
both diagnostics do well in qualitatively estimating errors due to limited velocity
space resolution. Due to their conservative nature, an empirical scaling factor was
necessary to obtain correct quantitative predictions.

In Sec. 4.5 we coupled the error estimates from our resolution diagnostics
with a model physical collision operator to develop an adaptive collision frequency.
This adaptive collision frequency allowed us to resolve velocity space while using
an approximate minimal necessary amount of dissipation. When using the adaptive
collision frequency, one must monitor the ratio of the collision frequency to the
dynamic frequency to ensure that one is still within the weakly collisional regime.

In conclusion, we found that dissipation was not necessary to resolve linear
instabilities, but it was necessary to resolve nonlinear dynamics and linearly damped
waves. For the nonlinear cases considered here (slab ETG and toroidal ITG), the
required collisionality for resolution obtained with the adaptive collision frequency
was found to be no larger than the physical collisionality used in modern fusion
experiments.
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Chapter 5
Linearized model Fokker-Planck collision operator for
gyrokinetics: theory

5.1 Introduction

It has long been known that in many turbulent systems the difference between
vanishingly small dissipation and no dissipation is striking, and that this can be
linked theoretically to the non-interchangeability of limits t→∞ and ν → 0, where
ν is e.g. viscosity, resistivity or collision frequency. Turbulence transfers energy
from scales at which it is injected into the system to scales where it is dissipated,
leading to heating. When the dissipation coefficients are small, the system has to
generate very fine-scale fluctuations in order to transfer the energy to scales at which
dissipation becomes efficient. However, with finite ν, there will always exist a scale
at which the injected energy is dissipated.

In plasma turbulence, all dissipation (meaning any effect that leads to irre-
versible heating) is ultimately collisional, so the transfer of energy generally occurs
in phase space — i.e., both in the position and velocity space (see extended dis-
cussion of energy cascade in plasma turbulence in Ref. [14] and references therein).
There are a number of specific mechanisms, both linear and nonlinear, that give rise
to phase-space mixing [54, 53, 14, 59, 60, 49, 15]. It is the resulting large gradients
in the velocity space that eventually bring collisions into play however small the col-
lision frequency (such small-scale velocity-space structure has, e.g., been found and
explicitly measured in gyrokinetic simulations [49, 61, 22, 16]). Thus, in any plasma
turbulence simulation, some effective collisionality should be present to smooth the
small-scale structure in the velocity.

While one may take the view that the numerical grid can play the role of effec-
tive collisions [50], we consider it to be a safer course of action to model collisional
physics in a controlled fashion. In order to explain why, we would like to emphasize
that, besides velocity-space smoothing, there is another key reason why collisions
must be included. Collisions, through the dissipation of small-scale fluctuations
in phase space, provide the link between irreversible plasma heating (macroscopic
transport) and turbulence, so they are necessary in order for the system to converge
to a statistically steady state. We shall now explain this statement.

Consider the δf kinetics detailed in Chapter 2. This model assumes that
it is physically reasonable to split the distribution function into a slowly (both
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spatially and temporally) varying equilibrium part and a rapidly varying fluctuating
part: f = F0 + δf . We saw in Chapter 2 that F0 is a Maxwellian distribution,
F0 = (n0/π

3/2v3
th) exp(−v2/v2

th), where n0 is density, vth = (2T0/m)1/2 is the thermal
speed, T0 is temperature and m is particle mass. This will be the case if collisions
are not extremely weak (for the weakly collisional formulation of δf gyrokinetics,
see Ref. [10]). One can show that the fundamental energy balance governing the
evolution of the turbulent fluctuations is [54, 14, 49, 15, 10, 62, 63, 64]

d

dt

(
−
∑
s

T0sδSs + U

)
=

P +
∑
s

∫∫
T0sδfs
F0s

C[δfs]dvdr,

(5.1)

where s is the species index, δS = −
∫∫

drdv δf 2/2F0 is the entropy of the fluctu-
ations, U =

∫
dr (E2 + B2)/8π is the energy of the (fluctuating) electromagnetic

field, P is the input power (energy source of the turbulence), and C[δf ] is the lin-
earized collision operator. In many types of plasma turbulence studied in fusion
contexts, the input power P is proportional to the heat flux and it is the parameter
dependence of the mean value of this quantity in the statistically stationary state
that is sought as the principal outcome of the simulations. We can see immediately
from the above equation that collisions are required to achieve such a steady state
(as has been shown in numerical simulations [50, 53, 49, 65]) and that in this steady
state, P must be balanced on the average by the collisional dissipation term.

The key property of the collision operator required for this transfer of energy
from turbulence to the equilibrium distribution to work correctly and, therefore, for
the heat fluxes to converge to correct steady-state values, is that the collision term
in Eq. (5.1) must be negative-definite:∫∫

δf

F0

C[δf ]drdv ≤ 0. (5.2)

This ensures that heating is irreversible and that collisions cannot decrease entropy,
the latter being the statement of Boltzmann’s H-theorem [66]. Any spurious sink of
entropy will adversely affect the balance between turbulent fluxes and dissipation,
so it is clear that any model for collisional dissipation must respect the H-theorem.

In view of the above discussion, we can formulate a reasonably restrictive set of
criteria for any model collision operator: providing dissipation at small scales; obey-
ing the H-theorem [Eq. (5.2)]; locally conserving particle number, momentum, and
energy; and vanishing on a (local, perturbed) Maxwellian distribution. While these
properties are analytically convenient, for numerical simulations the operator should
also be efficiently implementable and carry these properties (at least approximately)
over to the numerical scheme.

The effect of small angle Coulomb collisions on an arbirtrary distribution func-
tion was originally calculated by Landau [23]. In the δf kinetic model we naturally
consider the linearized Landau operator [67]. However, it is sufficiently complex that
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it would exceed the limits on numerical resources that can be realistically expended
on modeling the collisional physics. Consequently, several simplified model collision
operators have been developed, both for analytical and computational convenience,
that try to capture the qualitative essence, if not the quantitative detail, of the
physics involved [68, 24, 25]. This course of action is, indeed, eminently sensible:
from Eq. (5.1), it seems plausible that, at least as far as calculating integral charac-
teristics such as the turbulent fluxes is concerned, neither the exact functional form
of the collision operator (provided it satisfies the criteria discussed above) nor the
exact value of the collision frequency (provided it is sufficiently small) should be
important. All we need is a physically reasonable dissipation mechanism.

For these purposes, it has often been deemed sufficient to use the pitch-angle-
scattering (Lorentz) operator, sometimes adjusted for momentum conservation [68,
67]. However, in kinetic turbulence, there is no reason that small-scale velocity-
space structure should be restricted to pitch angles. In fact, standard phase-mixing
mechanisms applied to gyrokinetics produce structure in v‖ [59, 49], and there is
also nonlinear gyrokinetic phase mixing that gives rise to structure in v⊥, which
may be an even faster and more efficient process [60, 15, 14]. Thus, a priori one
expects to see small scales both in pitch angle and in the energy variable (ξ and v).
Indeed, it has been confirmed in simulations [22] that with only Lorentz scattering,
structure rapidly forms at the grid scale in energy. Thus, a numerically suitable
model collision operator must include energy diffusion.

In this chapter,1 we propose such an operator (other operators including energy
diffusion have been previously suggested [24, 25]; we include a detailed comparison
of our operator with these in Appendix E). Our model operator for like-particle col-
lisions, including both pitch-angle scattering and energy diffusion and satisfying all
of the physical constraints discussed above, is given in Sec. 5.2 (the proof of the H-
theorem for it is presented in Appendix C). In Sec. 5.3, it is converted (gyroaveraged)
into the form suitable for use in gyrokinetic simulations — a procedure that pro-
duces some nontrivial modifications. In Sec. 5.4, we explain how interspecies (and,
in particular, electron-ion) collisions can be modeled in gyrokinetic simulations to
ensure that such effects as resistivity are correctly captured. Section 5.5 contains a
short summary and a discussion of the consequences of the work presented here.

The anlytical developments presented in this chapter form the basis for the
numerical implementation of collisions in the publicly available gyrokinetic code
Trinity. This numerical implementation, as well as a suite of numerical tests are
presented in Chapter 6.

5.2 A New Model Collision Operator

In this section, we present a new model collision operator for like-particle
collisions that satisfies the criteria stated above. The interpecies collisions will be
considered in Sec. 5.4.

Let us start by introducing some standard notation. In discussing collision

1This chapter is taken from a co-authored paper currently in press [21]
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operators on phase space, we shall denote r the position variable in the physical
space and use the (v, ξ, ϑ) coordinates in velocity space, where v = |v| is the en-
ergy variable, ξ = v‖/v is the pitch-angle variable, and ϑ the gyroangle about the
equilibrium magnetic field. One can easily adapt the operators presented here to
unmagnetized plasmas, but as we are interested in gyrokinetic plasmas, we shall
concentrate on the strongly magnetized case. Taking the notation of Ref. [67] as
the standard, we introduce the normalized velocity variable x = v/vth and a set of
velocity-dependent collision frequencies for like-particle collisions:

νD(v) = ν
Erf(x)−G(x)

x3
, (5.3)

νs(v) = ν
4G(x)

x
, (5.4)

ν‖(v) = ν
2G(x)

x3
, (5.5)

νE(v) = 2νs(v)− 2νD(v)− ν‖(v), (5.6)

where Erf(x) = (2/
√
π)
∫ x

0
e−y

2
dy is the error function, G(x) = [Erf(x)−xErf′(x)]/2x2

is the Chandrasekhar function, and ν =
√

2πn0q
4 ln ΛT

−3/2
0 m−1/2 is the dimensional

like-particle collision frequency (here ln Λ is the Coulomb logarithm and q is the par-
ticle charge).

If one wishes to construct a model linearized collision operator, the following
general form constitutes a natural starting point

C[δf ] =
∂

∂v
·
[
D̂(v) · ∂

∂v

δf

F0

]
+ P [δf ](v)F0, (5.7)

where the first term is the “test-particle” collision operator and the second term
the “field-particle” operator. Most model operators can be obtained by picking a
suitably simple form for the velocity-space diffusion tensor D̂ and the functional P ,
subject to the constraints that one chooses to impose on the model operator.

In constructing our model operator, we retain the exact form of D̂ for the
linearized Landau collision operator [67]:

C[δf ] = νDL[δf ] +
1

v2

∂

∂v

(
1

2
v4ν‖F0

∂

∂v

δf

F0

)
+ P [δf ](v)F0, (5.8)

where we have explicitly separated the energy-diffusion part (the second term) and
the angular part (the first term), which includes pitch-angle scattering and is de-
scribed by the Lorentz operator:

L[δf ] =
1

2

[
∂

∂ξ
(1− ξ2)

∂δf

∂ξ
+

1

1− ξ2

∂2δf

∂ϑ2

]
. (5.9)

Our modeling choice is to pick P to be of the form

P [δf ](v) = νs
2v ·U [δf ]

v2
th

+ νE
v2

v2
th

Q[δf ]. (5.10)
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One can view this prescription as first expanding P in spherical harmonics (one can
easily show that they are eigenfunctions of the full field-particle operator), retaining
only the first two terms, and then arbitrarily factorizing the explicit v and δf de-
pendence of each harmonic. The functionals U [δf ] and Q[δf ] are mandated to have
no explicit velocity dependence. In this ansatz the v dependence is chosen so that
the final operator is self adjoint and also to ensure automatic particle conservation
by the field-particle operator:

∫
P [δf ](v)F0 dv = 0. Indeed the first term in Eq.

(5.10) gives a vanishing contribution to this integral because it is proportional to v,
and so does the second term because v4νEF0 = −(∂/∂v)(v5ν‖F0). The functionals
U [δf ] and Q[δf ] are now uniquely chosen so as to ensure that the model operator
conserves momentum and energy: a straightforward calculation gives

U [δf ] =
3

2

∫
νsvδf dv∫

(v/vth)2 νsF0 dv
, (5.11)

Q[δf ] =

∫
v2νEδf dv∫

v2 (v/vth)2 νEF0 dv
. (5.12)

These are in fact just the standard correction expressions used for the model pitch-
angle-scattering operator [68, 67] and for more complex operators including energy
diffusion [24].

To summarize, we now have the following model operator for like particle
collisions:

C[δf ] =
νD
2

[
∂

∂ξ
(1− ξ2)

∂δf

∂ξ
+

1

1− ξ2

∂2δf

∂ϑ2

]
+

1

v2

∂

∂v

(
1

2
v4ν‖F0

∂

∂v

δf

F0

)
+ νs

2v ·U [δf ]

v2
th

F0 + νE
v2

v2
th

Q[δf ]F0,

(5.13)

where the functionals U [δf ] and Q[δf ] are given by Eqs. (5.11) and (5.12). The
modeling choice of the field-particle operator that we have made [Eq. (5.10)] means
that, in order to compute our collision operator, we have only to calculate definite
integrals over the entirety of the velocity space — a significant simplification in
terms of computational complexity and ease of use in numerical simulations (see
Chapter 6).

As we have shown above, our operator conserves particles, momentum and
energy by construction. It is also not hard to see that it vanishes precisely when
δf/F0 = (1,v, v2) and linear combinations thereof, i.e. if δf is a perturbed Maxwellian.
From this and the fact that the operator is self adjoint, it can be shown that the
operator only conserves particles, momentum and energy and that no spurious con-
servation laws have been introduced by our model. Because the operator contains
the exact test-particle part, it provides velocity-space diffusion both in energy and
in angle and thus will efficiently dissipate small-scale structure. Finally, it satisfies
the H-theorem, as proved in Appendix C.

Our operator thus fulfills the criteria set forth in Sec. 5.1 to be satisfied by
a physically reasonable model operator. We now proceed to convert this operator
into a form suitable for use in gyrokinetics.
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5.3 Collisions in Gyrokinetics

The gyrokinetic theory is traditionally derived for a collisionless plasma [9, 69].
However, as we have argued in Sec. 5.1, even when the collision frequency is small,
collisions should be included in order to regularize the phase space and to ensure
convergence of fluxes to statistically stationary values. Mathematically, collisions
can be included in gyrokinetics if the collision frequency is formally ordered to be
comparable to the fluctuation frequency [10], ν ∼ ω ∼ k‖vth — the weakly collisional
limit (collisionality larger than this leads simply to fluid equations). In practice,
collision frequency tends to be smaller than the fluctuation frequency, but this need
not upset the formal ordering as long as it is not too small: the cases ν � ω and
ν � ω can be treated as subsidiary limits [15].

Under the formal ordering ν ∼ ω (and, in fact, also under an even less restric-
tive ordering allowing for even smaller collisions2), we have shown in Chapter 2 that
the equilibrium distribution function (lowest order in the gyrokinetic expansion) is
a Maxwellian, and the full distribution function can be represented as

f =

(
1− qΦ

T0

)
F0 + h(t,R, µ, ε), (5.14)

where F0 is a Maxwellian, Φ the electrostatic potential (a fluctuating quantity) and h
the (perturbed) distribution function of the particle guiding centers. Here ε = mv2/2
is the particle energy, µ = mv2

⊥/2B0 the first adiabatic invariant, B0 the strength of
the equilibrium magnetic field, R = r−ρ = r−b̂×v/Ω the guiding center position,
Ω the cyclotron frequency, and b̂ = B0/B0. The gyrokinetic equation, written in
general geometry and including the collision operator is then

∂h

∂t
+ (v‖b̂ + vD) · ∂h

∂R
+

c

B0

{〈χ〉R, h}

= −q ∂F0

∂ε

∂〈χ〉R
∂t

+
c

B0

{F0, 〈χ〉R}+ CGK[h], (5.15)

where χ = Φ − v ·A/c the gyrokinetic potential, 〈χ〉R = (1/2π)
∫
χ(R + ρ) dϑ is

an average over gyroangles holding R fixed (the “gyroaverage”), vD is the guiding
center drift velocity defined in Eq. (3.41) of Chapter 3.

The gyrokinetic collision operator CGK[h] is the gyroaverage of the linearized
collision operator. The latter acts on the perturbed distribution h holding the
particle position r (not the guiding center R) fixed. The latter nuance must be
kept in mind when working out the explicit form of CGK[h(R)] from the unaveraged
linearized operator C[h(r − ρ)].

Let us restrict our consideration to local simulations, which are carried out
in a flux tube of long parallel extent, but short perpendicular extent. In such
simulations, one assumes that the equilibrium profiles are constant across the tube,
but have non-zero gradients across the tube so as to keep all the appropriate drifts

2S. C. Cowley, unpublished
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and instabilities. This permits one to use periodic boundary conditions and perform
the simulations spectrally perpendicular to field lines [11]. Thus

h =
∑
k

eik·Rhk(l, v, µ), (5.16)

where l is a coordinate along the field line and the Fourier transform is understood to
be only with respect to the perpendicular components of R, i.e., k ≡ k⊥. Treating
the perpendicular coordinates spectrally confines all dependence on the gyroangle
ϑ to the exponent, thus we can compute the gyroangle dependence explicitly and
carry out the gyroaveraging of the collision operator in a particularly transparent
analytical way [25, 15]:

CGK[h] =

〈
C

[∑
k

eik·Rhk

]〉
R

=
∑
k

〈
eik·rC[e−ik·ρhk]

〉
R

=
∑
k

eik·R
〈
eik·ρC[e−ik·ρhk]

〉
R
,

(5.17)

where ρ = b̂× v⊥/Ω. Thus, in Fourier space

CGK[hk] =
〈
eik·ρC[e−ik·ρhk]

〉
, (5.18)

where 〈. . . 〉 refers to the explicit averaging over the ϑ dependence. Some general
properties of this operator are discussed in Appendix B of Ref. [15].

We now apply the general gyroaveraging formula Eq. (5.18) to our model op-
erator given by Eq. (5.13). The gyrokinetic transformation of variables (r, v, ξ, ϑ)→
(R, µ, ε, ϑ) mixes position and velocity space. However, in the collision operator,
to the lowest order in the gyrokinetic expansion, we can neglect spatial dependence
of µ that comes via the equilibrium magnetic field B0(r) and thus use the (v, ξ)
velocity variables. After some straightforward algebra, which involves converting
velocity derivatives at constant r to those at constant R and evaluating the arising
gyroaverages as detailed in Appendix D, we arrive at the following model gyrokinetic
collision operator

CGK[hk] =
νD
2

∂

∂ξ
(1− ξ2)

∂hk
∂ξ

+
1

v2

∂

∂v

(
1

2
v4ν‖F0

∂

∂v

hk
F0

)
− 1

4

[
νD(1 + ξ2) + ν‖(1− ξ2)

] v2

v2
th

k2
⊥ρ

2hk

+ 2νs
v⊥J1(a)U⊥[hk] + v‖J0(a)U‖[hk]

v2
th

F0 + νE
v2

v2
th

J0(a)Q[hk]F0,

(5.19)

where ρ = vth/Ω is the thermal Larmor radius (not to be confused with the velocity-
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dependent ρ), a = k⊥v⊥/Ω, J0 and J1 are Bessel functions and

U⊥[hk] =
3

2

∫
νsv⊥J1(a)hk dv

/∫
(v/vth)2 νsF0 dv, (5.20)

U‖[hk] =
3

2

∫
νsv‖J0(a)hk dv

/∫
(v/vth)2 νsF0 dv, (5.21)

Q[hk] =

∫
v2νEJ0(a)hk dv

/∫
v2 (v/vth)2 νEF0 dv. (5.22)

Note that since the position and velocity space are mixed by the gyrokinetic trans-
formation of variables, R = r − ρ, the collision operator now contains not just
pitch-angle and v derivatives but also a spatial perpendicular “gyrodiffusion” term.

It is important to make sure that the operator we have derived behaves in a
physically sensible ways in the long- and short-wavelength limits. When k⊥ρ � 1,
all finite-Larmor-radius effects disappear, and we end up with pitch-angle scattering
and energy diffusion corrected for energy and parallel momentum conservation —
the drift-kinetic limit. In the opposite limit, k⊥ρ� 1, we can estimate the behavior
of our operator by adopting the scaling of the velocity derivatives based on the non-
linear perpendicular phase mixing mechanism for gyrokinetic turbulence proposed
in Ref. [14]: this produces velocity-space structure with characteristic gradients
vth∂/∂v⊥ ∼ k⊥ρ (see also Refs. [60, 15]). With this estimate, we see that all the
field-particle terms in the operator are subdominant by a factor of (k⊥ρ)−3. Thus
the operator reduces to the gyrokinetic form of the test-particle Landau operator
in this limit. All diffusive terms are also equally large in this scaling, supporting
our supposition that energy diffusion needs to be included. These considerations
give us some confidence that we correctly model the diffusive aspects of the colli-
sional physics in a short-wavelength turbulent regime. Indeed, if one applies the
same estimates to the full linearized Landau operator, the Rosenbluth potentials of
the perturbation are small when k⊥ρ � 1 because they are integrals of a rapidly
oscillating function, so the dominant effect does, indeed, come entirely from the
test-particle part of the operator.

The gyrokinetic collision operator given by Eq. (5.19) respects the H-theorem:
3 ∫∫

h

F0

CGK[h] dRdv ≤ 0, (5.23)

which is the what has to be satisfied in order for heating and transport in gy-
rokinetics to be correctly calculated [10, 15]. The operator also manifestly diffuses
small-scale structure both in velocity and in (perpendicular) position space. One
cannot, however, perform the conservation-law tests upon this operator because one
cannot separate the position- and velocity-space dynamics, and hence collisional and
collisionless dynamics, in the gyrokinetic phase space. Thus, we take the view that
the conservation laws are guaranteed for the gyrokinetic collision operator in the
sense that they were guaranteed for the original model operator from which it was

3This can either be shown directly from Eq. (5.19) (analogously to the proof in Appendix C)
or inferred from Eq. (5.2) by transforming to gyrokinetic variables
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derived. For practical numerical applications, this leaves the question of how this
operator is best discretized and implemented. This is addressed in Chapter 6, where
we also demonstrate the correct performance of our model operator on a number of
test problems and show that all its new components (energy diffusion, gyrodiffusion,
conservation terms) are necessary to avoid unphysical results.

5.4 Electron-Ion Collisions

Let us now turn to the collisions between different species and focus on a
plasma containing only electrons and one species of ions with a mass ratio me/mi �
1. The smallness of the mass ratio allows for a significant simplification of the
interspecies collision terms. Since ion-electron collisions are subdominant to ion-ion
collisions [67], νie/νii ∼ (me/mi)

1/2, it is safe for most physical purposes to neglect
the ion-electron collisions and effects associated with them (such as the small slow
collisional change in the mean ion momentum). Thus, the ion collisions can be
modeled using the like-particle operator proposed above [Eq. (5.19)].

The situation is different for the electron-ion collisions, which are the same
order in mass ratio as the electron-electron collisions [67], νei ∼ νee. Thus, the full
electron collision operator has two parts:

C[δfe] = Cee[δfe] + Cei[δfe]. (5.24)

The electron-electron operator Cee[δfe] can be modeled by the like-particle operator
proposed above [Eq. (5.13)], the electrom-ion collision operator can be expanded in
the mass ratio and to lowest order reads [67]

Cei[δfe] = νeiD

(
L[δfe] +

2v · ui
v2

the

F0e

)
, (5.25)

νeiD(v) = νei

(vthe

v

)3

(5.26)

where νei =
√

2πn0iZ
2e4 ln ΛT

−3/2
0e m

−1/2
e is the dimensional electron-ion collision

frequency, Z = qi/e, e is the fundamental charge, L is the Lorentz operator given
by Eq. (5.9), and

ui =
1

n0i

∫
vδfi dv (5.27)

is the ion flow velocity. Thus, the electron-ion collisions are correctly modeled to
lowest order in the mass ratio by electron pitch-angle scattering off static ions plus
electron drag against the bulk ion flow. Note that the ion drag term is necessary
to correctly capture electron-ion friction and hence resistivity; failure to include
it leads to incorrect results, with mean electron momentum relaxed towards zero
rather than towards equality with the mean ion momentum.

Performing the conversion of Cei to the gyroaveraged form in a way analogous

79



to what was done in Sec. 5.3 and Appendix D, we get

Cei
GK[hek] = νeiD

[
1

2

∂

∂ξ
(1− ξ2)

∂hek
∂ξ
− 1

4
(1 + ξ2)

v2

v2
the

k2
⊥ρ

2
ehek +

2v‖J0(ae)u‖ik
v2

the

F0e

−Zme

mi

v2
⊥

v2
the

J1(ae)

ae
F0ek

2
⊥ρ

2
i

1

n0i

∫
2v′⊥

2

v2
thi

J1(a′i)

a′i
hik(v′)dv′

]
,

(5.28)

where

u‖ik =
1

n0i

∫
v‖J0(ai)hik dv (5.29)

and as = k⊥v⊥/Ωs for species s and the rest of the notation as the same as in
previous sections, with species indices this time.

Let us estimate the size of the four terms in Eq. (5.28) at the ion (long) and
electron (short) scales. The first term (pitch-angle scattering) is always important.
At the ion scales, k⊥ρi ∼ 1, the third term (parallel ion drag) is equally important,
while the second term (electron gyrodiffusion) and the fourth term are subdominant
by a factor of me/mi. At the electron scales, k⊥ρe ∼ 1, the pitch-angle scattering
and the electron gyrodiffusion (the first two terms) are both important. Since at
these scales k⊥ρi ∼ (mi/me)

1/2 � 1, the third and fourth terms are subdominant
by a factor (resulting from the Bessel functions under the velocity integrals) of
1/
√
k⊥ρi ∼ (me/mi)

1/4. In fact, they are smaller than this estimate because at these
short wavelengths, the ion distribution function has small-scale structure in velocity
space with characteristics scales δv⊥/vthi ∼ 1/k⊥ρi, with leads to the reduction of
the velocity integrals by another factor of 1/

√
k⊥ρi. Thus, at the electron scales,

the third and fourth terms in Eq. (5.28) are subdominant by a factor of (me/mi)
1/2.

These considerations mean that the fourth term in Eq. (5.28) is always negligi-
ble and can safely be dropped. The full model gyrokinetic electron collision operator
is therefore

CGK[hek] = νeiD

[
1

2

∂

∂ξ
(1− ξ2)

∂hek
∂ξ
− 1

4
(1 + ξ2)

v2

v2
the

k2
⊥ρ

2
ehek +

2v‖J0(ae)u‖ik
v2

the

F0e

]
+ Cee

GK[hek],

(5.30)

where the electron-electron model operator Cee
GK[hek] is given by Eq. (5.19) and u‖ik

by Eq. (5.29).
Finally, we note that since en0e(u‖i − u‖e) = j‖ is the parallel current, the

parallel Ampère’s law can be used to express u‖i in Eq. (5.30) in a form that does
not contain an explicit dependence on the ion distribution function:

u‖ik =
1

n0e

∫
v‖J0(ae)hek dv +

c

4πen0e

k2
⊥A‖k. (5.31)

This turns out to be useful in the numerical implementation of the electron operator,
detailed in Chapter 6.
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5.5 Summary

In Sec. 5.1 we have argued the necessity of dissipation in turbulence simula-
tions, justified the direct modeling of collisions in order to provide such dissipation
and postulated a set of constraints for a physically reasonable model collision oper-
ator. Previously used model operators were deemed unsatisfactory, in part because
the majority of them do not contain a mechanism for energy diffusion. Two of
the well-known existing model operators that contain energy diffusion are detailed
in Refs. [25] and [24]. However, the former does not satisfy the H-theorem [Eq.
(5.2)], and the latter incorrectly captures the smallest scales. These problems are
demonstrated and discussed in detail in Appendix E.

In Sec. 5.2 we presented a new operator [Eq. (5.13)] that successfully intro-
duces energy diffusion while maintaining the H-Theorem and conservation laws,
thus satisfying the conditions set forth in the introduction. This operator is then
transformed into gyrokinetic form in Sec. 5.3, correctly accounting for the gyrod-
iffusive terms and FLR effects [Eq. (5.19)]. In order to provide a complete recipe
for modeling the collisional effects in simulations, the same gyroaveraging procedure
is applied in Sec. 5.4 to electron–ion collisions, somewhat simplified by the mass-
ratio expansion [Eq. (5.30)]. This leaves us with a complete picture of collisions
in gyrokinetic simulations, capturing gyrodiffusion, resitivity and small-scale energy
diffusion.

When we discussed the gyroavergaing procedure in Sec. 5.3 we presented the
specific case of the application to Eulerian flux-tube δf gyrokinetic simulations [70,
55]. However, the form presented in Eq. (5.13) is suitable for inclusion in most
δf kinetic systems and even amenable to use in Lagrangian codes by applying the
methods of Refs. [71] or [72] to the gyroaveraged operator given by Eq. (5.19).
Indeed, by suitable discretization of the gyroaveraging procedure [55] it would also
be usable in a global Eulerian code.

We conclude by noting that the final arbiter of the practicality and effectiveness
of this collision model is the numerical implementation and testing performed in
Chapter 6, where our operator is integrated into the Trinity code. The battery
of tests shows that our operator not only reproduces the correct physics in the
weakly collisional regime but even allows a gyrokinetic code to capture correctly the
collisional (reduced-MHD) limit.
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Chapter 6
Linearized model Fokker-Planck collision operator for
gyrokinetics: numerics

6.1 Introduction

Collisions play an important role in gyrokinetics. An accurate collision opera-
tor is important for calculation of neoclassical transport [73, 74] and the growth rate
of instabilities such as trapped electron modes [75, 76], dissipative drift waves [77,
78, 51], and microtearing modes [79] in moderate collisionality regimes. Collisions
can also affect the damping of zonal flows [80] and other modes that provide a sink
for turbulent energy. In their absence, arbitrarily fine scales can develop in phase
space [54, 53, 15, 14, 81], which can in some cases pose challenges for discrete nu-
merical algorithms, especially in the long-time limit [82, 83]; even a modest amount
of collisions can make accurate numerical calculation much easier.

Furthermore, inclusion of a small collisionality keeps the distribution function
smooth enough in velocity space that the standard gyrokinetic ordering [9] for ve-
locity space gradients is satisfied. For example, the parallel nonlinearity [84, 85],
given by

− ∂

∂v‖

[
h

(
q

m
b̂ + v‖

b̂×∇B
B2

)
· ∇ 〈Φ〉

]
(6.1)

enters at the same order as the other terms in the gyrokinetic equation if the typical
scale of parallel velocity fluctuations, δv‖, is one order smaller in the gyrokinetic
expansion parameter ρ/L (ρ ≡ gyroradius and L ≡ background scale length) than
the thermal speed, vth. Here, h is the non-Boltzmann part of the perturbed distri-
bution function (defined more rigorously in the next section), Φ is the electrostatic
potential, B is the magnetic field strength, b̂ ≡ B0/B0, q is particle charge, m is
particle mass, and 〈 . 〉 denotes the gyroaverage at fixed guiding center position R.

While such a situation is possible in the collisionless limit, a small collisionality
prohibits the formation of structures with δv‖ ∼ (ρ/L)vth. The level of collisionality
necessary to negate the importance of the parallel nonlinearity can be calculated by
assuming a balance between collisions and fluctation dynamics:

∂h

∂t
∼ C[h]⇒ ωh ∼ νv2

th

∂2h

∂v2
, (6.2)

where C[h] describes the effect of collisions on h, ω is the fluctuation frequency,
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and ν is the collision frequency. From the above expression, we see that scales in
velocity space become small enough for the parallel nonlinearity to be important
only when the collision frequency satisfies ν ∼ (ρ/L)2ω. Such low collisionalities
are not present in most fusion plasmas of interest. Furthermore, if such an ordering
had to be adopted, the lowest order distribution function could become strongly
non-Maxwellian. This is clearly a problem for δf codes that assume an equilibrium
Maxwellian.

In light of the above considerations, it is important to include an accurate
treatment of dissipation in gyrokinetic simulations. In order to faithfully represent
gyrokinetic plasma dynamics at reasonable numerical expense, we take the view that
the form of the dissipation should be such that it: ensures satisfaction of the standard
gyrokinetic ordering; locally conserves particle number, momentum, and energy;
satisfies Boltzmann’s H-Theorem; and efficiently smooths phase space structure.
The first of these requirements has already been discussed in the context of the
parallel nonlinearity. Conservation properties have been found to be important, for
instance, in calculations of the neoclassical ion thermal conductivity [29], as well as
in a wide range of problems in fluid dynamics. The existence of an H-Theorem is
critical for entropy balance [54, 62, 10] and for the dynamics of the turbulent phase
space cascade [15, 14]. Efficient smoothing of phase space structures is necessary to
resolve numerical simulations at reasonable computational expense.

A commonly employed dissipation mechanism in gyrokinetic simulations is ar-
tificial (hyper) dissipation, often in physical (position) space [51, 70, 50, 81, 86].
Ideally, the form of the artificial dissipation should be chosen to satisfy the require-
ments listed above and should be tested for convergence to the collisionless result.
Of course, artificial dissipation alone is unable to capture the correct dynamics for
moderate to strongly collisional systems where turbulent fluxes and other observable
quantities depend sensitively on collisionality; for such systems, a physical dissipa-
tion model is desired.

A number of such model physical collision operators are employed in gyroki-
netic codes [51, 70, 50, 87]. These range in complexity from the Krook operator [88]
to the Rutherford-Kovrizhnikh operator [68] to the Catto-Tsang operator [25], all
of which have previously been implemented in GS2 (see, e.g. Ref. [87]). However,
none of these satisfy all of the properties we require of a good collision operator
(See Appendix E for a fuller discussion of this point). Here, we discuss numerical
implementation in Trinity of an improved model operator which: includes the ef-
fects of both pitch-angle scattering and energy diffusion (i.e. efficiently smooths in
phase space and ensures gyrokinetic ordering); conserves particle number, momen-
tum, and energy; satisfies Boltzmann’s H-Theorem; and reduces to the linearized
Landau test-particle operator in the large k⊥ρ limit. A full description of this op-
erator and a discussion of its desirable properties is given in Chapter 5. We will
focus on how such an operator can be implemented efficiently in gyrokinetic codes
while maintaining the properties listed above and on how our gyrokinetic dissipation
scheme (or any other) might be tested against a number of plasma physics problems.
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This chapter1 is organized as follows: in Sec. 6.2, we present the gyroaveraged
collision operator derived in Chapter 5 and examine properties that should be taken
into account when using it in numerical simulations; in Sec. 6.3, we describe our
numerical implementation of the collision operator; in Sec. 6.4 we present numerical
results for a number of tests demonstrating the ability of our collision operator
implementation to reproduce correct collisional and collisionless physics; and in Sec.
6.5, we summarize our findings.

6.2 Properties of the gyroaveraged collision

operator

In order to include collisions in gyrokinetics, we follow the treatment of Ref. [10]
and assume the collision frequency, ν, to be the same order in the gyrokinetic or-
dering as the characteristic fluctuation frequency, ω.2. As was shown in Chapter 2,
this leads to the requirement that the distribution of particles in velocity space is
Maxwellian to lowest order and allows us to represent the total distribution function
through first order in ρ/L (where ρ is ion gyroradius and L is the scale length of
equilibrium quantities) as

f(r, µ, ε, t) = F0(ε)

(
1− qΦ(r, t)

T0

)
+ h(R, µ, ε, t), (6.3)

where r is particle position, R = r − b̂ × v/Ω0 is guiding center position, µ ≡
mv2
⊥/2B0 is magnetic moment, ε ≡ mv2/2 is particle energy, F0 is a Maxwellian, Φ

is the electrostatic potential, B0 is the magnitude of the background magnetic field,
T0 is the background temperature, q is particle charge, and Ω0 = qB0/mc. The
gyrokinetic equation governing the evolution of h is given by

∂h

∂t
+
(
v‖b̂ + vD

)
· ∂h
∂R

+
c

B0

{〈χ〉R , h}

= −q∂F0

∂ε

∂ 〈χ〉R
∂t

+
c

B0

{F0, 〈χ〉R}+ 〈C[h]〉R ,
(6.4)

where b̂ ≡ B0/B0, vD is the drift velocity of guiding centers, χ ≡ Φ− v ·A/c, A is
the vector potential, {a, b} is the Poisson bracket of a and b, 〈a〉R is the gyroaverage
of a at constant R, and 〈C[h]〉R is the gyroaveraged collision operator.

For 〈C[h]〉R, we restrict our attention to the model collision operator presented
in Chapter 5. We work within the framework of the continuum gyrokinetic code
GS2 [51], which assumes periodicity in the spatial directions perpendicular to B0

in order to reduce the simulation volume to a thin flux tube encompassing a single
magnetic field line. Consequently, we require a spectral representation of 〈C[h]〉R:

〈C[h]〉R ≡
∑
k

eik·RCGK [hk], (6.5)

1This chapter taken from Ref. [22].
2Note that this ordering does not prevent one from considering the cases of ν � ω and ν � ω

as subsidiary orderings [15]
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where k is the perpendicular wavevector. For convenience, we reproduce the expres-
sion for the same-species part of CGK [hk] from Chapter 5 in operator form:

CGK [hk] ≡ L[hk] +D[hk] + UL[hk] + UD[hk] + E[hk], (6.6)

where

L[hk] ≡ νD
2

∂

∂ξ

(
1− ξ2

) ∂hk

∂ξ
− k2v2

4Ω2
0

νD
(
1 + ξ2

)
hk (6.7)

and

D[hk] ≡ 1

2v2

∂

∂v

(
ν‖v

4F0
∂

∂v

hk

F0

)
− k2v2

4Ω2
0

ν‖
(
1− ξ2

)
hk (6.8)

are the gyroaveraged Lorentz and energy diffusion operators (which together form
the test-particle piece of the linearized Landau operator, as shown in Refs. [25]
and [21]),

UL[hk] ≡ νDF0

(
J0(a)v‖

∫
d3v νDv‖J0(a)hk∫
d3v νDv2

‖F0

+ J1(a)v⊥

∫
d3v νDv⊥J1(a)hk∫
d3v νDv2

‖F0

)
(6.9)

and

UD[hk] ≡ −∆νF0

(
J0(a)v‖

∫
d3v ∆νv‖J0(a)hk∫
d3v ∆νv2

‖F0

+ J1(a)v⊥

∫
d3v ∆νv⊥J1(a)hk∫
d3v ∆νv2

‖F0

)
(6.10)

are the gyroaveraged momentum-conserving corrections to the Lorentz and energy
diffusion operators, and

E[hk] ≡ νEv
2J0(a)F0

∫
d3v νEv

2J0(a)hk∫
d3v νEv4F0

(6.11)

is the gyroaveraged energy-conserving correction (the conserving terms are an ap-
proximation to the field-particle piece of the linearized Landau operator). The elec-
tron collision operator has the following additional term to account for electron-ion
collisions:

Cei
GK [he,k] = νeiD

(1

2

∂

∂ξ

(
1− ξ2

) ∂he,k
∂ξ
− k2v2

4Ω2
0e

(
1 + ξ2

)
he,k +

2v‖u‖[hi,k]

v2
the

J0(ae)F0e

)
,

(6.12)
where ξ ≡ v‖/v is the pitch angle, a ≡ kv⊥/Ω0, J0 and J1 are Bessel functions of

the first kind, vth ≡
√

2T0/m is the thermal velocity, and u‖[hi,k] is the perturbed
parallel ion flow velocity. Expressions for the velocity-dependent collision frequencies
νD, ∆ν, ν‖, and νE are given in Chapter 5 (which follows the notation of Ref. [24]).

Having specified the form of our collision operator, we now discuss some of its
fundamental properties that guide our choice of numerical implementation.
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6.2.1 Collision operator amplitude

Even when the collisionality approaches zero, CGK [hk] can have appreciable
amplitude. There are two reasons for this: first, the velocity dependence of νD, νE,
and ∆ν is such that each go to infinity as v → 0 (so low-velocity particles are always
collisional); and second, we expect the distribution function to develop increasingly
smaller scales in v and ξ as collisionality decreases, so that the amplitude of the
terms proportional to ∂2h/∂ξ2 and ∂2h/∂v2 may remain approximately constant3

(i.e. CGK [hk] 6→ 0 as ν → 0) [54, 53, 15, 81]. The fact that CGK [hk] can be quite
large even at very low collisionalities means that it should be treated implicitly if
one wants to avoid a stability limit on the size of the time step, ∆t. In Sec. 6.3, we
describe our fully implicit implementation of the collision operator.

6.2.2 Local moment conservation

Since collisions locally conserve particle density, momentum, and energy, one
would like these properties to be guaranteed by the discrete version of the collision
operator. Mathematically, this means that the density, momentum, and energy
moments of the original (un-gyroaveraged) collision operator must vanish (for same-
species collisions). However, the non-local nature of the gyroaveraging operation
introduces finite Larmor radius (FLR) effects that lead to nonzero values for the
analogous moments of 〈C[h]〉R. Since this is the quantity we employ in gyrokinetics,
we need to find the pertinent relations its moments must satisfy in order to guarantee
local conservation properties.

This is accomplished by Taylor expanding the Bessel functions J0 and J1. In
particular, one can show that [21]

∫
d3v

 1
v
v2

 〈〈C[h]〉R〉r =
∑
k

eik·r
∫
d3v

 1

v‖b̂
v2

C0
GK [hk]−∇ · ΓC , (6.13)

where 〈.〉r denotes a gyroaverage at fixed r, C0
GK [hk] is the operator of Eq. (6.6) with

kρ = 0 (neglecting FLR terms but retaining nonzero subscripts k for h), and ΓC is
the collisional flux of number, momentum, and energy arising from FLR terms. Con-
sequently, the density, momentum, and energy moments of the gyrokinetic equation
can be written in the conservative form

∂M
∂t

+∇ · ΓM =

∫
d3v

 1

v‖b̂
v2

C0
GK [hk], (6.14)

where M ≡
(
δn nδu‖ δp

)T
represents the perturbed number, momentum, and en-

ergy densities, the superscript T denotes the transpose, and ΓM contains both the
collisional flux, ΓC , and the flux arising from all other terms in the gyrokinetic

3This is analagous to the result in fluid turbulence where the dissipation rate remains finite as
viscosity becomes vanishingly small.
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equation (for a more detailed discussion, see Ref. [21]). Thus, local conservation
properties are assured in gyrokinetics as long as the density, momentum, and en-
ergy moments of C0

GK [hk] vanish:

∫
d3v

 1
v‖
v2

C0
GK [hk] = 0. (6.15)

We describe how this is accomplished numerically in Sec. 6.3.

6.2.3 H-Theorem

In contrast with local conservation properties, the statement of theH-Theorem
is unmodified by gyroaveraging the collision operator. Defining the entropy as S =
−f ln f , Boltzmann’s H-Theorem tells us

∂S

∂t
= −

∫
d3r

V

∫
d3v ln[f ]C[f ] ≥ 0, (6.16)

where V ≡
∫
d3r and the double integration spans phase space (the velocity integra-

tion is taken at constant particle position r). Expanding the distribution function
as before, we find to lowest order in the gyrokinetic ordering∫

d3r

V

∫
d3v

h

F0

C[h] ≤ 0. (6.17)

Changing variables from particle position r to guiding center position R, we obtain∫
d3v

∫
d3R

V

h

F0

〈C[h]〉R ≤ 0, (6.18)

where now the velocity integration is taken at constant R. In this case, the non-
locality of the gyroaveraging operation leads to no modification of the H-Theorem
because of the definition of entropy as a phase-space averaged quantity (as opposed
to local conservation properties, which involve only velocity-space averages). There-
fore, one can easily diagnose entropy generation and test numerical satisfaction of
the H-Theorem in gyrokinetic simulations, as we show in Sec. 6.4.

6.3 Numerical implementation

It is convenient for numerical purposes to separately treat collisional and col-
lisionless physics. Thus, we begin by writing the gyrokinetic equation in the form

∂hk

∂t
= CGK [hk] +A[hk], (6.19)
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where A[hk] represents the rate of change of hk due to the collisionless physics. In
order to separate these terms, we utilize Godunov dimensional splitting [89], which
is accurate to first order in the timestep ∆t:

h∗k − hnk
∆t

= A[hnk, h
∗
k] (6.20)

hn+1
k − h∗k

∆t
= CGK [hn+1

k ], (6.21)

where n and n + 1 are indices representing the current and future time steps, and
h∗k is defined by Eq. (6.20) – it is the result of advancing the collisionless part of
the gyrokinetic equation. With h∗k thus given, we restrict our attention to solving
Eq. (6.21). For notational convenience, we suppress all further k subscripts, as we
will be working exclusively in k-space.

As argued in Sec. 6.2, we must treat the collision operator implicitly to avoid
a stability limit on the size of ∆t. We use a first order accurate backward-difference
scheme in time instead of a second order scheme (such as Crank-Nicholson [90])
because it is well known that the Crank-Nicholson scheme introduces spurious be-
havior in solutions to diffusion equations when taking large timesteps (and because
Godunov splitting is only first order accurate for multiple splittings, which will be
introduced shortly).

With this choice, hn+1 is given by

hn+1 = (1−∆tCGK)−1 h∗. (6.22)

In general, CGK is a dense matrix, with both energy and pitch-angle indices. Inver-
sion of such a matrix, which is necessary to solve for hn+1 in our implicit scheme,
is computationally expensive. We avoid this by taking two additional simplifying
steps. First we employ another application of the Godunov splitting technique,
which, combined with the choice of a (ξ, v) grid in Trinity [81], allows us to con-
sider energy and pitch-angle dependence separately: 4

h∗∗ = [1−∆t (L+ UL)]−1 h∗ (6.23)

hn+1 = [1−∆t (D + UD + E)]−1 h∗∗, (6.24)

The h∗ and h∗∗ are vectors whose components are the values of h at each of the
(ξ, v) grid points. In Eq. (6.23) we order the components so that

h ≡ (h11, h21, ..., hN1, h12, ..., hNM)T , (6.25)

where the first index represents pitch-angle, the second represents energy, and N
and M are the number of pitch-angle and energy grid points, respectively. This
allows for a compact representation in pitch-angle. When solving Eq. (6.24), we
reorder the components of h so that

h ≡ (h11, h12, ..., h1N , h21, ..., hNM)T , (6.26)

allowing for a compact representation in energy.

4We note that an implicit treatment of the Catto-Tsang operator (including energy diffusion)
has independently been implemented in GS2 using the same splitting technique [87].

88



6.3.1 Conserving terms

The matrices 1−∆tL and 1−∆tD are chosen to be tridiagonal by employing
three-point stencils for finite differencing in ξ and v. This permits computationally
inexpensive matrix inversion. However, the full matrices to be inverted include the
momentum- and energy-conserving operators, U and E, which are dense matrices.
We avoid direct inversion of these matrices by employing the Sherman-Morrison
formula [91, 92], which gives x in the matrix equation Mx = b, as long as M can
be written in the following form:

M = A+ u⊗ v, (6.27)

where ⊗ is the tensor product. The solution is then given by

x = y −
[

v · y
1 + v · z

]
z, (6.28)

where y = A−1b, z = A−1u, and the dot products represent integrals over velocity
space. If A−1 is known or easily obtainable (as in our case), this formulation pro-
vides significant computational savings over the straighforward method of directly
inverting the dense matrix M .

Details of the application of the Sherman-Morrison formula to Eqs. (6.23)
and (6.24) are given in Appendix F. Here, we state the main points. The matrix
operators L and D are to be identified with A, and the integral conserving terms U
and E can be written in the form of the tensor product, u⊗ v. Identifying h∗∗ and
hn+1 with x, we find that multiple applications of the Sherman-Morrison formula
give

h = y2 −
[

v2 · y2

1 + v2 · z2

]
z2, (6.29)

where

y2 = y0 −
[

v0 · y0

1 + v0 · s0

]
s0 −

[
v1 · y0

1 + v1 ·w0

]
w0, (6.30)

z2 = z0 −
[

v0 · z0

1 + v0 · s0

]
s0 −

[
v1 · z0

1 + v1 ·w0

]
w0. (6.31)

The quantities v0, v1, v2, z0, s0, w0, and y0 are specified in Table F.1 in Appendix
F. With the exception of y0, each of these quantities is time-independent, so they
need be computed only once at the beginning of each simulation. Consequently,
inclusion of the conserving terms in our implicit scheme comes at little additional
expense.

We note that when Eq. (6.29) is applied to computing the inverse matrix in
Eq. (6.23), the corresponding v2 is nonzero only for the electron collision operator.
This term arises by using the parallel component of Ampere’s law to rewrite the
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electron-ion collison operator of Eq. (6.12) as

Cei
GK [he] = νeiD

(
1

2

∂

∂ξ

(
1− ξ2

) ∂he
∂ξ
− k2v2

4Ω2
0,e

(
1 + ξ2

)
he

+
2v‖
v2
the

J0(ae)F0e

[
u‖[he] +

ck2

4πen0,e

A‖

])
,

(6.32)

where e is the magnitude of the electron charge, u‖[he] is the parallel component of
the electron fluid velocity, and n0,e is the equilibrium electron density. For electron
collisions, the A‖ term is absorbed into h∗ so that we use the modified quantity

h̃∗e = h∗e + νeiD∆t
ck2v‖

2πev2
the
n0,e

A‖J0(ae)F0,e (6.33)

when applying the Sherman-Morrison formula, where A‖ from the n + 1 time level
is used (for details on the implicit calculation of A‖, see Ref. [51]).

6.3.2 Discretization in energy and pitch angle

We still must specify our choice of discretization for CGK . Ideally, we would
like the discrete scheme to guarantee the conservation properties and H-Theorem
associated with C. As discussed in Sec. 6.2, the former is equivalent to requiring
that the kρ = 0 component of CGK , C0

GK , satisfy Eq. (6.15). We now proceed to
show that this requirement is satisfied by carefully discretizing the conserving terms
and by employing a novel finite difference scheme that incorporates the weights
associated with our numerical integration scheme.

We begin by writing C0
GK [h] for same-species collisions:

C0
GK [h] =

νD
2

∂

∂ξ

(
1− ξ2

) ∂h
∂ξ

+
1

2v2

∂

∂v

(
ν‖v

4F0
∂

∂v

h

F0

)
+ νDv‖F0

∫
d3v νDv‖h∫
d3v νDv2

‖F0

−∆νv‖F0

∫
d3v ∆νv‖h∫
d3v ∆νv2

‖F0

+ νEv
2F0

∫
d3v νEv

2h∫
d3v νEv4F0

.

(6.34)

With C0
GK thus specified, we now consider numerical evaluation of the relevant

moments of Eq. (6.34). To satisfy number conservation (
∫
d3v C0

GK [h] = 0), velocity
space integrals of each of the terms in Eq. (6.34) should vanish individually. For
integrals of the first two terms to vanish, we require a finite difference scheme that
satisfies a discrete analog of the Fundamental Theorem of Calculus (i.e. conservative
differencing); for the last three terms, we must have a discrete integration scheme
satisfying

∫
d3v νDv‖F0 =

∫
d3v ∆νv‖F0 =

∫
d3v νEv

2F0 = 0. The requirement
that

∫
d3v νDv‖F0 =

∫
d3v ∆νv‖F0 = 0 is satisfied by any integration scheme

with velocity space grid points and associated integration weights symmetric about
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v‖ = 0, which is true for the (ξ, v) grid used in Trinity. By substituting for νE
everywhere using the identity

νEv
2F0 = − 1

v2

∂

∂v

(
ν‖v

5F0

)
, (6.35)

the other integral constraint (
∫
d3v νEv

2F0 = 0) reduces to the requirement that
finite difference schemes must satisfy the Fundamental Theorem of Calculus.

Parallel momentum conservation (
∫
d3v v‖C

0
GK [h] = 0) introduces the addi-

tional requirements that:∫
d3v v‖

(
νD
2

∂

∂ξ

(
1− ξ2

) ∂h
∂ξ

+ v‖νDF0

∫
d3v νDv‖h∫
d3v νDv2

‖F0

)
= 0 (6.36)

and ∫
d3v

v‖
2v2

∂

∂v

(
ν‖v

4F0
∂

∂v

h

F0

)
=

∫
d3v ∆νv2

‖F0

∫
d3v ∆νv‖h∫
d3v ∆νv2

‖F0

. (6.37)

If the finite difference scheme used for all differentiation possesses a discrete version
of integration by parts (upon double application), then Eqs. (6.36) and (6.37) are
numerically satisfied as long as: v‖νDh in the second term of Eq. (6.36) is expressed
in the form

v‖νDh = −1

2

(
∂

∂ξ

(
1− ξ2

) ∂v‖
∂ξ

)
νDh, (6.38)

∆ν on the righthand side of Eq. (6.37) is expressed using the identity

2∆νv3F0 =
∂

∂v

(
ν‖v

4F0
∂v

∂v

)
, (6.39)

and all integrals are computed using the same numerical integration scheme (if
analytic results for the integral denominators in terms three and four of Eq. (6.34)
are used, then the necessary exact cancellation in Eqs. (6.36) and (6.37) will not
occur).

The only additional constraint imposed by the energy conservation require-
ment (

∫
d3v v2C0

GK [h] = 0) is that the form of Eq. (6.35) be slightly modified so
that

νEv
2F0 = − 1

v2

∂

∂v

(
ν‖v

4F0
∂v2

∂v

)
, (6.40)

which still satisfies the number conservation contraint. Using the forms given by
Eqs. (6.38)-(6.40), conservation properties are guaranteed as long as one employs a
finite difference scheme for pitch-angle scattering and energy diffusion that satisfies
discrete versions of the Fundamental Theorem of Calculus and integration by parts.

For the case of equally spaced grid points in v and ξ, there is a straightforward
difference scheme, accurate to secord order in the grid spacing, that satisfies both
requirements [93]:

∂

∂x
G
∂h

∂x
≈
Gj+1/2 (hj+1 − hj)−Gj−1/2 (hj − hj−1)

∆x2
, (6.41)
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Figure 6.1: (Left): Solid line indicates the scaling of the leading order error, averaged
over all grid points, of the conservative finite difference scheme for a Gauss-Legendre
grid (the grid used in Trinity). The slope of the dotted line corresponds to a first
order scheme. (Right): factor by which the conservative finite difference scheme of
Eq. (6.42) amplifies the true collision operator amplitude at the boundaries of the
Gauss-Legendre grid.

where x is a dummy variable representing either v or ξ, ∆x is the grid spacing, hj
is the value of h evaluated at the grid point xj, xj±1/2 ≡ (xj + xj±1)/2, and G is
either 1− ξ2 (for pitch-angle scattering) or ν‖v

4F0 (for energy diffusion). However,
in order to achieve higer order accuracy in the calculation of the velocity space
integrals necessary to obtain electromagnetic fields, GS2 [81] and a number of other
gyrokinetic codes [55] use grids with unequal spacing in v and ξ and integration
weights that are not equal to the grid spacings.

Given the constraints of a three-point stencil on an unequally spaced grid, we
are forced to choose between a higher order scheme (a second order accurate scheme
can be obtained with compact differencing [94], as described in Appendix G) that
does not satisfy our two requirements and a lower order scheme that does. Since
our analytic expression for CGK was designed in large part to satisfy conservation
properties (and because the conserving terms are only a zeroth order accurate ap-
proximation to the field-particle piece of the linearized Landau operator [24]), we
choose the lower order scheme, given here, as the default:

∂

∂x
G
∂h

∂x
≈ 1

wj

(
Gj+1/2

hj+1 − hj
xj+1 − xj

−Gj−1/2
hj − hj−1

xj − xj−1

)
, (6.42)

where wj is the integration weight associated with xj.
Defining Ψ ≡ Gh′, with the prime denoting differentiation with respect to x,
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Figure 6.2: Plots showing evolution of the perturbed local density, parallel momen-
tum, and energy over fifty collision times. Without the conserving terms (6.9)-(6.11),
both parallel momentum and energy decay significantly over a few collision times
(long dashed lines). Inclusion of conserving terms with the conservative scheme
detailed in Sec. 6.3 leads to exact moment conservation (solid lines). Use of a
non-conservative scheme leads to inexact conservation that depends on grid spacing
(short dashed lines).
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Taylor series can be used to show

Ψj+1/2 −Ψj−1/2

wj
= Ψ′j

∆xj
wj

+O

(
(∆x)2

j

wj

)
, (6.43)

where ∆xj = xj+1/2 − xj−1/2. With the exception of pitch angles corresponding to
trapped particles [81, 51], the grid points {xj} and associated integration weights
{wj} in Trinity are chosen according to Gauss-Legendre quadrature rules [56]. For
this case, we show numerically in Fig. 6.1 that

1

N

N∑
j=1

∆xj
wj

= 1 +O

(
1

N

N∑
j=1

∆xj

)
= 1 +O

(
1

N

)
, (6.44)

and

max
j=2,...,N−1

∣∣∣∣1− ∆xj
wj

∣∣∣∣ = O
(

1

N

)
, (6.45)

where N is the number of grid points in x.
The boundary points (j = 1, N) are excluded from the max operator above.

This is because ∆x/w (the factor multiplying Ψ′j in Eq. (6.43)) converges to approxi-
mately 1.2 for the boundary points as the grid spacing is decreased (Fig. 6.1). For the
energy diffusion operator, we can make use of the property that G(x) = G(x)′ = 0
at x = 0 and x =∞ to show

±
Ψj±1/2

wj
= Ψ′j +O

(
(∆x)2

j

wj

)
, (6.46)

with the plus sign corresponding to j = 1 and the minus sign to j = N . This is not
true for the Lorentz operator, so we are forced to accept an approximately twenty
percent magnification of the Lorentz operator amplitude at ξ = ±1 and at the
trapped-passing boundaries. We find that this relatively small error at the bound-
aries has a negligible effect on measureable (velocity space averaged) quantities in
our simulations.

6.4 Numerical tests

We now proceed to demonstrate the validity of our collision operator imple-
mentation. In particular, we demonstrate conservation properties, satisfaction of
Boltzmann’s H-Theorem, efficient smoothing in velocity space, and recovery of the-
oretically expected results in both collisional (fluid) and collisionless limits. While
we do not claim that the suite of tests we have performed is exhaustive, it constitutes
a convenient set of numerical benchmarks that can be used for validating collision
operators in gyrokinetics.
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6.4.1 Homogeneous plasma slab

We first consider the long wavelength limit of a homogeneous plasma slab with
Boltzmann electrons and no variation along the background magnetic field (k‖ = 0).
The gyrokinetic equation for this system simplifies to

∂ (δf)

∂t
≈ C0

GK [h], (6.47)

which means local density, momentum, and energy should be conserved. In Fig. 6.2
we show numerical results for the time evolution of the local density, momentum,
and energy for this system.

Without inclusion of the conserving terms (6.9)-(6.11), we see that density is
conserved, as guaranteed by the conservative differencing scheme, while the momen-
tum and energy decay away over several collision times. Inclusion of the conserving
terms provides us with exact (up to numerical precision) conservation of number,
momentum, and energy. To illustrate the utility of our conservative implementa-
tion, we also present results from a numerical scheme that does not make use of
Eqs. (6.38)-(6.40) and that employs a finite difference scheme that does not possess
discrete versions of the Fundamental Theorem of Calculus and integration by parts.
Specifically, we consider a first order accurate finite difference scheme similar to that
given by Eq. (6.42), with the only difference being that the weights in the denom-
inator are replaced with the local grid spacings. In this case, we see that density,
momentum, and energy are not exactly conserved (how well they are conserved de-
pends on velocity space resolution, which is 16 pitch angles and 16 energies for the
run considered here).

The rate at which our collision operator generates entropy in the homogenous
plasma slab is shown in Fig. 6.3. As required by the H-Theorem, the rate of entropy
production is always nonnegative and approaches zero in the long-time limit as
the distribution function approaches a shifted Maxwellian. We find this to hold
independent of both the grid spacing in velocity space and the initial condition for
the distribution function (in Fig. 6.3, the values of h(ξ, v) were drawn randomly
from the uniform distribution on the interval [−1/2, 1/2]).

6.4.2 Resistive damping

We now modify the system above by adding a finite A‖. From fluid theory, we
know that collisional friction between electrons and ions provides resistivity which
leads to the decay of current profiles. Because the resistive time is long compared
to the collision time, one can neglect ∂(δf)/∂t. However, since A‖ ∼ k−2, and we
are considering k � 1, ∂A‖/∂t must be retained. The resulting electron equation is
of the form of the classical Spitzer problem (see, e.g., Ref. [67]):

C0
GK [he] = −eF0,e

T0,e

v‖
c

∂A‖
∂t

. (6.48)

The parallel current evolution for this system is given by

J‖(t) = J‖(t = 0)e−ηt, (6.49)
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Figure 6.3: Plot of the evolution of entropy generation for the homogeneous plasma
slab over twenty collision times. Our initial distribution in velocity space is random
noise, and we use a grid with 16 pitch angles and 8 energies. The entropy generation
rate is always nonnegative and approaches zero in the long-time limit.

where η = 1/σ‖ is the resistivity, σ‖ = 1.98τenee
2/mec

2 is the Spitzer conductivity,
and τe = 3

√
π/4νei is the electron collision time.

We demonstrate that the numerical implementation of our operator correctly
captures this resistive damping in Figs. 6.4 and 6.5. We also see in these figures that
in the absence of the ion drag term from Eq. (6.12), the electron flow is incorrectly
damped to zero (instead of to the ion flow), leading to a steady-state current.

6.4.3 Slow mode damping

We next consider the damping of the slow mode in a homogenous plasma
slab as a function of collisionality. In the low k⊥ρi, high βi limit, one can obtain
analytic expressions for the damping rate in both the collisional (k‖λmfp � 1) and
collisionless (k‖λmfp � 1) regimes, where λmfp is the ion mean free path (see e.g.
Ref. [15]). The expressions are

ω = ±k‖vA

√
1−

(
ν‖,ik‖
2vA

)2

− i
ν‖,ik

2
‖

2
(6.50)

for k‖λmfp � 1, and

ω = −i
∣∣k‖∣∣ vA√
πβi

(6.51)
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Figure 6.4: Evolution of |J‖| for the electromagnetic plasma slab with β = 10−4,
kyρi = 0.1, and νei = 10k‖vth,i. Inclusion of the ion drag term in the electron-ion
collision operator leads to the theoretically predicted damping rate for the parallel
current given in Eq. (6.49) . Without the ion drag term, the parallel current decays
past zero (at t ≈ 22) and converges to a negative value as the electron flow damps
to zero.
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Figure 6.5: Evolution of perturbed parallel flow for the electromagnetic plasma slab
with β = 10−4, kyρi = 0.1, and νei = 10k‖vti. Without inclusion of the ion drag
term in Eq. (6.12), the electron flow is erroneously damped to zero (instead of to
the ion flow).

for k‖λmfp � 1. Here, vA = vth,i/
√
βi is the Alfven speed, and ν‖,i is the parallel

ion viscosity, which is inversely proportial to the ion-ion collision frequency, νii:
ν‖,i ∝ v2

th,i/νii. As one would expect, the damping in the strongly collisional regime
[Eq. (6.50)] is due primarily to viscosity, while the collisionless regime [Eq. (6.51)]
is dominated by Barnes damping [95].

In Fig. 6.6, we plot the collisional dependence of the damping rate of the
slow mode obtained numerically using the new collision operator implementation
in Trinity. In order to isolate the slow mode in these simulations, we took Φ =
A‖ = δne = 0 and measured the damping rate of δB‖. This is possible because δB‖
effectively decouples from Φ and A‖ for our system, and δne can be neglected because
βi � 1 [15]. We find quantitative agreement with the analytic expressions (6.50)
and (6.51) in the appropriate regimes. In particular, we recover the correct viscous
behavior in the k‖λmfp � 1 limit (damping rate proportional to ν‖,i), the correct
collisional damping in the k‖λmfp ∼ 1 limit (damping rate inversely proportial to
ν‖,i), and the correct collisionless (i.e. Barnes) damping in the k‖λmfp � 1 limit.

6.4.4 Electrostatic turbulence

Finally, we illustrate the utility of our collision operator in a nonlinear simula-
tion of electrostatic turbulence in a Z-pinch field configuration [40]. We consider the
Z-pinch because it contains much of the physics of toroidal configurations (i.e. cur-
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Figure 6.6: Damping rate of the slow mode for a range of collisionalities spanning
the collisionless to strongly collisional regimes. Dashed lines correspond to the
theoretical prediction for the damping rate in the collisional (k‖λmfp � 1) and
collisionless (k‖λmfp � 1) limits. The solid line is the result obtained numerically
with Trinity. Vertical dotted lines denote approximate regions (collisional and
collisionless) for which the analytic theory is valid.
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Figure 6.7: Evolution of ion particle and heat fluxes for an electrostatic, 2-species
Z-pinch simulation. We are considering R/Ln = 2.0 and νii = 0.01vth,i/R. The
particle flux is indicated by the solid line and is given in units of (ρ/R)n0,ivth,i. The
heat flux is indicated by the dashed line and is given in units of (ρ/R)n0,iv

2
th,i. We

see that a steady-state is achieved for both fluxes without artificial dissipation.

vature) without some of the complexity (no particle trapping). At relatively weak
pressure gradients, the dominant gyrokinetic linear instability in the Z-pinch is the
entropy mode [39, 34, 35, 36, 37, 38], which is nonlinearly unstable to secondary
instabilities such as Kelvin-Helmholtz [96].

In previous numerical investigations of linear [38] and nonlinear [96] plasma
dynamics in a Z-pinch, collisions were found to play an important role in the damping
of zonal flows and in providing an effective energy cutoff at short wavelengths.
However, as pointed out in Ref. [96], the Lorentz collision operator used in those
investigations provided insufficient damping of short wavelength structures to obtain
steady-state fluxes. Consequently, a model hyper-viscosity had to be employed.

We have reproduced a simulation from Ref. [96] using our new collison oper-
ator, and we find that hyper-viscosity is no longer necessary to obtain steady-state
fluxes (Fig. 6.7). This can be understood by examining the linear growth rate spec-
trum of Fig. 6.8. We see that in this system energy diffusion is much more efficient at
suppressing short wavelength structures than pitch-angle scattering. Consequently,
no artificial dissipation of short wavelength structures is necessary.
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Figure 6.8: Linear growth rate spectrum of the entropy mode in a Z-pinch for
R/Ln = 2.0, where R is major radius and Ln is density gradient scale length. The
solid line is the collisionless result, and the two dashed lines represent the result of
including collisions. The short dashed line corresponds to using only the Lorentz
operator, while the long dashed line corresponds to using our full model collision
operator. Both collisional cases were carried out with νii = 0.01vth,i/R.
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6.5 Summary

In Sec. 6.1 we proposed a set of key properties that an ideal dissipation scheme
for gyrokinetics should satisfy. Namely, the scheme should: limit the scale size of
structures in phase space in order to guarantee the validity of the gyrokinetic or-
dering and to provide numerical resolution at reasonable expense; conserve particle
number, momentum, and energy; and satisfy Boltzmann’s H-Theorem. While com-
monly employed simplified collision operators or hyperviscosity operators may be
adequate for some calculations [30], it is important to be able to use the more com-
plete collision operator described in this paper, which preserves all of these desirable
dissipation properties.

In Sec. 6.2 we presented the model collision operator derived in Chapter 5 and
discussed some of its features that strongly influence our choice of numerical imple-
mentation. In particular, we noted that local conservation properties are guaranteed
as long as the (1, v‖, v

2) moments of the kρ = 0 component of the gyroaveraged
collision operator vanish. Further, we argued that the collision operator should be
treated implicitly because in some regions of phase space, its amplitude can be large
even at very small collisionalities.

Our numerical implementation of the collision operator was described in Sec.
6.3. We separate collisional and collisionless physics through the use of Godunov
dimensional splitting and advance the collision operator in time using a backwards
Euler scheme. The test particle part of the collision operator is differenced using
a scheme that possesses discrete versions of the Fundamental Theorem of Calculus
and integration by parts (upon double application). These properties are necessary
in order to exactly satisfy the desired conservation properties in the long wavelength
limit. The field particle response is treated implicitly with little additional computa-
tional expense by employing repeated application of the Sherman-Morrison formula,
as detailed in Appendix F

In Sec. 6.4 we presented numerical tests to demonstrate that our implemented
collision operator possesses the properties required for a good gyrokinetic dissipation
scheme. In addition to these basic properties, we showed that the implemented
collision operator allows us to correctly capture physics phenomena ranging from the
collisionless to the strongly collisional regimes. In particular, we provided examples
for which we are able to obtain quantitatively correct results for collisionless (Landau
or Barnes), resistive, and viscous damping.

In conclusion, we note that resolution of the collisionless (and collisional)
physics in our simulations was obtained solely with physical collisions; no recourse
to any form of artificial numerical dissipation was necessary.
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Chapter 7
Numerical framework for coupled turbulent transport
calculations

7.1 Overview

As discussed in Chapter 1, any realistic model of turbulent transport and
heating in hot, magnetized plasmas must account for the interaction of small-scale,
rapid fluctuations and large-scale, slowly evolving equilibrium profiles. The wide
range of scales that must be resolved makes direct numerical simulation prohibitively
expensive. Consider, for instance, the range of time and space scales expected to
be present in ITER (Tables 1.1 and 1.2). In order to resolve the turbulent electron
dynamics, the required grid spacing would be on the order of 10−4 centimeters
perpendicular to the magnetic field in space and 10−6 seconds in time. To capture
the evolution of equilibrium profiles, the simulation domain would have to be on the
order of 200 centimeters in space and 2− 4 seconds in time. Assuming several grid
points are necessary to resolve the smallest scales, this results in 106−107 grid points
in each of two spatial dimensions (with an additional 10 − 100 along the magnetic
field) and 108 − 109 grid points in time. This is in addition to the two dimensions
of velocity space, each of which requires at least 10 grid points. All told, this comes
out to approximately 1025 grid points – a factor of 1010 larger than the largest fluid
turbulence simulations possible on today’s fastest supercomputers.

Clearly, the brute-force approach outlined above is not possible on any timescale
of interest. There is, however, a way forward. The vast separation of time and space
scales between the fluctuations and the equilibrium can be exploited to allow for
the separate evolution of the two. The theoretical formalism detailing the process
of scale separation is described in Chapter 3. While these equations are coupled,
the time and space scales addressed by each equation are fundamentally different.
In this chapter, we detail the numerical framework of Trinity [98], a turbulent
transport and heating code, which exploits the scale separation of these equations
to greatly reduce the computational effort necessary to simulate turbulent transport
and heating.

The moment equations (3.71) and (3.105) describing the evolution of equilib-
rium density and temperature profiles involve only slowly varying scales in space
and time. This is by construction – in deriving the equations, we averaged over the
intermediate time and spatial scales defined by Eqs. (3.48) and 3.19. Consequently,
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numerical solution of these equations can be achieved using a course space-time grid,
with spatial variation only in the radial direction.

In order to evaluate the equilibrium evolution equations, one must specify
values for the time- and space-averaged turbulent fluxes and heating. Whle the
averaged quantities evolve on equilibrium scales, the fluxes and heating themselves
evolve on much faster fluctuation scales. We must therefore conduct turbulence
simulations on the fluctuation scales and space-time average. Since we only need
the fluxes and heating on a coarse space-time grid for the equilibrium evolution
equations, there is no need to simulate the turbulence everywhere in the device, nor
to simulate it over the entire length of the discharge. Instead, we can simulate the
turbulence in small regions of space and time (Fig. 1.6) and couple these regions
together using the equilibrium evolution equations. The only constraint is that the
space-time domain for the turbulence must be sufficiently large to include the longest
wavelengths of the turbulence and to reach a steady-state. This clearly provides a
significant savings in both spatial and temporal resolution. Returning to ITER as
our example, we see in Table 1.1 that the longest turbulent timescale is on the order
of 10−4 seconds. Since the equilibrium evolution scale is approximately 1 second,
we obtain a factor of 102 savings by coarse-graining in time. The longest turbulent
wavelengths perpendicular to the field are on the order of 10 centimeters. Assuming
several turbulence regions are necessary to sample the device volume, we find little
savings for a device the size of ITER in the radial direction. There is a way to
obtain considerable savings in the poloidal direction however, to which we now turn
our attention.

7.2 Coupled flux tube approach

The local, or flux tube, model [11] introduced in Chapter 1 allows for the simu-
lation of microturbulence in a thin tube, several turbulence decorrelation lengths in
each dimension, enclosing a single magnetic field line (depicted in Figs. 1.1 and 7.1).
Because the typical spatial scale of fluctuations is much shorter across field lines than
along field lines, the flux tube is highly elongated along the field line. The critical
assumption that allows for the reduction of the simulation domain to a single flux
tube is statistical periodicity. That is, we assume the variation of equilibrium quan-
tities occurs on such a large scale (relative to the flux tube) that the turbulence is
homogeneous within the flux tube. We stress that this does not disallow large-scale
gradients in the problem – only variation of these gradients over the small width
of a flux tube. The flux tube approximation is thus valid as long as the turbulent
spatial scale is well separated from all other spatial scales in the problem. This
means that any effects arising from intermediate spatial scales (such as magnetic
islands, if present) are not included in the flux tube model. The validity of the flux
tube approximation in the limit of ρ∗ ≡ ρ/a ∼ (k⊥L)−1 � 1 has been verified nu-
merically [12]. This is illustrated in Fig. 1.2, where we see that flux tube simulations
agree very well with global simulations (which do not assume statistical periodicity)
when the turbulent scale length is much smaller than the equilibrium scale length.
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Figure 7.1: Flux tube from GS2 simulation of the spherical tokamak, MAST. The
flux tube simulation domain wraps multiple times around the toroidal circumference,
but covers only a fraction of the anular flux surface it is used to map out (shown in
light blue). Graphic courtesy of G. Stantchev.
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In axisymmetric magnetic field configurations, a single flux tube, which com-
prises only a fraction of a flux surface, can be used to map out the entire flux surface
(due to the notion of statistical periodicity of the turbulence). This constitutes a
significant savings in simulation volume, which depends on the toroidal mode num-
bers of interest in the experiment (in particular, the longest significant wavelength
present along the field line). We can estimate the savings as follows: in the direction
perpendicular to the magnetic field line, but contained within the flux surface, the
flux tube must be large enough to resolve the longest turbulent wavelength. Taking
k⊥ ∼ nφq/r, where nφ is toroidal mode number, q is the safety factor, and r is the
distance from the magnetic axis to the flux surface of interest, we have

L⊥ ∼
2π

k⊥
∼ 2πr

nφq
∼ Lθ
nφq

, (7.1)

where Lθ is the approximate circumference of the tokamak in the poloidal direction.
Therefore, the simulation domain of a flux tube covers a fraction of approximately
1/nφq of a magnetic flux surface. For ITER-like fusion devices, the longest perpen-
dicular wavelength expected to be important is approximately k⊥ρi ∼ 0.1, corre-
sponding to a toroidal mode number of nφ ∼ 100. Combined with a safety factor
q > 1, this translates into a savings of factor greater than 100 in simulation volume
to simulate a single flux surface.

A single flux surface is not sufficient, however, when evolving radial equilibrium
profiles. In that case, a flux surface represents a single radial grid point on our
coarse spatial grid. This is illustrated in Figs. 7.2 and 7.4. In Fig. 7.2, we show a
poloidal cut of a tokamak and indicate a series of flux surfaces for a representative
magnetic field configuration. We see that the area of the cross-section accounted for
by several flux tubes is a small fraction of the total area (as long as the device has
a sufficiently large radial extent). The actual simulation domain for a single flux
tube is a rectangular box, which is deformed in physical space as it follows along the
sheared magnetic field line (Fig. 7.3). Depending on the parallel decorrelation length
of the turbulence, the flux tube may traverse the toroidal circumference multiple
times, sampling a poloidal cut of the flux surfae at multiple locations. In Fig. 7.4,
we plot a respresentative radial temperature profile and indicate the coarse grid
composed of several flux tubes. In each case, notice that the flux tubes have a finite
radial extent. This is necessary in order to contain several turbulence decorrelation
lengths. In the limit of an infinitely large device (or, equivalently, infinitely small
turbulence decorrelation lengths), the radial extent of the flux tubes would shrink to
a single radial point. There is an intermediate regime in which the flux tubes have
finite size and, depending on the number of flux tubes and the size of the device,
may overlap radially. This is not necessarily cause for alarm. While each flux tube
has finite radial extent, it is representative of a single radial point: equilibrium
profiles and gradients are taken to be constant across each flux tube. Consequently,
overlapping flux tubes do not actually sample the same physical space and do not
lead to double-counting of the turbulence.
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Figure 7.2: (left): poloidal cross section of a typical tokamak. solid lines indicate
the shape of magnetic flux surfaces and colored regions indicate a typical portion
of the tokamak represented by the coupled flux tube approach. (right): cartoon
illustrating the simulation domain (illustrated in blue) in a poloidal cut at the
outboard midplane for a single flux tube (representing a radial point, or flux surface)
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Figure 7.3: Cartoon illustrating the flux tube simulation domain (illustrated in blue)
for a poloidal cut at the outboard midplane. This flux tube represents the entire
flux surface, which serves as a radial grid point in our transport equations.
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Figure 7.4: Cartoon illustrating the portion of the radial temperature profile sampled
by the use of coupled flux tubes. Each of the blue ’U’ shapes represent a flux tube.
Although each flux tube has finite radial extent, it represents a single radial point
at the center of its domain.
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7.3 Normalization of the transport equations

We start from the gryokinetic transport equations (3.71) and (3.93) derived
in Chapter 3. For simplicity, we neglect classical effects and time variation of the
equilibrium magnetic field (which formally evolves on the equilibrium time scale, but
in practice evolves on the slower, resistive time scale). As mentioned in Chapter 3,
we assert that external sources enter our hierarchical equations via the transport
equations. Consequently, we include general sources in our treatment in this chap-
ter. We also choose not to calculate hnc, and therefore drop the neoclassical terms
appearing in our equilibrium evolution equations. However, we do not neglect neo-
classical effects completely; we include them by using an analytic estimate for the
neoclassical ion heat flux from Ref. [99], which we add to the turbulent ion heat
flux appearing in our equations. Since we will not be employing hnc, we henceforth
drop the t subscript on the turbulent part of h, using h = ht. Also, since we are
dealing exclusively with equilibrium densities, temperatures, and pressures, we drop
the nought subscript on these quantities. The resulting equations are:〈〈

∂ns
∂t

〉〉
=

∂ψ

∂V

∂

∂ψ

[
∂V

∂ψ

〈〈∫
d3v

(
R2∇φ · ∇χ

)
hs

〉〉]
(7.2)

3

2

〈〈
∂ps
∂t

〉〉
=

∂ψ

∂V

∂

∂ψ

[
∂V

∂ψ

〈〈∫
d3v

mv2

2

(
Rφ̂ · ∇χ

)
hs

〉〉]
(7.3)

−
〈〈∫

d3v
hsTs
FM,s

(
R2∇φ · ∇χ

) ∂FM,s

∂ψ

〉〉
(7.4)

−
〈〈∫

d3v
hsTs
F0,s

〈C[hs]〉R
〉〉

+
∑
u

nsν
su
ε (Tu − Ts) , (7.5)

where ns is the equilibrium density, Ts is the equilibrium temperature, hs is the
non-Boltzmann part of the perturbed gyrokinetic distribution function, χ is the
generalized potential defined in Eq. (4.5), R is the major radius, φ is the toroidal
angle, ψ = ψp/2π is a measure of the poloidal flux, νsuε is the energy exchange rate
between species s and species u given in Eq. (3.91), V is the flux-tube volume defined
in Eq. (3.20), and the flux surface average of F , 〈〈F〉〉, is defined in Eq. (??).

We would like to rewrite the term (R2∇φ·∇χ) in a more enlightening form. To
begin this process, we need the following identity, derived in Eq. (3.52) by assuming
an axisymmetric equilibrium magnetic field (B0 = ∇ψ ×∇φ+RBT∇φ):

v · ∇ψ = −R2∇φ · (v ×B0) . (7.6)

Using the definition of vχ from Eq. (3.47), we have

vχ ×B0 = c
(
b̂×∇χ

)
× b̂ (7.7)

= c
[
∇χ− b̂

(
b̂ · ∇χ

)]
(7.8)

⇒ R2∇φ · vχ ×B0 = cR

[
R∇φ · ∇χ− BT

B0

(
b̂ · ∇χ

)]
(7.9)
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From the gyrokinetic ordering, ∇‖χ� ∇⊥χ. Consequently, the second term on the
right-hand side of Eq. (7.9) can be neglected, leaving

cR2∇φ · ∇χ = R2∇φ · vE ×B0 (7.10)

= −vχ · ∇ψ (7.11)

Using the result of Eq. (7.11), and taking advantage of the fact that ns and Ts are
constant on flux surfaces, we have

∂ns
∂t

= − ∂ψ
∂V

∂

∂ψ

[
∂V

∂ψ

〈〈∫
d3v (vχ · ∇ψ)hs

〉〉]
(7.12)

3

2

∂ps
∂t

= − ∂ψ
∂V

∂

∂ψ

[
∂V

∂ψ

〈〈∫
d3v

mv2

2
(vχ · ∇ψ)hs

〉〉]
(7.13)

+

〈〈∫
d3v

hsTs
FM,s

(vχ · ∇ψ)
∂FM,s

∂ψ

〉〉
(7.14)

−
〈〈∫

d3v
hsTs
F0,s

〈C[hs]〉R
〉〉

+
∑
u

nsν
su
ε (Tu − Ts) . (7.15)

Defining the nonlinear fluxes

Γs =

∫
d3v (vχhs) (7.16)

Qs =

∫
d3v

(
mv2

2
vχhs

)
(7.17)

and noting
∂ lnFM
∂ψ

=
∂ lnn

∂ψ
+

(
mv2

2T
− 3

2

)
∂ lnT

∂ψ
(7.18)

we get
∂ns
∂t

= − ∂ψ
∂V

∂

∂ψ

[
〈〈|∇ψ|〉〉 ∂V

∂ψ

〈〈Γs · ∇ψ〉〉
〈〈|∇ψ|〉〉

]
+ Sn (7.19)

and

3

2

∂ps
∂t

= − ∂ψ
∂V

∂

∂ψ

[
〈〈|∇ψ|〉〉 ∂V

∂ψ

〈〈Qs · ∇ψ〉〉
〈〈|∇ψ|〉〉

]
+ 〈〈|∇ψ|〉〉

[
Ts

(
∂ lnns
∂ψ

− 3

2

∂ lnTs
∂ψ

)
〈〈Γs · ∇ψ〉〉
〈〈|∇ψ|〉〉

+
∂ lnTs
∂ψ

〈〈Qs · ∇ψ〉〉
〈〈|∇ψ|〉〉

]
−
〈〈∫

d3v
hsTs
F0,s

〈C[hs]〉R
〉〉

+
∑
u

nsν
su
ε (Tu − Ts) +

3

2
Sp,

(7.20)

where we have added general external sources, Sn and Sp, to the equations.
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The normalized, flux-surface-averaged, nonlinear radial fluxes and turbulent
collisional heating calculated in Trinity are

ΓNs ≡

〈〈
Γ̃s · ∇ψ

〉〉
〈〈|∇ψ|〉〉

(7.21)

QN
s ≡

〈〈
Q̃s · ∇ψ

〉〉
〈〈|∇ψ|〉〉

(7.22)

HN
s ≡

〈〈∫
d3v

hs
F0,s

Ts
Tr

a

vth,r

〈C[hs]〉R
nr

a2

ρ2
r

〉〉
, (7.23)

with

Γ̃s =
Γs

(nvth)r

a2

ρ2
r

(7.24)

Q̃s =
Qs

(nTvth)r

a2

ρ2
r

, (7.25)

where the subscript r denotes the reference species in the Trinity calculation, and
a is a user-specified normalization length. For definiteness, we choose a to be half
the diameter of the last closed flux surface (LCFS) at the elevation of the magnetic
axis. We note that ρr is defined so that it is a flux surface quantity. Specifically, it
is given by ρr = vth,r/Ωa, where Ωa = |e|Ba/mrc and Ba is the toroidal field on the
flux surface Ra, the average of the minimum and maximum values of R for the flux
surface of interest. We further define the normalized quantities

ñs ≡
ns
n0,r

T̃s ≡
Ts
T0,r

(7.26)

∇̃ ≡ a∇ τ ≡ vth0,r

a

ρ2
r,0

a2
t (7.27)

S̃n ≡
a

vth0,r

Sn
n0,r

a2

ρ2
r,0

S̃p ≡
a

vth0,r

Sp
n0,rT0,r

a2

ρ2
r,0

(7.28)

ν̃suε ≡
νsuε a

vth0,r

a2

ρ2
r,0

h̃s ≡
hs
F0,s

a

ρr
, (7.29)

where n0,r and T0,r are chosen to be 1020 m−3 and 1 keV , respectively, and

ρ0,r ≡
vth0,r

Ωr

=

√
2T0,r

mr

mrc

eBr

≈ 4.57× 10−3 m, (7.30)

with Br chosen to be 1 T . For later convenience, we list here the values of some of
the normalizing quantities:

vth0,r ≈ 4.38× 105

√
mp

mr

m/s (7.31)

t ≈ τ
ã3

9.14

√
mp

mr

s (7.32)
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where mp is the proton mass and ã is the minor radius given in meters.
Rewriting the transport equations in terms of these normalized quantities gives

∂ñs
∂τ

= − ∂ψ
∂V

∂

∂ψ

[〈〈∣∣∣∇̃ψ∣∣∣〉〉 ∂V
∂ψ

ΓNs ñrT̃
1/2
r

ρ2
r

ρ2
r,0

]
+ S̃n (7.33)

and

3

2

∂p̃s
∂τ

= − ∂ψ
∂V

∂

∂ψ

[〈〈∣∣∣∇̃ψ∣∣∣〉〉 ∂V
∂ψ

QN
s ñrT̃

3/2
r

ρ2
r

ρ2
r,0

]
+
〈〈∣∣∣∇̃ψ∣∣∣〉〉 ñrT̃ 3/2

r

ρ2
r

ρ2
r,0

[
Ts
Tr

(
∂ ln ñs
∂ψ

− 3

2

∂ ln T̃s
∂ψ

)
ΓNs +

∂ ln T̃s
∂ψ

QN
s

]

− ρ2
r

ρ2
r,0

HN
s ñrT̃

3/2
r + ñsν̃

su
ε T̃s

(
Tu
Ts
− 1

)
+

3

2
S̃p,

(7.34)

To proceed, we need some more definitions from Trinity:

AN ≡
∫
JNdφdθ

∣∣∣∇̃ρ∣∣∣ (7.35)

ψN ≡ a2Baψ (7.36)

⇒ JN = JaBa(ψ). (7.37)

Noting that dV
dψ

=
∫
Jdφdθ and 〈〈|∇ψ|〉〉 ∂V

∂ψ
= 〈〈|∇ρ|〉〉 ∂V

∂ρ
, we have

〈〈|∇ψ|〉〉 ∂V
∂ψ
≡ A = a2AN . (7.38)

Using the above result, we get

∂ñs
∂τ

= −

〈〈∣∣∣∇̃ρ∣∣∣〉〉
AN

∂

∂ρ

[
ANΓNs ñrT̃

1/2
r

ρ2
r

ρ2
r,0

]
+ S̃n (7.39)

and

3

2

∂p̃s
∂τ

= −

〈〈∣∣∣∇̃ρ∣∣∣〉〉
AN

∂

∂ρ
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ANQN

s ñrT̃
3/2
r

ρ2
r

ρ2
r,0

]
+
〈〈∣∣∣∇̃ρ∣∣∣〉〉 ñrT̃ 3/2

r

ρ2
r

ρ2
r,0

[
Ts
Tr

(
∂ ln ñs
∂ρ

− 3

2

∂ ln T̃s
∂ρ

)
ΓNs +

∂ ln T̃s
∂ρ

QN
s

]

− ρ2
r

ρ2
r,0

HN
s ñrT̃

3/2
r + ñsν̃

su
ε T̃s

(
Tu
Ts
− 1

)
+

3

2
S̃p,

(7.40)

The normalized form of ρr is given by

ρr
ρr0

= T̃r
1/2Br

Ba

≡ T̃
1/2
r

B̃a

, (7.41)
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leading to the following form for the transport equations:

∂ñs
∂τ

= −

〈〈∣∣∣∇̃ρ∣∣∣〉〉
AN

∂

∂ρ

[
AN

B̃2
a

ΓNs ñrT̃
3/2
r

]
+ S̃n (7.42)
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Tr
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s ñrT̃

5/2
r + ñsν̃
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ε T̃s
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Tu
Ts
− 1

)
+

3

2
S̃p

(7.43)

As an aside, we note that in Trinity we choose to keep the density and
temperature for the reference species equal to unity in each flux tube. This means
that the physical ∆t and k⊥ρ range vary from flux tube to flux tube (since these
quantities are normalized by vth,r and ρr factors, respectively, which have radial
dependence).

7.4 Discretization of the transport equations

Now that we have a set of normalized equilibrium evolution equations, we pro-
ceed to discretize them. In doing so, we wish to maximize computational efficiency.
Primarily, this is achieved by developing an implicit scheme (based on Newton’s
method). While the implicit scheme requires considerably more computational ef-
fort at each time step than an explicit scheme, it allows for much larger time steps.
Since the calculation of the steady-state turbulent fluxes and heating at each equi-
librium time step is by far more expensive than the advancement of the equilibrium,
the time step size is much more important than the time spent in calculation during
each step.

For simplicity, we assume our system consists of electrons and a single ion
species (which we take to be the reference species), and we use quasineutrality to
relate the electron and ion densities. Further, we restrict ourselves to the use of a
three-point spatial stencil. Also, in the interest of notational convenience, we drop
the tilde on all normalized quantities.

7.4.1 Particle transport

We begin by writing the normalized particle transport equation (7.42) for the
reference (ion) species in the convenient form

∂n

∂τ
= −〈|∇ρ|〉

A

∂F

∂ρ
+ Sn, (7.44)
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where we have defined

F ≡ A

B̃2
a

Γi
p

3/2
i

n1/2
. (7.45)

Note that we have switched variables from T to p = nT to reduce the heat transport
equation (7.43) to an equation involving the evolution of a single variable. A general
time discretization for Eq. (7.44) takes the form

nm+1 − nm

∆τ
= α

[
−〈|∇ρ|〉

A

∂F

∂ρ
+ Sn

]m+1

+ (1− α)

[
−〈|∇ρ|〉

A

∂F

∂ρ
+ Sn

]
, (7.46)

where ∆τ is the transport time step size, and α ∈ [0, 1], with α = 0 corresponding
to a fully explicit scheme and α = 1 corresponding to a fully implicit scheme. The
superscripts m and m + 1 represent the time step. From now on we will drop the
superscript m wherever it appears; whenever a time superscript is absent from a
time-dependent quantity, it is understood to be evaluated at time step m.

Discretizing the spatial derivative using centered differences, we obtain

nm+1
j − nmj

∆τ
= α

[
−
〈|∇ρ|〉j
Aj

F+ − F−
∆ρ

+ Sn
]m+1

+(1− α)

[
−
〈|∇ρ|〉j
Aj

F+ − F−
∆ρ

+ Sn
]
,

(7.47)
where ∆ρ = xj+1 − xj is the spatial grid spacing, and the subscripts ± indicate
evaluation at the spatial locations xj±1/2 = (xj + xj±1)/2, with the subscript j
denoting the spatial grid index.

We see that Eq. (7.47) is a nonlinear partial differential equation. We would
like to treat it implicitly in order to take large transport time steps. This requires
linearization of the problem. We accomplish this by employing Newton’s method,
in which we expand the m + 1 time level nonlinear term F about its value at the
time step m. Keeping terms in this Taylor expansion through linear order, we have

Fm+1
± ≈ Fm

± + (y − y0)

[
∂F±
∂y

]
y=y0

, (7.48)

where y ≡ {{nk}, {pik}, {pek}} is a vector containing the values for density and
electron/ion pressure at each of the spatial grid points, and y0 is the vector y
evaluated at time step m. For convenience, we will henceforth drop the y = y0

specifier on the term ∂F±/∂y.
Explicitly writing the second term in Eq. (7.48), we have

(y − y0)
∂F±
∂y

=
∑
k

[(
nm+1
k − nk

) ∂F±
∂nk

+
(
pm+1
ik
− pik

) ∂F±
∂pik

+
(
pm+1
ek
− pek

) ∂F±
∂pek

]
.

(7.49)
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Evaluating the partial derivatives of F± in this expression yields

∂F±
∂nk

= F±

[
∂ ln Γ±
∂nk

− 1

4

δj,k + δj±1,k

n±

]
(7.50)

∂F±
∂pik

= F±

[
∂ ln Γ±
∂pik

+
3

4

δj,k + δj±1,k

pi±

]
(7.51)

∂F±
∂pek

= F±
∂ ln Γ±
∂pek

, (7.52)

where δj,k is the Dirac delta function. Substituting Eqs. (7.49)-(7.52) in Eq. (7.48),
we obtain the following expression for Fm+1

± :

Fm+1
± ≈ F±

[
3

4

(
pm+1
ij

pi±
+
pm+1
ij±1

pi±

)
− 1

4

(
nm+1
j

n±
+
nm+1
j±1

n±

)]

+ F±
∑
k

[(
nm+1
k − nk

) ∂ ln Γ±
∂nk

+
(
pm+1
ik
− pik

) ∂ ln Γ±
∂pik

+
(
pm+1
ek
− pek

) ∂ ln Γ±
∂pek

]
.

(7.53)

The above equation involves derivatives of the particle flux, Γ, with respect
to the equilibrium density and pressure at each of the grid locations, nk and pk.
Unfortunately, this information is not readily available and would be prohibitively
expensive to compute directly. In order to make calculation of these derivatives
feasible, we make the assumption that Γ depends on the {nk} and {pk} only through
the gradient scale lengths R/Ln and RLp . This assumption is motivated by empirical
results from both numerical simulation and experiment.

With this assumption, the derivatives of the particle flux, Γ, can be written

∂Γ±
∂nk

≈ ∂Γ±
∂(R/Ln)±

d(R/Ln)±
dnk

(7.54)

∂Γ±
∂pk

≈ ∂Γ±
∂(R/Lp)±

d(R/Lp)±
dpk

. (7.55)

In order to evaluate these expressions, we need discretized forms for R/Ln and R/Lp,
as well as estimates for the derivatives of the flux with respect to these equilibrium
gradients. We defer discussion of the latter issue until later. For the discretization
of (R/Ln)± we use(

R

Ln

)
±

= −R
a

(
∂ lnn

∂ρ

)
±
≈ ∓ R

a∆ρ

nj±1 − nj
n±

≈ ∓ 2R

a∆ρ

nj±1 − nj
nj±1 + nj

. (7.56)

This derivative approximation is accurate to O[(∆ρ)2], and the same discretization
scheme is used for (R/Lp)±.

We next compute the discrete derivatives of the equilibrium gradients with
respect to the equilibrium density and pressure:∑

k

(
nm+1
k − nk

) ∂(R/Ln)±
∂nk

= ∓R
a

1

∆ρ

[
nm+1
j±1

n±

nj
n±
−
nm+1
j

n±

nj±1

n±

]
, (7.57)
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with a similar expression for the derivative of R/Lp with respect to species pressure.
Using this expression in Eq. (7.53), we arrive at the following:

Fm+1
± ≈ F±

[
3

4

(
pm+1
ij

pi±
+
pm+1
ij±1

pi±

)
− 1

4

(
nm+1
j

n±
+
nm+1
j±1

n±

)]

± RF±
a∆ρ

[(
nm+1
j

n±

nj±1

n±
−
nm+1
j±1

n±

nj
n±

)
∂ ln Γ±

∂(R/Ln)±

+

(
pm+1
ij

pi±

pij±1

pi±
−
pm+1
ij±1

pi±

pij
pi±

)
∂ ln Γ±

∂(R/Lpi)±
+

(
pm+1
ej

pe±

pej±1

pe±
−
pm+1
ej±1

pe±

pej
pe±

)
∂ ln Γ±

∂(R/Lpe)±

]
.

(7.58)

With Eq. (7.58), we can now compute ∂F/∂ρ:(
∂Fm+1

∂ρ

)
j

≈ Fm+1
+ − Fm+1

−

∆ρ
≈ 1

∆ρ

(
nm+1
j−1

n−

(
A−[n] +

F−
4

)
+
nm+1
j

n+

[
1

4

(
F−

n+

n−
− F+

)
+ Bj[n]

]
+
nm+1
j+1

n+

[
A+[n]− 1

4
F+

]
+
pm+1
ij−1

pi−

(
A−[pi]−

3

4
F−

)
+
pm+1
ij

pi+

[
−3

4

(
F−

pi+
pi−
− F+

)
+ Bj[pi]

]
+
pm+1
ij+1

pi+

[
A+[pi] +

3

4
F+

]
+
pm+1
ej−1

pe−
A−[pe] +

pm+1
ej

pe+
Bj[pe] +

pm+1
ej+1

pe+
A+[pe]

)
,

(7.59)

where we define

A±[w] ≡ −RF±
a∆ρ

wj
w2
±

∂ ln Γ±
∂(R/Lw)±

(7.60)

Bj[w] ≡ R

a∆ρ

(
F+

wj+1

w2
+

∂ ln Γ+

∂(R/Lw)+

+ F−
wj−1

w2
−

∂ ln Γ−
∂(R/Lw)−

)
. (7.61)

Plugging Eq. (7.59) back into Eq. (7.47), we arrive at the final form for our
discretized particle transport equation:

nm+1
j −

1∑
k=−1

∆τα
(
nm+1
j+k ψn,k + pm+1

ij+k
ψpi,k + pm+1

ej+k
ψpe,k

)
= nj + ∆τ (1− α)

[
−〈|∇ρ|〉

A

∂F

∂ρ

]
+ ∆τSn

(7.62)
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where

ψn,−1 ≡ −〈|∇ρ|〉
A∆ρ

[
A−[n] +

1

4

F−
n−

]
(7.63)

ψn,0 ≡ −〈|∇ρ|〉
A∆ρ

[
Bj[n] +

1

4

(
F−
n−
− F+

n+

)]
(7.64)

ψn,1 ≡ −〈|∇ρ|〉
A∆ρ

(
A+[n]− 1

4

F+

n+

)
(7.65)

ψpi,−1 ≡ −〈|∇ρ|〉
A∆ρ

(
A−[pi]−

3

4

F−
pi−

)
(7.66)

ψpi,0 ≡ −〈|∇ρ|〉
A∆ρ

[
Bj[pi]−

3

4

(
F−
pi−
− F+

pi+

)]
(7.67)

ψpi,1 ≡ −〈|∇ρ|〉
A∆ρ

(
A+[pi] +

3

4

F+

pi+

)
(7.68)

ψpe,−1 ≡ −〈|∇ρ|〉
A∆ρ

A−[pe] (7.69)

ψpe,0 ≡ −〈|∇ρ|〉
A∆ρ

Bj[pe] (7.70)

ψpe,1 ≡ −〈|∇ρ|〉
A∆ρ

A+[pe]. (7.71)

7.4.2 Heat transport

We begin by recasting the normalized heat transport equation (7.43) in terms
of species pressure p = nT :

3

2

∂ps
∂τ

= −〈|∇ρ|〉
A

∂

∂ρ

(
A

B̃2
a

Qs
p

5/2
r

n
3/2
r

)
+
〈|∇ρ|〉
B̃2
a

p
5/2
r

n
3/2
r

a

R

[
ps
pr

nr
ns

(
3

2

R

Lps
− 5

2

R

Ln

)
Γs

+

(
R

Ln
− R

Lps

)
Qs

]
+ ν̃suε ps

(
pu
ps

ns
nu
− 1

)
− Hs

B̃2
a

p
5/2
r

n
3/2
r

+
3

2
Sp

(7.72)
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To keep notation compact, we define

Es ≡ ν̃suε ps

(
pu
ps

ns
nu
− 1

)
(7.73)

Fs ≡
A

B̃2
a

Qs
p

5/2
i

n3/2
(7.74)

Gs ≡
〈|∇ρ|〉
B̃2
a

Zs
Zi

a

R

p
3/2
i ps
n3/2

κsΓs (7.75)

Hs ≡
〈|∇ρ|〉
B̃2
a

a

R

p
5/2
i

n3/2
κ̃sQs (7.76)

Ks ≡ −
Hs

B̃2
a

p
5/2
r

n
3/2
r

(7.77)

κ ≡ 3

2

R

Lps
− 5

2

R

Ln
(7.78)

κ̃ ≡ R

Ln
− R

Lps
. (7.79)

With these definitions, Eq. (7.72) becomes

3

2

∂ps
∂τ

= −〈|∇ρ|〉
A

∂Fs
∂ρ

+Gs +Hs + Es +Ks +
3

2
Sp. (7.80)

Henceforth, we drop the subscript s; whenever a species subscript is not present,
the subscript s is assumed.

Our treatment of heat transport in this subsection follows closely our the
treatment of particle transport in the previous subsection. Our time discretization
is of the form

3

2

(
pm+1 − pm

∆τ

)
= α

[
−〈|∇ρ|〉

A

∂F

∂ρ
+G+H + E +K +

3

2
Sp

]m+1

+ (1− α)

[
−〈|∇ρ|〉

A

∂F

∂ρ
+G+H + E +K +

3

2
Sp

]
,

(7.81)

where α was defined following Eq. (7.46). As before, any time-dependend quantity
without a time superscript is understood to be evaluated at time step m.

Linearizing the nonlinear terms via Taylor expansion about density and pres-
sure at time step m, we again obtain expressions of the form

Gm+1
j ≈ Gm

j + (y − y0)

[
∂Gj

∂y

]
y=y0

. (7.82)

Explicitly writing the second term in Eq. (7.82), we have

(y − y0)
∂Gj

∂y
=
∑
k

[(
nm+1
k − nk

) ∂Gj

∂nk
+
(
pm+1
ik
− pik

) ∂Gj

∂pik
+
(
pm+1
ek
− pek

) ∂Gj

∂pek

]
.

(7.83)
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Evaluating each of the partial derivatives in this expression, we obtain

∂Gj

∂nk
= Gj

[
∂ ln Γj
∂nk

− 3

2nj
δjk −

5

2κj

∂(R/Ln)j
∂nk

]
(7.84)

∂Gj

∂pik
= Gj

[
∂ ln Γj
∂pik

+

(
3

2pij
+
∂ ln pj
∂pik

)
δjk +

3

2κj

∂(R/Lp)j
∂pik

]
(7.85)

∂Gj

∂pek
= Gj

[
∂ ln Γj
∂pek

+
∂ ln pj
∂pek

δjk +
3

2κj

∂(R/Lp)j
∂pek

]
. (7.86)

Substituting Eqs. (7.83)-(7.86) into Eq. (7.82) gives

Gm+1
j = Gj

[(
3

2
+ δsi

)
pm+1
ij

pij
− 3

2

nm+1
j

nj
+ δse

pm+1
ej

pej

]

+Gj

∑
k

[(
nm+1
k − nk

)(∂ ln Γj
∂nk

− 5

2κj

∂(R/Ln)j
∂nk

)
+
(
pm+1
ik
− pik

)(∂ ln Γj
∂pik

+
3

2κj

∂(R/Lp)j
∂pik

)
+
(
pm+1
ek
− pek

)(∂ ln Γj
∂pek

+
3

2κj

∂(R/Lp)j
∂pek

)]
.

(7.87)

The expressions for the other nonlinear terms are derived in a similar manner.
The analogs to Eqs. (7.84)-(7.86) for H, K, and E are

∂Hj

∂nk
= Hj

[
∂ lnQj

∂nk
− 3

2nj
δjk +

1

κ̃j

∂(R/Ln)j
∂nk

]
(7.88)

∂Hj

∂pik
= Hj

[
∂ lnQj

∂pik
+

5

2pij
δjk −

1

κ̃j

∂(R/Lp)j
∂pik

]
(7.89)

∂Hj

∂pek
= Hj

[
∂ lnQj

∂pek
− 1

κ̃j

∂(R/Lp)j
∂pek

]
(7.90)

∂Kj

∂nk
= Kj

[
∂ lnHj

∂nk
− 3

2nj
δjk

]
(7.91)

∂Kj

∂pik
= Kj

[
∂ lnHj

∂pik
+

5

2pij
δjk

]
(7.92)

∂Kj

∂pek
= Kj

∂ lnHj

∂pek
(7.93)

∂Ej
∂nk

=
5

2nj
Ejδjk (7.94)

∂Ej
∂pik

=

[
δseZu − δsiZs
pujZu − psjZs

− 3

2

δsemsZu + δsimuZs
msZupuj +muZspsj

]
Ejδjk (7.95)

∂Ej
∂pek

=

[
δsiZu − δseZs
pujZu − psjZs

− 3

2

δsimsZu + δsemuZs
msZupuj +muZspsj

]
Ejδjk, (7.96)
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giving

Hm+1
j ≈ Hj

(
5

2

pm+1
ij

pij
− 3

2

nm+1
j

nj

)
+Hj

∑
k

[(
nm+1
k − nk

)(∂ lnQj

∂nk
+

1

κ̃j

∂(R/Ln)j
∂nk

)
+
(
pm+1
ik
− pik

)(∂ lnQj

∂pik
− 1

κ̃j

∂(R/Lp)j
∂pik

)
+
(
pm+1
ek
− pek

)(∂ lnQj

∂pek
− 1

κ̃j

∂(R/Lp)j
∂pek

)]
,

(7.97)

Km+1
j ≈ Kj

(
5

2

pm+1
ij

pij
− 3

2

nm+1
j

nj

)
+Kj

∑
k

[(
nm+1
k − nk

) ∂ lnHj

∂nk

+
(
pm+1
ik
− pik

) ∂ lnHj

∂pik
+
(
pm+1
ek
− pek

) ∂ lnHj

∂pek

]
,

(7.98)

and

Em+1
j = Ej

(
5

2

nm+1
j

nj
+
pm+1
ij

pij

[
pij

(
δseZu − δsiZs
pujZu − psjZs

− 3

2

δsemsZu + δsimuZs
msZupuj +muZspsj

)]

+
pm+1
ej

pej

[
pej

(
δsiZu − δseZs
pujZu − psjZs

− 3

2

δsimsZu + δsemuZs
msZupuj +muZspsj

)]
− 1

)
.

(7.99)

Finally, we consider Fm+1
± . We have

∂F±
∂nk

= F±

[
∂ lnQ±
∂nk

− 3

4

δj,k + δj±1,k

n±

]
(7.100)

∂F±
∂pik

= F±

[
∂ lnQ±
∂pik

+
5

4

δj,k + δj±1,k

pi±

]
(7.101)

∂F±
∂pek

= F±
∂ lnQ±
∂pek

, (7.102)

which gives us

Fm+1
± ≈ F±

(
5

2

pm+1
i±

pi±
− 3

2

nm+1
±

n±

)
+ F±

∑
k

[(
nm+1
k − nk

) ∂ lnQ±
∂nk

+
(
pm+1
ik
− pik

) ∂ lnQ±
∂pik

+
(
pm+1
ek
− pek

) ∂ lnQ±
∂pek

]
.

(7.103)

At this point in the calculation, we once again make the assumption that Γ, Q, and
H depend on the {nk} and {pk} only through the gradient scale lengths R/Ln and
RLp .

With this assumption, the derivatives of the fluxes at grid locations can be
written

∂Γj
∂nk
≈ ∂Γj
∂(R/Ln)j

d(R/Ln)j
dnk

(7.104)

∂Γj
∂pk
≈ ∂Γj
∂(R/Lp)j

d(R/Lp)j
dpk

, (7.105)
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with similar expressions for derivatives of the heat flux, Q, and the heating, H. We
have already given discrete forms for R/Ln and R/Lp at the off-grid locations xj±1

in Eq. (7.56). We now give an expression for evaluation at grid locations:(
R

Ln

)
j

= −R
a

(
∂ lnn

∂ρ

)
j

≈ −R
a

nj+1 − nj−1

2nj∆ρ
, (7.106)

This derivative approximation is accurate to O[(∆ρ)2], and the same discretization
scheme is used for R/Lp. We next compute the discrete derivative of the equilibrium
gradients with respect to the equilibrium density and pressure:∑

k

(
nm+1
k − nk

) ∂(R/Ln)j
∂nk

= −R
a

1

2∆ρ

[
nm+1
j+1

nj
−
nm+1
j−1

nj
−
nm+1
j

nj

nj+1 − nj−1

nj

]
,

(7.107)
with similar expressions for the derivatives of R/Lp with respect to species pressure.

Substituting Eqs (7.106) and (7.107) into Eqs. (7.87), (7.97), (7.98) and (7.99)
and combining E, G, H, and K results in the following:

Gm+1
j +Hm+1

j +Km+1
j + Em+1

j =
nm+1
j−1

nj
µ1,j +

nm+1
j

nj

[
5

2
Ej −

3

2
(Gj +Hj +Kj)

+µ1,j

(
nj+1 − nj−1

nj

)]
−
nm+1
j+1

nj
µ1,j +

pm+1
ij−1

pij
µ2,j +

pm+1
ij

pij

[
Gj

(
3

2
+ δsi

)
+

5

2
(Hj +Kj) + Ejpij

(
δseZu − δsiZs
pujZu − psjZs

− 3

2

δsemsZu + δsimuZs
msZupuj +muZspsj

)
+µ2,j

(
pij+1

− pij−1

pij

)]
−
pm+1
ij+1

pij
µ2,j +

pm+1
ej−1

pej
µ3,j +

pm+1
ej

pej
[Gjδse

+Ejpej

(
δsiZu − δseZs
pujZu − psjZs

− 3

2

δsimsZu + δsemuZs
msZupuj +muZspsj

)
+ µ3,j

(
pej+1

− pej−1

pej

)]
−
pm+1
ej+1

pej
µ3,j − Ej,

(7.108)

where

µ1,j ≡
R

2a∆ρ

[
Gj

(
∂ ln Γj

∂(R/Ln)j
− 5

2κj

)
+Hj

(
∂ lnQj

∂(R/Ln)j
+

1

κ̃j

)
+Kj

∂ lnHj

∂(R/Ln)j

]
(7.109)

µ2,j ≡
R

2a∆ρ

[
Gj

(
∂ ln Γj

∂(R/Lpi)j
+

3δsi
2κj

)
+Hj

(
∂ lnQj

∂(R/Lpi)j
− δsi
κ̃j

)
+Kj

∂ lnHj

∂(R/Lpi)j

]
(7.110)

µ3,j ≡
R

2a∆ρ

[
Gj

(
∂ ln Γj

∂(R/Lpe)j
+

3δse
2κj

)
+Hj

(
∂ lnQj

∂(R/Lpe)j
− δse
κ̃j

)
+Kj

∂ lnHj

∂(R/Lpe)j

]
.

(7.111)
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Next we compute ∂F/∂ρ:(
∂Fm+1

∂ρ

)
j

≈ Fm+1
+ − Fm+1

−

∆ρ
≈ 1

∆ρ

[
nm+1
j−1

n−

(
A−[n] +

3

4
F−

)
+
nm+1
j

n+

[
3

4

(
F−

n+

n−
− F+

)
+ Bj[n]

]
+
nm+1
j+1

n+

[
A+[n]− 3

4
F+

]
+
pm+1
ij−1

pi−

(
A−[pi]−

5

4
F−

)
+
pm+1
ij

pi+

[
−5

4

(
F−

pi+
pi−
− F+

)
+ Bj[pi]

]
+
pm+1
ij+1

pi+

[
A+[pi] +

5

4
F+

]
+
pm+1
ej−1

pe−
A−[pe] +

pm+1
ej

pe+
Bj[pe] +

pm+1
ej+1

pe+
A+[pe]

]
,

(7.112)

where we define

A±[w] ≡ −RF±
a∆ρ

wj
w2
±

∂ lnQ±
∂(R/Lw)±

(7.113)

Bj[w] ≡ R

a∆ρ

(
F+

wj+1

w2
+

∂ lnQ+

∂(R/Lw)+

+ F−
wj−1

w2
−

∂ lnQ−
∂(R/Lw)−

)
. (7.114)

Finally, we add all of these terms up to get

pm+1
sj
−

1∑
k=−1

2∆τα

3

(
nm+1
j+k ψn,k + pm+1

ij+k
ψpi,k + pm+1

ej+k
ψpe,k

)
= psj +

2∆τ

3
(1− α)

[
−〈|∇ρ|〉

A

∂F

∂ρ
+G+H + E +K

]
+ ∆τSp

(7.115)
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where

ψn,−1 ≡
µ1,j

nj
− 〈|∇ρ|〉

A∆ρ

(
A−[n] +

3

4

F−
n−

)
(7.116)

ψn,0 ≡
µ1,j

nj

(
nj+1 − nj−1

nj

)
+

5

2nj
Ej −

3

2nj
(Gj +Hj +Kj) (7.117)

−〈|∇ρ|〉
A∆ρ

[
Bj[n] +

3

4

(
F−
n−
− F+

n+

)]
(7.118)

ψn,1 ≡ −µ1,j

nj
− 〈|∇ρ|〉

A∆ρ

(
A+[n]− 3

4

F+

n+

)
(7.119)

ψpi,−1 ≡
µ2,j

pij
− 〈|∇ρ|〉

A∆ρ

(
A−[pi]−

5

4

F−
pi−

)
(7.120)

ψpi,0 ≡
Gj

pij

(
3

2
+ δsi

)
+

5

2pij
(Hj +Kj) +

µ2,j

pij

(
pij+1

− pij−1

pij

)
(7.121)

+Ej

(
δseZu − δsiZs
pujZu − psjZs

− 3

2

δsemsZu + δsimuZs
msZupuj +muZspsj

)
(7.122)

−〈|∇ρ|〉
A∆ρ

[
Bj[pi]−

5

4

(
F−
pi−
− F+

pi+

)]
(7.123)

ψpi,1 ≡ −µ2,j

pij
− 〈|∇ρ|〉

A∆ρ

(
A+[pi] +

5

4

F+

pi+

)
(7.124)

ψpe,−1 ≡
µ3,j

pej
− 〈|∇ρ|〉

A∆ρ
A−[pe] (7.125)

ψpe,0 ≡
Gj

pej
δse + Ej

(
δsiZu − δseZs
pujZu − psjZs

− 3

2

δsimsZu + δsemuZs
msZupuj +muZspsj

)
(7.126)

+
µ3,j

pej

(
pej+1

− pej−1

pej

)
− 〈|∇ρ|〉

A∆ρ
Bj[pe] (7.127)

ψpe,1 ≡ −µ3,j

pej
− 〈|∇ρ|〉

A∆ρ
A+[pe]. (7.128)

7.4.3 Boundary conditions

To complete our numerical prescription, we must supply boundary conditions
at the innermost and outermost radial grid locations. At the outer boundary, which
corresponds to a location in the fusion device just inside the edge pedestal region,
we are free to specify density and pressure. The purpose of the simulation is then to
determine the core temperature as a function of the pedestal density and pressure
and of the external heat source strength.

At the internal boundary, which corresponds to the magnetic axis, we use the
physical constraint that the product of the flux surface area and the flux surface-
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averaged fluxes is zero:

lim
ρ→0

A

 Γ
Qi

Qe

 = 0. (7.129)

We take the magnetic axis to correspond to the spatial index j = 1/2. Consequently,
the terms in Eqs. (7.46) and (7.81) involving the radial derivative of the fluxes reduce
to (

∂F

∂ρ

)
j=1

≈
F3/2 − F1/2

∆ρ
=
F3/2

∆ρ
. (7.130)

All other inner boundary terms only involve evaluation at j = 1. However, the
linearization of the nonlinear terms introduces quantities like ∂(R/Ln)j/∂nk. Since
we have used a three-point, centered stencil for R/Ln and R/Lp, we would need to
evaluate the density and pressure inside the inner boundary. To avoid this, we must
employ an alternate discretization for R/Ln and R/Lp at j = 1. We choose to use
a shifted three-point stencil to retain second order accuracy of derivatives:(

R

Ln

)
j

= −R
a

(
∂ lnn

∂ρ

)
j

≈ −R
a

1

nj∆ρ

(
−3

2
nj + 2nj+1 −

1

2
nj+2

)
. (7.131)

Computing the derivative of this expression with respect to the density at grid
points, we have

∑
k

(
nm+1
k − nk

) ∂(R/Ln)j
∂nk

=
R

a∆ρ

[
nm+1
j+2

2nj
− 2

nm+1
j+1

nj
+
nm+1
j

nj

4nj+1 − nj+2

2nj

]
,

(7.132)
with similar expressions for pi and pe.

A consequence of this inner boundary condition is that the coefficients given in
Eqs. (7.63)-(7.71) and (7.116)-(7.128) are modified by taking F− to be zero. There
are additional modifications to Eqs. (7.116)-(7.128) due to the new discretization of
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R/Ln and R/Lp. The new coefficients are

ψn,2 ≡
µ1,j

nj
(7.133)

ψn,0 ≡
µ1,j

nj

(
4nj+1 − nj+2

nj

)
+

5

2nj
Ej −

3

2nj
(Gj +Hj +Kj) (7.134)

−〈|∇ρ|〉
A∆ρ

[
Bj[n]− 3

4

F+

n+

]
(7.135)

ψn,1 ≡ −4
µ1,j

nj
− 〈|∇ρ|〉

A∆ρ

(
A+[n]− 3

4

F+

n+

)
(7.136)

ψpi,2 ≡
µ2,j

pij
(7.137)

ψpi,0 ≡
Gj

pij

(
3

2
+ δsi

)
+

5

2pij
(Hj +Kj) +

µ2,j

pij

(
4pij+1

− pij+2

pij

)
(7.138)

+Ej

(
δseZu − δsiZs
pujZu − psjZs

− 3

2

δsemsZu + δsimuZs
msZupuj +muZspsj

)
(7.139)

−〈|∇ρ|〉
A∆ρ

[
Bj[pi] +

5

4

F+

pi+

]
(7.140)

ψpi,1 ≡ −4
µ2,j

pij
− 〈|∇ρ|〉

A∆ρ

(
A+[pi] +

5

4

F+

pi+

)
(7.141)

ψpe,2 ≡
µ3,j

pej
(7.142)

ψpe,0 ≡
Gj

pej
δse + Ej

(
δsiZu − δseZs
pujZu − psjZs

− 3

2

δsimsZu + δsemuZs
msZupuj +muZspsj

)
(7.143)

+
µ3,j

pej

(
4pej+1

− pej+2

pej

)
− 〈|∇ρ|〉

A∆ρ
Bj[pe] (7.144)

ψpe,1 ≡ −4
µ3,j

pej
− 〈|∇ρ|〉

A∆ρ
A+[pe]. (7.145)

7.5 Time averaging

The steady-state turbulent fluxes used in the transport equations are time-
averaged values. We would like to minimize simulation time by running each set of
turbulence calculations just long enough to obtain good statistics on the converged
fluxes. Consequently, we have developed an adaptive time averaging procedure for
the turbulent fluxes and collisional heating that automatically detects when the
fluxes have converged.

For each flux tube simulation, we keep track of the instantaneous time average
of the fluxes and heating:

Γm =
m∑
i=1

Γi(∆t)i, (7.146)
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where m denotes the turbulent time step and ∆t is the size of the turbulent time
step. Analogous expressions are used for the heat fluxes and heating. While this
quantity is sufficient for use as the time-averaged flux in our transport calculation,
we have the additional burden of determining when this flux has converged so that
we may end the turbulence calculation. In order to accomplish this, we store each
of the Γi for i = 1→ m. At each time step we then compute a measure of the rms

deviation of each of the Γ
i

(for i = j → m− 1, where j is by default m/2, but can
be specified by the user) from the current value:

εΓ ≡

√√√√ 1

m− j

m−1∑
i=j

(
Γ

2

m − Γ
2

i

)
(7.147)

When εΓ is less than a user-specified tolerance, the flux is determined to be con-
verged, and the turbulence calculation terminates.

7.6 Quasilinear fluxes

Since turbulent flux calculations are computationally expensive, we find it
convenient at times to use quasilinear estimates for the fluxes and heating. We do
not claim that these estimates are quantitatively correct; we merely use them as a
computationally inexpensive tool to test our numerical scheme and to gain quick,
qualitative insight into transport and heating processes.

To obtain quasilinear estimates for the fluxes and collisional heating, we nor-
malize the fluxes and heating from linear Trinity simulations by |Φ|2 and multiply
by a factor derived from mixing length theory. The argument goes as follows: one
expects saturation to occur when nonlinear effects become dominant, i.e. when
∂h/∂t ∼ vχ · ∇h. From this balance, we obtain an approximation for the growth
rate in terms of Φ:

γ ∼ k2
⊥ρvth

eΦ

T
. (7.148)

Defining Φ̃ ≡ (a/ρ)(eΦ/T ), k̃ ≡ k⊥ρ, and γ ≡ (a/vth)γ, we have∣∣∣Φ̃∣∣∣ ∼ γ̃

k̃2
(7.149)

⇒ ΓNQL ∼
γ̃2

k̃4

ΓN∣∣∣Φ̃∣∣∣2 , (7.150)

with analagous expressions for the heat fluxes and collisional heating.

7.7 Heat source

We now relate the power input to the normalized source S̃p. The power input,
P , is defined as

P ≡
∫
dV Sp. (7.151)
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Taking into account normalizations, we have

P =

∫
dV

n0,rT
3/2
0,r

a
√
mr

ρ2
∗0S̃p (7.152)

= a2

∫
dφdθdρ (∇ρ×∇θ · ∇φ)−1 n0,rT

3/2
0,r

a
√
mr

ρ2
∗0S̃p (7.153)

For circular flux surfaces, we have

P = 4π2aR0

n0,rT
3/2
0,r√
mr

ρ2
∗0

∫ 1

0

dρ ρS̃p(ρ) (7.154)

We are currently using an analytic source of the form

S̃p =
Ã

σ
exp

[
− ρ2

2σ2

]
, (7.155)

for which ∫ 1

0

dρ ρS̃p(ρ) = Ã

(
1− exp

[
− 1

2σ2

])
σ. (7.156)

Using this result, we can rearrange Eq. (7.154) to solve for the normalized source
amplitude Ã in terms of the input power and the width of the Gaussian power
deposition profile σ:

Ã =

[
4π2aR0ρ

2
∗0
n0,rT

3/2
0,r

m
1/2
r

σ

(
1− exp

[
− 1

2σ2

])]−1

P

=
R

a

5.11× 10−6m̃
1/2
i P̃

R̃2ρ2
∗0σ
(
1− exp

[
− 1

2σ2

]) , (7.157)

where P̃ is given in MegaWatts and m̃i is given in units of the proton mass.

7.8 Trinity simulations

In this section we present simple tests showing that our implicit transport
solver is well behaved and that it provides significant computational savings over an
explicit solver. Furthermore, we present preliminary results from Trinity simula-
tions using gyrokinetic, turbulent fluxes and heating. These simulations, which are
the first of their kind, demonstrate that the coupled flux tube approach can rou-
tinely be used to obtain steady-state equilibrium profiles of density and pressure, as
well as the corresponding turbulent fluxes and heating.
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7.8.1 Tests

The first test we present is intended to demonstrate that the heat transport and
turbulent heating terms from Eq. (3.105) have been properly implemented and that
the implicit transport solver algorithm developed in this chapter is well behaved,
even for multi-channel transport (here we are evolving density and ion and electron
pressures). We artificially set the temperature equilibration term to zero and use
the following analytic model for our normalized fluxes and turbulent heating:

Γs =
n1/2

p
3/2
i

(7.158)

Qs =
ps

p
5/2
i

(7.159)

Hs = − 3

p
5/2
i

∂ps
∂ρ

, (7.160)

where all quantities are understood to be the normalized versions defined in Sec.
7.3. We note that these fluxes do not mesh well with the approximation employed
in our transport solver algorithm that the fluxes and heating depend primarily on
R/Ln, R/LTi , and R/LTe . Consequently, we are also testing the resiliency of our
scheme. The resultant transport equations are

∂n

∂τ
= 0 (7.161)

∂ps
∂τ

=
∂ps
∂ρ

, (7.162)

which has the solution ps = F [τ + ρ], with F an arbitrary functional. For our
initial conditions, we take n(τ = 0) = 1 and ps(τ = 0) = exp[−ρ]. Our boundary
conditions are n(ρ±, τ) = 1 and ps(ρ±, τ) = exp[−(ρ± + τ)], were ρ± represents the
the inner and outer radii in the simulation. The solution to this system is n(ρ, τ) = 1
and ps(ρ, τ) = exp[−(ρ + τ)]. In Fig. 7.5, we show the numerical solution for this
system, which is in excellent agreement with our analytic prediction.

Our second test illustrates the superiority of our implicit implentation to an
explicit scheme when considering fluxes that lead to diffusive behavior. We artifi-
cially set the turbulent heating and temperature equilibration terms to zero and use
the following form for the turbulent heat flux (we do not evolve the density in this
case, so there is no need to define the particle flux):

Qs =
3D

2

a

Lps

ps

p
5/2
i

, (7.163)

where D is a constant diffusion coefficient. The resultant transport equations are

∂ps
∂τ

= D
∂2ps
∂ρ2

, (7.164)
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Figure 7.5: Comparison of the analytic and numerical solutions to the system defined
by Eqs. (7.161) and (7.162) at τ = 0 and τ = 2. Lines represent analytic solution
and dots represent numerical solution from Trinity. Here we are showing only the
ion pressure, but the solution for the electron pressure is identical (and the density
remains approximately constant in time). Simulation conducted with ∆τ = 0.02
and 16 equally spaced radial grid points (flux tubes).
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Figure 7.6: Comparison of the analytic solution to the D = 0.1 diffusion equation
(7.164) at τ = 0 (solid line) and τ = 2 (dashed line) to the numerical solution from
Trinity (square dots). Here we are showing only the ion pressure, but the solution
for the electron pressure is identical. Simulation conducted with ∆τ = 0.1 and 16
equally spaced radial grid points (flux tubes).

which is simply the diffusion equation. Taking the initial condition of the form
ps(ρ, τ = 0) = exp[−ρ2/4D] and boundary conditions of the form ps(ρ±, τ) =√

1/τ exp[−ρ2
±/4Dτ ], the solution is ps(ρ, τ) =

√
1/τ exp[−ρ2/4Dτ ]. In Fig. 7.6,

we show the numerical solution using Trinity’s implicit transport solver. After
conducting a number of both explicit (α = 0) and implicit (α = 1/2) numerical
simulations, we find that the implicit scheme gives good results (relative error less
than 10%) for at least ∆τ = 2.0, whereas the explicit scheme is numerically unstable
for approximately ∆τ > 0.02. After taking into account the fact that an additional
set of flux tube simulations must be run for each transport channel at each trans-
port time step when running implicitly, we find that the implicit scheme provides a
savings of a factor of ∼ 25− 50 over the explicit scheme, depending on the number
of transport channels used (from 1− 3 currently).
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7.8.2 Preliminary results

The simulation results presented in this section are taken from relatively low
resolution simulations with reduced physics models. They are meant to be demon-
strations that the coupled flux tube approach detailed in this chapter can be rou-
tinely used to obtain predictions for steady-state equilibrium profiles and turbulent
fluxes. All simulations considered here were run with a hyperviscous dissipation
model [100] that allows us to obtain reasonable, converged turbulent fluxes with
a relatively coarse spatial grid for the turbulence. For each simulation we used a
16× 16 grid in the spatial plane perpendicular to the magnetic field, 26 grid points
along the magnetic field line, 12 energies, 20 untrapped pitch angles, and a variable
number of trapped pitch angles (the number of trapped pitch angles in Trinity

depends on location along the equilibrium magnetic field line. See Chapter 4 for
more details.).

We consider a three different systems. All of them have: a single kinetic,
hydrogenic ion species; electrostatic fluctuations; major radius of 6.2 meters; aspect
ratio of 3.1; local (Miller) geometry with concentric, circular flux surfaces; fixed
edge temperature of 4 keV; and external heat input to the ions (via a Gaussian
deposition profile with σ = 0.2ρ). The first two systems we consider both have
adiabatic electrons and 60 MW deposited in the ions from an external source, but
they have different magnetic field strengths. Evolving only the ion pressure gradient,
the simulations were run with eight radial grid points and ∆τ = 0.02 (∆t ≈ 0.018
seconds) for 25 time steps. The simulations took approximately 20 minutes each
on 2048 processors. The steady state ion temperature profiles for the two different
toroidal magnetic field strengths are shown in Fig. 7.7. As expected, the case with
the stronger magnetic field leads to higher core temperatures. In Fig. 7.8 we compare
the Ba = 5.3 T result for the ion temperature profile with the same result calculated
using only neoclassical fluxes (obtained using the analytic expression for the ion heat
flux from Ref. [99]). We see that in the absence of microturbulence, the core ion
temperature is well in excess of what is required to ignite a burning plasma.

The final case we consider has kinetic electrons, a magnetic field strength
of Ba = 5.3 T, and 120 MW external heat source, with 30% going into the ion
channel. Again using 8 radial grid points, we evolved both the ion and electron
equilibrium pressure profiles. For our time step, we used ∆τ = 0.005 (∆t ≈ 0.004
seconds) and evolved for 25 time steps. The simulation took approximately one
hour on 4096 processors. The results, shown in Fig. 7.9 indicate that the use of
kinetic electrons (instead of the adiabatic electron model used to obtain Fig. 7.7)
leads to a significant (approximately 65%) reduction in the core ion temperature.
The fact that the core ion temperature is reduced upon taking into account kinetic
electron effects is not suprising since the trapped electron mode (TEM) is enabled
when considering kinetic electrons. However, the large size of the reduction may be
misleading, since we are employing a relatively coarse grid in phase space.
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Figure 7.7: Steady-state ion temperature profile for two different values of Ba, the
magnetic field magnitude at the center of the LCFS. As expected, an increase in Ba

leads to an increase in the core temperature.
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Figure 7.8: Comparison of steady-state ion temperature profiles for simulations
using turbulent fluxes (solid line) and only neoclassical fluxes (dashed line). Without
the fluxes arising from microturbulence, core plasma temperatures would easily be
sufficient to ignite the plasma.
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Figure 7.9: Steady-state ion and electron temperature profiles for the same system
used to obtain the Ba = 5.3 T plot in Fig. 7.7, with the exception that here we retain
kinetic electron effects. Temperature equilibration is strong enough near the edge
(due to low electron temperature, moderate collisionality, and weak local external
heating) to keep the ions and electrons in thermal equilibrium, but this is not true as
we approach the core. Comparing with Fig. 7.7, we see that the core ion temperature
is significantly decreased by retaining kinetic electron effects.
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7.9 Summary

In this chapter, we have detailed a numerical framework for efficiently simu-
lating turbulent transport and heating in magnetic confinement fusion devices. In
Sec. 7.2 we introduced the local approximation, which allows for the use of a turbu-
lence simulation domain consisting of a thin tube encompassing a single magnetic
field line. Each flux tube is used to map out an entire flux surface, constituting a
significant saving in simulation volume. These flux surfaces are then used as radial
grid points in a coarse spatial grid when solving the equilibrium evolution equations
(3.71) and (3.105) derived in Chapter 3. The steady-state turbulent fluxes and
heating calculated in each of these flux tube simulations are then time-averaged,
representing a single step in a coarse, equilibrium timescale grid.

In Secs. 7.3 and 7.4, we normalized and discretized the equilibrium evolution
equations. An important consideration in our time discretization was the stiffness
of the equations, which led us to develop a fully implicit scheme. This was accom-
plished using Newton’s method, in which we expanded the nonlinear terms about
their values at the previous timestep and kept only terms through linear order. As
a result, we are forced to evaluate derivatives of the averaged turbulent fluxes and
heating with respect to the density and pressures at each of the radial grid loca-
tions. Since this is computationally very expensive, we made the approximation
that the fluxes depend primarily on gradient scale lengths; the dependence on the
local density and pressures, as well as the dependence on higher order derivatives,
is considered to be weak enough so that it can be neglected in taking the flux
derivatives.

In Sec. 7.5, we detailed the method by which we obtain numerical time averages
of the turbulent fluxes and heating. By comparing the running time average to the
history of accumulated time averages, we defined a criterion that is used to determine
when the time averaged turbulent fluxes and heating have converged to their steady
state value. Once they have converged, the flux tube calculation is terminated and
the time averaged fluxes and heating are passed to the transport solver.

We described our simple quasilinear flux model in Sec. 7.6 and our external
heating source in Sec. 7.7. Finally, we presented the results of Trinity simulations
in Sec. 7.8. These results included simple tests showing that the implicit, multi-
channel transport solver employed in Trinity is well behaved and computationally
efficient. Additionally, we presented preliminary results from full-volume Trinity

simulations of the entire discharge of ITER-like plasmas. These simulations, which
calculated steady state equilibrium profiles and corresponding gyrokinetic, turbulent
fluxes, constitute the first such simulations ever conducted. Each simulation took
less than an hour on no more than 4096 processors, making it possible to routinely
run such simulations in the future.
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Chapter 8
Summary and discussion

In this thesis, we have presented a complete theoretical (Chapter 3) and nu-
merical (Chapter 7) prescription for studies of the self-consistent interaction between
turbulence and equilibrium profiles. In order to make such numerical studies fea-
sible and to ensure that the relevant physics processes are accurately modeled, we
developed and implemented velocity space resolution diagnostics (Chapter 4) and a
model physical collision operator for gyrokinetics (Chapters 5 and 6). Combining
all of these elements, we have developed a new code, Trinity, with which we have
produced the first ever nonlinear, gyrokinetic simulations of coupled turbulence,
transport, and heating over a full fusion device volume and discharge time (Chapter
7).

Thus far, the physical systems we have considered have been somewhat sim-
plified. However, the capability currently exists to do more physically realistic sim-
ulations, including multiple species, electromagnetic effects, electron scales, and
general geometry. Consequently, Trinity can immediately be used to explore a
variety of interesting, experimentally relevant problems. It can be used to conduct
both qualitative and quantitative studies of possible novel effects of the turbulence-
equilibrium interaction, such as the formation of internal transport barriers and the
effect of turbulent heating on the electron-ion temperature ratio. The fact that
Trinity simulation runtimes are relatively short also allows us to routinely carry
out parameter scans to study things such as: shaping effects; scaling of performance
with device size, aspect ratio, and magnetic field strength; and dependence of core
temperature profiles on edge temperature.

There are still numerous improvements which could be made to the numer-
ical algorithms employed by Trinity. Consideration should be given to how one
can quickly determine whether or not a given nonlinear simulation is stable (below
the critical gradient threshold) so that runtime is not wasted simulating decaying
turbulence. Runtime could also be saved by developing a scheme to minimize the
number of, or utilize use the resources from, idle processors (which appear because
some flux tube calculations converge faster than others). A preconditioner for the
profiles calculated using quasilinear or gyrofluid estimates for the fluxes could be
employed to provide initial profiles to Trinity that will quickly converge to steady
state. One could explore whether multiple iterations of the Newton solver (instead
of the single iteration method developed in Chapter 7) allows for the use of larger
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transport time steps and more rapid convergence to steady state. This could also
lead to the development of an adaptive transport time step. The spatial stencil
used for finite differences could be widened at essentially no additional computa-
tional cost. Finally, it may be possible to develop a scheme for evaluating terms
such as ∂Q/∂(R/Lp) that does not require additional nonlinear flux calculations
(through the use of quasilinear flux estimates or something similar).

Possible future directions for improvement to the physics model in Trinity

include: treatment of the large scale radial electric field, equilibrium flows, and mo-
mentum transport; inclusion of additional plasma parameter dependencies (such as
the electron-ion temperature ratio) when approximating the fluxes at the new time
step in our transport solver algorithm; a more sophisticated (numerical) calculation
of neoclassical transport and heating effects; treatment of fast particles; more real-
istic particle, momentum, and heat sources; and treatment of the slow evolution of
magnetic flux surfaces. Equilibrium shear flows associated with the large scale radial
electric field profile are believed to play a critical role in the reduction of turbulence
and formation of the edge pedestal. The development and implementation of mo-
mentum transport equations would thus allow for quantitative studies of transport
barrier formation. Inclusion of electron-ion temperature ratio dependence in our
transport solver would allow us to calculate heating in the homogeneous plasmas
present in astrophysical systems. In particular, it would allow us to determine the
ratio of the turbulent energy deposited in ions to the turbulent energy deposited in
electrons, giving the steady state electron-ion temperature ratio.

By itself, the first-principles turbulent transport code presented here is not
sufficient to provide self-contained, comprehensive predictions for the performance
of fusion devices such as ITER. There are a number of critical physics phenomena
not currently present in our model, such as equilibrium flows, edge physics, and
MHD processes. However, it can provide first-principles predictions for core profile
evolution over a wide range of experimental configurations and plasma parameter
sets. Furthermore, a code such as Trinity is a necessary component in full-physics,
predictive simulations of tokamak discharges. Full-physics, predictive simulations
are a critical component for the fusion program as we develop ITER and look beyond
to the next generation of fusion devices.
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Appendix A
Geometry

A.1 General geometry

Our development closely follows that of Ref. [11]. Since the divergence of the
magnetic field is zero, one may use a Clebsch formulation [101]:

B = ∇α×∇ψ. (A.1)

To represent an equilibrium magnetic field composed of closed surfaces, it is sufficient
to define [101]: α = φ − q(ψ)θ − ν(ψ, θ, φ) and ψ = Ψ. Here, θ and φ are
the physical poloidal and toroidal angles, respectively, Ψ = (2π)−2

∫
V
dτB ·∇θ is the

poloidal flux, q(Ψ) = dΨT/dΨ, ΨT = (2π)−2
∫
V
dτB · ∇φ is the toroidal flux, and dτ

is the volume element. The quantity ν should be periodic in θ and φ.
It is convenient to define a new angle ζ = φ − ν. With these definitions,

Eq. A.1 becomes
B0 = ∇Ψ×∇(qθ − ζ),

where the subscript on B is included to emphasize that we are concerned with the
equilibrium, unperturbed magnetic field. The field lines are straight in the (ζ, θ)
plane, and are labeled by α. Useful coordinates are therefore (ρ, α, θ), where ρ(Ψ)
determines the flux surface, α chooses a field line in that surface, and θ measures
the distance along that field line.

In an axisymmetric system, one may also represent the magnetic field as

B0 = I(Ψ)∇φ+∇Ψ×∇φ, (A.2)

where I(Ψ) = RBT . We will find it useful to take advantage of this representation,
although not necessary.

In the ballooning or field-line following limit, we assume that the perturbed
quantities vary as

A = Â(θ) exp (iS)

where b̂ · ∇S = 0. This takes into account the fact that the perturbations tend to
be slowly varying along the field line, and allows for rapid variation across the field
line [8].

The latter condition implies

(∇α×∇Ψ) · ∇S = 0

which, in turn, implies S = S(α,Ψ). To make contact with the ballooning approxi-
mation and with field-line following coordinates, one may choose S = n0 (α + qθ0),
where n0 is some (large) integer, and θ0 is the familiar ballooning parameter which,
in field-line-following coordinates, determines kx through the relation kx = −kθŝθ0.
Here, ŝ = ρ/q(dq/dρ), and ρ is an arbitrary flux surface label.
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A.2 Operators and arguments

In general, we wish to simulate the nonlinear electromagnetic gyrokinetic equa-
tion in the ballooning, or field-line-following, limit. We choose a field-line-following
representation [11], which has the advantage that the nonlinear terms are easy to
evaluate and are independent of the details of the magnetic geometry. Further de-
tails may found in Ref. ([11]). Below, we focus on the linear terms, which may be
affected by the geometry.

Effects of the magnetic geometry in this limit enter through only a small num-
ber of terms, regardless of whether one proceeds with a moment-based approach [11],
a δf approach [102, 103], or a gyrokinetic approach [104, 51]. Consider, for example,
Eqs. (23–24) of Ref. [8]:

ĝ = ĥ− 1

B0

∂F0

∂µ

[
J0

(
v⊥|∇S|

Ω

)(
qφ̂−

v‖
c
qψ̂
)

+ qσ̂
v⊥|∇S|

c
J1

(
v⊥|∇S|

Ω

)]
, (A.3)

and

−i
(
ω − ωd + iv‖b̂ · ∇

)
ĥ =

∫ π

−π

dξ

2π
exp (−iL)st

(
f̂0

)
+iω

(
∂F0

∂ε
− B0 ×∇S · ∇F0

B0mΩω

)
[
J0

(
v⊥|∇S|

Ω

)(
qφ̂−

v‖
c
qψ̂
)

+ qσ̂
|∇S|v⊥

c
J1

(
v⊥|∇S|

Ω

)]
. (A.4)

Here, ωd ≡ ∇S · B0 ×
(
mv2
‖b̂ · ∇b̂ + µ∇B0 + q∇Φ0

)
/(mB0Ω). The notation is

explained in Ref. [8]. Note that the unperturbed magnetic field B0 = B0(θ).
These equations, together with Maxwell’s equations, describe the linear prop-

erties of a wide range of microinstabilities. In the limit of large toroidal mode number
n0, only the following components of these equations depend on θ: b̂ · ∇, |∇S|2,

B0×
(
b̂ · ∇b̂

)
· ∇S, (B0 ×∇B0) · ∇S, and B0(θ). To perform volume integrations

and flux surface averages in the nonlinear simulations, it is also necessary to have
the Jacobian J and |∇ρ| as functions of θ. We now consider the terms individually.

To make our normalizations clear, we treat the ω∗ term in detail. The ω∗ term
may be written as

−iB0 ×∇S · ∇F0

B0mΩ
qχ̂ = −in0

c

B0

χ̂
[
b̂×∇ (α + qθ0) · ∇F0

]
where

χ̂ =
(
φ̂−

v‖
c
ψ̂
)
J0 +

σ̂|∇S|v⊥
c

J1.

This, in turn, is

−in0
c

B0

χ̂
[
b̂×∇ (α + qθ0) · ∇F0

]
= −in0

c

B0

χ̂
(
b̂ · ∇α×∇Ψ

) ∂F0

∂Ψ
= −in0cχ̂

∂F0

∂Ψ
,
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where we have assumed that F0 = F0(Ψ).
We now introduce normalizing quantities. Lengths are normalized to a, which

we choose to be half the diameter of the last closed flux surface (LCFS), measured at
the elevation of the magnetic axis. The magnetic field is normalized to the toroidal
field on the flux surface at Ra, (Ba = I(Ψ)/Ra) where Ra is the average of the
minimum and maximum of R on the flux surface and I(ψ) is as used in Eq. (A.2).
Time is normalized to a/vt, where vt =

√
T/mi. Thus, for example, ∇ = (1/a)∇N

and Ψ = a2BaΨN . Perturbed quantities are scaled up by a/ρia, where ρia = vt/Ωa

and Ωa = |e|Ba/(mic). The perturbed field is normalized by Ti/|e|, so that, for
example, χ̂N = (|e|χ̂/Ti)(a/ρia). [Here, we consider only the one-species problem.
The generalization to multiple species is straightforward.] Finally, we introduce an
arbitrary flux surface label ρ, normalized so that ρ = 0 at the magnetic axis and
ρ = 1 at the LCFS. Note that the Larmor radius ρi should not be confused with the
flux surface label ρ. Upon adopting these normalizations, one finds

−in0cχ̂
∂F0

∂Ψ
= −in0

a2

cT

eBa

ρia
a
χ̂N

∂F0

∂ρ

dρ

dΨN

= −ikθρia
ρiavt
a2

∂F0

∂ρ
χ̂N

which serves to define kθ ≡ (n0/a)dρ/dΨN . In the high aspect ratio, zero β, circular
flux surface limit, kθ = n0q/r. For the case in which there is a background density
gradient, one finds

−ikθρia
ρiavt
a2

∂F0

∂ρ
χ̂N = i(kθρia)χ̂N

F0

(Ln)N

ρiavt
a2

= i(kθρia)χ̂NF0
a

Ln

(ρiavt
a2

)
in which the dimensionless quantity (Ln)−1

N = −(1/n)dn/dρ, and may also be writ-
ten as Ln/a. With the specified normalizations for time, space, and perturbed
quantities, the factor ρiavt/a

2 scales out of the gyrokinetic equation. Compare, for
example, the ω∗ term with the first term in Eq. (A.4),

iωĥ = iωN ĥN

(ρiavt
a2

)
.

The factor in parentheses is common to all terms in the equation, and does not
appear in any other form. It may therefore be considered to be arbitrary.

In the ω∗ term, note that kθ is multiplied by ρia, confirming that it is natural
to consider perpendicular gradients normalized by the gyroradius ρia rather than to
the minor radius a, as expected in the ballooning or field-line-following limit.

To summarize, upon adopting the above normalizations, the ω∗ term in Eq. (A.4)
in field-line-following coordinates becomes

− iB0 ×∇S · ∇F0

B0mΩ
qχ̂ = iω∗N χ̂NF0

(ρiavt
a2

)
= −ikθρia

1

F0

dF0

dρ
χ̂NF0

(ρiavt
a2

)
(A.5)

Note that ω∗N = −kθρia(1/F0)(dF0/dρ) is dimensionless, independent of θ, and
related to the dimensional ω∗ by ω∗ = ω∗Nvt/a.

We now turn to the b̂ · ∇ operator. We begin by using the B field in the form
of Eq. (A.1) to find α:

B · ∇φ = ∇θ ×∇Ψ · ∇φ∂α
∂θ
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which implies

α =

∫ θ

0

dθ
B0 · ∇φ

∇θ ×∇Ψ · ∇φ
. (A.6)

For an axisymmetric B field, this integral may be evaluated with the use of Eq. (A.2).
In this case, the b̂ · ∇ operator may be explicitly evaluated. It is

b̂ · ∇ĥ(θ) =
B0 · ∇θ
B0

∂ĥ

∂θ
= − IN

aBN

(
∂α

∂θ

)−1

|∇Nφ|2
∂ĥ

∂θ
,

which serves to define (
b̂ · ∇

)
N

= − IN
BN

(
∂α

∂θ

)−1

|∇Nφ|2. (A.7)

In the high aspect ratio, zero β, circular flux surface limit,
(
b̂ · ∇

)
N

= a/qR0, where

R0 is the major radius at the center of the flux surface.
Next, we consider the ∇B part of the ωd operator. This term is given by

v2
⊥
2

ĥ

ΩB2
0

B0×∇B0·∇S =
(ρiavt
a2

)(kθρia
2

)
v2
⊥N
2
ĥN

[
2

B2
N

dΨN

dρ
b̂×∇NBN · ∇N (α + qθ0)

]
.

The module released here produces the factors in square brackets, i.e.,

ω∇B =
2

B2
N

dΨN

dρ
b̂×∇NBN · ∇Nα and ω

(0)
∇B =

2

B2
N

dΨN

dρ
b̂×∇NBN · ∇Nq. (A.8)

In the high aspect ratio, zero β, circular flux surface limit, ω∇B = 2a/R0 (cos θ + ŝθ sin θ),

and ω
(0)
∇B = −2 (a/R0) ŝ sin θ.
The curvature drift is nearly the same as the ∇B drift, except that v2

⊥ → 2v2
‖,

and the fact that there is an additional component of the curvature drift given by

v2
‖

4πĥ

ΩB2
0

b̂×∇p · ∇S =
(ρiavt
a2

)(kθρia
2

)
ĥNv

2
‖N

[
1

B3
N

dΨN

dρ
b̂×∇Nβa · ∇N(α + qθ0)

]
.

(A.9)
The module released here produces the factors in square brackets, i.e.,

ωκ = ω∇B +
1

B3
N

dΨN

dρ
b̂×∇Nβa · ∇Nα, ω(0)

κ = ω
(0)
∇B (A.10)

Here, βa = 8πp/B2
a. Note that a perpendicular gradient of βa gets no contribution

from the gradient of the magnetic field, since Ba is a constant.
We do not explicitly consider the remaining component of ωd, proportional to

∇Φ0. To the extent that the electrostatic potential is constant on a flux surface,
this term may be specified using the information provided by the module.

To summarize, in field-line-following coordinates, the term in Eq. (A.4) that
is proportional to ωd is given by

iωdĥ = i

(
kθρia

2

)
ĥN

(ρiavt
a2

)[v2
⊥N
2

(
ω∇B + θ0 ω

(0)
∇B

)
+ v2

‖N
(
ωκ + θ0 ω

(0)
κ

)]
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The form of Eqs. (A.3–A.4) and of the gyrokinetic Maxwell’s equations [8]
(not shown) guarantees that |∇S| always appears as the square, |∇S|2. In general
geometry, this term may be written

|∇S|2 =
n2

0

a2
|∇N (α + qθ0)|2 = k2

θ

(
dΨN

dρ

)2

|(∇Nα + θ0∇Nq) · (∇Nα + θ0∇Nq)| .

The module released here produces the factors (g1, g2, g3), where

|∇S|2 = k2
θ

∣∣g1 + 2θ0g2 + θ2
0g3

∣∣ = k2
θ

(
dΨN

dρ

)2 ∣∣∇Nα · ∇Nα + 2θ0∇Nα · ∇Nq + θ2
0∇Nq · ∇Nq

∣∣ .
(A.11)

In the high aspect ratio, zero β, circular flux surface limit, g1 = 1 + ŝ2θ2, g2 = −θŝ,
and g3 = ŝ2. Note that |∇S|2 typically appears with a factor of 1/Ω2, which is not
included in Eq. (A.11).

The remaining quantities are straightforward. The variation of the unper-
turbed magnetic field along the field line is reported by the module as BN , with

BN(θ) = B0(θ)/Ba. (A.12)

The quantity |∇Nρ| is also reported by the module, and is unity in the high aspect
ratio, zero β, circular flux surface limit.

For numerical applications, it is sometimes necessary to choose the field line
coordinate so that (b̂ ·∇)N is constant. This choice allows the straightforward eval-
uation of terms proportional to |k‖| in the transform space. Thus, we use (ρ, α, θ′)
coordinates, where θ′ is the equal arc periodic coordinate defined by

θ′(θ) = 2πLN(θ)/LN(π)− π (A.13)

between −π and π, and LN(θ) =
∫ θ
−π dθ

(
b̂ · ∇

)−1

N
. In this coordinate system, the

coefficient of the parallel gradient operator of Eq. (A.7) becomes(
b̂ · ∇

)′
N

= 2π/LN(π). (A.14)

The Jacobian is JN = (dΨN/dρ) (LN/2πBN) . With these definitions, the flux sur-
face average of a quantity Γ is defined to be

〈Γ〉 =

∫
ΓJN dθ

′ dα∫
JN dθ′ dα

.

The normalized area of the flux surface is AN = 2π〈 |∇Nρ| 〉
∫
Jdθ′.

The field-line variation of the quantities ω∇B and ω
(0)
∇B [Eq. (A.8)], ωκ and ω

(0)
κ ,

[Eq. (A.10)], (g1, g2, g3) [Eq. (A.11)], BN(θ′) [Eq. (A.12)], and
(
b̂ · ∇

)
N

[Eq. (A.14)],

together with the quantities |∇Nρ|, dρ/dΨN and dβ/dρ are the outputs of this geom-
etry module. These coefficients contain all of the geometric information necessary
for numerical calculations of high-n microstability and turbulence in axisymmetric
toroidal configurations with nested magnetic surfaces.
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A.3 Module details

Input numerical equilibria may be specified in numerous ways, as documented
in the module. Interfaces to direct and inverse Grad-Shafranov equilibrium solvers
are available. These include using output from several equilibrium codes in use
in the fusion community, such as TOQ [105, 106], EFIT [107], VMOMS [108],
JSOLVER [109], and CHEASE [110], as well as the local equilibrium model of
Ref. [111].

Here, we describe our implementation of the Miller local equilibrium model [111]
for completeness. This model extends the usual zero-beta, high-aspect ratio equi-
librium to arbitrary aspect ratio, cross section and beta, and allows one to consider
geometric effects on microinstabilities in a controlled way.

The shape of the reference flux surface and its perpendicular derivative are
specified in the (R,Z) plane by

RN(θ) = R0N(ρ) + ρ cos [θ + δ(ρ) sin θ], (A.15)

ZN(θ) = κ(ρ)ρ sin θ. (A.16)

Here, RN = R/a, etc., R0N(ρ) = R0N(ρf ) + R′0N dρ, δ(ρ) = δ(ρf ) + δ′ dρ, κ(ρ) =
κ(ρf ) + κ′ dρ, and ρf denotes the flux surface of interest. In the remainder of this
section, the “N” subscripts will be dropped, since no ambiguities will arise.

As emphasized in Ref. [111], the actual shape of neighboring flux surfaces
(ρ 6= ρf ) is not determined by Eqs. (A.15) and (A.16). Instead, this is determined
by solving the Grad-Shafranov equation in the neighborhood of ρf . As noted by
Mercier and Luc [112], one may find this solution provided R(θ), Z(θ), Bp(θ), p

′(ρf ),
and I ′(ρf ). One additional piece of information is required to determine either the
safety factor q or dΨ/dρ. Finally, the normalization of the magnetic field determines
I(ρf ).

In our implementation, we take q to be an input parameter, and upon noting
that

∮
α dθ = −2πq, use it to define dΨ/dρ from Eq. (A.6):

dΨ

dρ
=

I

2πq

∮
dθ

R2
(∇θ ×∇ρ · ∇φ)−1 . (A.17)

[For numerical equilibria, dΨ/dρ may be calculated directly, and this expression
defines the safety factor.] The poloidal magnetic field Bp(ρf ) is specified by

Bp =
dΨ

dρ

|∇ρ|
R

,

where |∇ρ| may be found from Eqs. (A.15) and (A.16).
The remaining steps may be used with the Miller local equilibrium model or

with full numerical equilibria. We allow arbitrary values of dp/dρ and ŝ by using the
mercier expressions to find ∇S [111, 112, 113]. As noted in Ref. ([111]), the result
is exactly equivalent to the generalized s− α analysis of Greene and Chance [114].
To proceed, we define

A(θ) =

∫
dθ

∇θ ×∇Ψ · ∇φ

[
1

R2
+

(
I

BpR2

)2
]
, B(θ) = I

∫
dθ

∇θ ×∇Ψ · ∇φ

[
1

(BpR)2

]
,
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C(θ) = I

∫
dθ

∇θ ×∇Ψ · ∇φ

[
sinu+R/Rc

BpR4

]
,

where u(θ) is the angle between the horizontal and the tangent to the magnetic
surface in the poloidal plane, and Rc is the local radius of curvature of the surface
in the poloidal plane. If we define Ā =

∮
· · · , etc., it can be shown that

ŝ =
ρ

q

dq

dρ
=

ρ

2πq

dΨ

dρ

(
ĀI ′ + B̄p′ + 2C̄

)
(A.18)

where the primes denote derivatives with respect to Ψ. Thus, one may specify any
two of p′, I ′, and ŝ. This freedom is a direct consequence of the two free functions
in the Grad-Shafranov equation.

It can also be shown [113, 111] that the perpendicular component of the gra-
dient of α is given by

∇α · êΨ = |∇Ψ| (AI ′ +Bp′ + 2C) .

The parallel component of the gradient of α may be easily found from Eq. (A.6).
With ∇α in hand, the remainder of the calculation is straightforward. We note that
∇B may also be calculated using the mercier formulas; our treatment is the same
as can be found in Refs. [111] and [113]. To wit, the perpendicular component is

∇B · êΨ =
Bp

B0

(
Bp

Rc

+Rp′ − I2 sinu

R3Bp

)
,

and since B(ρf ) does not depend on p′ or I ′, the component of ∇B along the field
line depends on neither quantity.

The expressions for ŝ and the gradients of α and B make it clear that once
the safety factor, the shape of the flux surface, and Bp are determined (either from
a numerical equilibrium or from the local equilibrium), one may vary p′ and ŝ in-
dependently to find a family of solutions, all of which satisfy the Grad-Shafranov
equation. This flexibility allows one to carry out the Greene-Chance kind of analysis
for microinstabilities. Such an analysis simplifies the interpretation of the numerical
calculations, since all other parameters can easily be held fixed.

Within the context of the local equilibrium model [111], one may also vary
individual shape parameters one at a time, to explore the dependences in a controlled
fashion.

The eleven dimensionless parameters that determine the local MHD equiliib-
rium in this implementation of the Miller model are summarized in Table I.
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*Minor radius ρf

*Safety factor q

Magnetic shear ŝ = (ρ/q)dq/dρ

Elongation κ

dκ/dρ κ′

Triangularity δ

dδ/dρ δ′

Center of LCFS RgeoN

Center of flux surface R0N

dR0/dρ R′0N

*dβ/dρ β′

In addition to these eleven parameters, there are two normalizing dimensional
parameters, a and Ba. In all, there are two more parameters than are found in
Ref. [111]. We include the additional parameters to allow a somewhat more natural
correspondence between reported equilibria and the input variables. We emphasize
that there is nothing “extra” in our implementation of the model as result; it is
only modestly easier to use for some applications. For example, our choice of the
normalization of the magnetic field (Ba) is the vacuum magnetic field at Rgeo, the
center of the LCFS. This quantity is the most commonly reported magnetic field
value. By allowing R0 to be specified separately, we also make it conceptually easier
to separate the effects of Shafranov shift from the derivative of the Shafranov shift.
The inclusion of the normalized minor radius as a separate variable is a natural
choice as soon as one allows for separate specification of R0 and Rgeo.

The starred quantities (ρf , ŝ, and dβ/dρ) may be specified when reading in
numerical equilibria. Values of the latter two quantities that are different from the
actual equilibrium values are incorporated by using Eq. (A.18) to define I ′.

Finally, when using numerically generated equilibria, the module allows one
to choose from the most common definitions of ρ, such as the normalized poloidal
or toroidal fluxes, the horizontal minor radius, etc. The user may also provide his
or her own definition of ρ by supplying a simple function.

146



Appendix B
Landau damping of the ion acoustic wave

We consider the collisionless ion acoustic wave in slab geometry with adiabatic
electrons. The gyrokinetic equation for this system has the particularly simple form

∂h

∂t
+ vz

∂h

∂z
=
qF0

T

∂ 〈Φ〉
∂t

. (B.1)

Changing variables from h to g ≡ 〈f1〉 and assuming solutions of the form

g = g̃(v)ei(k‖z−iωt), (B.2)

we obtain

(ω − kv) g = kv
e 〈Φ〉R
Ti

FM , (B.3)

where I am using v = v‖ and k = k‖ for convenience. Neglecting FLR effects and
assuming quasineutrality gives

(ω − kv) g = kvτ
FM
n0

∫
d3v′g(v′). (B.4)

Defining

g(v) = 2π

∫ ∞
0

v⊥dv⊥g(v) (B.5)

and integrating over the perpendicular velocities in the gyrokinetic equation yields

(ω − kv) g(v) = kF (v), (B.6)

where

F (v) = vτ
n1√
2πvt

e
− v2

2v2
t , (B.7)

n1 =

∫
dv′g(v′). (B.8)

Following the analysis of Case and van Kampen, we see that this equation has
solutions of the form

g(v) = F (v)

[
P 1

u− v
+ λ(k, u)δ(u− v)

]
, (B.9)

with u = ω
k
, provided that λ is chosen to satisfy the condition

n1 =

∫
dv′g(v′) = P

∫
dv′

F (v′)

u− v′
+ λ(k, u)F (u). (B.10)
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A general solution is given in the form

f(z, v, t) =

∫ ∞
−∞

∫ ∞
−∞

C(k, u)gk,u(v)eik(z−ut)dk du, (B.11)

where C(k, u) is determined by the initial condtion

f(z, v, 0) =

∫ ∫
C(k, u)gk,u(v)eikzdk du. (B.12)

Taking the inverse Fourier transform of the above expression gives

F(k, v) =

∫
C(k, u)gk,u(v)du, (B.13)

where

F(k, v) =
1

2π

∫
f(z, v, 0)e−ikzdz. (B.14)

Plugging the expression (B.9) for g into the initial condition (B.13) yields

F(k, v)

F (v)
= P

∫
C(k, u)

u− v
du+ λ(k, v)C(v). (B.15)

We now have two equations, (B.10) and (B.15), for two unknowns (λ and C).
In order to solve this linear system, it is convenient to define some new notation.
Any square integrable function H can be written

H(q) =

∫ ∞
−∞

K(p)eipqdp. (B.16)

We define the positive and negative frequency parts of H as

H±(q) = ±
∫ ±∞

0

K(p)eipqdp, (B.17)

so that H = H+ + H−. Further we define the function H∗ = H+ − H−. It can be
shown that H∗ has the alternate form

H∗(v) = P 1

πi

∫ ∞
−∞

H(v′)

v′ − v
dv′. (B.18)

With these definitions in hand, we rewrite eqns (B.10) and (B.15) as

n1 = −πiF∗(u) + λF (u), (B.19)

F(k, v)

F (v)
= (λ+ πi)C+(v) + (λ− πi)C−(v). (B.20)

Eliminating λ gives an expression involving C+ and C−:

F(k, u) = (n1 + 2πiF+(u))C+(k, u) + (n1 − 2πiF−(u))C−(k, u). (B.21)
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The transform F can also be broken down into negative and positive frequency parts
to give two separate equations.

F±(k, u) = (n1 ± 2πiF±(u))C±(u) (B.22)

These can then be used to construct C(k, u):

C(k, u) =
F+(k, u)

n1 + 2πiF+(u)
+

F−(k, u)

n1 − 2πiF−(u)
. (B.23)

Substituting the expressions (B.9) and (B.23) for g and C into the equation
(B.11) for f gives

f(z, v, t) =

∫ ∫ [
F+(k, u)

n1 + 2πiF+(u)
+

F−(k, u)

n1 − 2πiF−(u)

]
F (v)

×
[
P 1

u− v
+ λ(k, u)δ(u− v)

]
eik(z−ut)dk du.

(B.24)

We can use the identity

F±(k, u) =
1

2π

∫ ∞
−∞

e−ikz
′
dz′
∫ ∞
−∞

δ±(u− v′)f(z′, v′, 0)dv′ (B.25)

to rewrite eqn (B.24) in the more convenient form

f(z, v, t) =

∫ [
δ+(u− v′)

n1 + 2πiF+(u)
+

δ−(u− v′)
n1 − 2πiF−(u)

]
f(z′, v′, 0)

2π
F (v)

×
[
P 1

u− v
+ λ(k, u)δ(u− v)

]
eik(z−z′−ut)dz′dv′dk du.

(B.26)

Now we pick an initial condition of the form

f(z, v, 0) = f̃(v, 0)eik0z, (B.27)

which gives

f(z, v, t) = eik0(z−vt) (n1 + πiF∗(v))

(
f̃+(v, 0)

n1 + 2πiF+(v)
+

f̃−(v, 0)

n1 − 2πiF−(v)

)

+ P
∫

F (v)

u− v

(
f̃+(u, 0)

n1 + 2πiF+(u)
+

f̃−(u, 0)

n1 − 2πiF−(u)

)
eik0(z−ut)du.

(B.28)
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Appendix C
Proof of the H-Theorem for our model collision operator

In the case of the expansion f = F0 + δf about a Maxwellian the entropy
generation by like particle collisions takes the form

dS

dt
= − d

dt

∫∫
f ln f dv dr

= −
∫∫

f̂C[f̂F0] dv dr ≥ 0, (C.1)

where we use the compact notation f̂ = δf/F0. The statement of the H-theorem is
that the right-hand side of Eq. (C.1) is nonnegative and that it is exactly zero when
δf is a perturbed Maxwellian.

We represent f̂ as a Cartesian tensor expansion (or equialently spherical har-
monic expansion) in velocity space:

f̂(r,v) = f̂0(r, v) + v · f̂1(r, v) +R[f̂ ](r,v), (C.2)

where R[f̂ ] comprises the higher order terms. It is then possible to recast the
statement of the H-Theorem in terms of this expansion using linearity of the model
collision operator C [Eq. (5.13)], orthogonality of the expansion and the fact that
spherical harmonics are eigenfunctions of the Lorentz operator L. By construction,
R[f̂ ] satisfies

∫
R[f̂ ]F0dv = 0 and

∫
vR[f̂ ]F0dv = 0, from which it follows that R[f̂ ]

does not contribute to the field-particle parts of the model operator: U [R[f̂ ]F0] = 0
and Q[R[f̂ ]F0] = 0. Substituting Eq. (C.2) into the right-hand side of Eq. (C.1),
where the operator C is given by Eq. (5.13), and integrating by parts those terms
involving derivatives of R[f̂ ], we find that they all give nonnegative contributions,
so we have

−
∫
f̂C[f̂F0]dv ≥ σ0 + σ1, (C.3)

where

σ0 = −
∫
f̂0C[f̂0F0]dv, (C.4)

σ1 = −
∫
v · f̂1C[v · f̂1F0]dv. (C.5)

In order to prove the H-theorem, it is now sufficient to show that σ0 ≥ 0 and σ1 ≥ 0.
Starting with σ0 and using Eq. (5.13), we integrate over angles and use the

identity v4νEF0 = −(∂/∂v)(v5ν‖F0) to express the term containing Q:

σ0 = −2π

∫
f̂0
∂

∂v

[
v4ν‖F0

∂

∂v

(
f̂0 −

v2

v2
th

Q[f̂0F0]

)]
dv, (C.6)
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Using the aforementioned identity again in the expression for Q [Eq. (5.12)] and
integrating by parts where opportune, we get

σ0 = 4π

1

2

∫ (
∂f̂0

∂v

)2

v4ν‖F0dv

−

(∫
∂f̂0

∂v
v5ν‖F0dv

)2/∫
v6νEF0dv.

 (C.7)

It is easy to see from the Cauchy-Schwarz inequality that(∫
∂f̂0

∂v
v5ν‖F0dv

)2

≤
∫ (

∂f̂0

∂v

)2

v4ν‖F0dv

∫
v6ν‖F0dv. (C.8)

Using this in the second term of Eq. (C.7), we infer

σ0 ≥ 4π

∫ (
∂f̂0

∂v

)2

v4ν‖F0dv

×
(

1

2
−
∫
v6ν‖F0dv

/∫
v6νEF0dv

)
= 0,

(C.9)

where to prove that the right-hand side vanishes, we again used the identity v4νEF0 =
−(∂/∂v)(v5ν‖F0) and integrated by parts. Thus, we have proved that σ0 ≥ 0.

Turning now to σ1 [Eq. (C.5)], using Eq. (5.13), and integrating by parts where
opportune, we get

σ1 =

∫
(v · f̂1)2νDF0dv −

1

2

∫ (
∂

∂v
v · f̂1

)2

v2ν‖F0dv

− 3v2
th

∣∣∣∣∫ xx · f̂1νsF0dv

∣∣∣∣2
/∫

x2νsF0dv,

(C.10)

where we have used the standard notation that x = v/vth and x = v/vth. Integrating
over angles and using the simple identity a ·

∫
v̂v̂dΩ = (4π/3)a, where v̂ = v/v and

a is an arbitrary vector, we have

σ1 =
4πv5

th

3

(∫
|f̂1|2x4νDF0dx+

1

2

∫ ∣∣∣∣ ∂∂x xf̂1

∣∣∣∣2x4ν‖F0dx

−
∣∣∣∣∫ f̂1x

4νsF0dx

∣∣∣∣2
/∫

x4νsF0dx

)
.

(C.11)

Once again applying the Cauchy-Schwarz inequality, we find that∣∣∣∣∫ f̂1x
4νsF0dx

∣∣∣∣2 ≤ ∫ ∣∣∣f̂1

∣∣∣2 x4νsF0dx

∫
x4νsF0dx. (C.12)
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Using this in the last term in Eq. (C.11), we get

σ1 ≥
4π

3
v5

th

(∫ ∣∣∣f̂1

∣∣∣2 x4∆νF0dx

+
1

2

∫ ∣∣∣∣ ∂∂x xf̂1

∣∣∣∣2 x4ν‖F0dx

)
,

(C.13)

where ∆ν = νD − νs. Upon using the identity 2x3∆νF0 = (∂/∂x)(x4ν‖F0) in the
first term of the above expression and integrating the resulting expression by parts,
we finally obtain

σ1 ≥
4π

3
v5

th

∫ ∣∣∣∣∣∂f̂1

∂x

∣∣∣∣∣
2

x6ν‖F0dx ≥ 0. (C.14)

We now consider when these inequalities becomes equalities, i.e., when the
right-hand side of Eq. (C.1) is zero. Firstly, this requires ∂R[f̂ ]/∂ξ = 0 and thus
R[f̂ ] = 0, so f̂ contains no 2nd or higher-order spherical harmonics. Secondly, σ0 = 0
if either f̂0 is independent of v or we have equality in the invocation of the Cauchy-
Schwarz inequality [Eq. (C.8)], which occurs if f̂0 ∝ v2. Similarly σ1 = 0 iff f̂1 is
independent of v. Thus, the right-hand side of Eq. (C.1) vanishes iff f̂ ∝ 1,v, v2,
i.e., δf = f̂F0 is a perturbed Maxwellian.

This completes the proof of the H-theorem for our model operator.

152



Appendix D
Gyroaveraging our model collision operator

To transform the derivatives in Eq. (5.13) from the original phase-space co-
ordinates (r, v, ξ, ϑ) to the new coordinates (R, v, ξ, ϑ), we require the following
formulae: (

∂

∂v

)
r

=

(
∂

∂v

)
R

− 1

v
ρ ·
(

∂

∂R

)
v

, (D.1)(
∂

∂ξ

)
r

=

(
∂

∂ξ

)
R

+
ξ

1− ξ2
ρ ·
(

∂

∂R

)
v

, (D.2)(
∂

∂ϑ

)
r

=

(
∂

∂ϑ

)
R

+
v⊥
Ω
·
(

∂

∂R

)
v

, (D.3)

where ρ = b̂×v⊥/Ω. In Fourier-transformed perpendicular guiding center variables,
we can replace in the above formulae (∂/∂R)v → ik, where k ≡ k⊥. It is convenient
to align (without loss of generality) the ϑ = 0 axis with k, so we have v⊥ · k =
k⊥v

√
1− ξ2 cosϑ and ρ · k = −k⊥v

√
1− ξ2 sinϑ. Using the above formulae, we

gyroaverage the Lorentz operator in Eq. (5.13):

〈L[hk]〉 =
1

2

∂

∂ξ
(1− ξ2)

∂hk
∂ξ
− v2(1 + ξ2)

4Ω2
k2
⊥hk, (D.4)

where we have used 〈ρρ〉R = 〈v⊥v⊥〉R = (1/2)I. Note that both the terms con-
taining ξ and ϑ derivatives in the original operator Eq. (5.9) produce non-zero gy-
rodiffusive contributions [the second term in Eq. (D.4)]. Another such gyrodiffusive
term, equal to −ν‖ [v2(1− ξ2)/4Ω] k2

⊥hk, arises from the energy-diffusion part of the
test-particle operator in Eq. (5.13). Collecting these terms together and defining
the thermal Larmor radius ρ = vth/Ω, we arrive at the gyrodiffusion term in Eq.
(5.19).

It remains to gyroaverage the field-particle terms. For the energy-conservation
term [Eq. (5.12)] we have〈

eik·ρQ[e−ik·ρhk]
〉

=
〈
eik·ρ

〉
Q[e−ik·ρhk], (D.5)

where

Q[e−ik·ρhk] =∫
v2νE

〈
e−ik·ρ

〉
hkdv

/∫
v2 (v/vth)2 νEF0dv.

(D.6)

Note that the ϑ integration in Q only affected e−ik·ρ, hence the above expression.

Using the standard Bessel function identity[117]
2π∫
0

eia sinϑ dϑ = 2πJ0(a), we find
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〈
e−ik·ρ

〉
= J0(a), where a = k⊥v⊥/Ω. Substituting this into Eqs. (D.5) and (D.6),

we arrive at the energy-conservation term in Eq. (5.19), where expression in the
right-hand side of Eq. (D.6) is denoted Q[hk] [Eq. (5.22)].

The momentum-conserving terms are handled in an analogous way: details
can be found in Appendix B of Ref. [15], where a simpler model operator was
gyroaveraged.
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Appendix E
Comparison of our collision operator with previous model operators

In order to compare and contrast with previously suggested operators that do
include energy diffusion, we first rewrite in our notation the operator derived by
Catto and Tsang[25] [their Eqs. (14) and (16)],

CCT [δf ] = νDL[δf ] +
1

v2

∂

∂v

(
1

2
v4ν‖F0

∂

∂v

δf

F0

)
+

2F0

n0v2
th

v ·
∫
vνsδfdv

+
2F0

3n0

(
v2

v2
th

− 3

2

)∫
v2

v2
th

νEδfdv.

(E.1)

This operator, whilst it conserves particle number, momentum and energy, neither
obeys the H-Theorem nor vanishes on a perturbed Maxwellian.

The latter point can be demonstrated most easily by letting δf = x2F0, where
x = v/vth. This δf is proportional to a perturbed Maxwellian with non-zero δn and
δT . We can then evaluate the test-particle and field-particle parts of the operator
to find

1

v2

∂

∂v

(
1

2
v4ν‖F0

∂

∂v

δf

F0

)
=

1

x2

∂

∂x

(
x5ν‖F0

)
= −x2νEF0 (E.2)

and ∫
x2νEδfdv =

4n0√
π

∞∫
0

x6νEe
−x2

dx =

√
2

π
n0ν. (E.3)

Substituting into Eq. (E.1), we get

CCT[δf ] = −x2νEF0 +

√
2

π

(
x2 − 3

2

)
νF0, (E.4)

which is non-zero despite δf being a perturbed Maxwellian.
In order to show that the H-theorem can be violated by the operator Eq. (E.1),

let us consider a perturbed distribution function of the form δf = x3F0. Then

CCT[δf ] =

[
3

2

(
ν‖ − νE

)
+

(
x2 − 3

2

)
ν

]
F0, (E.5)

so the entropy generation is,

dS

dt
= −

∫∫
δf

F0

CCT [δf ] dvdr = − 3

64
(32− 21

√
2) νV < 0, (E.6)

where V is the volume of the system. The above expression is negative, which breaks
the H-theorem and produces unphysical plasma cooling for the particular form of
the perturbed distribution function that we have examined.
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The second case we examine here is the sequence of operators derived by
Hirshman and Sigmar.[24] The general operator proposed by these authors is given
in their Eq. (25). In our notation, we rewrite here the N = 0, l = 0, 1 restriction of
the like-particle form of their operator with ∆ν set to 0 for simplicity (this does not
affect the discussion that follows):

CHS[δf ] = νDL[δf ] +
1

v2

∂

∂v

1

2
v4ν‖F0

∂

∂v

 1

4π

1∫
−1

dξ

2π∫
0

dϑ
δf

F0

− v2

v2
th

Q[δf ]


+ νD

2v ·U
v2

th

F0,

(E.7)

where U and Q are defined by Eqs. (5.11) and (5.12). The primary concern here
comes from the angle averaging operation in the energy-diffusion part of the opera-
tor. Firstly, the energy diffusion only acts on the spherically symmteric (in velocity
space) part of the perturbed distribution function. However, there is no reason why
there cannot arise perturbations that have very large energy derivatives but angle-
average to zero (for example, δf ∝ ξ). Clearly, such perturbations will not damped
correctly. Secondly, upon conversion to gyrokinetic coordinates and gyroaveraging
(see Sec. 5.3 and Appendix D), the operator becomes

CHS,GK[hk] = νD(v)

[
1

2

∂

∂ξ

(
1− ξ2

) ∂hk
∂ξ
− 1

4
(1 + ξ2)

v2

v2
th

k2
⊥ρ

2hk

]

+
J0(a)

v2

∂

∂v

1

2
v4ν‖F0

∂

∂v

1∫
−1

dξ
J0(a)hk

2πF0


+ 2νD

v⊥J1(a)U⊥ [hk] + v‖J0(a)U‖ [hk]

v2
th

F0 + νE
v2

v2
th

J0(a)Q[hk]F0,

(E.8)

where the conservation functionals U⊥, U‖ and Q are the same as defined in Eqs.
(5.20)–(5.22). The immediatly obvious problem is that the angle averaging has
introduced two new Bessel functions into the energy diffusion term. The energy
diffusion is therefore supressed it by one power of k⊥ρ in the limit k⊥ρ � 1, while
it is precisely in this limit that we expect the small-scale structure in the velocity
space to be particularly important.[15, 14] This means that the energy cutoff in
phase space is artificially pushed to smaller scales and one might encounter all the
problems associated with insufficient energy diffusion.[22]

While, for the reasons outlined above, we expect the Hirshman–Sigmar oper-
ator not to be a suitable model for collisions, we would like to note that for many
purposes the Hirshman-Sigmar operators are superior to the model operator we pre-
sented in Sec. 5.2. Taken as a sequence, they provide a rigorous way of obtaining
classical and neoclassical transport coefficients to any desired degree of accuracy,
and it is relatively easy to solve the Spitzer problem for them, while the Spitzer
functions for our operator are hard to find analytically.
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Appendix F
Sherman-Morrison formulation

The repeated application of the Sherman-Morrison formula considered here is
an extension of the scheme presented in Tatsuno and Dorland. [97] Throughout this
calculation, we adopt general notation applicable to both Eqns. (6.23) and (6.24)
and provide specific variable definitions in Table F.1. Both Eqns. (6.23) and (6.24)
can be written in the form

Ax = b. (F.1)

Because 〈U〉 and 〈E〉 are integral operators, we can write them as tensor products
so that

A ≡ A0 + u0 ⊗ v0 + u1 ⊗ v1 + u2 ⊗ v2. (F.2)

We now define
A1 = A0 + u0 ⊗ v0, A2 = A1 + u1 ⊗ v1, (F.3)

so that
(A2 + u2 ⊗ v2) x = b. (F.4)

Applying the Sherman-Morrison formula to this equation, we find

x = y2 −
v2 · y2

1 + v2 · z2

z2, (F.5)

where A2y2 = b and A2z2 = u2.
Applying the Sherman-Morrison formula to each of these equations gives

y2 = y1 −
v1 · y1

1 + v1 ·w1

w1 (F.6)

z2 = z1 −
v1 · z1

1 + v1 ·w1

w1, (F.7)

where A1y1 = b, A1w1 = u1, and A1z1 = u2. A final application of Sherman-
Morrison to these three equations yields

y1 = y0 −
v0 · y0

1 + v0 · s0

s0 (F.8)

w1 = w0 −
v0 ·w0

1 + v0 · s0

s0 (F.9)

z1 = z0 −
v0 · z0

1 + v0 · s0

s0, (F.10)

where A0y0 = b, A0s0 = u0, A0w0 = u1, and A0z0 = u2.
We can simplify our expressions by noting that v0,1,2 and u0,1,2 have definite

parity in v‖. A number of inner products then vanish by symmetry, leaving the
general expressions

y2 = y0 −
[

v0 · y0

1 + v0 · s0

]
s0 −

[
v1 · y0

1 + v1 ·w0

]
w0 (F.11)

z2 = z0 −
[

v0 · z0

1 + v0 · s0

]
s0 −

[
v1 · z0

1 + v1 ·w0

]
w0. (F.12)
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variable L D

A 1−∆t (L+ UL) 1−∆t (D + UD + E)

x h∗∗ hn+1

b h∗ h∗∗

A0 1−∆tL 1−∆tD

v0 νDv⊥J1 −∆νv⊥J1

v1 νDv‖J0 −∆νv‖J0

v2 v‖ (electrons) νEv
2J0

0 (ions)

u0 −∆tv0/du −∆tv0/du

u1 −∆tv1/du −∆tv1/du

u2 −∆tνeiDv‖/dq (electrons) −∆tv2/dq
0 (ions)

du
∫
d3v νDv

2
‖F0

∫
d3v ∆νv2

‖F0

dq v2
th,e/2

∫
d3v νEv

4F0

Table F.1: Sherman-Morrison variable definitions for Lorentz and energy diffusion
operator equations
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Appendix G
Compact differencing the test-particle operator

In this appendix, we derive a second order accurate compact difference scheme
for pitch-angle scattering and energy diffusion on an unequally spaced grid. The
higher order of accuracy of this scheme is desirable, but it does not possess dis-
crete versions of the Fundamental Theorem of Calculus and integration by parts
when used with Gauss-Legendre quadrature (or any other integration scheme with
grid spacings unequal to integration weights). Consequently, one should utilize this
scheme only if integration weights and grid spacings are equal, or if exact satisfaction
of conservation properties is not considered important.

For convenience, we begin by noting that Eqns. (6.23) and (6.24) can both be
written in the general form(

∂h

∂t

)
C

= H (Gh′)
′
+ S = H (G′h′ +Gh′′) + S, (G.1)

where: for the Lorentz operator equation (6.23) we identifyH = 1, G = νD (1− ξ2) /2,
S = UL[h] − k2v2νD (1 + ξ2)h/4Ω2

0, and the prime denotes differentiation with
respect to ξ; and for the energy diffusion operator equation (6.24), we identify
H = 1/2v2F0, G = ν‖v

4F0, S = UD[h] + E[h] − k2v2ν‖ (1− ξ2)h/4Ω2
0, and the

prime denotes differentiation with respect to v. Here, the h we are using is actually
normalized by F0.

Employing Taylor Series expansions of h, we obtain the expressions

h′i =
δ2
− (hi+1 − hi) + δ2

+ (hi − hi−1)

δ+δ− (δ+ + δ−)
+O[δ2], (G.2)

and

h′′i = 2
δ− (hi+1 − hi)− δ+ (hi − hi−1)

δ+δ− (δ+ + δ−)
+
δ− − δ+

3
h′′′i +O[δ2], (G.3)

where i denotes evaluation at the velocity space gridpoint xi, and δ± ≡ |xi±1 − xi|
(here x is a dummy variable representing either ξ or v). In order for the h′′i expression
to be second order accurate, we must obtain a first order accurate expression for h′′′i
in terms of hi, h

′
i, and h′′i . We accomplish this by differentiating Eqn. (G.1) with

respect to x: (
∂h′

∂t

)
C

= H ′ (Gh′)
′
+H (Gh′)

′′
+ S ′ (G.4)

and rearranging terms to find

h′′′i =
1

HiGi

[(∂hi
∂t

)
C

−H ′i (G′ih
′
i +Gih

′′
i )

−Hi (G
′′
i hi + 2G′ih

′′
i )− S ′i

]
+O[δ],

(G.5)
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where, unless denoted otherwise, all quantities are taken at the n + 1 time level.
Plugging this result into Eqn. G.3 and grouping terms, we have

µih
′′
i =

δ− − δ+

3HiGi

[
h′i

(
1

∆t
−H ′iG′i −HiG

′′
i

)
− (hni )′

∆t
− S ′i

]
+ 2

δ− (hi+1 − hi)− δ+ (hi − hi−1)

δ+δ− (δ+ + δ−)
+O[δ2],

(G.6)

where µi = 1 + (δ+ − δ−) (H ′iGi + 2HiG
′
i) /3HiGi, and we have taken (∂h/∂t)C =

(hn+1 − hn)/∆t. Using Eqn. (G.4) and the above result in Eqn. (G.1), we find(
∂h

∂t

)
C

= h′i

(
HiG

′
i −

δ+ + δ−
3µi

[
1

∆t
−H ′iG′i −HiG

′′
i

])
+
HiGi

µi

(
2
δ− (hi+1 − hi)− δ+ (hi − hi−1)

δ+δ− (δ+ + δ−)

+
δ+ + δ−
3HiGi

[
(hni )′

∆t
+ S ′i

])
+ Si +O[δ2].

(G.7)

This is the general compact differenced form to be used when solving Eqns. (6.23)
and (6.24).

In order to illustrate how compact differencing affects the implicit solution
using Sherman-Morrison, we present the result of using the particular form of S for
energy diffusion in Eqn. (G.7):

hn+1
i − hni

∆t
=

hi+1

δ+ (δ+ + δ−)

(
2HiGi

µi
+ δ−ζi

)
hi−1

δ− (δ+ + δ−)

(
2HiGi

µi
− δ+ζi

)
hi
δ−δ+

(
−2HiGi

µi
+ (δ+ − δ−) ζi − δ+δ−Kν̃s

)
σi
∆t

(
hni+1

δ−
δ+ (δ+ + δ−)

− hni−1

δ+

δ− (δ+ + δ−)

+ hni
δ+ − δ−
δ+δ−

)
+ Ũ‖V‖ + Ũ⊥V⊥ + Ũqq +O[δ2],

(G.8)

where

σi = (δ+ − δ−) /3µi

K = k2v2
th

(
1− ξ2

)
/8Ω2

0

ζi = HiG
′
i − σi (1/∆t−H ′iG′i −HiG

′′
i +Kνs)

νs = ν‖v
2
th/2v

2

Ã = A+ σA′

U⊥,‖,q = u0,1,2

V⊥,‖,q = v0,1,2
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with u and v given in Table F.1.
We see that the only significant effects of compact differencing on numerical

implementation are: modification of h∗∗ in Eqn. (6.24) to reflect the hn terms on the
right-hand side of Eqn. (G.8); and modification of the U‖, U⊥, and Uq terms that
appear in Sherman-Morrison (u0,1,2 from Appendix A) to include an additional σU ′

term.
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Appendix H
Sample Trinity input file

! case with 2 species, nonlinear fluxes, 4 keV edge temperature

&nt_params

! geometry

rad_out = 0.8 ! outer rad. bound (normalized by minor radius, a)

rmaj = 6.2 ! major radius, R (in meters)

aspr = 3.1 ! aspect ratio (R/a)

bmag = 5.3 ! B-field amplitude at center of LCFS (in Tesla)

! species parameters

ntspec = 2 ! number of species to evolve in transport equations

qi = 1 ! ion charge (in units of proton charge)

mi = 1 ! ion mass (in units of proton mass)

! time advancement

ntstep = 25 ! number of transport time steps

ntdelt = 0.005 ! transport time step size

subcycle = .false. ! set to T to subcycle temperature equilibration

nsub = 1 ! number of subcycles per time step

impfac = 0.5 ! time-centering (0=explicit, 1=implicit)

! fluxes

grad_option = "tgrads" ! assume fluxes depend on ion and electron

! pressure grads

ql_flag = .false. ! T for quasilinear estimate for fluxes

model_flux = .false. ! T for offset linear estimate for fluxes

include_neo = .true. ! T to include neoclassical ion heat flux

dfprim = 1.0 ! amount by which to perturb dens grad when

! obtaining estimate for flux derivative

dtprim = 1.0 ! amount by which to perturb temp grad

pflx_min =1.0e-5 ! minimum particle flux to use if GS2

! calculation does not converge

qflx_min = 5.0e-4 ! minimum heat flux

temp_equil = .true. ! F to neglect temperature equilibration

! between species

! initialization

rln = 1.0 ! initial R/Ln for density profile

rlti = 5.0 ! initial R/LTi for ion temperature profile
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rlte = 5.0 ! initial R/LTe for electron temperature profile

nedge = 1.0 ! fixed dens at outer rad. bound (in 10^{20}/m^{3})

tiedge = 4.0 ! fixed ion temp at outer rad. bound (in keV)

teedge = 4.0 ! fixed electron temp at outer rad. bound (in keV)

! sources

densin = 0.0 ! amplitude of particle source

powerin = 120.0 ! heat source power (in MW)

src_ratio = 0.5 ! fraction of powerin going into ions

psig = 0.2 ! width of Gaussian heat source profile

nsig = 0.2 ! width of Gaussian particle source profile

/
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