1 particle transport

We begin with the particle transport equation:

$$
\begin{equation*}
\frac{\partial n_{s}}{\partial t}+\frac{1}{V^{\prime}} \frac{\partial}{\partial \psi}\left(V^{\prime} \Gamma_{\psi, s}\right)=S_{n} \tag{1}
\end{equation*}
$$

where n_{s} is the equilibrium density of species s, ψ is the poloidal flux enclosed by a flux surface, $V^{\prime}=d V / d \psi$, V is the volume enclosed by the flux surface, S_{n} is the net particle source, and $\Gamma_{\psi, s}$ is the flux surface-averaged ψ-component of the particle flux. The particle flux consists of both neoclassical and turbulent contributions; the turbulent contribution is given by

$$
\begin{equation*}
\Gamma_{\psi, s}=\left\langle\int d^{3} \mathbf{v}\left(\mathbf{v}_{\chi} \cdot \nabla \psi\right) \delta f(\mathbf{R})\right\rangle_{\psi} \tag{2}
\end{equation*}
$$

where \mathbf{v}_{χ} is the drift due to the fluctuating potentials, δf is the lowest order departure of the distribution function from a Maxwellian, \mathbf{R} is the guiding center position, and $\langle.\rangle_{\psi}$ indicates a flux surface average.

1.1 normalization

Next, we must normalize Eq. (1). We do so by defining the normalized quantities

$$
\begin{align*}
\tilde{\Gamma}_{s} & \equiv \frac{1}{\langle | \nabla \psi\rangle} \frac{\Gamma_{\psi, s}}{n_{r} v_{t, r}}\left(\frac{a_{r}}{\rho_{r}}\right)^{2} \tag{3}\\
\tilde{t} & \equiv \frac{v_{t, 0}}{a_{0}}\left(\frac{\rho_{0}}{a_{0}}\right)^{2} t \tag{4}
\end{align*}
$$

and $\tilde{n}_{s} \equiv n_{s} / n_{0}$, where: $n_{r}, v_{t, r}$, and ρ_{r} are the density, thermal velocity, and gyroradius of the reference species in the flux tube calculation; a_{r} is the reference length in the flux tube calculation; $n_{0}, v_{t, 0}$, and ρ_{0} are the reference density, thermal velocity, and gyroradius defined in the transport calculation; and a_{0} is the reference length in the transport calculation. For clarity, we provide definitions of some of these reference quantities here: $v_{t, r}=\sqrt{2 T_{r} / \alpha m_{r}}$, with m_{r} and T_{r} the mass and temperature of the reference species in the flux tube calculation, and $\alpha=1$ or 2 depending on the choice made in the flux tube code;

$$
\begin{align*}
\rho_{r} & \equiv \frac{v_{t, r}}{\Omega_{r}} \\
& =\frac{m_{r} v_{t, r} c}{|e| B_{a}}=\sqrt{\frac{2 T_{r} m_{r}}{\alpha}} \frac{c}{|e| B_{a}} \tag{5}
\end{align*}
$$

with e the electron charge and B_{a} the reference magnetic field in the flux tube calculation; $n_{0}=10^{20} / \mathrm{m}^{3}$; $v_{t, 0}=\sqrt{2 T_{0} / \alpha m_{r}}$, with $T_{0}=1 \mathrm{keV}$; and ρ_{0} is the reference gyroradius in the transport calculation, defined

$$
\begin{align*}
\rho_{0} & \equiv \frac{v_{t, 0}}{\Omega_{0}} \\
& =\sqrt{\frac{2 T_{0}}{\alpha m_{r}}} \frac{m_{r} c}{|e| B_{0}} \tag{6}\\
& =\sqrt{\frac{2 T_{0} m_{r}}{\alpha}} \frac{c}{|e| B_{0}}
\end{align*}
$$

with $B_{0}=1 T$.
We now divide Eq. (1) by $n_{0}\left(v_{t, 0} / a_{0}\right)\left(\rho_{0} / a_{0}\right)^{2}$ to get

$$
\begin{equation*}
\frac{\partial \tilde{n}}{\partial \tilde{t}}+\frac{1}{V^{\prime}} \frac{\partial}{\partial \psi}\left(V^{\prime}\langle | \nabla \psi| \rangle a_{0} \tilde{n}_{r} \sqrt{\tilde{T}_{r}}\left(\frac{\rho_{r}}{\rho_{0}} \frac{a_{0}}{a_{r}}\right)^{2} \tilde{\Gamma}_{s}\right)=\tilde{S}_{n} \tag{7}
\end{equation*}
$$

where $\tilde{T}=T / T_{0}$ and

$$
\begin{align*}
\tilde{S}_{n} & =\left(a_{0} / v_{t, 0}\right)\left(a_{0} / \rho_{0}\right)^{2} S_{n} / n_{0} \\
& =3.23 \times 10^{-26}[m]^{3}[s] \tilde{a}_{0} \sqrt{\tilde{m}_{r}} \sqrt{\frac{\alpha}{2}} \rho_{*}^{-2} S_{n} \tag{8}
\end{align*}
$$

We next note that the flux surface area, A, satisfies $A \equiv(d V / d \psi)\langle | \nabla \psi\rangle=(d V / d \rho)\langle | \nabla \rho|\rangle$, where ρ is an arbitrary flux surface label defined so that it is zero at the magnetic axis and one at the LCFS. We then define $\tilde{A} \equiv A / a_{0}^{2}$ and $\tilde{\nabla}=a_{0} \nabla$. This gives

$$
\begin{equation*}
\frac{\partial \tilde{n}}{\partial \tilde{t}}+\frac{\langle | \tilde{\nabla} \rho| \rangle}{\tilde{A}} \frac{\partial}{\partial \rho}\left(\tilde{A} \tilde{n}_{r} \sqrt{\tilde{T}_{r}}\left(\frac{\rho_{r}}{\rho_{0}} \frac{a_{0}}{a_{r}}\right)^{2} \tilde{\Gamma}_{s}\right)=\tilde{S}_{n} \tag{9}
\end{equation*}
$$

For convenience of future calculation, we explicitly calculate ρ_{r} / ρ_{0} :

$$
\begin{equation*}
\frac{\rho_{r}}{\rho_{0}}=\frac{v_{t, r}}{v_{t, 0}} \frac{\Omega_{0}}{\Omega_{r}}=\frac{\sqrt{\tilde{T}_{r}}}{\tilde{B}_{a}} \tag{10}
\end{equation*}
$$

Substituting this expression in Eq. (9), we obtain

$$
\begin{equation*}
\frac{\partial \tilde{n}}{\partial \tilde{t}}+\frac{\langle | \tilde{\nabla} \rho| \rangle}{\tilde{A}} \frac{\partial}{\partial \rho}\left(\frac{\tilde{A}}{\tilde{B}_{a}^{2}} \tilde{n}_{r} \tilde{T}_{r}^{3 / 2}\left(\frac{a_{0}}{a_{r}}\right)^{2} \tilde{\Gamma}_{s}\right)=\tilde{S}_{n} \tag{11}
\end{equation*}
$$

At this point, we assume that a_{r} is defined so that it does not depend on the flux label, ρ. We are then free to choose $a_{0}=a_{r}$, so that the final form of our normalized particle transport equation bcomes:

$$
\begin{equation*}
\frac{\partial \tilde{n}}{\partial \tilde{t}}+\frac{\langle | \tilde{\nabla} \rho| \rangle}{\tilde{A}} \frac{\partial}{\partial \rho}\left(\frac{\tilde{A}}{\tilde{B}_{a}^{2}} \tilde{n}_{r} \tilde{T}_{r}^{3 / 2} \tilde{\Gamma}_{s}\right)=\tilde{S}_{n} \tag{12}
\end{equation*}
$$

It's useful to also have the normalized quantities in terms of physical units. Here we calculate conversion to physical units for some of our normalized quantities. First, we consider $\rho_{*}=\rho_{0} / a_{0}$:

$$
\begin{align*}
\rho_{*} & =\sqrt{\frac{2 T_{0} m_{r}}{\alpha}} \frac{c}{|e| B_{0} a_{0}} \\
& =\sqrt{\frac{2}{\alpha}} \frac{\sqrt{\tilde{m}_{r}}}{\tilde{a}_{0}} \frac{c \sqrt{m_{p}}}{|e|} \frac{[k e V]^{1 / 2}}{[m][T]} \tag{13}\\
& =3.23 \times 10^{-3} \sqrt{\frac{2}{\alpha}} \frac{\sqrt{\tilde{m}_{r}}}{\tilde{a}_{0}}
\end{align*}
$$

where $\tilde{m} \equiv m / m_{p}$ and $\tilde{a}=a /[m]$. Next, we consider $v_{t, 0} / a_{0}$:

$$
\begin{align*}
\frac{v_{t, 0}}{a_{0}} & =\frac{1}{\tilde{a}_{0} \sqrt{\tilde{m}_{r}}} \sqrt{\frac{2}{\alpha}} \frac{1}{\sqrt{m_{p}}} \frac{[k e V]^{1 / 2}}{[m]} \tag{14}\\
& =\frac{3.094 \times 10^{5}}{[s]} \frac{1}{\tilde{a}_{0} \sqrt{\tilde{m}_{r}}} \sqrt{\frac{2}{\alpha}}
\end{align*}
$$

Combining the above expressions gives us an expression for \tilde{t} :

$$
\begin{align*}
\tilde{t} & =\frac{v_{t, 0}}{a_{0}} \rho_{*}^{2} t=3.23\left(\frac{2}{\alpha}\right)^{3 / 2} \frac{\sqrt{\tilde{m}_{r}}}{\tilde{a}_{0}^{3}} \frac{t}{[s]} \tag{15}\\
\Rightarrow \frac{t}{[s]} & =0.31\left(\frac{\alpha}{2}\right)^{3 / 2} \frac{\tilde{a}_{0}^{3}}{\sqrt{\tilde{m}_{r}}} \tilde{t} .
\end{align*}
$$

We now want to convert the normalized particle flux to physical units:

$$
\begin{align*}
\frac{\Gamma_{s}}{\langle | \nabla \psi\rangle} & =n_{r} v_{t, r}\left(\frac{\rho_{r}}{a_{r}}\right)^{2} \tilde{\Gamma}_{s} \\
& =\tilde{n}_{r} \sqrt{\frac{\tilde{T}_{r}}{\tilde{m}_{r}}} \sqrt{\frac{2}{\alpha}}\left(\frac{\rho_{r}}{\rho_{0}}\right)^{2} \rho_{*}^{2} \frac{10^{20}}{\sqrt{m_{p}}} \frac{[k e V]^{1 / 2}}{[m]^{3}}\left(\frac{a_{0}}{a_{r}}\right)^{2} \tilde{\Gamma}_{s} \tag{16}\\
& =1.04 \times 10^{15} \tilde{n}_{r} \frac{\sqrt{\tilde{m}_{r}} \tilde{T}_{r}^{3 / 2}}{\tilde{a}_{0}^{2} \tilde{B}_{a}^{2}}\left(\frac{2}{\alpha}\right)^{3 / 2} \frac{1}{\sqrt{m_{p}}} \frac{[k e V]^{1 / 2}}{[m]^{3}}\left(\frac{a_{0}}{a_{r}}\right)^{2} \tilde{\Gamma}_{s} \\
& =3.22 \times 10^{20} \tilde{n}_{r} \frac{\sqrt{\tilde{m}_{r}} \tilde{T}_{r}^{3 / 2}}{\tilde{a}_{0}^{2} \tilde{B}_{a}^{2}}\left(\frac{2}{\alpha}\right)^{3 / 2}\left(\frac{a_{0}}{a_{r}}\right)^{2} \frac{\tilde{\Gamma}_{s}}{[m]^{2}[s]}
\end{align*}
$$

Integrating this expression over the flux surface, we get

$$
\begin{equation*}
A \frac{\Gamma_{s}}{\langle | \nabla \psi\rangle}=3.22 \times 10^{20} \tilde{n}_{r} \tilde{T}_{r}^{3 / 2} \frac{\sqrt{\tilde{m}_{r}} \tilde{A}}{\tilde{B}_{a}^{2}}\left(\frac{2}{\alpha}\right)^{3 / 2}\left(\frac{a_{0}}{a_{r}}\right)^{2} \frac{\tilde{\Gamma}_{s}}{[s]} \tag{17}
\end{equation*}
$$

1.2 discretization

We start by defining $F_{s} \equiv \tilde{A} \tilde{n}_{r} \tilde{T}_{r}^{3 / 2} / \tilde{B}_{a}^{2} \tilde{\Gamma}_{s}$. Then the single-step discretization of Eq. (47) is

$$
\begin{equation*}
\frac{n_{j}^{m+1}-n_{j}^{m}}{\Delta t}+\alpha\left(\frac{\langle | \nabla \psi| \rangle_{j}}{A_{j}} \frac{F_{+}-F_{-}}{\Delta \rho}\right)^{m+1}+(1-\alpha)\left(\frac{\langle | \nabla \psi| \rangle_{j}}{A_{j}} \frac{F_{+}-F_{-}}{\Delta \rho}\right)=S_{j} \tag{18}
\end{equation*}
$$

We can develop a multi-step, backwards difference discretization as follows. First, we use f^{m} and f^{m-1} about time level $m+1$:

$$
\begin{align*}
f^{m} & =f^{m+1}-(\Delta t)_{m} f^{\prime m+1}+\frac{(\Delta t)_{m}^{2}}{2} f^{\prime \prime m+1}-\mathcal{O}\left[(\Delta t)_{m}^{3}\right] \\
f^{m-1} & =f^{m+1}-\left((\Delta t)_{m}+(\Delta t)_{m-1}\right) f^{\prime m+1}+\frac{\left((\Delta t)_{m}+(\Delta t)_{m-1}\right)^{2}}{2} f^{\prime \prime m+1}-\mathcal{O}\left[\left((\Delta t)_{m}+(\Delta t)_{m-1}\right)^{3}\right] \tag{19}
\end{align*}
$$

where $\Delta t_{m}=t_{m+1}-t_{m}$. Combining these expressions, we get

$$
\begin{align*}
& \frac{f^{m+1}-f^{m}}{\Delta t_{m}}-\frac{\Delta t_{m}}{\Delta t_{m}+\Delta t_{m-1}} \frac{f^{m+1}-f^{m-1}}{\Delta t_{m}+\Delta t_{m-1}}=f^{\prime m+1}\left(\frac{\Delta t_{m-1}}{\Delta t_{m}+\Delta t_{m-1}}\right)+\mathcal{O}\left[\Delta t^{2}\right] \\
& \quad \Rightarrow f^{\prime m+1} \approx f^{m+1}\left[\frac{\Delta t_{m-1}+2 \Delta t_{m}}{\Delta t_{m}\left(\Delta t_{m}+\Delta t_{m-1}\right)}\right]-f^{m}\left[\frac{\Delta t_{m}+\Delta t_{m-1}}{\Delta t_{m} \Delta t_{m-1}}\right]+f^{m-1}\left[\frac{\Delta t_{m}}{\Delta t_{m-1}\left(\Delta t_{m}+\Delta t_{m-1}\right)}\right] \tag{20}
\end{align*}
$$

We can Taylor expand $F_{ \pm}^{m+1}$ about its value at the m time level and keep terms through linear order:

$$
\begin{equation*}
F_{ \pm}^{m+1} \approx F_{ \pm}+\left.\left(\mathbf{y}-\mathbf{y}_{0}\right) \frac{\partial F_{ \pm}}{\partial \mathbf{y}}\right|_{\mathbf{y}_{0}} \tag{21}
\end{equation*}
$$

The derivative term can be written explicitly as

$$
\begin{equation*}
\left.\frac{\partial F_{ \pm}}{\partial \mathbf{y}}\right|_{\mathbf{y}_{0}}=\sum_{k}\left(n_{k}^{m+1}-n_{k}\right) \frac{\partial F_{ \pm}}{\partial n_{k}}+\ldots \tag{22}
\end{equation*}
$$

In the local approximation, this becomes

$$
\begin{equation*}
\left.\frac{\partial F_{ \pm}}{\partial \mathbf{y}}\right|_{\mathbf{y}_{0}}=\sum_{k}\left(n_{k}^{m+1}-n_{k}\right)\left(\frac{\partial F_{ \pm}}{\partial n_{ \pm}} \frac{d n_{ \pm}}{d n_{k}}+\frac{\partial F_{ \pm}}{\partial\left(a_{0} / L_{n}\right)_{ \pm}} \frac{d\left(a_{0} / L_{n}\right)_{ \pm}}{d n_{k}}\right)+\ldots \tag{23}
\end{equation*}
$$

For now, we assume that the dependence of $F_{ \pm}$on $n_{ \pm}$and $p_{ \pm}$is weak so that

$$
\begin{equation*}
\left.\frac{\partial F_{ \pm}}{\partial \mathbf{y}}\right|_{\mathbf{y}_{0}} \approx \sum_{k}\left(n_{k}^{m+1}-n_{k}\right) \frac{\partial F_{ \pm}}{\partial\left(a_{0} / L_{n}\right)_{ \pm}} \frac{d\left(a_{0} / L_{n}\right)_{ \pm}}{d n_{k}}+\ldots \tag{24}
\end{equation*}
$$

We express grad scale lengths discretely as

$$
\begin{equation*}
\left(\frac{a_{0}}{L_{n}}\right)_{ \pm}=\mp \frac{1}{n_{ \pm}} \frac{n_{j \pm 1}-n_{j}}{\Delta \rho} \tag{25}
\end{equation*}
$$

We then have

$$
\begin{align*}
\frac{d\left(a_{0} / L_{n}\right)_{ \pm}}{d n_{k}} & =\mp \frac{1}{n_{ \pm} \Delta \rho}\left(-\frac{1}{n_{ \pm}} \frac{d n_{ \pm}}{d n_{k}}\left(n_{j \pm 1}-n_{j}\right)+\delta_{k, j \pm 1}-\delta_{k, j}\right) \\
& =\mp \frac{1}{n_{ \pm} \Delta \rho}\left(-\frac{1}{2 n_{ \pm}}\left(\delta_{k, j \pm 1}+\delta_{k, j}\right)\left(n_{j \pm 1}-n_{j}\right)+\delta_{k, j \pm 1}-\delta_{k, j}\right) \tag{26}\\
& =\mp \frac{1}{n_{ \pm} \Delta \rho}\left(\delta_{k, j \pm 1}\left(\frac{n_{j}-n_{j \pm 1}}{2 n_{ \pm}}+1\right)+\delta_{k, j}\left(\frac{n_{j}-n_{j \pm 1}}{2 n_{ \pm}}-1\right)\right)
\end{align*}
$$

which gives

$$
\begin{align*}
\sum_{k}\left(n_{k}^{m+1}-n_{k}\right) \frac{d\left(a_{0} / L_{n}\right)_{ \pm}}{d n_{k}} & =\mp \frac{1}{n_{ \pm} \Delta \rho}\left(\left(n_{j \pm 1}^{m+1}-n_{j \pm 1}\right)\left(\frac{n_{j}-n_{j \pm 1}}{2 n_{ \pm}}+1\right)+\left(n_{j}^{m+1}-n_{j}\right)\left(\frac{n_{j}-n_{j \pm 1}}{2 n_{ \pm}}-1\right)\right) \\
& =\mp \frac{1}{\Delta \rho}\left(\frac{n_{j \pm 1}^{m+1}}{n_{ \pm}} \frac{n_{j}}{n_{ \pm}}-\frac{n_{j}^{m+1}}{n_{ \pm}} \frac{n_{j \pm 1}}{n_{ \pm}}\right) \tag{27}
\end{align*}
$$

2 momentum transport

We begin with the equation for the transport of toroidal angular momentum in the high flow $\left(\mathbf{u}_{0} \sim v_{t, i}\right)$ limit:

$$
\begin{equation*}
\frac{\partial L}{\partial t}+\frac{1}{V^{\prime}} \frac{\partial}{\partial \psi}\left[V^{\prime} \sum_{s}\left(\left\langle\pi_{\psi \phi, s}\right\rangle+m_{s} \omega(\psi)\left\langle R^{2} \Gamma_{\psi, s}\right\rangle\right)\right]=S_{L} \tag{28}
\end{equation*}
$$

where $L=\sum_{s} m_{s}\left\langle n_{s} R^{2}\right\rangle \omega(\psi), \mathbf{u}_{0}=R \omega(\psi) \hat{\mathbf{e}}_{\phi},\langle$.$\rangle is the flux surface average, S_{L}$ is the flux-surface averaged external momentum source, $\Gamma_{\psi, s}$ is defined by Eq. (2), and π is a turbulent momentum flux given by

$$
\begin{equation*}
\pi_{\psi \phi, s}=\int d^{3} \mathbf{v} m_{s} R^{2}(\mathbf{v} \cdot \nabla \phi)\left(\mathbf{v}_{\chi} \cdot \nabla \psi\right) \delta f(\mathbf{R}) \tag{29}
\end{equation*}
$$

We identify the total toroidal angular momentum flux to be

$$
\begin{equation*}
\Pi \equiv \sum_{s}\left(\left\langle\pi_{\psi \phi, s}\right\rangle+m_{s} \omega(\psi)\left\langle R^{2} \Gamma_{\psi, s}\right\rangle\right) \tag{30}
\end{equation*}
$$

so that the momentum transport equation takes the simple form

$$
\begin{equation*}
\frac{\partial L}{\partial t}+\frac{1}{V^{\prime}} \frac{\partial}{\partial \psi}\left(V^{\prime} \Pi\right)=S_{L} . \tag{31}
\end{equation*}
$$

2.1 normalization

Next, we must normalize Eq. (31). We do so by defining the normalizing quantities

$$
\begin{align*}
\tilde{\Pi} & \equiv \frac{1}{\langle | \nabla \psi\rangle} \frac{\Pi}{m_{r} a_{r} n_{r} v_{t, r}^{2}}\left(\frac{a_{r}}{\rho_{r}}\right)^{2} \tag{32}\\
\tilde{L} & \equiv \frac{L}{m_{p} a_{0} n_{0} v_{t, 0}} \tag{33}\\
\tilde{t} & \equiv \frac{v_{t, 0}}{a_{0}}\left(\frac{\rho_{0}}{a_{0}}\right)_{4}^{2} t \tag{34}
\end{align*}
$$

where: m_{p} is the proton mass; a_{0} is the half-diameter of the LCFS at the elevation of the magnetic axis; $n_{0}=10^{20} / \mathrm{m}^{3} ; T_{0}=1 \mathrm{keV} ; v_{t, 0}$ is the reference thermal velocity for the transport calculation, defined

$$
\begin{equation*}
v_{t, 0} \equiv \sqrt{\frac{2 T_{0}}{\alpha m_{p}}} \tag{35}
\end{equation*}
$$

$\alpha=1$ (or 2) if $v_{t, r}$ is defined with (or without) the $\sqrt{2}$ factor; ρ_{0} is the reference gyroradius in the transport calculation, defined

$$
\begin{align*}
\rho_{0} & \equiv \frac{v_{t, 0}}{\Omega_{0}} \\
& =\sqrt{\frac{2 T_{0}}{m_{p}}} \frac{m_{p} c}{|e| B_{0}} \tag{36}\\
& =\sqrt{2 T_{0} m_{p}} \frac{c}{|e| B_{0}}
\end{align*}
$$

$B_{0}=1 T ; m_{r}, n_{r}$, and $v_{t, r}$ are the mass, density, and thermal velocity of the reference species in the flux tube calculation; a_{r} is the reference length in the flux tube calculation; and ρ_{r} is the gyroradius of the reference species in the flux tube calculation, defined

$$
\begin{align*}
\rho_{r} & \equiv \frac{v_{t, r}}{\Omega_{r}} \tag{37}\\
& =\frac{m_{r} v_{t, r} c}{Z_{r}|e| B_{a}}
\end{align*}
$$

with B_{a} equal to the toroidal magnetic field at R_{a}, which is the average of the minimum and maximum major radius of the flux surface.

Dividing Eq. 31 by $\left(\rho_{0} / a_{0}\right)^{2} m_{p} n_{0} v_{t 0}^{2}$, we obtain

$$
\begin{equation*}
\frac{\partial \tilde{L}}{\partial \tilde{t}}+\frac{1}{V^{\prime}} \frac{\partial}{\partial \psi}\left(V^{\prime}\langle | \nabla \psi| \rangle a_{r} \frac{m_{r}}{m_{p}} \frac{n_{r}}{n_{0}}\left(\frac{v_{t, r}}{v_{t, 0}} \frac{\rho_{r}}{\rho_{0}} \frac{a_{0}}{a_{r}}\right)^{2} \tilde{\Pi}\right)=\tilde{S}_{L} \tag{38}
\end{equation*}
$$

where $\tilde{S}_{L} \equiv\left(a_{0} / \rho_{0}\right)^{2} S_{L} /\left(m_{p} n_{0} v_{t 0}^{2}\right)$. We next note that the flux surface area, A, satisfies $A \equiv(d V / d \psi)\langle | \nabla \psi\rangle=$ $(d V / d \rho)\langle | \nabla \rho\rangle$, where ρ is an arbitrary flux surface label defined so that it is zero at the magnetic axis and one at the LCFS. We then define $\tilde{A} \equiv A / a_{0}^{2}$ and $\tilde{\nabla}=a \nabla$. This gives

$$
\begin{equation*}
\frac{\partial \tilde{L}}{\partial \tilde{t}}+\frac{\langle | \tilde{\nabla} \rho| \rangle}{\tilde{A}} \frac{\partial}{\partial \rho}\left(\tilde{A} \frac{a_{0}}{a_{r}} \frac{m_{r}}{m_{p}} \frac{n_{r}}{n_{0}}\left(\frac{v_{t, r}}{v_{t, 0}} \frac{\rho_{r}}{\rho_{0}}\right)^{2} \tilde{\Pi}\right)=\tilde{S}_{L} \tag{39}
\end{equation*}
$$

For convenience of future calculations, we explicitly calculate $v_{t, r} / v_{t, 0}$ and ρ_{r} / ρ_{0} :

$$
\begin{align*}
& \frac{v_{t, r}}{v_{t, 0}}=\sqrt{\frac{\tilde{T}_{r}}{\tilde{m}_{r}}} \tag{40}\\
& \begin{aligned}
\frac{\rho_{r}}{\rho_{0}} & =\frac{v_{t, r}}{v_{t, 0}} \frac{\Omega_{0}}{\Omega_{r}} \\
& =\frac{\sqrt{\tilde{m}_{r} \tilde{T}_{r}}}{Z_{r} \tilde{B}_{a}}
\end{aligned}
\end{align*}
$$

where we have defined $\tilde{T} \equiv T / T_{0}, \tilde{m} \equiv m / m_{p}$, and $\tilde{B}_{a}=B_{a} / B_{0}$. Additionally defining $\tilde{a}=a_{r} / a_{0}$ and $\tilde{n}=n / n_{0}$, we obtain the final form of our normalized equation:

$$
\begin{equation*}
\frac{\partial \tilde{L}}{\partial \tilde{t}}+\frac{\langle | \tilde{\nabla} \rho| \rangle}{\tilde{A}} \frac{\partial}{\partial \rho}\left(\frac{\tilde{A}}{\tilde{a} Z_{r}^{2} \tilde{B}_{a}^{2}} \tilde{m}_{r} \tilde{n}_{r} \tilde{T}_{r}^{2} \tilde{\Pi}\right)=\tilde{S}_{L} \tag{42}
\end{equation*}
$$

2.2 discretization

3 energy transport

We begin with the energy transport equation:

$$
\begin{equation*}
\frac{3}{2} \frac{\partial p_{s}}{\partial t}+\frac{1}{V^{\prime}} \frac{\partial}{\partial \psi}\left(V^{\prime} Q_{\psi, s}\right)+\frac{3}{2} n_{s} \sum_{u} \nu_{s u}^{\varepsilon}\left(T_{s}-T_{u}\right)=S_{p} \tag{43}
\end{equation*}
$$

where p_{s} is the equilibrium pressure, S_{p} is the total external energy input, $\nu_{s u}^{\varepsilon}$ is the collisional temperature equilibration frequency, and $Q_{\psi, s}$ is flux surface averaged ψ-component of the heat flux, given by

$$
\begin{equation*}
Q_{\psi, s} \equiv\left\langle\int d^{3} \mathbf{v} \frac{m_{s} v^{2}}{2}\left(\mathbf{v}_{\chi} \cdot \nabla \psi\right) \delta f(\mathbf{R})\right\rangle_{\psi} \tag{44}
\end{equation*}
$$

3.1 normalization

$$
\begin{equation*}
\tilde{Q}_{s} \equiv \frac{1}{\langle | \nabla \psi| \rangle} \frac{Q_{\psi, s}}{n_{r} T_{r} v_{t, r}}\left(\frac{a_{r}}{\rho_{r}}\right)^{2} \tag{45}
\end{equation*}
$$

We now divide Eq. (43) by $n_{0} T_{0}\left(v_{t, 0} / a_{0}\right)\left(\rho_{0} / a_{0}\right)^{2}$ and switch to the generalized flux label ρ. The algebra is almost identical to that from the particle transport section. The final equation is

$$
\begin{equation*}
\frac{3}{2} \frac{\partial \tilde{p}_{s}}{\partial \tilde{t}}+\frac{\langle | \nabla \rho| \rangle}{\tilde{A}} \frac{\partial}{\partial \rho}\left(\frac{\tilde{A}}{\tilde{B}_{a}^{2}} \tilde{n}_{r} \tilde{T}_{r}^{5 / 2} \tilde{Q}_{s}\right)+\frac{3}{2} \tilde{n}_{s} \sum_{u} \tilde{\nu}_{s u}^{\varepsilon}\left(\tilde{T}_{s}-\tilde{T}_{u}\right)=\tilde{S}_{p} \tag{46}
\end{equation*}
$$

where

$$
\begin{align*}
\tilde{S}_{p} & \equiv \frac{S_{p}}{n_{0} T_{0}} \frac{a_{0}}{v_{t, 0}} \rho_{*}^{-2} \\
& =3.1 \times 10^{-21} \frac{[m]^{3}[s]}{[k e V]} \frac{\tilde{a}_{0}^{3}}{\sqrt{\tilde{m}_{r}}}\left(\frac{\alpha}{2}\right)^{3 / 2} S_{p} \tag{47}\\
& =1.9 \times 10^{-5} \frac{[m]^{3}}{[W]} \frac{\tilde{a}_{0}^{3}}{\sqrt{\tilde{m}_{r}}}\left(\frac{\alpha}{2}\right)^{3 / 2} S_{p}
\end{align*}
$$

and

$$
\begin{align*}
\tilde{\nu}_{s u}^{\varepsilon} & \equiv 6.86 \frac{\sqrt{m_{s} m_{u}} q_{s}^{2} q_{u}^{2} n_{u} \lambda_{s u}}{\left(m_{s} T_{u}+m_{u} T_{s}\right)^{3 / 2}} \frac{a_{0}}{v_{t, 0}} \rho_{*}^{-2} \\
& =1.54 \tilde{\nu}_{s u} \sqrt{\frac{m_{u}}{m_{s}}}\left(\frac{T_{u}}{T_{s}}+\frac{m_{u}}{m_{s}}\right)^{-3 / 2} \frac{v_{t, r}}{v_{t, 0}} \rho_{*}^{-2} \tag{48}
\end{align*}
$$

where

$$
\begin{align*}
\tilde{\nu}_{s u} & \equiv \frac{4 \pi q_{s}^{2} q_{u}^{2} n_{u} \lambda_{s u}}{\sqrt{m_{s}}\left(2 T_{s}\right)^{3 / 2}} \frac{a_{0}}{v_{t, r}} \\
& =\frac{4 \pi}{2^{3 / 2}} \frac{Z_{s}^{2} Z_{u}^{2} \tilde{n}_{u} \lambda_{s u}}{\sqrt{\tilde{m}_{s} \tilde{T}_{r}} \tilde{T}_{s}^{3 / 2}} \frac{a_{0}}{v_{t, 0}} \frac{e^{4}}{\sqrt{m_{p}}} \frac{10^{20}}{[m]^{3}[k e V]^{3 / 2}} \tag{49}\\
& =9.22 \times 10^{-4} \sqrt{\frac{\alpha}{2}} \frac{\tilde{a}_{0} \sqrt{\tilde{m}_{r}} Z_{s}^{2} Z_{u}^{2} \tilde{n}_{u} \lambda_{s u}}{\sqrt{\tilde{m}_{s} \tilde{T}_{r}} \tilde{T}_{s}^{3 / 2}}
\end{align*}
$$

Let's get the heat flux in physical units:

$$
\begin{align*}
\frac{Q_{\psi, s}}{\langle | \nabla \psi\rangle} & =n_{r} T_{r} v_{t, r}\left(\frac{\rho_{r}}{a_{r}}\right)^{2} \tilde{Q}_{s} \\
& =3.22 \times 10^{20} \tilde{n}_{r} \frac{\sqrt{\tilde{m}_{r}} \tilde{T}_{r}^{5 / 2}}{\tilde{a}_{0}^{2} \tilde{B}_{a}^{2}}\left(\frac{2}{\alpha}\right)^{3 / 2} \frac{[k e V]}{[m]^{2}[s]} \tilde{Q}_{s} \tag{50}\\
& =5.16 \times 10^{4} \tilde{n}_{r} \frac{\sqrt{\tilde{m}_{r}} \tilde{T}_{r}^{5 / 2}}{\tilde{a}_{0}^{2} \tilde{B}_{a}^{2}}\left(\frac{2}{\alpha}\right)^{3 / 2} \frac{[W]}{[m]^{2}} \tilde{Q}_{s}
\end{align*}
$$

If we want to consider power balance, we need to integrate this expression over the flux surface. Since none of the quantities vary over the flux surface, this simply involves multiplying by the flux surface area:

$$
\begin{equation*}
A \frac{Q_{\psi, s}}{\langle | \nabla \psi\rangle}=5.16 \times 10^{4} \tilde{n}_{r} \tilde{T}_{r}^{5 / 2} \frac{\sqrt{\tilde{m}_{r}} \tilde{A}}{\tilde{B}_{a}^{2}}\left(\frac{2}{\alpha}\right)^{3 / 2} \tilde{Q}_{s}[W] \tag{51}
\end{equation*}
$$

3.2 discretization

We start by defining $F_{s} \equiv(2 / 3) \tilde{A} \tilde{n}_{r} \tilde{T}_{r}^{5 / 2} / \tilde{B}_{a}^{2} \tilde{Q}_{s}$. Then the single-step discretization of Eq. (47) is

$$
\begin{equation*}
\frac{p_{j}^{m+1}-p_{j}^{m}}{\Delta t}+\alpha\left(\frac{\langle | \nabla \psi| \rangle_{j}}{A_{j}} \frac{F_{+}-F_{-}}{\Delta \rho}\right)^{m+1}+(1-\alpha)\left(\frac{\langle | \nabla \psi| \rangle_{j}}{A_{j}} \frac{F_{+}-F_{-}}{\Delta \rho}\right)=\frac{2}{3} S_{j} \tag{52}
\end{equation*}
$$

We can Taylor expand $F_{ \pm}^{m+1}$ about its value at the m time level and keep terms through linear order:

$$
\begin{equation*}
F_{ \pm}^{m+1} \approx F_{ \pm}+\left.\left(\mathbf{y}-\mathbf{y}_{0}\right) \frac{\partial F_{ \pm}}{\partial \mathbf{y}}\right|_{\mathbf{y}_{0}} \tag{53}
\end{equation*}
$$

The derivative term can be written explicitly as

$$
\begin{equation*}
\left.\frac{\partial F_{ \pm}}{\partial \mathbf{y}}\right|_{\mathbf{y}_{0}}=\sum_{k}\left(n_{k}^{m+1}-n_{k}\right) \frac{\partial F_{ \pm}}{\partial n_{k}}+\ldots \tag{54}
\end{equation*}
$$

In the local approximation, this becomes

$$
\begin{equation*}
\left.\frac{\partial F_{ \pm}}{\partial \mathbf{y}}\right|_{\mathbf{y}_{0}}=\sum_{k}\left(n_{k}^{m+1}-n_{k}\right)\left(\frac{\partial F_{ \pm}}{\partial n_{ \pm}} \frac{d n_{ \pm}}{d n_{k}}+\frac{\partial F_{ \pm}}{\partial\left(R / L_{n}\right)_{ \pm}} \frac{d(R / L n)_{ \pm}}{d n_{k}}\right)+\ldots \tag{55}
\end{equation*}
$$

For now, we assume that the dependence of $F_{ \pm}$on $n_{ \pm}$and $p_{ \pm}$is weak so that

$$
\begin{equation*}
\left.\frac{\partial F_{ \pm}}{\partial \mathbf{y}}\right|_{\mathbf{y}_{0}} \approx \sum_{k}\left(n_{k}^{m+1}-n_{k}\right) \frac{\partial F_{ \pm}}{\partial\left(R / L_{n}\right)_{ \pm}} \frac{d(R / L n)_{ \pm}}{d n_{k}}+\ldots \tag{56}
\end{equation*}
$$

We express grad scale lengths discretely as

$$
\begin{equation*}
\left(\frac{R}{L_{n}}\right)_{ \pm}=\mp \frac{R}{n_{ \pm}} \frac{n_{j \pm 1}-n_{j}}{\Delta \rho} \tag{57}
\end{equation*}
$$

We then have

$$
\begin{align*}
\frac{d\left(R / L_{n}\right)_{ \pm}}{d n_{k}} & =\mp \frac{R}{n_{ \pm} \Delta \rho}\left(-\frac{1}{n_{ \pm}} \frac{d n_{ \pm}}{d n_{k}}\left(n_{j \pm 1}-n_{j}\right)+\delta_{k, j \pm 1}-\delta_{k, j}\right) \\
& =\mp \frac{R}{n_{ \pm} \Delta \rho}\left(-\frac{1}{2 n_{ \pm}}\left(\delta_{k, j \pm 1}+\delta_{k, j}\right)\left(n_{j \pm 1}-n_{j}\right)+\delta_{k, j \pm 1}-\delta_{k, j}\right) \tag{58}\\
& =\mp \frac{R}{n_{ \pm} \Delta \rho}\left(\delta_{k, j \pm 1}\left(\frac{n_{j}-n_{j \pm 1}}{2 n_{\bar{j}}}+1\right)+\delta_{k, j}\left(\frac{n_{j}-n_{j \pm 1}}{2 n_{ \pm}}-1\right)\right)
\end{align*}
$$

which gives

$$
\begin{equation*}
\sum_{k}\left(n_{k}^{m+1}-n_{k}\right) \frac{d(R / L n)_{ \pm}}{d n_{k}}=\mp \frac{R}{n_{ \pm} \Delta \rho}\left(\left(n_{j \pm 1}^{m+1}-n_{j \pm 1}\right)\left(\frac{n_{j}-n_{j \pm 1}}{2 n_{ \pm}}+1\right)+\left(n_{j}^{m+1}-n_{j}\right)\left(\frac{n_{j}-n_{j \pm 1}}{2 n_{ \pm}}-1\right)\right) \tag{59}
\end{equation*}
$$

