
1 particle transport

We begin with the particle transport equation:

∂ns
∂t

+
1
V ′

∂

∂ψ
(V ′Γψ,s) = Sn, (1)

where ns is the equilibrium density of species s, ψ is the poloidal flux enclosed by a flux surface, V ′ = dV/dψ,
V is the volume enclosed by the flux surface, Sn is the net particle source, and Γψ,s is the flux surface-averaged
ψ-component of the particle flux. The particle flux consists of both neoclassical and turbulent contributions;
the turbulent contribution is given by

Γψ,s =
〈∫

d3v (vχ · ∇ψ) δf(R)
〉
ψ

, (2)

where vχ is the drift due to the fluctuating potentials, δf is the lowest order departure of the distribution
function from a Maxwellian, R is the guiding center position, and 〈.〉ψ indicates a flux surface average.

1.1 normalization

Next, we must normalize Eq. (1). We do so by defining the normalized quantities

Γ̃s ≡ 1
〈|∇ψ|〉

Γψ,s
nrvt,r

(
ar
ρr

)2

, (3)

t̃ ≡ vt,0
a0

(
ρ0

a0

)2

t, (4)

and ñs ≡ ns/n0, where: nr, vt,r, and ρr are the density, thermal velocity, and gyroradius of the reference
species in the flux tube calculation; ar is the reference length in the flux tube calculation; n0, vt,0, and ρ0

are the reference density, thermal velocity, and gyroradius defined in the transport calculation; and a0 is the
reference length in the transport calculation. For clarity, we provide definitions of some of these reference
quantities here: vt,r =

√
2Tr/αmr, with mr and Tr the mass and temperature of the reference species in the

flux tube calculation, and α = 1 or 2 depending on the choice made in the flux tube code;

ρr ≡
vt,r
Ωr

=
mrvt,rc

|e|Ba
=

√
2Trmr

α

c

|e|Ba
,

(5)

with e the electron charge and Ba the reference magnetic field in the flux tube calculation; n0 = 1020/m3;
vt,0 =

√
2T0/αmr, with T0 = 1 keV ; and ρ0 is the reference gyroradius in the transport calculation, defined

ρ0 ≡
vt,0
Ω0

=
√

2T0

αmr

mrc

|e|B0

=

√
2T0mr

α

c

|e|B0
,

(6)

with B0 = 1 T .
We now divide Eq. (1) by n0(vt,0/a0)(ρ0/a0)2 to get

∂ñ

∂t̃
+

1
V ′

∂

∂ψ

(
V ′ 〈|∇ψ|〉 a0ñr

√
T̃r

(
ρr
ρ0

a0

ar

)2

Γ̃s

)
= S̃n, (7)
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where T̃ = T/T0 and

S̃n = (a0/vt,0)(a0/ρ0)2Sn/n0

= 3.23× 10−26 [m]3 [s] ã0

√
m̃r

√
α

2
ρ−2
∗ Sn

(8)

We next note that the flux surface area, A, satisfies A ≡ (dV/dψ) 〈|∇ψ|〉 = (dV/dρ) 〈|∇ρ|〉, where ρ is an
arbitrary flux surface label defined so that it is zero at the magnetic axis and one at the LCFS. We then
define Ã ≡ A/a2

0 and ∇̃ = a0∇. This gives

∂ñ

∂t̃
+

〈∣∣∣∇̃ρ∣∣∣〉
Ã

∂

∂ρ

(
Ãñr

√
T̃r

(
ρr
ρ0

a0

ar

)2

Γ̃s

)
= S̃n, (9)

For convenience of future calculation, we explicitly calculate ρr/ρ0:

ρr
ρ0

=
vt,r
vt,0

Ω0

Ωr
=

√
T̃r

B̃a
. (10)

Substituting this expression in Eq. (9), we obtain

∂ñ

∂t̃
+

〈∣∣∣∇̃ρ∣∣∣〉
Ã

∂

∂ρ

(
Ã

B̃2
a

ñrT̃
3/2
r

(
a0

ar

)2

Γ̃s

)
= S̃n. (11)

At this point, we assume that ar is defined so that it does not depend on the flux label, ρ. We are then free
to choose a0 = ar, so that the final form of our normalized particle transport equation bcomes:

∂ñ

∂t̃
+

〈∣∣∣∇̃ρ∣∣∣〉
Ã

∂

∂ρ

(
Ã

B̃2
a

ñrT̃
3/2
r Γ̃s

)
= S̃n. (12)

It’s useful to also have the normalized quantities in terms of physical units. Here we calculate conversion
to physical units for some of our normalized quantities. First, we consider ρ∗ = ρ0/a0:

ρ∗ =

√
2T0mr

α

c

|e|B0a0

=

√
2
α

√
m̃r

ã0

c
√
mp

|e|
[keV ]1/2

[m] [T ]

= 3.23× 10−3

√
2
α

√
m̃r

ã0

(13)

where m̃ ≡ m/mp and ã = a/ [m]. Next, we consider vt,0/a0:

vt,0
a0

=
1

ã0

√
m̃r

√
2
α

1
√
mp

[keV ]1/2

[m]

=
3.094× 105

[s]
1

ã0

√
m̃r

√
2
α
.

(14)

Combining the above expressions gives us an expression for t̃:

t̃ =
vt,0
a0

ρ2
∗t = 3.23

(
2
α

)3/2 √
m̃r

ã3
0

t

[s]

⇒ t

[s]
= 0.31

(α
2

)3/2 ã3
0√
m̃r

t̃.

(15)
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We now want to convert the normalized particle flux to physical units:

Γs
〈|∇ψ|〉

= nrvt,r

(
ρr
ar

)2

Γ̃s

= ñr

√
T̃r
m̃r

√
2
α

(
ρr
ρ0

)2

ρ2
∗

1020

√
mp

[keV ]1/2

[m]3

(
a0

ar

)2

Γ̃s

= 1.04× 1015ñr

√
m̃rT̃

3/2
r

ã2
0B̃

2
a

(
2
α

)3/2 1
√
mp

[keV ]1/2

[m]3

(
a0

ar

)2

Γ̃s

= 3.22× 1020ñr

√
m̃rT̃

3/2
r

ã2
0B̃

2
a

(
2
α

)3/2(
a0

ar

)2 Γ̃s
[m]2 [s]

.

(16)

Integrating this expression over the flux surface, we get

A
Γs
〈|∇ψ|〉

= 3.22× 1020ñrT̃
3/2
r

√
m̃rÃ

B̃2
a

(
2
α

)3/2(
a0

ar

)2 Γ̃s
[s]
. (17)

1.2 discretization

We start by defining Fs ≡ ÃñrT̃ 3/2
r /B̃2

aΓ̃s. Then the single-step discretization of Eq. (47) is

nm+1
j − nmj

∆t
+ α

( 〈|∇ψ|〉j
Aj

F+ − F−
∆ρ

)m+1

+ (1− α)
( 〈|∇ψ|〉j

Aj

F+ − F−
∆ρ

)
= Sj . (18)

We can develop a multi-step, backwards difference discretization as follows. First, we use fm and fm−1

about time level m+ 1:

fm = fm+1 − (∆t)m f
′m+1 +

(∆t)2m
2

f ′′m+1 −O
[
(∆t)3m

]
fm−1 = fm+1 −

(
(∆t)m + (∆t)m−1

)
f ′m+1 +

(
(∆t)m + (∆t)m−1

)2
2

f ′′m+1 −O
[(

(∆t)m + (∆t)m−1

)3]
,

(19)

where ∆tm = tm+1 − tm. Combining these expressions, we get

fm+1 − fm

∆tm
− ∆tm

∆tm + ∆tm−1

fm+1 − fm−1

∆tm + ∆tm−1
= f ′m+1

(
∆tm−1

∆tm + ∆tm−1

)
+O

[
∆t2

]
⇒ f ′m+1 ≈ fm+1

[
∆tm−1 + 2∆tm

∆tm (∆tm + ∆tm−1)

]
− fm

[
∆tm + ∆tm−1

∆tm∆tm−1

]
+ fm−1

[
∆tm

∆tm−1 (∆tm + ∆tm−1)

]
.

(20)

We can Taylor expand Fm+1
± about its value at the m time level and keep terms through linear order:

Fm+1
± ≈ F± + (y − y0)

∂F±
∂y

∣∣∣∣∣
y0

. (21)

The derivative term can be written explicitly as

∂F±
∂y

∣∣∣∣∣
y0

=
∑
k

(
nm+1
k − nk

) ∂F±
∂nk

+ ... (22)

In the local approximation, this becomes

∂F±
∂y

∣∣∣∣∣
y0

=
∑
k

(
nm+1
k − nk

)(∂F±
∂n±

dn±
dnk

+
∂F±

∂(a0/Ln)±
d(a0/Ln)±

dnk

)
+ ... (23)
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For now, we assume that the dependence of F± on n± and p± is weak so that

∂F±
∂y

∣∣∣∣∣
y0

≈
∑
k

(
nm+1
k − nk

) ∂F±
∂(a0/Ln)±

d(a0/Ln)±
dnk

+ ... (24)

We express grad scale lengths discretely as(
a0

Ln

)
±

= ∓ 1
n±

nj±1 − nj
∆ρ

. (25)

We then have
d(a0/Ln)±

dnk
= ∓ 1

n±∆ρ

(
− 1
n±

dn±
dnk

(nj±1 − nj) + δk,j±1 − δk,j
)

= ∓ 1
n±∆ρ

(
− 1

2n±
(δk,j±1 + δk,j) (nj±1 − nj) + δk,j±1 − δk,j

)
= ∓ 1

n±∆ρ

(
δk,j±1

(
nj − nj±1

2n±
+ 1
)

+ δk,j

(
nj − nj±1

2n±
− 1
))

,

(26)

which gives∑
k

(
nm+1
k − nk

) d(a0/Ln)±
dnk

= ∓ 1
n±∆ρ

((
nm+1
j±1 − nj±1

)(nj − nj±1

2n±
+ 1
)

+
(
nm+1
j − nj

)(nj − nj±1

2n±
− 1
))

= ∓ 1
∆ρ

(
nm+1
j±1

n±

nj
n±
−
nm+1
j

n±

nj±1

n±

)
.

(27)

2 momentum transport

We begin with the equation for the transport of toroidal angular momentum in the high flow (u0 ∼ vt,i)
limit:

∂L

∂t
+

1
V ′

∂

∂ψ

[
V ′
∑
s

(
〈πψφ,s〉+msω(ψ)

〈
R2Γψ,s

〉)]
= SL, (28)

where L =
∑
sms

〈
nsR

2
〉
ω(ψ), u0 = Rω(ψ)êφ, 〈.〉 is the flux surface average, SL is the flux-surface averaged

external momentum source, Γψ,s is defined by Eq. (2), and π is a turbulent momentum flux given by

πψφ,s =
∫
d3v msR

2 (v · ∇φ) (vχ · ∇ψ) δf(R). (29)

We identify the total toroidal angular momentum flux to be

Π ≡
∑
s

(
〈πψφ,s〉+msω(ψ)

〈
R2Γψ,s

〉)
, (30)

so that the momentum transport equation takes the simple form
∂L

∂t
+

1
V ′

∂

∂ψ
(V ′Π) = SL. (31)

2.1 normalization

Next, we must normalize Eq. (31). We do so by defining the normalizing quantities

Π̃ ≡ 1
〈|∇ψ|〉

Π
mrarnrv2

t,r

(
ar
ρr

)2

, (32)

L̃ ≡ L

mpa0n0vt,0
, (33)

t̃ ≡ vt,0
a0

(
ρ0

a0

)2

t, (34)
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where: mp is the proton mass; a0 is the half-diameter of the LCFS at the elevation of the magnetic axis;
n0 = 1020/m3; T0 = 1 keV ; vt,0 is the reference thermal velocity for the transport calculation, defined

vt,0 ≡

√
2T0

αmp
; (35)

α = 1 (or 2) if vt,r is defined with (or without) the
√

2 factor; ρ0 is the reference gyroradius in the transport
calculation, defined

ρ0 ≡
vt,0
Ω0

=

√
2T0

mp

mpc

|e|B0

=
√

2T0mp
c

|e|B0
;

(36)

B0 = 1 T ; mr, nr, and vt,r are the mass, density, and thermal velocity of the reference species in the flux tube
calculation; ar is the reference length in the flux tube calculation; and ρr is the gyroradius of the reference
species in the flux tube calculation, defined

ρr ≡
vt,r
Ωr

=
mrvt,rc

Zr |e|Ba
,

(37)

with Ba equal to the toroidal magnetic field at Ra, which is the average of the minimum and maximum major
radius of the flux surface.

Dividing Eq. 31 by (ρ0/a0)2mpn0v
2
t0, we obtain

∂L̃

∂t̃
+

1
V ′

∂

∂ψ

(
V ′ 〈|∇ψ|〉 ar

mr

mp

nr
n0

(
vt,r
vt,0

ρr
ρ0

a0

ar

)2

Π̃

)
= S̃L., (38)

where S̃L ≡ (a0/ρ0)2SL/(mpn0v
2
t0). We next note that the flux surface area, A, satisfiesA ≡ (dV/dψ) 〈|∇ψ|〉 =

(dV/dρ) 〈|∇ρ|〉, where ρ is an arbitrary flux surface label defined so that it is zero at the magnetic axis and
one at the LCFS. We then define Ã ≡ A/a2

0 and ∇̃ = a∇. This gives

∂L̃

∂t̃
+

〈∣∣∣∇̃ρ∣∣∣〉
Ã

∂

∂ρ

(
Ã
a0

ar

mr

mp

nr
n0

(
vt,r
vt,0

ρr
ρ0

)2

Π̃

)
= S̃L. (39)

For convenience of future calculations, we explicitly calculate vt,r/vt,0 and ρr/ρ0:

vt,r
vt,0

=

√
T̃r
m̃r

, (40)

ρr
ρ0

=
vt,r
vt,0

Ω0

Ωr

=

√
m̃rT̃r

ZrB̃a

(41)

where we have defined T̃ ≡ T/T0, m̃ ≡ m/mp, and B̃a = Ba/B0. Additionally defining ã = ar/a0 and
ñ = n/n0, we obtain the final form of our normalized equation:

∂L̃

∂t̃
+

〈∣∣∣∇̃ρ∣∣∣〉
Ã

∂

∂ρ

(
Ã

ãZ2
r B̃

2
a

m̃rñrT̃
2
r Π̃

)
= S̃L. (42)
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2.2 discretization

3 energy transport

We begin with the energy transport equation:

3
2
∂ps
∂t

+
1
V ′

∂

∂ψ
(V ′Qψ,s) +

3
2
ns
∑
u

νεsu (Ts − Tu) = Sp, (43)

where ps is the equilibrium pressure, Sp is the total external energy input, νεsu is the collisional temperature
equilibration frequency, and Qψ,s is flux surface averaged ψ-component of the heat flux, given by

Qψ,s ≡
〈∫

d3v
msv

2

2
(vχ · ∇ψ) δf(R)

〉
ψ

. (44)

3.1 normalization

Q̃s ≡
1

〈|∇ψ|〉
Qψ,s

nrTrvt,r

(
ar
ρr

)2

. (45)

We now divide Eq. (43) by n0T0(vt,0/a0)(ρ0/a0)2 and switch to the generalized flux label ρ. The algebra is
almost identical to that from the particle transport section. The final equation is

3
2
∂p̃s

∂t̃
+
〈|∇ρ|〉
Ã

∂

∂ρ

(
Ã

B̃2
a

ñrT̃
5/2
r Q̃s

)
+

3
2
ñs
∑
u

ν̃εsu

(
T̃s − T̃u

)
= S̃p, (46)

where

S̃p ≡
Sp
n0T0

a0

vt,0
ρ−2
∗

= 3.1× 10−21 [m]3 [s]
[keV ]

ã3
0√
m̃r

(α
2

)3/2

Sp

= 1.9× 10−5 [m]3

[W ]
ã3
0√
m̃r

(α
2

)3/2

Sp

(47)

and

ν̃εsu ≡ 6.86
√
msmuq

2
sq

2
unuλsu

(msTu +muTs)
3/2

a0

vt,0
ρ−2
∗

= 1.54ν̃su

√
mu

ms

(
Tu
Ts

+
mu

ms

)−3/2
vt,r
vt,0

ρ−2
∗ ,

(48)

where

ν̃su ≡
4πq2sq

2
unuλsu

√
ms (2Ts)

3/2

a0

vt,r

=
4π

23/2

Z2
sZ

2
uñuλsu√

m̃sT̃rT̃
3/2
s

a0

vt,0

e4
√
mp

1020

[m]3 [keV ]3/2

= 9.22× 10−4

√
α

2
ã0

√
m̃rZ

2
sZ

2
uñuλsu√

m̃sT̃rT̃
3/2
s

.

(49)
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Let’s get the heat flux in physical units:

Qψ,s
〈|∇ψ|〉

= nrTrvt,r

(
ρr
ar

)2

Q̃s

= 3.22× 1020ñr

√
m̃rT̃

5/2
r

ã2
0B̃

2
a

(
2
α

)3/2 [keV ]
[m]2 [s]

Q̃s

= 5.16× 104ñr

√
m̃rT̃

5/2
r

ã2
0B̃

2
a

(
2
α

)3/2 [W ]
[m]2

Q̃s.

(50)

If we want to consider power balance, we need to integrate this expression over the flux surface. Since none
of the quantities vary over the flux surface, this simply involves multiplying by the flux surface area:

A
Qψ,s
〈|∇ψ|〉

= 5.16× 104ñrT̃
5/2
r

√
m̃rÃ

B̃2
a

(
2
α

)3/2

Q̃s [W ] . (51)

3.2 discretization

We start by defining Fs ≡ (2/3)ÃñrT̃
5/2
r /B̃2

aQ̃s. Then the single-step discretization of Eq. (47) is

pm+1
j − pmj

∆t
+ α

( 〈|∇ψ|〉j
Aj

F+ − F−
∆ρ

)m+1

+ (1− α)
( 〈|∇ψ|〉j

Aj

F+ − F−
∆ρ

)
=

2
3
Sj . (52)

We can Taylor expand Fm+1
± about its value at the m time level and keep terms through linear order:

Fm+1
± ≈ F± + (y − y0)

∂F±
∂y

∣∣∣∣∣
y0

. (53)

The derivative term can be written explicitly as

∂F±
∂y

∣∣∣∣∣
y0

=
∑
k

(
nm+1
k − nk

) ∂F±
∂nk

+ ... (54)

In the local approximation, this becomes

∂F±
∂y

∣∣∣∣∣
y0

=
∑
k

(
nm+1
k − nk

)(∂F±
∂n±

dn±
dnk

+
∂F±

∂(R/Ln)±
d(R/Ln)±

dnk

)
+ ... (55)

For now, we assume that the dependence of F± on n± and p± is weak so that

∂F±
∂y

∣∣∣∣∣
y0

≈
∑
k

(
nm+1
k − nk

) ∂F±
∂(R/Ln)±

d(R/Ln)±
dnk

+ ... (56)

We express grad scale lengths discretely as(
R

Ln

)
±

= ∓ R

n±

nj±1 − nj
∆ρ

. (57)

We then have

d(R/Ln)±
dnk

= ∓ R

n±∆ρ

(
− 1
n±

dn±
dnk

(nj±1 − nj) + δk,j±1 − δk,j
)

= ∓ R

n±∆ρ

(
− 1

2n±
(δk,j±1 + δk,j) (nj±1 − nj) + δk,j±1 − δk,j

)
= ∓ R

n±∆ρ

(
δk,j±1

(
nj − nj±1

2n±
+ 1
)

+ δk,j

(
nj − nj±1

2n±
− 1
))

,

(58)
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which gives∑
k

(
nm+1
k − nk

) d(R/Ln)±
dnk

= ∓ R

n±∆ρ

((
nm+1
j±1 − nj±1

)(nj − nj±1

2n±
+ 1
)

+
(
nm+1
j − nj

)(nj − nj±1

2n±
− 1
))

.

(59)
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