1 particle transport

We begin with the particle transport equation:
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where n; is the equilibrium density of species s, 1) is the poloidal flux enclosed by a flux surface, V' = dV/d4,
V is the volume enclosed by the flux surface, S, is the net particle source, and I'y, , is the flux surface-averaged
1-component of the particle flux. The particle flux consists of both neoclassical and turbulent contributions;
the turbulent contribution is given by
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where v, is the drift due to the fluctuating potentials, 0 f is the lowest order departure of the distribution
function from a Maxwellian, R is the guiding center position, and (.) , indicates a flux surface average.

1.1 normalization

Next, we must normalize Eq. (1). We do so by defining the normalized quantities
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and 7, = ng/ng, where: n,, vy ,, and p, are the density, thermal velocity, and gyroradius of the reference
species in the flux tube calculation; a, is the reference length in the flux tube calculation; ng, v, and pg
are the reference density, thermal velocity, and gyroradius defined in the transport calculation; and ag is the
reference length in the transport calculation. For clarity, we provide definitions of some of these reference

quantities here: v, = /2T,/am,, with m, and T, the mass and temperature of the reference species in the
flux tube calculation, and o = 1 or 2 depending on the choice made in the flux tube code;
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with e the electron charge and B, the reference magnetic field in the flux tube calculation; ng = 102°/m?;
ve0 = /210 /am,., with Tp = 1 keV; and po is the reference gyroradius in the transport calculation, defined
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with Bo =1T.
We now divide Eq. (1) by ng(vt,0/a0)(po/ao)? to get

on 1 0 , 5 - ( pr ag Z i
5 + V' ou <V <|V¢|>a0nr\/;r () Fs> = Sn, (7)

Po Qr

1



where T = T/Tj, and
Sp = (ao/vt,o)(ao/Po)QS /no
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We next note that the flux surface area, A, satisfies A = (dV/dy) (|Vy]) = (dV/dp) (|[Vp|), where p is an
arbitrary flux surface label defined so that it is zero at the magnetic axis and one at the LCFS. We then
define A = A/a? and V = aoV. This gives
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For convenience of future calculation, we explicitly calculate p,./po:
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Substituting this expression in Eq. (9), we obtain
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At this point, we assume that a, is defined so that it does not depend on the flux label, p. We are then free
to choose ag = a.., so that the final form of our normalized particle transport equation bcomes:
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It’s useful to also have the normalized quantities in terms of physical units. Here we calculate conversion
to physical units for some of our normalized quantities. First, we consider p. = pg/ao:
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where m = m/m, and @ = a/ [m]. Next, we consider v, o/ao:
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Combining the above expressions gives us an expression for ¢:
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We now want to convert the normalized particle flux to physical units
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Integrating this expression over the flux surface, we get
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1.2 discretization
[2/% /) B2T,. Then the single-step discretization of Eq. (47)
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We can develop a multi-step, backwards difference discretization as follows

about time level m + 1:
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Combining these expressions, we get
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We can Taylor expand Ff“ about its value at the m time level and keep terms through linear order
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The derivative term can be written explicitly as
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For now, we assume that the dependence of F1 on n4 and py is weak so that
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We express grad scale lengths discretely as
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2 momentum transport

We begin with the equation for the transport of toroidal angular momentum in the high flow (ug ~ v ;)
limit:
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where L = > m, (nsR?) w(v), ug = Rw(1))&,, (.) is the flux surface average, Sy, is the flux-surface averaged
external momentum source, I'y, s is defined by Eq. (2), and 7 is a turbulent momentum flux given by
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We identify the total toroidal angular momentum flux to be
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so that the momentum transport equation takes the simple form
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2.1 normalization

Next, we must normalize Eq. (31). We do so by defining the normalizing quantities
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where: m,, is the proton mass; ag is the half-diameter of the LCFS at the elevation of the magnetic axis;
ng = 1020 / m3; Tp =1 keV; v,0 is the reference thermal velocity for the transport calculation, defined
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a =1 (or 2) if vy, is defined with (or without) the /2 factor; py is the reference gyroradius in the transport
calculation, defined
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By =1T; m;, n,, and v; , are the mass, density, and thermal velocity of the reference species in the flux tube
calculation; a, is the reference length in the flux tube calculation; and p, is the gyroradius of the reference
species in the flux tube calculation, defined
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with B, equal to the toroidal magnetic field at R,, which is the average of the minimum and maximum major
radius of the flux surface.
Dividing Eq. 31 by (po/ao)?*mpnovy,, we obtain
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where Sz, = (ao/po)SL/(mynovd). We next note that the flux surface area, A, satisfies A = (dV/di) (|Vib|) =
(dV/dp) {|Vp|), where p is an arbitrary flux surface label defined so that it is zero at the magnetic axis and
one at the LCFS. We then define A = A/a2 and V = aV. This gives
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For convenience of future calculations, we explicitly calculate vy /v o and p,/po:
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where we have defined T = T/Ty, m = m/m,, and B, = B,/By. Additionally defining a = a,/ap and
n. = n/ng, we obtain the final form of our normalized equation:

e <‘i1p‘> 5 (az?éi ey ﬁ) G .
5




2.2 discretization

3 energy transport

We begin with the energy transport equation:
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where p; is the equilibrium pressure, S, is the total external energy input, v5, is the collisional temperature
equilibration frequency, and @ s is flux surface averaged -component of the heat flux, given by
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We now divide Eq. (43) by noTo(vt,0/a0)(po/ao)? and switch to the generalized flux label p. The algebra is
almost identical to that from the particle transport section. The final equation is
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Let’s get the heat flux in physical units:
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If we want to consider power balance, we need to integrate this expression over the flux surface. Since none
of the quantities vary over the flux surface, this simply involves multiplying by the flux surface area:
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3.2 discretization

We start by defining F, = (2/3)AﬁTTE/2/BZQS Then the single-step discretization of Eq. (47) is
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We can Taylor expand F. m+1 about its value at the m time level and keep terms through linear order:
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In the local approximation, this becomes
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We express grad scale lengths discretely as
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which gives
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