Reduced transport regions in rotating tokamak plasmas

Michael Barnes
University of Oxford
Culham Centre for Fusion Energy

In collaboration with F. Parra, E. Highcock, A. Schekochihin, S. Cowley, and C. Roach

Power/Torque balance for beam injection

Model fluxes

- Simple model for fluxes with parameters chosen to fit zero magnetic shear results from GS2:

$$
Q=Q_{t}+Q_{n} \quad \Pi=\Pi_{t}+\Pi_{n}
$$

$$
\bar{Q}_{t} \equiv \frac{Q_{t}}{n T v_{t h}}\left(\frac{R}{\rho}\right)^{2} \equiv \chi_{t}\left[\frac{R}{L_{T}}-\left(\frac{R}{L_{T}}\right)_{c}\right]
$$

$$
\bar{Q}_{n} \equiv \frac{Q_{n}}{n T v_{t h}}\left(\frac{R}{\rho}\right)^{2}=\frac{\chi_{n}}{T^{2}} \frac{R}{L_{T}} \quad\left(\frac{R}{L_{T}}\right)_{c} \equiv \frac{\alpha_{1} \gamma_{E}+\left(R / L_{T}\right)_{c 0}}{1+\alpha_{2} \gamma_{E}^{2}}
$$

$$
\bar{\Pi}_{t, n} \equiv \frac{\Pi_{t, n}}{m n R v_{t h}^{2}}\left(\frac{R}{\rho}\right)^{2}=\bar{Q}_{t, n} \operatorname{Pr}_{t, n} \frac{\gamma_{E}}{R / L_{T}}
$$

Model fluxes

Balance w/o neoclassical

- $\bar{Q}=$ red lines
- $\overline{\Pi I} / \bar{Q}=$ green lines

$$
\frac{R}{L_{t}}=\frac{\mathrm{Pr}_{t}}{\bar{\Pi} / \bar{Q}} \gamma_{E}
$$

- Critical gradient = dashed line
- For given $\bar{\Pi} / \bar{Q}$ and \bar{Q}, only one solution

Neoclassical energy flux

Balance with neoclassical

2

Curves of constant $\bar{\Pi} / \bar{Q}$

- Neoclassical

$$
\frac{R}{L_{t}}=\frac{\operatorname{Pr}_{n}}{\bar{\Pi} / \bar{Q}} \gamma_{E}
$$

- Turbulent

$$
\frac{R}{L_{t}}=\frac{\operatorname{Pr}_{t}}{\bar{\Pi} / \bar{Q}} \gamma_{E}
$$

- Prandtl numbers

$$
\operatorname{Pr}_{n} \ll \operatorname{Pr}_{t}
$$

Curves of constant $\bar{\Pi} / \bar{Q}$

Total energy flux

Temperature dependence

- Have been using \bar{Q} and $\bar{\Pi} / \bar{Q}$ for local analysis, but these quantities depend on local temperature:

$$
\bar{Q} \sim \frac{Q}{T^{5 / 2}} \quad \overline{\bar{\Pi}} \sim \frac{\Pi}{\bar{Q}} T^{1 / 2}
$$

- Consequently, \bar{Q} is a label for radius, and the contours of constant $\bar{\Pi} / \bar{Q}$ vary from radius to radius
- Better to consider $\bar{\Pi} / \bar{Q}^{4 / 5}$ or $\hat{\Pi} / \hat{Q}$, which are independent of temperature

$$
\hat{Q}=\frac{Q}{T_{0}^{5 / 2}}
$$

$$
\hat{\Pi}=\frac{\Pi}{T_{0}^{2}}
$$

Solving for radial profiles

- Expressions for fluxes:

$$
\begin{aligned}
& \hat{Q}\left(\kappa, \gamma_{E}, T\right)=\hat{T}^{5 / 2}\left(\hat{\chi}_{t}\left(\kappa-\kappa_{c}\right)+\frac{\hat{\chi}_{n}}{\hat{T}^{2}} \kappa\right) \\
& \hat{\Pi}\left(\kappa, \gamma_{E}, T\right)=\gamma_{E}\left(\hat{\chi}_{t}\left(1-\frac{\kappa_{c}}{\kappa}\right) \operatorname{Pr}_{t} \hat{T}^{2}+\hat{\chi}_{n} \operatorname{Pr}_{n}\right)
\end{aligned}
$$

- Radial profiles of \hat{Q} and $\hat{\Pi}$ are inputs. Given \hat{T} at one radius, we can solve for γ_{E} and κ at that radius. With \hat{T} and κ, we can obtain \hat{T} at nearby radii. Repeat process to construct radial profiles.

Numerical results

- Here, Q~sqrt(r/a), Pi/Q=0.1, Edge T=2 keV

Wolf, PPCF 45 (2003)

Extension to 1D (radial)

What have we learned?

- Significant enhancement of temperature gradient obtained solely through flow shear and magnetic shear
- Enhancement for simple geometry not sufficient to account for strong ITBs
- Shafranov shift
- Plasma shaping
- Multiple solutions not necessary to obtain localized enhancement of temperature gradient
- Understanding transition to enhanced gradient regime is work in progress

The future: multiscale simulation

- In TRINITY [Barnes et al., PoP 17, 056109 (2010)], turbulent fluctuations calculated in small regions of fine spacetime grid embedded in "coarse" grid (for mean quantities)

Flux tube simulation domain

