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Why do we care? 

•  Interesting physics problem that might tell us something 
about properties of turbulence 

•  Plasma confinement properties are known to depend 
strongly on quantities such as mean plasma current and 
temperature gradient 

•  Analytical results for turbulence are rare, and direct 
numerical simulations are costly 

•  Scaling laws useful indicators of gross plasma 
performance and provide guidance for numerical 
simulations 

•  Improved turbulence fluctuation measurements allow 
for detailed comparisons with experiment 



Cartoon of ITG turbulence 
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Model = gyrokinetics 
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Conjectures 

•  The parallel streaming time and nonlinear turnover time 
are comparable at all scales 

•  The characteristic parallel length of the turbulence at 
the outer scale is the connection length 

•  The time scale associated with the linear drive is 
comparable to the nonlinear decorrelation time at the 
outer scale 

•  Fluctuation scale lengths in the two dimensions of the 
perpendicular plane are comparable 

•  There is no significant dissipation or driving between the 
outer and Larmor scales 



Critical balance 

•  Conjecture 1: The parallel streaming time and nonlinear 
turnover time are comparable at all scales 

•  Physical idea: two points along field line can be 
correlated only if information propagates between the 
points before turbulence is decorrelated in 
perpendicular plane 
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Outer scale 
•  Conjecture 2: The characteristic parallel length of the 

turbulence at the outer scale is the connection length 
•  Physical idea: Modes cannot extend much beyond the 

connection length due to stabilizing effect of good 
curvature 

•  Conjecture 3: The time scale associated with the linear 
drive is comparable to the nonlinear decorrelation time 
at the outer scale 
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Outer scale 
•  Conjecture 4: Fluctuation scale lengths in the two 

dimensions of the perpendicular plane are 
comparable 

•  Physical idea: Linear drive favors structures with             .  
Smaller       formed through magnetic shear and zonal 
flow shear:   
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Entropy balance 

•  Entropy is conserved quantity in gyrokinetics: 

•  Multiply GK equation by      , integrate over phase space, and 
sum over species to get scale-by-scale entropy balance: 
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Inertial range 
•  Conjecture 5: There is no significant dissipation or 

driving between the outer and Larmor scales 
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Sub-Larmor cutoff 
•  Define number analogous to Reynolds number to 

measure separation of driving and dissipation scales: 
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Summary of key results 
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Outer range scalings 
•  Use GS2 to test scaling predictions 
•  Cyclone Base Case with varying     and     q κ = R/LT
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Inertial range spectra 
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Inertial range spectra 
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Critical balance test 
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Discussion 

•  Critical balance is 
satisfied for system 
we’ve considered 

•  Scalings from simple 
arguments give 
remarkably good 
agreement with 
simulations 

•  Modifications for 
different regions in 
parameter space 


