Phase mixing in kinetic plasma turbulence

Michael Barnes

A. Schekochihin, A. Zocco, F. Parra, N. Loureiro, T. Tatsuno, G. Plunk, W. Dorland, S. Cowley, R. Numata

Simple picture of parallel phase-mixing $h(z, v_{\parallel}, t_0) \sim \cos(k_{\parallel} z)$

Simple picture of parallel phase-mixing

$$h(z, v_{\parallel}, t) \sim \cos\left[k_{\parallel} \left(z - v_{\parallel} t\right)\right] \qquad \delta v_{\parallel} \sim \left(k_{\parallel} t\right)^{-1}$$

5D cascade path

- Interesting theoretical physics question:
 - What are the general properties of kinetic plasma turbulence, and are they universal?

5D cascade path

- Practical questions:
- Given a collision frequency, what are the smallest scales allowed in each dimension of phase space?
- If scale size restrained in a dimension, does it affect system dynamics in other dimensions?
- Can we use our knowledge of turbulence properties to design sub-grid models for turbulence?

Gyrokinetic-Poisson system

GK equation

$$\sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{R}} \left(\frac{\partial g_{\mathbf{k}}}{\partial t} + ik_{\parallel} v_{\parallel} \left(g_{\mathbf{k}} + \frac{q \langle \varphi \rangle_{\mathbf{k}}}{T_{i}} F_{0} \right) + \mathcal{N}_{\mathbf{k}}[g] = C_{\mathbf{k}}[g] - \mathbf{v}_{\varphi} \cdot \nabla F_{0} \right)$$
$$g \equiv \langle \delta f \rangle \qquad \mathcal{N}_{\mathbf{k}}[g] \equiv \frac{c}{B} \sum_{\mathbf{k}'} \hat{z} \cdot (\mathbf{k} \times \mathbf{k}') \langle \varphi \rangle_{\mathbf{k}'} g_{\mathbf{k}-\mathbf{k}'}$$

Quasineutrality

$$\frac{q\varphi_{\mathbf{k}}}{T_i} = \Lambda_{\mathbf{k}}^{-1} \int d^3 v \ J_0(kv_\perp/\Omega)g_{\mathbf{k}}$$

 $\Lambda_{\mathbf{k}} \equiv \left(1 + T_i/T_e - \Gamma_0\left(k\rho_i\right)\right) n_0$

Hermite spectra

- Simple Collision operator: $C[g] \equiv \nu \partial_{v_{\parallel}} \left(\partial_{v_{\parallel}} + v_{\parallel} \right) g$
- Hermite transform GK equation:

For m > 2

$$\frac{\partial \hat{g}_m}{\partial t} + ik_{\parallel} v_{th} \left(\sqrt{\frac{m+1}{2}} \hat{g}_{m+1} + \sqrt{\frac{m}{2}} \hat{g}_{m-1} \right) + \int dv_{\perp} v_{\perp} J_0 \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \mathcal{N}[g_m] = -2\nu m \hat{g}_m$$

Definitions:

$$\hat{g}_m \equiv \int d\vartheta \int dv_{\perp} v_{\perp} J_0(k_{\perp} v_{\perp} / \Omega) g_m \qquad g = \sum_m g_m(v_{\perp}) \frac{H_m(v_{\parallel})}{\sqrt{\pi 2^m m!}}$$

 $dxH_m(x)H_n(x) = \delta_{mn}\pi 2^m m!$

Scalings and collisional cutoff

$$\frac{\partial \left|\hat{g}_{m}\right|^{2}}{\partial t} + \frac{\partial \Gamma_{m}}{\partial m} + \frac{1}{2} \left(\hat{g}_{m}^{*} \mathcal{N}[g_{m}] + \hat{g}_{m} \mathcal{N}[g_{m}^{*}]\right) = -2\nu m \left|\hat{g}_{m}\right|^{2}$$
$$\Gamma_{m} \equiv \frac{ik_{\parallel} v_{th}}{2\sqrt{2}} \sqrt{m} \left(\hat{g}_{m} \hat{g}_{m-1}^{*} - \hat{g}_{m}^{*} \hat{g}_{m-1}\right)$$

Linear or weakly nonlinear

 $\frac{\partial \Gamma_m}{\partial m} \approx 0 \Rightarrow |\hat{g}_m|^2 \propto m^{-1/2}$ Collisional cutoff $\int_0^{m_c} dm \left(\frac{\partial \Gamma_m}{\partial m} + 2\nu m |g_m|^2 \right) \approx 0 \Rightarrow m_c \propto \left(\frac{k_{\parallel} v_{th}}{\nu} \right)^{2/3}$

Parallel velocity spectrum

Model nonlinearity

Locality and weak k-dependence: $\mathcal{N}_{\mathbf{k}}[g_m] \approx \gamma_k \hat{g}_{m,\mathbf{k}}$ $\frac{1}{2} \left(\hat{g}_m^* \mathcal{N}[g_m] + \hat{g}_m \mathcal{N}^*[g_m] \right) \approx \gamma_k \left| \hat{g}_m \right|^2$ Inertial range: $\frac{\partial \Gamma_{m,\mathbf{k}}}{\partial m} + \gamma_{\mathbf{k}} \left| g_{m,\mathbf{k}} \right|^2 \approx 0$ $\Rightarrow \left| \hat{g}_{m,\mathbf{k}} \right|^2 \propto \frac{e^{-2\tilde{\gamma}_{\mathbf{k}}}\sqrt{m}}{\sqrt{m}} \qquad \tilde{\gamma}_{\mathbf{k}} \equiv \frac{\gamma_{\mathbf{k}}}{k_{\parallel} v_{th}}$

Caveats/Questions

• Summation over k of GK equation gives entropy balance:

$$\frac{\partial \delta S_m}{\partial t} + \frac{\partial \tilde{\Gamma}_m}{\partial m} = -2\nu m \delta S_m \propto m^{-1/2}$$

- How are spectra in kpar, kperp, m related?
- Next step: 5D simulations in AstroGK