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Magnetic confinement fusion

Hot, dense

Cold, dilute
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Multiple scale problem

Perpendicular

Physics :
/ spafial scale

Temporal scale

Turbulence from ETG

—1
nodes k7 "~ 0.005-0.05 cm Wy ~0.5- 5.0 MHz

Turbulence from ITG

—1
ool k:L ~0.3-3.0cm Wy ~ 10 - 100 kHz

Measurements suggest

i 2
width ~ 1 - 10 cm 100 ms or more In cores

Transport barriers

Energy confinement time

Discharge evolution Profile scales ~ 200 cm 5 4s

simulation cost: (L/Ay) x (Li/AL)° x (Ly,/A,)? x (Li/At) ~ 102




Major Theoreftical & Algorithmic Speedups

Slide from G.W. Hammett relative to simplest brute force, fully resolved, algorithm, for ITER 1/p. = alp ~ 700

Nonlinear gyrokinetic equation
— ion polarization shielding eliminates plasma freq. w,./Qq ~ m;/mg
— jon polarization eliminates p, & Debye scales (p/p.)®
— average over fast ion gyration, Qg / -~ 1/p-«

Contfinuum or 6f PIC, reduces noise, (fy/6f)% ~ 1/p.?

Field-aligned coordinates (nonlinear extension of ballooning coord.)

A /(A,qR/a) ~a/(gR p)
Flux-tube / Toroidal annulus wedge, | simulation volume

— kgp;=0,0.05,0.1, ..., 1.0
n=0, 15, 30, ..., 300 (i.e., 1/15 of toroidal direction)

— L ~a/5~ 140 p ~ 10 correlafion lengths
High-order / spectral algorithms in 5-D, 2° x 2
Implicit electrons

Total combined speedup of all algorithms
Massively parallel computers (Moore's law 1982-2007)
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e Multi-scale model




Transport equations in GK

Moment equations for evolution of mean quantities:
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Multiscale grid

e Turbulent fluctuations calculated in small regions of
fine space-time grid embedded in “coarse” grid (for
mean quantities)

Flux tube simulation domain




Validity of flux tube approximation
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Trinity schematic
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Sampling profile with flux tubes




Sampling profile with flux tubes

Simulation volume reduced
by factor of ~100




Trinity tfransport solver

Transport equations are stiff, honlinear PDEs. Implicit
treatment via Newton's Method (multi-step BDF,
adaptive time step) allows for time steps ~0.1 seconds
(vs. turbulence sim time ~0.001 seconds)

Challenge: requires computation of quanfities like

or;

L~ TP+ (™ =) 55
y
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* Local approximation: or; Ty N or;, O(R/L,),

on, On; O(R/Ly); Ong

o Simplitying assumption: normalized fluxes depend
primarily on gradient scale lengths




Trinity tfransport solver

o Calculating flux derivative approximations:

— at every radial grid point, simultaneously calculate
I';[(R/Ly,)5"] and L;[(R/Ly)5" + 0] using 2
different flux tubbes

— use 2-point finite differences:

or; T;[(R/Ln)7"] — T[(R/Ly)T" + 6]
O(R/Ln); 0

— possible because flux tubes independent (do not
communicate during calculation)

— perfect parallelization (almost)




Flux Tube scaling

GS2 strong scaling
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Trinity scaling

e Example calculation with 10 radial grid points:

— evolve density, toroidal angular momentum, and
electron/ion pressures

— simultaneously calculate fluxes for equilibrium
profile and for 4 separate profiles (one for each
perturbed gradient scale length)

— total of 50 flux tube simulations running
simultaneously

— ~2000-4000 processors per flux tube => scaling to
over 100,000 processors with high efficiency

e Adding radial grid points, multiple species, eleciron
space-time scales, and other physics increases weak
scaling by up to 10#




Multi-scale simulation savings

e Staftistical periodicity in toroidal direction takes

advantage of k' < Ly : volume savings factor of
~10-100

Exploitation of scale separation between
turbulence and equilibrium evolution: time savings
factor of ~100

e Total saving of ~10% + extreme parallelizability:
simulation possible on current machines




Overview

e Trinity simulation results




JET shot #42982
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Evolving density profile
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Evolving density profile
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Power balance
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Profile stiffness

e ~ flat grad scale lengths indicative of stiffness (near
critical gradient across most of minor radius)
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Fluctuations
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AUG shot #1315

Fluxes calculated
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Future directions

Capture more physics

— Magnetic equilibrium evolution
— MHD stabillity

Improve convergence
— Flux dependences on density, temperature, efc.
Coupling to global gyrokinetic code (GENE)

— Address meso-scale spatial structures

Coupling to GPU-based gyrofluid code (GRYFFIN)

— Enftire calculation in minutes on several GPUs




