Transitions to reduced transport regimes in rotating tokamak plasmas

Michael Barnes University of Oxford Culham Centre for Fusion Energy

In collaboration with F. Parra, E. Highcock, A. Schekochihin, S. Cowley, and C. Roach

Observations

- "Internal Transport Barriers" (ITBs) observed in wide range of fusion devices
- Often accompanied by strong velocity shear and weak or negative magnetic shear
- How do ITBs work, and how can we make them better?

JT-60U data. Y. Miura, et al., 10:1809:2003

Multiple scale problem

Physics	Perpendicular spatial scale	Temporal scale
Turbulence from ETG modes	k_{\perp}^{-1} ~ 0.005 – 0.05 cm	ω_{*} ~ 0.5 - 5.0 MHz
Turbulence from ITG modes	k_{\perp}^{-1} ~ 0.3 - 3.0 cm	ω_{*} ~ 10 - 100 kHz
Transport barriers	Measurements suggest width ~ 1 - 10 cm	100 ms or more in core?
Discharge evolution	Profile scales ~ 200 cm	Energy confinement time ~ 2 - 4 s

simulation cost: $(L_{\parallel}/\Delta_{\parallel}) \times (L_{\perp}/\Delta_{\perp})^2 \times (L_v/\Delta_v)^2 \times (L_t/\Delta t) \sim 10^{21}$

Multiscale approach

 In TRINITY [Barnes et al., PoP 17, 056109 (2010)], turbulent fluctuations calculated in small regions of fine spacetime grid embedded in "coarse" grid (for mean quantities)
 Flux tube simulation domain

- Effect of rotational shear on turbulent transport
- Implications for local gradients (0D)
- Extension to radial profiles (1D)

Gyrokinetic multiscale assumptions

$$\frac{\partial f}{\partial t} + \frac{d\mathbf{R}}{dt} \cdot \frac{\partial f}{\partial \mathbf{R}} + \frac{d\mu}{dt} \frac{\partial f}{\partial \mu} + \frac{dE}{dt} \frac{\partial f}{\partial E} + \frac{d\vartheta}{dt} \frac{\partial f}{\partial \vartheta} = C[f]$$

- Turbulent fluctuations are low amplitude: $f = F + \delta f \qquad \delta f \sim \epsilon f$
- Separation of time scales: $\partial \delta f$

$$\frac{\partial_t \delta f}{\delta f} \sim \omega \sim \epsilon \Omega \qquad \qquad \frac{\partial_t F}{F} \sim \tau^{-1} \sim \epsilon^2 \omega$$

Separation of space scales:

 $\nabla F \sim F/L, \quad \nabla_{\parallel} \delta f \sim \delta f/L, \quad \nabla_{\perp} \delta f \sim \delta f/\rho$

"Smooth" velocity space:

$$\epsilon \lesssim \nu/\omega \lesssim 1 \Rightarrow \sqrt{\epsilon} \lesssim \delta v/v_{th} \lesssim 1$$

• Sub-sonic drifts: $v_D \sim \epsilon v_{th}$

Gyrokinetic equation

GK equation with mean flow satisfying $~~~\frac{
ho}{L} \ll M \ll 1$ but : $~~ \nabla u \sim v_{th}/L$

$$\frac{dh}{dt} + \left(\mathbf{v}_{\parallel} + \mathbf{v}_{D} + \langle \mathbf{v}_{E} \rangle\right) \cdot \nabla h - \langle C[h] \rangle$$

$$= \frac{eF_{0}}{T} \frac{d\langle\varphi\rangle}{dt} - \langle\mathbf{v}_{E}\rangle \cdot \nabla\psi \left(\frac{dF_{0}}{d\psi} + \frac{mv_{\parallel}}{T} \frac{RB_{\phi}}{B} \frac{d\omega}{d\psi} F_{0}\right)$$

$$\frac{d}{dt} \equiv \frac{\partial}{\partial t} + R\omega(\psi)\hat{\mathbf{e}}_{\phi} \cdot \nabla \qquad \mathbf{u} = R\omega\hat{\mathbf{e}}_{\phi}$$

$$Local approximation:$$

$$\gamma_{E} \equiv \frac{\psi}{q} \frac{d\omega}{d\psi} \frac{R_{0}}{v_{th}} \qquad \omega(\psi) \approx \omega(\psi_{0}) + (\psi - \psi_{0}) \frac{d\omega}{d\psi}$$

 ψ_0

Transport equations in GK

Moment equations for evolution of mean quantities:

$$\begin{aligned} \frac{\partial n_s}{\partial t} &= -\frac{1}{V'} \frac{\partial}{\partial \psi} \left(V' \left\langle \mathbf{\Gamma}_s \cdot \nabla \psi \right\rangle \right) + S_n \\ \frac{3}{2} \frac{\partial n_s T_s}{\partial t} &= -\frac{1}{V'} \frac{\partial}{\partial \psi} \left(V' \left\langle \mathbf{Q}_s \cdot \nabla \psi \right\rangle \right) \\ &+ T_s \left(\frac{\partial \ln n_s}{\partial \psi} - \frac{3}{2} \frac{\partial \ln T_s}{\partial \psi} \right) \left\langle \mathbf{\Gamma}_s \cdot \nabla \psi \right\rangle + \frac{\partial \ln T_s}{\partial \psi} \left\langle \mathbf{Q}_s \cdot \nabla \psi \right\rangle \\ &- \left\langle \int d^3 v \frac{h_s T_s}{F_{0s}} \left\langle C[h_s] \right\rangle_{\mathbf{R}} \right\rangle + n_s \nu_{\epsilon}^{su} \left(T_u - T_s \right) + S_p \\ \frac{\partial L}{\partial t} &= -\frac{1}{V'} \frac{\partial}{\partial \psi} \left(V' \sum_s \left\langle \pi_s \right\rangle \right) + S_L \end{aligned}$$

Sugama (1997)

- Effect of rotational shear on turbulent transport
- Implications for local gradients (0D)
- Extension to radial profiles (1D)

Linear stability (GS2) Cyclone base case: r/R = 0.18 q = 1.4 $\hat{s} = 0.8$

- ITG drive at small shear
- ITG/PVG drive at moderate shear
- Stabilization at large shear
- Roughly linear dependence of critical flow shear on R/LT

Barnes et al., 2010 (arXiv:1007.3390)

Transient growth

- Beyond critical shear value, transient linear growth
- Amplification of initial amplitude increases with shear
- Cf. Newton et al., 2010 (arXiv: 1007.0040)

 Fluxes follow linear trends up to linear stabilization point

- Subcritical (linearly stable) turbulence beyond this point
- Optimal flow shear for confinement
- Possible hysteresis
- Maximum in momentum flux => possible bifurcation

Turbulent Prandtl number $Pr = \frac{\nu_i}{\chi_i} \qquad \Pi_i = -m_i v_{th} (qR_0/r) \nu_i \gamma_E$ $Q_i = -\chi_i dT_i/dr$

 Prandtl number tends to shear- and R/LT-independent value of order unity (in both turbulence regimes)

Barnes *et al.*, PRL submitted (2010).

Zero magnetic shear

- Similar...sort of
- All \mathbf{O} turbulence subcritical
- Very different \bullet critical flow shear values

- Effect of rotational shear on turbulent transport
- Implications for local gradients (0D)
- Extension to radial profiles (1D)

Model fluxes

• Simple model for fluxes with parameters chosen to fit zero magnetic shear results from GS2:

$$Q = Q_t + Q_n \qquad \Pi = \Pi_t + \Pi_n$$
$$\overline{Q}_t \equiv \frac{Q_t}{nTv_{th}} \left(\frac{R}{\rho}\right)^2 \equiv \chi_t \left[\frac{R}{L_T} - \left(\frac{R}{L_T}\right)_c\right]$$
$$\frac{R}{n} \equiv \frac{Q_n}{nTv_{th}} \left(\frac{R}{\rho}\right)^2 \equiv \frac{\chi_n}{T^2} \frac{R}{L_T} \qquad \left(\frac{R}{L_T}\right)_c \equiv \frac{\alpha_1 \gamma_E + (R/L_T)_{c0}}{1 + \alpha_2 \gamma_E^2}$$
$$\overline{\Pi}_{t,n} \equiv \frac{\Pi_{t,n}}{mnRv_{th}^2} \left(\frac{R}{\rho}\right)^2 = \overline{Q}_{t,n} \operatorname{Pr}_{t,n} \frac{\gamma_E}{R/L_T}$$

Model fluxes

Balance w/o neoclassical

- \overline{Q} = red lines
- $\overline{\Pi}/\overline{Q}$ = green lines $\frac{R}{L_t} = \frac{\Pr_t}{\overline{\Pi}/\overline{Q}}\gamma_E$
- Critical gradient = dashed line
- For given $\overline{\Pi}/\overline{Q}$ and \overline{Q} , only one solution No bifurcation!

Neoclassical energy flux

Balance with neoclassical

Curves of constant $\overline{\Pi}/\overline{Q}$

 $\frac{R}{L_t} = \frac{\Pr_n}{\overline{\Pi}/\overline{Q}} \gamma_E$

 \bigcirc

- Turbulent $\frac{R}{L_t} = \frac{\Pr_t}{\overline{\Pi}/\overline{Q}} \gamma_E$
- Prandtl numbers $\Pr_n \ll \Pr_t$

Curves of constant $\overline{\Pi}/\overline{Q}$

Possible solutions

Possible solutions

Possible solutions

Bifurcation condition

Bifurcations only occur when $Q_t \sim Q_n$ so take $R/L_T \approx R/L_{Tc}$

Parra et al., PRL submitted (2010), arXiv:1009.0733

Bifurcations in GS2

 Use many nonlinear GS2 simulations to generate constant Pi/Q contours

- With inclusion of neoclassical fluxes, we see potential bifurcations to much larger flow shear and R/LT
- Very similar to simplified model predictions

Highcock PRL (2010)

- Effect of rotational shear on turbulent transport
- Implications for local gradients (0D)
- Extension to radial profiles (1D)

Extension to 1D (radial)

Choose profiles for Pi and Q. Set T, T' at outer boundary
Here, Q~sqrt(r/a), Pi/Q=0.1, Edge T=2 keV

TRINITY schematic

Sampling profile with flux tubes

Sampling profile with flux tubes

Simulation volume reduced by factor of ~10s

Results with model fluxes

Conclusions and future directions

- Mean flow shear can fully suppress turbulence in tokamak plasmas (in certain parameter regimes)
- Turbulence suppression can give rise to bifurcation in flow shear and temperature gradient
- Such bifurcations are candidates for thermal transport barriers in core of tokamak experiments
- Still a lot of work to be done in understanding underlying theory and determining parametric dependencies
- Need self-consistent treatment including back-reaction of turbulence on mean flow (evolution of mean profiles)