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•  “Internal Transport 
Barriers” (ITBs) observed in 
wide range of fusion 
devices 

•  Often accompanied by 
strong velocity shear and 
weak or negative magnetic 
shear 

•  How do ITBs work, and how 
can we make them better? 

JT-60U data. Y. Miura, et al., 10:1809:2003 

Observations 



Multiple scale problem 

�
L�/∆�

�
× (L⊥/∆⊥)2 × (Lv/∆v)2 × (Lt/∆t) ∼ 1021simulation cost: 



Multiscale approach 

•  In TRINITY [Barnes et al., PoP 17, 056109 (2010)], turbulent 
fluctuations calculated in small regions of fine space-
time grid embedded in “coarse” grid (for mean 
quantities) 

Flux tube simulation domain 



• Effect of rotational shear on turbulent 
transport 

•  Implications for local gradients (0D) 
• Extension to radial profiles (1D) 

Overview 



Gyrokinetic multiscale assumptions 

•  Separation of time scales: 
∂tδf

δf
∼ ω ∼ �Ω

•  Turbulent fluctuations are low amplitude:  
f = F + δf
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•  Separation of space scales: 
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•  “Smooth” velocity space: 
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GK equation with mean flow satisfying                        
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Transport equations in GK 
Moment equations for evolution of mean quantities: 
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• Effect of rotational shear on turbulent 
transport 

•  Implications for local gradients (0D) 
• Extension to radial profiles (1D) 

Overview 



Linear stability (GS2) 

•  ITG drive at 
small shear 

•  ITG/PVG drive 
at moderate 
shear 

•  Stabilization at 
large shear 

•  Roughly linear 
dependence 
of critical flow 
shear on R/LT 

Barnes et al., 2010  (arXiv:1007.3390) 

ŝ = 0.8q = 1.4r/R = 0.18Cyclone base case: 



Transient growth 

•  Beyond critical 
shear value, 
transient linear 
growth 

•  Amplification of 
initial amplitude 
increases with 
shear 

•  Cf. Newton et 
al., 2010 (arXiv:
1007.0040) 
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•  Fluxes follow linear trends 
up to linear stabilization 
point 

•  Subcritical (linearly stable) 
turbulence beyond this 
point 

•  Optimal flow shear for 
confinement 

•  Possible hysteresis 
•  Maximum in momentum 

flux => possible bifurcation 



Turbulent Prandtl number 

•  Prandtl number 
tends to shear- and 
R/LT-independent 
value of order unity 
(in both turbulence 
regimes) 

Barnes et al., PRL 
submitted (2010). ŝ = 0.8



Zero magnetic shear  

•  Similar…sort 
of 

•  All 
turbulence 
subcritical 

•  Very different 
critical flow 
shear values 
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• Effect of rotational shear on turbulent 
transport 
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heat, momentum 

Power/Torque balance for 
beam injection 



Model fluxes 
•  Simple model for fluxes with parameters chosen to fit zero 

magnetic shear results from GS2: 
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Model fluxes 



Balance w/o neoclassical 

•      = red lines 
•           = green lines 

•  Critical gradient = 
dashed line 

•  For given     
and     , only one 
solution 

 No bifurcation! 
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Neoclassical energy flux 



Balance with neoclassical 



Curves of constant    
•  Neoclassical 

•  Turbulent 

•  Prandtl numbers 
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Curves of constant    Π/Q



Possible solutions 



Possible solutions 



Possible solutions 



Bifurcation condition 
Bifurcations only occur when Qt ~ Qn so take R/LT ≈ R/LTc 

Parra et al., PRL submitted (2010), arXiv:1009.0733  



Bifurcations in GS2 

•  With inclusion of 
neoclassical fluxes, 
we see potential 
bifurcations to 
much larger flow 
shear and R/LT 

•  Very similar to 
simplified model 
predictions 

•  Use many nonlinear GS2 simulations to generate 
constant Pi/Q contours 

Highcock PRL (2010) 



• Effect of rotational shear on turbulent 
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Extension to 1D (radial) 
•  Choose profiles for Pi and Q. Set T, T’ at outer boundary 
•  Here, Q~sqrt(r/a), Pi/Q=0.1, Edge T=2 keV 

Wolf, PPCF 45 (2003) 
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TRINITY schematic 

Macro 
profiles 

Steady-state 
turbulent fluxes 

and heating 
GS2/GENE 

GS2/GENE 

GS2/GENE 
Transport 

solver 

Flux tube 1 

Flux tube 2 

Flux tube N 

Flux tube 3 

GS2/GENE 



Sampling profile with flux tubes 



Sampling profile with flux tubes 

Simulation volume reduced by 
factor of ~10s 



Results with model fluxes 
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Conclusions and future directions 

•  Mean flow shear can fully suppress turbulence in tokamak 
plasmas (in certain parameter regimes) 

•  Turbulence suppression can give rise to bifurcation in flow 
shear and temperature gradient 

•  Such bifurcations are candidates for thermal transport 
barriers in core of tokamak experiments 

•  Still a lot of work to be done in understanding underlying 
theory and determining parametric dependencies 

•  Need self-consistent treatment including back-reaction of 
turbulence on mean flow (evolution of mean profiles) 


