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Scale separation in ITER 



Direct simulation cost 

Te
m

p
 

•  Grid spacings in space (3D), velocity (3D) and time: 

•  Grid points required: 

•  Factor of ~109 more than largest fluid turbulence 
calculations 

•  Direct simulation not possible; need physics guidance 

(Lx/∆x)3 × (Lv/∆v)3 × (Lt/∆t) ∼ 1025



Improved simulation cost 

•  Field-aligned coordinates take advantage of                                       
a              :  savings of ~1000 

•  Eliminate gyro-angle variable: savings of ~10 

•  Total saving of ~104 

•  Factor of ~105 more than largest fluid turbulence 
calculations 

•  Simulation still not possible; need multiscale 
approach 



Major Theoretical & Algorithmic 
Speedups 

•  Nonlinear gyrokinetic equation 
–  ion polarization shielding eliminates plasma freq. ωpe/Ωci ~ mi/me  x103 
–  ion polarization eliminates ρe & Debye scales   (ρi/ρe)3   x105 
–  average over fast ion gyration, Ωci / ω* ~ 1/ρ*    x103 

•  Continuum or δf PIC, reduces noise, (f0/δf)2 ~ 1/ρ*
2    x106 

•  Field-aligned coordinates (nonlinear extension of ballooning coord.) 
   Δ|| / (Δ⊥ q R / a)  ~ a / (q R ρ*)     x70 

•  Flux-tube / Toroidal annulus wedge, ↓ simulation volume 
–  kθρi = 0, 0.05, 0.1, …, 1.0 

   n = 0,     15,  30, …,  300  (i.e., 1/15 of toroidal direction)   x15 
–  Lr ~ a/5 ~ 140 ρ ~ 10 correlation lengths     x5 

•  High-order / spectral algorithms in 5-D, 25 x 2     x64 
•  Implicit electrons        x5-50 
•  Total combined speedup of all algorithms     x1023 
•  Massively parallel computers (Moore’s law 1982-2007)    x105 

relative to simplest brute force, fully resolved, algorithm, for ITER 1/ρ* = a/ρ ~ 700 Slide from G.W. Hammett 
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•  “Smooth” velocity space: 
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√
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•  Sub-sonic drifts: vD ∼ �vth
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Key results: turbulence and transport 

Gyrokinetic equation for turbulence: 

Moment equations for equilibrium evolution: 
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Space-time averages 

•  Flux surface average 

•  Intermediate space 
average: 

•  Intermediate time 
average: 

τt � ∆τ � τE

ρ� ∆ψ � L



• Motivation 
• Theoretical framework 
• Numerical approach 
• Example simulation results 
• Future directions 

Overview 



Multiscale grid 

•  Turbulent fluctuations calculated in small regions of 
fine space-time grid embedded in “coarse” grid (for 
mean quantities) 

Flux tube simulation domain 



Flux tube assumptions 

•  Macroscopic quantities (density, flow, 
temperature, etc. constant across simulation 
domain) 

•  Gradient scale lengths of macroscopic quantities 
constant across simulation domain 

–  Total gradient NOT constant (corrugations 
possible due to fluctuation + equilibrium 
gradients) 

•  In addition to delta-f assumption that equilibrium 
quantities constant in time over simulation 

•  => No important meso-scale physics 



Validity of flux tube approximation 

•  Lines represent 
global 
simulations from 
GYRO 

•  Dots represent 
local (flux tube) 
simulations from 
GS2 

•  Excellent 
agreement for  

*J. Candy, R.E. Waltz and W. Dorland, The local limit of global gyrokinetic 
simulations, Phys. Plasmas 11 (2004) L25. 



Flux tubes minimize flux surface grid points 

Simulation volume reduced by 
factor of ~10s 



GS2 features 

•  V-space variables: energy and magnetic moment 

•  Realistic magnetic geometry 

–  Numerical equilibrium from experiment 

–  Miller local equilibrium 

–  S-alpha model 

•  Multiple kinetic species 

•  Model Fokker-Planck collision operator 

•  Implicit treatment of linear physics 

•  Includes background flow shear 



GS2 v-space 
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Sampling profile with flux tubes 



Sampling profile with flux tubes 
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Transport equations in GK 
Moment equations for evolution of mean quantities: 

Sugama (1997) …depend on fluctuations 



Trinity transport solver 

•  Transport equations are stiff, nonlinear PDEs: 
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Trinity transport solver 

•  General (single-step or multi-step) time discretization: 

•  2nd order centered difference in radial coordinate 
(equally spaced grid): 

∂n
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= H(r)

∂

∂r
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Trinity transport solver 

•  Implicit treatment via Newton’s Method) allows for time 
steps ~0.1 seconds (vs. turbulence sim time ~0.001 
seconds) 

•  Challenge: requires computation of quantities like 

•  Local approximation: 

•  Simplifying assumption: normalized fluxes depend 
primarily on gradient scale lengths 
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*S.C. Jardin, G. Bateman, G.W. Hammett, and L.P. Ku, On 1D diffusion problems with a 
gradient-dependent diffusion coefficient, J. Comp. Phys. 227, 8769 (2008). 



Trinity transport solver 

•  Calculating flux derivative approximations: 

–  at every radial grid point, simultaneously calculate                           
aaaaaaaaa and                     a        using 2 different 
flux tubes 

–  use 2-point finite differences: 

–  possible because flux tubes independent (do not 
communicate during calculation) 

–  perfect parallelization (almost) 



Trinity transport solver 

•  Nonlinear turbulence simulation runs until fluxes 
converged 

•  Turbulence for new transport time step initialized 
to saturated state from previous transport time 
step – faster convergence 

•  Option to use model fluxes (IFS-PPPL, quasilinear, 
etc.) 

•  Sources specified analytically or taken from 
experiment 



Trinity scaling 

•  Example calculation with 10 radial grid points: 

–  evolve density, toroidal angular momentum, and 
electron/ion pressures 

–  simultaneously calculate fluxes for equilibrium 
profile and for 4 separate profiles (one for each 
perturbed gradient scale length) 

–  total of 50 flux tube simulations running 
simultaneously 

–  ~2000-4000 processors per flux tube => scaling to 
over 100,000 processors with high efficiency 

•  Adding radial grid points, multiple species, electron 
space-time scales, and other physics increases weak 
scaling by up to 104 



Flux tube scaling 

GS2 strong scaling 
GENE strong scaling 

GENE weak scaling 



Boundary conditions 

•  Various initialization options: 
–  Analytic specification 
–  Experimental profiles 
–  Numerical profiles (from IFS-PPPL, etc.) 

•  Fix density and temperature at outer edge of 
simulation domain 
–  Predict performance as a function of pedestal height 

•  Vanishing fluxes at magnetic axis: 

V �Q = V �Γ = 0ψ → 0 :



Multi-scale simulation savings 

•  Statistical periodicity in toroidal direction takes 
advantage of                  : volume savings factor of 
~10-100 

•  Exploitation of scale separation between 
turbulence and equilibrium evolution: time savings 
factor of ~100 

•  Total saving of ~104 + extreme parallelizability: 
simulation possible on current machines 
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JET shot #42982 

•  ITER demo discharge 
•  H-mode D-T plasma, 

record fusion energy 
yield 

•  Miller local 
equilibrium model: q, 
shear, shaping 

•  B = 3.9 T on axis 
•  TRANSP fits to 

experimental data 
taken from ITER 
profile database 
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•  10 radial grid points 
•  Costs ~120k CPU hrs 

(<10 clock hrs) 
•  Dens and temp 

profiles agree within 
~15% across device 

•  Energy off by 5% 
•  Incremental energy 

off by 15% 
•  Sources of 

discrepancy: 
–  Large error bars 
–  Flow shear absent 
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Power balance 



Profile stiffness 
•  ~ flat grad scale lengths indicative of stiffness (near 

critical gradient across most of minor radius) 



Fluctuations 



JET shot #19649 

•  L-mode discharge 

•  8 radial grid points 

•  Costs ~25k CPU hrs 
(4 clock hrs) 

•  Flow shear absent 



AUG shot #13151 

•  Fluxes calculated 
with GENE 

•  8 radial grid points 

•  Costs ~400k CPU hrs 
(<24 clock hrs) 

•  Dens and electron 
temp profiles agree 
within ~10% across 
device 

•  Flow shear absent 
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Future directions 

•  Summary: multi-scale approach saves factor of 
103-104 and highly parallelizable 

•  Capture more physics 
–  Magnetic equilibrium evolution 

–  MHD stability 

–  Momentum transport 

–  Improved neoclassical model 

•  Improve convergence 
–  Flux dependences on density, temperature, etc. 

•  Coupling to global gyrokinetic code (GENE) 
–  Address meso-scale spatial structures 

•  Coupling to GPU-based gyrofluid code (GRYFFIN) 
–  Entire calculation in minutes on several GPUs 


