Direct multi-scale coupling of a transport code to gyrokinetic turbulence codes

Michael Barnes University of Oxford Culham Centre for Fusion Energy

In collaboration with W. Dorland, G. Hammett, F. Jenko, T. Goerler, and I. Abel

Overview

- Motivation
- Theoretical framework
- Numerical approach
- Example simulation results
- Future directions

Overview

Motivation

- Theoretical framework
- Numerical approach
- Example simulation results
- Future directions

Objective

Core: multi-physics, multi-scale

Edge: multi-physics, multi-scale

Connor et al. (2004)

Objective

Core: multi-physics, multi-scale

- kinetic turbulence
- neoclassical
- sources
- magnetic equilibrium
- , MHD

Connor et al. (2004)

Scale separation in ITER

$$\frac{\partial n}{\partial t} + \nabla \cdot \mathbf{\Gamma} = S_n$$

$$\frac{\partial p}{\partial t} + \nabla \cdot \mathbf{Q} + \ldots = S_p$$

Physics	Perpendicular spatial scale	Temporal scale
Turbulence from ETG modes	k_{\perp}^{-1} ~ 0.005 – 0.05 cm	ω_{*} ~ 0.5 - 5.0 MHz
Turbulence from ITG modes	k_{\perp}^{-1} ~ 0.3 - 3.0 cm	ω_{*} ~ 10 - 100 kHz
Transport barriers	Measurements suggest width ~ 1 - 10 cm	100 ms or more in core?
Discharge evolution	Profile scales ~ 100 cm	Energy confinement time ~ 2 - 4 s

Direct simulation cost

- Grid spacings in space (3D), velocity (3D) and time:
 - $\Delta x \sim 0.001 \ cm, \ L_x \sim 100 \ cm$
 - $\Delta v \sim 0.1 v_{th}, \quad L_v \sim v_{th}$
 - $\Delta t \sim 10^{-7} s, \quad L_t \sim 1 s$
- Grid points required:

- $(L_x/\Delta x)^3 \times (L_v/\Delta v)^3 \times (L_t/\Delta t) \sim 10^{25}$
- Factor of ~10⁹ more than largest fluid turbulence calculations
- Direct simulation not possible; need physics guidance

Improved simulation cost

- Field-aligned coordinates take advantage of $k_{\parallel} \ll k_{\perp}$: savings of ~1000
- Eliminate gyro-angle variable: savings of ~10
- Total saving of ~10⁴
- Factor of ~10⁵ more than largest fluid turbulence calculations
- Simulation still not possible; need multiscale approach

Major Theoretical & Algorithmic Speedups Slide from G.W. Hammett relative to simplest brute force, fully resolved, algorithm, for ITER 1/p+ = a/p ~ 700

- Nonlinear gyrokinetic equation
 - ion polarization shielding eliminates plasma freq. $\omega_{pe}/\Omega_{ci} \sim m_i/m_e$
 - ion polarization eliminates ρ_{e} & Debye scales $~~(\rho_{i}/\rho_{e})^{3}$
 - average over fast ion gyration, Ω_{ci} / $\omega_* \sim 1/\rho_*$ x10³
- Continuum or δf PIC, reduces noise, $(f_0/\delta f)^2 \sim 1/\rho_*^2$ x10⁶
- Field-aligned coordinates (nonlinear extension of ballooning coord.)

$$\Lambda_{||} / (\Delta_{\perp} q R / a) \sim a / (q R \rho_{*})$$
 x70

 $x10^{3}$

x15

x64

 $x10^{5}$

x10⁵

x10²³

Flux-tube / Toroidal annulus wedge, \$\$ simulation volume

$$k_{\theta}\rho_{i} = 0, 0.05, 0.1, ..., 1.0$$

n = 0, 15, 30, ..., 300 (i.e., 1/15 of toroidal direction)

- $L_r \sim a/5 \sim 140 \rho \sim 10$ correlation lengths x5
- High-order / spectral algorithms in 5-D, 2⁵ x 2
- Implicit electrons x5-50
- Total combined speedup of all algorithms
 - Massively parallel computers (Moore's law 1982-2007)

Overview

Motivation

- Theoretical framework
- Numerical approach
- Example simulation results
- Future directions

$$\frac{\partial f}{\partial t} + \frac{d\mathbf{R}}{dt} \cdot \frac{\partial f}{\partial \mathbf{R}} + \frac{d\mu}{dt} \frac{\partial f}{\partial \mu} + \frac{dE}{dt} \frac{\partial f}{\partial E} + \frac{d\vartheta}{dt} \frac{\partial f}{\partial \vartheta} = C[f]$$

$$\frac{\partial f}{\partial t} + \frac{d\mathbf{R}}{dt} \cdot \frac{\partial f}{\partial \mathbf{R}} + \frac{d\mu}{dt} \frac{\partial f}{\partial \mu} + \frac{dE}{dt} \frac{\partial f}{\partial E} + \frac{d\vartheta}{dt} \frac{\partial f}{\partial \vartheta} = C[f]$$

- Turbulent fluctuations are low amplitude: $f = F + \delta f \qquad \delta f \sim \epsilon f$

$$\frac{\partial f}{\partial t} + \frac{d\mathbf{R}}{dt} \cdot \frac{\partial f}{\partial \mathbf{R}} + \frac{d\mu}{dt} \frac{\partial f}{\partial \mu} + \frac{dE}{dt} \frac{\partial f}{\partial E} + \frac{d\vartheta}{dt} \frac{\partial f}{\partial \vartheta} = C[f]$$

• Turbulent fluctuations are low amplitude: $f = F + \delta f \qquad \delta f \sim \epsilon f$

• Separation of time scales: $\frac{\partial_t \delta f}{\delta f} \sim \omega \sim \epsilon \Omega$

$$\frac{\partial f}{\partial t} + \frac{d\mathbf{R}}{dt} \cdot \frac{\partial f}{\partial \mathbf{R}} + \frac{d\mu}{dt} \frac{\partial f}{\partial \mu} + \frac{dE}{dt} \frac{\partial f}{\partial E} + \frac{d\vartheta}{dt} \frac{\partial f}{\partial \vartheta} = C[f]$$

- Turbulent fluctuations are low amplitude: $f = F + \delta f \qquad \delta f \sim \epsilon f$
- Separation of time scales:

$$\frac{\partial_t \delta f}{\delta f} \sim \omega \sim \epsilon \Omega \qquad \qquad \frac{\partial_t F}{F} \sim \tau^{-1} \sim \epsilon^2 \omega$$

$$\frac{\partial f}{\partial t} + \frac{d\mathbf{R}}{dt} \cdot \frac{\partial f}{\partial \mathbf{R}} + \frac{d\mu}{dt} \frac{\partial f}{\partial \mu} + \frac{dE}{dt} \frac{\partial f}{\partial E} + \frac{d\vartheta}{dt} \frac{\partial f}{\partial \vartheta} = C[f]$$

- Turbulent fluctuations are low amplitude: $f = F + \delta f \qquad \delta f \sim \epsilon f$
- Separation of time scales:

$$\frac{\partial_t \delta f}{\delta f} \sim \omega \sim \epsilon \Omega \qquad \qquad \frac{\partial_t F}{F} \sim \tau^{-1} \sim \epsilon^2 \omega$$

Separation of space scales:

 $\nabla F \sim F/L, \quad \nabla_{\parallel} \delta f \sim \delta f/L, \quad \nabla_{\perp} \delta f \sim \delta f/\rho$

$$\frac{\partial f}{\partial t} + \frac{d\mathbf{R}}{dt} \cdot \frac{\partial f}{\partial \mathbf{R}} + \frac{d\mu}{dt} \frac{\partial f}{\partial \mu} + \frac{dE}{dt} \frac{\partial f}{\partial E} + \frac{d\vartheta}{dt} \frac{\partial f}{\partial \vartheta} = C[f]$$

- Turbulent fluctuations are low amplitude: $f = F + \delta f \qquad \delta f \sim \epsilon f$
- Separation of time scales:

$$\frac{\partial_t \delta f}{\delta f} \sim \omega \sim \epsilon \Omega \qquad \qquad \frac{\partial_t F}{F} \sim \tau^{-1} \sim \epsilon^2 \omega$$

Separation of space scales:

 $\nabla F \sim F/L, \quad \nabla_{\parallel} \delta f \sim \delta f/L, \quad \nabla_{\perp} \delta f \sim \delta f/\rho$

• "Smooth" velocity space:

 $\epsilon \lesssim \nu/\omega \lesssim 1 \Rightarrow \sqrt{\epsilon} \lesssim \delta v/v_{th} \lesssim 1$

$$\frac{\partial f}{\partial t} + \frac{d\mathbf{R}}{dt} \cdot \frac{\partial f}{\partial \mathbf{R}} + \frac{d\mu}{dt} \frac{\partial f}{\partial \mu} + \frac{dE}{dt} \frac{\partial f}{\partial E} + \frac{d\vartheta}{dt} \frac{\partial f}{\partial \vartheta} = C[f]$$

- Turbulent fluctuations are low amplitude: $f = F + \delta f \qquad \delta f \sim \epsilon f$
- Separation of time scales:

$$\frac{\partial_t \delta f}{\delta f} \sim \omega \sim \epsilon \Omega \qquad \qquad \frac{\partial_t F}{F} \sim \tau^{-1} \sim \epsilon^2 \omega$$

Separation of space scales:

 $\nabla F \sim F/L, \quad \nabla_{\parallel} \delta f \sim \delta f/L, \quad \nabla_{\perp} \delta f \sim \delta f/\rho$

• "Smooth" velocity space:

 $\epsilon \lesssim \nu/\omega \lesssim 1 \Rightarrow \sqrt{\epsilon} \lesssim \delta v/v_{th} \lesssim 1$

• Sub-sonic drifts: $v_D \sim \epsilon v_{th}$

Key results: turbulence and transport

$$f = F_0 + h + \dots$$
 $F_0 = F_M(\mathbf{R}) \exp\left(-\frac{q\Phi}{T}\right)$

Key results: turbulence and transport

$$f = F_0 + h + \dots$$
 $F_0 = F_M(\mathbf{R}) \exp\left(-\frac{q\Phi}{T}\right)$

Gyrokinetic equation for turbulence: $\partial h/\partial t + v_{\parallel} \mathbf{\hat{b}} \cdot \nabla h + \langle \mathbf{v}_{\chi} \rangle_{\mathbf{R}} \cdot \nabla (F_0 + h) + \mathbf{v}_{\mathbf{B}} \cdot \nabla h = \frac{qF_0}{T_0} \frac{\partial \langle \chi \rangle_{\mathbf{R}}}{\partial t} + \langle C[h] \rangle_{\mathbf{R}}$

Key results: turbulence and transport

$$f = F_0 + h + \dots$$
 $F_0 = F_M(\mathbf{R}) \exp\left(-\frac{q\Phi}{T}\right)$

Gyrokinetic equation for turbulence: $\partial h/\partial t + v_{\parallel} \hat{\mathbf{b}} \cdot \nabla h + \langle \mathbf{v}_{\chi} \rangle_{\mathbf{R}} \cdot \nabla (F_0 + h) + \mathbf{v}_{\mathbf{B}} \cdot \nabla h = \frac{qF_0}{T_0} \frac{\partial \langle \chi \rangle_{\mathbf{R}}}{\partial t} + \langle C[h] \rangle_{\mathbf{R}}$ Moment equations for equilibrium evolution:

Space-time averages

- Flux surface average
- Intermediate space average:

 $\rho \ll \Delta_{\psi} \ll L$

• Intermediate time average:

 $\tau_t \ll \Delta_\tau \ll \tau_E$

Overview

- Motivation
- Theoretical framework
- Numerical approach
- Example simulation results
- Future directions

Multiscale grid

 Turbulent fluctuations calculated in small regions of fine space-time grid embedded in "coarse" grid (for mean quantities)

Flux tube assumptions

- Macroscopic quantities (density, flow, temperature, etc. constant across simulation domain)
- Gradient scale lengths of macroscopic quantities
 constant across simulation domain
 - Total gradient NOT constant (corrugations possible due to fluctuation + equilibrium gradients)
- In addition to delta-f assumption that equilibrium quantities constant in time over simulation
- => No important meso-scale physics

Validity of flux tube approximation

- Lines represent global simulations from GYRO
- Dots represent local (flux tube) simulations from GS2
- Excellent agreement for

 $\rho_* \ll 1$

*J. Candy, R.E. Waltz and W. Dorland, The local limit of global gyrokinetic simulations, Phys. Plasmas **11** (2004) L25.

Flux tubes minimize flux surface grid points

Simulation volume reduced by factor of ~10s

GS2 features

- V-space variables: energy and magnetic moment
- Realistic magnetic geometry
 - Numerical equilibrium from experiment
 - Miller local equilibrium
 - S-alpha model
- Multiple kinetic species
- Model Fokker-Planck collision operator
- Implicit treatment of linear physics
- Includes background flow shear

GS2 features

- V-space variables: energy and magnetic moment
- Realistic magnetic geometry
 - Numerical equilibrium from experiment
 - Miller local equilibrium
 - S-alpha model
- Multiple kinetic species
- Model Fokker-Planck collision operator
- Implicit treatment of linear physics
- Includes background flow shear

Trinity schematic

Trinity schematic

Sampling profile with flux tubes

Sampling profile with flux tubes

Trinity schematic

Transport equations in GK

Moment equations for evolution of mean quantities:

$$\begin{aligned} \frac{\partial n_s}{\partial t} &= -\frac{1}{V'} \frac{\partial}{\partial \psi} \left(V' \left\langle \mathbf{\Gamma}_s \cdot \nabla \psi \right\rangle \right) + S_n \\ \frac{3}{2} \frac{\partial n_s T_s}{\partial t} &= -\frac{1}{V'} \frac{\partial}{\partial \psi} \left(V' \left\langle \mathbf{Q}_s \cdot \nabla \psi \right\rangle \right) \\ &+ T_s \left(\frac{\partial \ln n_s}{\partial \psi} - \frac{3}{2} \frac{\partial \ln T_s}{\partial \psi} \right) \left\langle \mathbf{\Gamma}_s \cdot \nabla \psi \right\rangle + \frac{\partial \ln T_s}{\partial \psi} \left\langle \mathbf{Q}_s \cdot \nabla \psi \right\rangle \\ &- \left\langle \int d^3 v \frac{h_s T_s}{F_{0s}} \left\langle C[h_s] \right\rangle_{\mathbf{R}} \right\rangle + n_s \nu_{\epsilon}^{su} \left(T_u - T_s \right) + S_p \\ \frac{\partial L}{\partial t} &= -\frac{1}{V'} \frac{\partial}{\partial \psi} \left(V' \sum_s \left\langle \pi_s \right\rangle \right) + S_L \end{aligned}$$

...depend on fluctuations

Sugama (1997)

• Transport equations are stiff, nonlinear PDEs:

$$\frac{3}{2}\frac{\partial p_s}{\partial t} = -\frac{1}{V'}\frac{\partial}{\partial \psi}\left(V'\left\langle \mathbf{Q}_s \cdot \nabla \psi\right\rangle\right) + \dots$$

 $\mathbf{Q}_s = \mathbf{Q}_s(n(\psi, t), T(\psi, t); \psi, t)$

Implicit treatment needed for stiffness

$$\frac{\partial n}{\partial t} = H(r) \frac{\partial}{\partial r} G[n(r,t), T(r,t); r, t]$$

• General (single-step or multi-step) time discretization:

$$\frac{n^{m+1} - n^m}{\Delta \tau} = \alpha \left[H \frac{\partial G}{\partial r} \right]^{m+1} + (1 - \alpha) \left[H \frac{\partial G}{\partial r} \right]^m$$

 2nd order centered difference in radial coordinate (equally spaced grid):

$$\frac{\partial G}{\partial r} = \frac{G_{j+1/2} - G_{j-1/2}}{\Delta r}$$

- Implicit treatment via Newton's Method) allows for time steps ~0.1 seconds (vs. turbulence sim time ~0.001 seconds)
- Challenge: requires computation of quantities like

$$\Gamma_{j}^{m+1} \approx \Gamma_{j}^{m} + \left(\mathbf{y}^{m+1} - \mathbf{y}^{m}\right) \frac{\partial \Gamma_{j}}{\partial \mathbf{y}} \bigg|_{\mathbf{y}^{m}} \qquad \mathbf{y} = \left[\{n_{k}\}, \{p_{i_{k}}\}, \{p_{e_{k}}\}\right]^{T}$$

- Local approximation: $\frac{\partial \Gamma_j}{\partial n_k} = \frac{\partial \Gamma_j}{\partial n_i} + \frac{\partial \Gamma_j}{\partial (R/L_n)_i} \frac{\partial (R/L_n)_j}{\partial n_k}$
- Simplifying assumption: normalized fluxes depend primarily on gradient scale lengths

^{*}S.C. Jardin, G. Bateman, G.W. Hammett, and L.P. Ku, On 1D diffusion problems with a gradient-dependent diffusion coefficient, J. Comp. Phys. **227**, 8769 (2008).

- Calculating flux derivative approximations:
 - at every radial grid point, simultaneously calculate $\Gamma_j[(R/L_n)_j^m]$ and $\Gamma_j[(R/L_n)_j^m+\delta]$ using 2 different flux tubes
 - use 2-point finite differences:

$$\frac{\partial \Gamma_j}{\partial (R/L_n)_j} \approx \frac{\Gamma_j [(R/L_n)_j^m] - \Gamma_j [(R/L_n)_j^m + \delta]}{\delta}$$

- possible because flux tubes independent (do not communicate during calculation)
- perfect parallelization (almost)

- Nonlinear turbulence simulation runs until fluxes converged
- Turbulence for new transport time step initialized to saturated state from previous transport time step – faster convergence
- Option to use model fluxes (IFS-PPPL, quasilinear, etc.)
- Sources specified analytically or taken from experiment

Trinity scaling

- Example calculation with 10 radial grid points:
 - evolve density, toroidal angular momentum, and electron/ion pressures
 - simultaneously calculate fluxes for equilibrium profile and for 4 separate profiles (one for each perturbed gradient scale length)
 - total of 50 flux tube simulations running simultaneously
 - ~2000-4000 processors per flux tube => scaling to over 100,000 processors with high efficiency
- Adding radial grid points, multiple species, electron space-time scales, and other physics increases weak scaling by up to 10⁴

Flux tube scaling

Boundary conditions

• Various initialization options:

- Analytic specification
- Experimental profiles
- Numerical profiles (from IFS-PPPL, etc.)
- Fix density and temperature at outer edge of simulation domain
 - Predict performance as a function of pedestal height
- Vanishing fluxes at magnetic axis:

 $\psi \to 0$: $V'Q = V'\Gamma = 0$

Multi-scale simulation savings

- Statistical periodicity in toroidal direction takes advantage of $k_{\perp}^{-1} \ll L_{\theta}$: volume savings factor of ~10-100
- Exploitation of scale separation between turbulence and equilibrium evolution: time savings factor of ~100
- Total saving of ~10⁴ + extreme parallelizability: simulation possible on current machines

Overview

- Motivation
- Theoretical framework
- Numerical approach
- Example simulation results
- Future directions

JET shot #42982

- ITER demo discharge
- H-mode D-T plasma, record fusion energy yield
- Miller local equilibrium model: q, shear, shaping

 TRANSP fits to experimental data taken from ITER profile database

Evolving density profile

- 10 radial grid points
- Costs ~120k CPU hrs (<10 clock hrs)
- Dens and temp profiles agree within ~15% across device
- Energy off by 5%
- Incremental energy off by 15%
- Sources of discrepancy:
 - Large error bars
 - Flow shear absent

Evolving density profile

- 10 radial grid points
- Costs ~120k CPU hrs (<10 clock hrs)
- Dens and temp profiles agree within ~15% across device
- Energy off by 5%
- Incremental energy off by 15%
- Sources of discrepancy:
 - Large error bars
 - Flow shear absent

Power balance

Profile stiffness

 ~ flat grad scale lengths indicative of stiffness (near critical gradient across most of minor radius)

Fluctuations

JET shot #19649

- L-mode discharge
- 8 radial grid points
- Costs ~25k CPU hrs (4 clock hrs)
- Flow shear absent

AUG shot #13151

- Fluxes calculated with GENE
- 8 radial grid points
- Costs ~400k CPU hrs (<24 clock hrs)
- Dens and electron temp profiles agree within ~10% across device
- Flow shear absent

Overview

- Motivation
- Theoretical framework
- Numerical approach
- Example simulation results
- Future directions

Future directions

- Summary: multi-scale approach saves factor of 10³-10⁴ and highly parallelizable
- Capture more physics
 - Magnetic equilibrium evolution
 - MHD stability
 - Momentum transport
 - Improved neoclassical model
- Improve convergence
 - Flux dependences on density, temperature, etc.
- Coupling to global gyrokinetic code (GENE)
 - Address meso-scale spatial structures
- Coupling to GPU-based gyrofluid code (GRYFFIN)
 - Entire calculation in minutes on several GPUs