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Multiple scale problem 
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Gyrokinetic multiscale assumptions 

•  Turbulent fluctuations are low amplitude:  
f = F + δf
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Transport equations in GK 
Moment equations for equilibrium evolution: 
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Multiscale grid 
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•  Turbulent fluxes calculated 
in small regions of fine grid 
embedded in “coarse” 
radial grid (for equilibrium) 

Flux tube simulation domain 

Flux tube simulation domain 

•  Steady-state (time-
averaged) turbulent fluxes 
calculated in small regions 
of fine grid embedded in 
“coarse” time grid (for 
equilibrium) 



Flux tube assumptions 

•  Macroscopic quantities (density, flow, 
temperature, etc. constant across simulation 
domain) 

•  Gradient scale lengths of macroscopic quantities 
constant across simulation domain 

–  Total gradient NOT constant (corrugations 
possible due to fluctuation + equilibrium 
gradients) 

•  In addition to delta-f assumption that equilibrium 
quantities constant in time over simulation 

•  => No important meso-scale physics 



Validity of flux tube approximation 

•  Lines represent 
global 
simulations from 
GYRO 

•  Dots represent 
local (flux tube) 
simulations from 
GS2 

•  Excellent 
agreement for  

Candy et al (2004) 



Trinity schematic 
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Sampling profile with flux tubes 



Sampling profile with flux tubes 

Simulation volume reduced 
by factor of ~100 



Trinity transport solver 

•  Transport equations are stiff, nonlinear PDEs.  Implicit 
treatment via Newton’s Method (multi-step BDF, 
adaptive time step) allows for time steps ~0.1 seconds 
(vs. turbulence sim time ~0.001 seconds) 

•  Challenge: requires computation of quantities like 

•  Local approximation: 

•  Simplifying assumption: normalized fluxes depend 
primarily on gradient scale lengths 
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Trinity transport solver 

•  Calculating flux derivative approximations: 

–  at every radial grid point, simultaneously calculate                           
aaaaaaaaa and                     a        using 2 
different flux tubes 

–  Possible because flux tubes independent (do not 
communicate during calculation) 

–  Perfect parallelization 

–  use 2-point finite differences: 



Trinity scaling 

•  Example calculation with 10 radial grid points: 

–  evolve density, toroidal angular momentum, and 
electron/ion pressures 

–  simultaneously calculate fluxes for equilibrium 
profile and for 4 separate profiles (one for each 
perturbed gradient scale length) 

–  total of 50 flux tube simulations running 
simultaneously 

–  ~2000-4000 processors per flux tube => scaling to 
over 100,000 processors with >85% efficiency 



Multi-scale simulation savings 

•  Statistical periodicity in toroidal direction takes 
advantage of                  : volume savings factor of 
~100 

•  Exploitation of scale separation between 
turbulence and equilibrium evolution: time savings 
factor of ~100 

•  Extreme parallelizability: savings factor of ~10 

•  Total saving of ~105: simulation possible on current 
machines 
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JET shot #42982 

•  ITER demo discharge 
•  H-mode D-T plasma, 

record fusion energy 
yield 

•  Miller local 
equilibrium model: q, 
shear, shaping 

•  B = 3.9 T on axis 
•  TRANSP fits to 

experimental data 
taken from ITER 
profile database 



Evolving density profile 

•  10 radial grid points 
•  Costs ~120k CPU hrs 

(<10 clock hrs) 
•  Dens and temp 

profiles agree within 
~15% across device 

•  Energy off by 5% 
•  Incremental energy 

off by 15% 
•  Sources of 

discrepancy: 
–  Large error bars 
–  Flow shear absent 
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Power balance 



Profile stiffness 
•  ~ flat grad scale lengths indicative of stiffness (near 

critical gradient across most of minor radius) 



Fluctuations 



JET shot #19649 

•  L-mode discharge 

•  8 radial grid points 

•  Costs ~25k CPU hrs 
(4 clock hrs) 

•  Flow shear absent 



AUG shot #13151 

•  Fluxes calculated 
with GENE 

•  8 radial grid points 

•  Costs ~400k CPU hrs 
(<24 clock hrs) 

•  Dens and electron 
temp profiles agree 
within ~10% across 
device 

•  Flow shear absent 



Conclusions and future work 

•  Multi-scale approach provides savings of ~105 

•  Routine first-principles simulations of self-consistent 
interaction between turbulence and equilibrium 
possible 

•  Future work: 

–  Further comparisons with experimental 
measurements 

–  Momentum transport simulations 

–  Magnetic equilibrium evolution 

–  MHD stability 

–  Improved neoclassical model 

–  Coupling to global flux solver 


