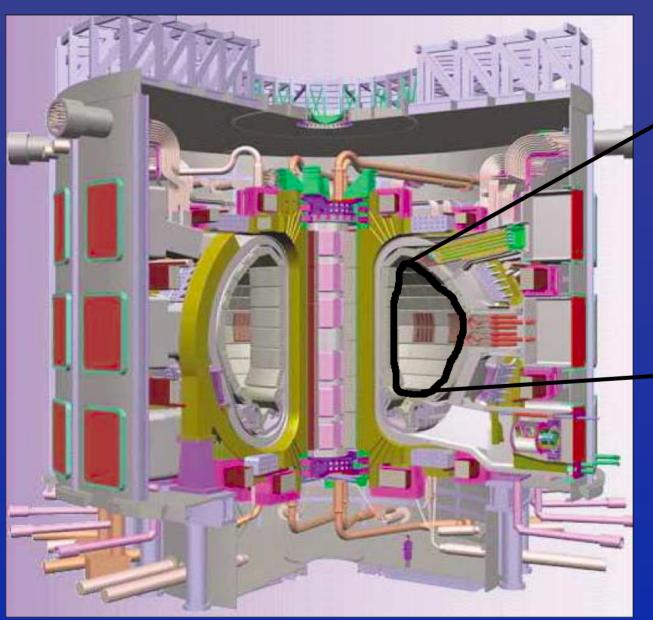
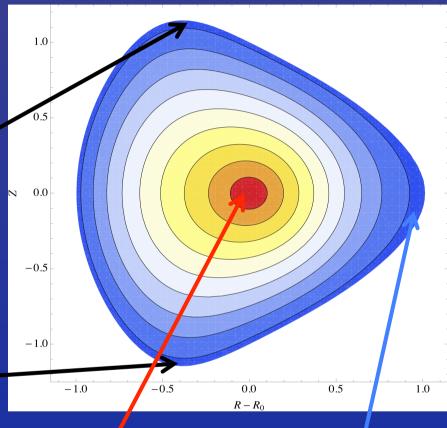
Transitions to reduced transport regimes in rotating tokamak plasmas

Michael Barnes
University of Oxford
Culham Centre for Fusion Energy

In collaboration with F. Parra, E. Highcock, A. Schekochihin, S. Cowley, and C. Roach

Magnetic confinement fusion

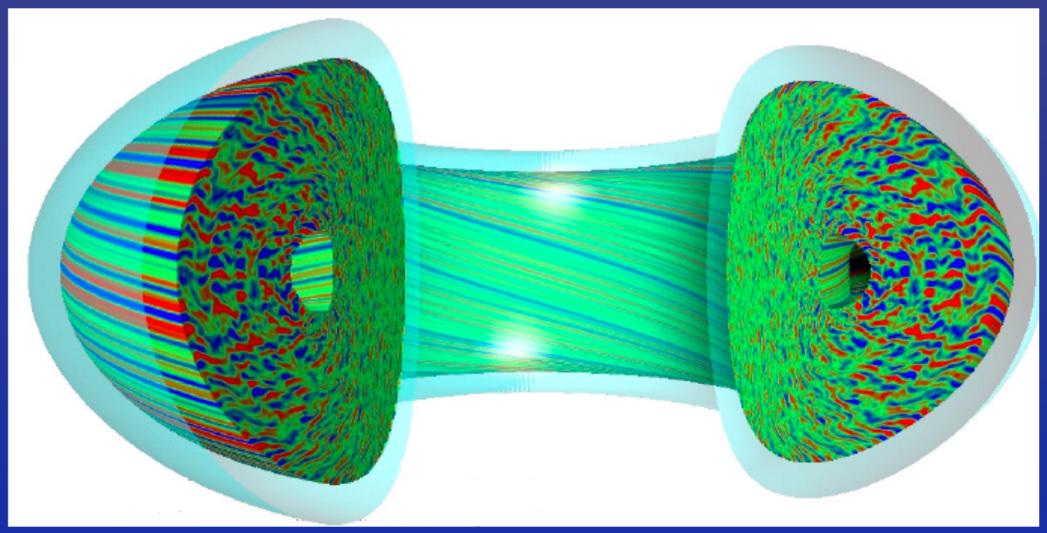




Hot, dense

Cold, dilute

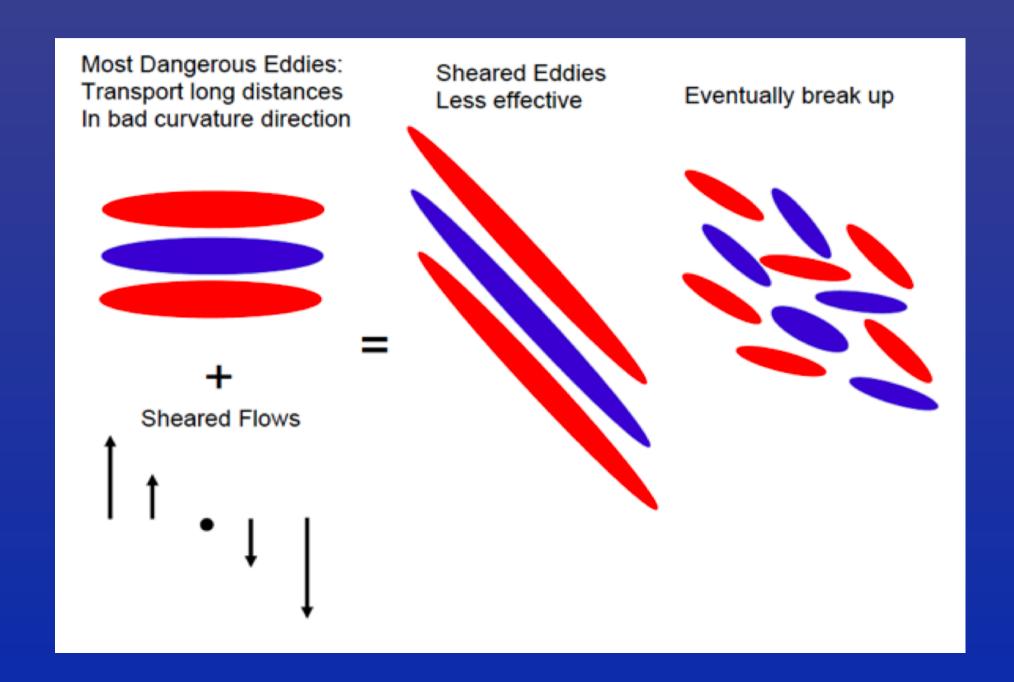
Resultant turbulence



GYRO simulation

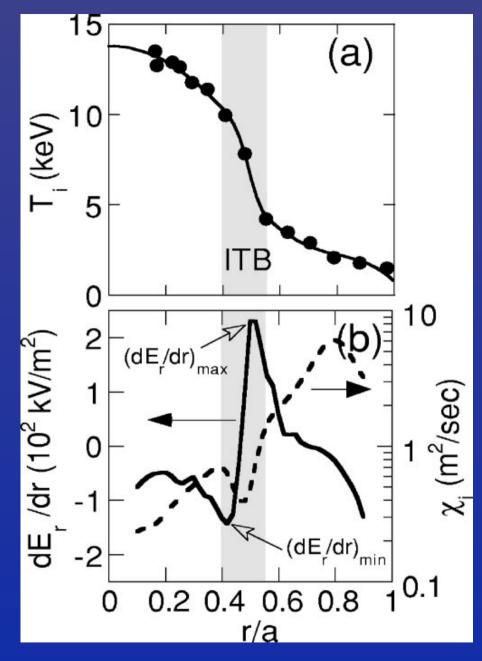
Turbulence-driven heat fluxes limit core plasma temperature

Suppression via sheared flow



Experimental observations

- "Internal Transport
 Barriers" (ITBs) observed in
 wide range of fusion
 devices
- Often accompanied by strong velocity shear and weak or negative magnetic shear
- How do ITBs work, and how can we make them better?



JT-60U data. Y. Miura, et al., 10:1809:2003

Overview

- Theoretical and numerical model
- Effect of rotational shear on turbulent transport
- Implications for local gradients (0D)
- Extension to radial profiles (1D)

Multiple scale problem

- Solve for density, temperature, and flow, which depend on particle, heat, and momentum fluxes
- Fluxes depend on gradients of density, temperature, and flow, so problems are coupled

Physics	Perpendicular spatial scale	Temporal scale
Turbulence from ETG modes	k_{\perp}^{-1} ~ 0.005 – 0.05 cm	ω_* ~ 0.5 - 5.0 MHz
Turbulence from ITG modes	k_{\perp}^{-1} ~ 0.3 - 3.0 cm	ω_* ~ 10 - 100 kHz
Transport barriers	Measurements suggest width ~ 1 - 10 cm	100 ms or more in core?
Discharge evolution	Profile scales ~ 200 cm	Energy confinement time ~ 2 - 4 s

Gyrokinetic multiscale assumptions

$$\frac{\partial f}{\partial t} + \frac{d\mathbf{R}}{dt} \cdot \frac{\partial f}{\partial \mathbf{R}} + \frac{d\mu}{dt} \frac{\partial f}{\partial \mu} + \frac{dE}{dt} \frac{\partial f}{\partial E} + \frac{d\vartheta}{dt} \frac{\partial f}{\partial \vartheta} = C[f]$$

Turbulent fluctuations are low amplitude:

$$f = F + \delta f \qquad \qquad \delta f \sim \epsilon f$$

Separation of time scales:

$$\frac{\partial_t \delta f}{\delta f} \sim \omega \sim \epsilon \Omega \qquad \frac{\partial_t F}{F} \sim \tau^{-1} \sim \epsilon^2 \omega$$

Separation of space scales:

$$\nabla F \sim F/L$$
, $\nabla_{\parallel} \delta f \sim \delta f/L$, $\nabla_{\perp} \delta f \sim \delta f/\rho$

"Smooth" velocity space:

$$\epsilon \lesssim \nu/\omega \lesssim 1 \Rightarrow \sqrt{\epsilon} \lesssim \delta v/v_{th} \lesssim 1$$

• Sub-sonic drifts: $v_D \sim \epsilon v_{th}$

Transport equations in GK

Moment equations for evolution of mean quantities:

$$\frac{\partial n_s}{\partial t} = -\frac{1}{V'} \frac{\partial}{\partial \psi} \left(V' \left\langle \mathbf{\Gamma}_s \cdot \nabla \psi \right\rangle \right) + S_n$$

$$\frac{3}{2} \frac{\partial n_s T_s}{\partial t} = -\frac{1}{V'} \frac{\partial}{\partial \psi} \left(V' \left\langle \mathbf{Q}_s \cdot \nabla \psi \right\rangle \right)$$

$$+ T_s \left(\frac{\partial \ln n_s}{\partial \psi} - \frac{3}{2} \frac{\partial \ln T_s}{\partial \psi} \right) \left\langle \mathbf{\Gamma}_s \cdot \nabla \psi \right\rangle + \frac{\partial \ln T_s}{\partial \psi} \left\langle \mathbf{Q}_s \cdot \nabla \psi \right\rangle$$

$$- \left\langle \int d^3 v \frac{h_s T_s}{F_{0s}} \left\langle C[h_s] \right\rangle_{\mathbf{R}} \right\rangle + n_s \nu_{\epsilon}^{su} \left(T_u - T_s \right) + S_p$$

$$\frac{\partial L}{\partial t} = -\frac{1}{V'} \frac{\partial}{\partial \psi} \left(V' \sum_s \left\langle \pi_s \right\rangle \right) + S_L$$

Gyrokinetic equation

GK equation with mean flow satisfying $\frac{
ho}{L} \ll M \ll 1$

$$\frac{\rho}{L} \ll M \ll 1$$

but: $\nabla u \sim v_{th}/L$

$$\frac{dh}{dt} + (\mathbf{v}_{\parallel} + \mathbf{v}_{D} + \langle \mathbf{v}_{E} \rangle) \cdot \nabla h - \langle C[h] \rangle
= \frac{eF_{0}}{T} \frac{d\langle \varphi \rangle}{dt} - \langle \mathbf{v}_{E} \rangle \cdot \nabla \psi \left(\frac{dF_{0}}{d\psi} + \frac{mv_{\parallel}}{T} \frac{RB_{\phi}}{B} \frac{d\omega}{d\psi} F_{0} \right)$$

$$\frac{d}{dt} \equiv \frac{\partial}{\partial t} + R\omega(\psi)\hat{\mathbf{e}}_{\phi} \cdot \nabla$$

$$\mathbf{u} = R\omega\hat{\mathbf{e}}_{\phi}$$

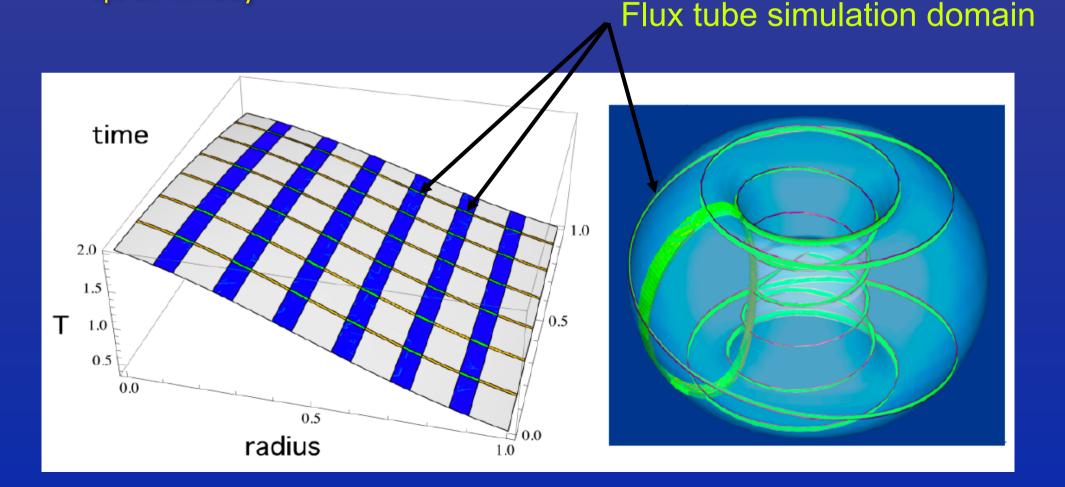
$$\gamma_E \equiv \frac{\psi}{q} \frac{d\omega}{d\psi} \frac{R_0}{v_{th}}$$

Local approximation:

$$\omega(\psi) \approx \omega(\psi_0) + (\psi - \psi_0) \frac{d\omega}{d\psi}$$

Multiscale approach

 In TRINITY [Barnes et al., PoP 17, 056109 (2010)], turbulent fluctuations calculated in small regions of fine spacetime grid embedded in "coarse" grid (for mean quantities)

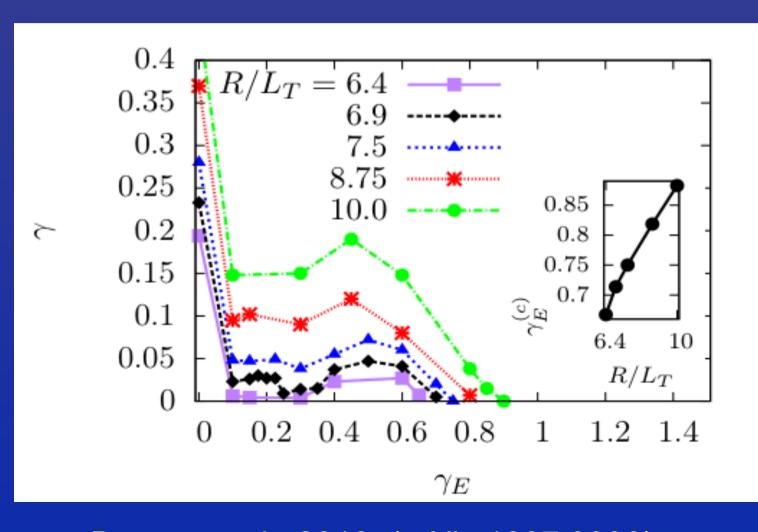


Overview

- Theoretical and numerical model
- Effect of rotational shear on turbulent transport
- Implications for local gradients (0D)
- Extension to radial profiles (1D)

Linear stability (GS2)

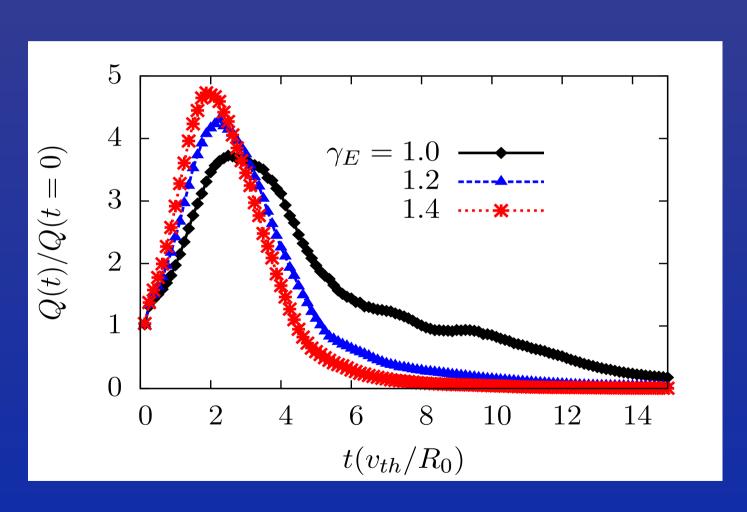
Cyclone base case: r/R = 0.18 q = 1.4 $\hat{s} = 0.8$



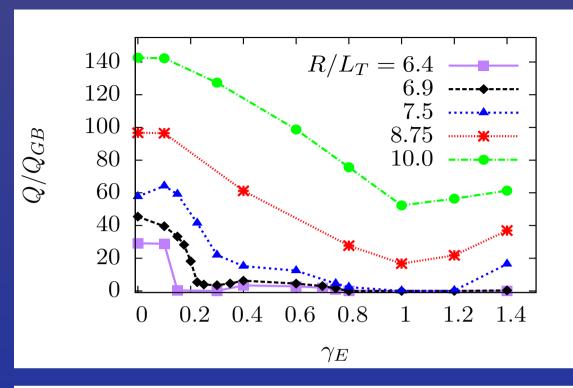
- ITG drive at small shear
- ITG/PVG drive at moderate shear
- Stabilization at large shear
- Roughly linear dependence of critical flow shear on R/LT

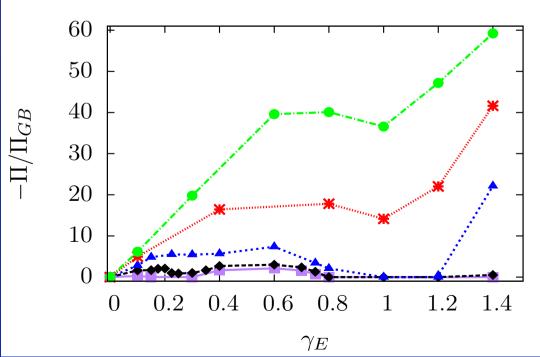
Barnes et al., 2010 (arXiv:1007.3390)

Transient growth



- Beyond critical shear value, transient linear growth
- Amplification of initial amplitude increases with shear
- Cf. Newton et al., 2010 (arXiv: 1007.0040)

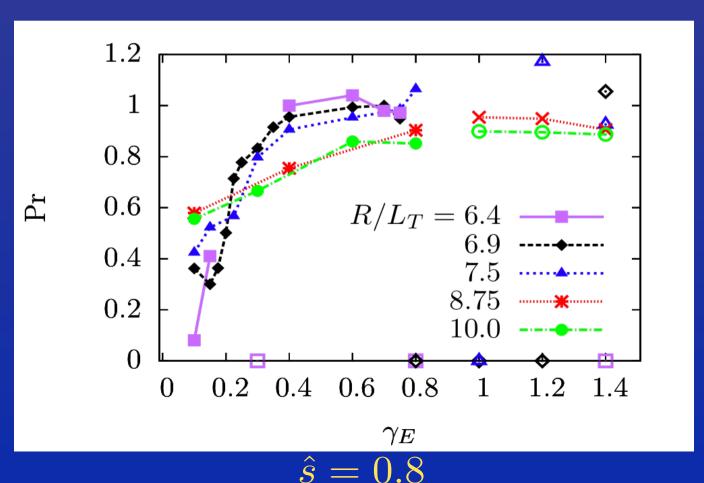




- Fluxes follow linear trends up to linear stabilization point
- Subcritical (linearly stable) turbulence beyond this point
- Optimal flow shear for confinement
- Possible hysteresis
- Maximum in momentum flux => possible bifurcation

Turbulent Prandtl number

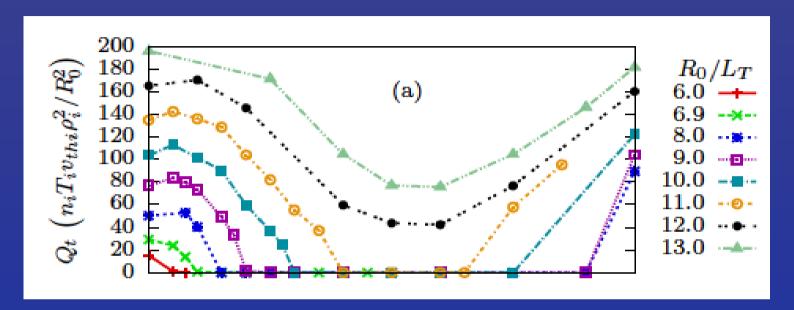
$$\Pr = \frac{\nu_i}{\chi_i} \qquad \frac{\Pi_i = -m_i v_{th} (qR_0/r) \nu_i \gamma_E}{Q_i = -\chi_i dT_i/dr}$$

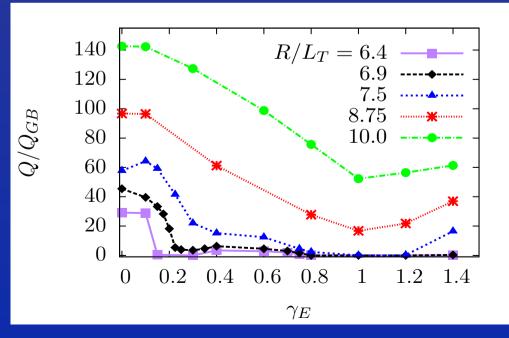


 Prandtl number tends to shear- and R/LT-independent value of order unity (in both turbulence regimes)

Barnes et al., PRL submitted (2010).

Zero magnetic shear



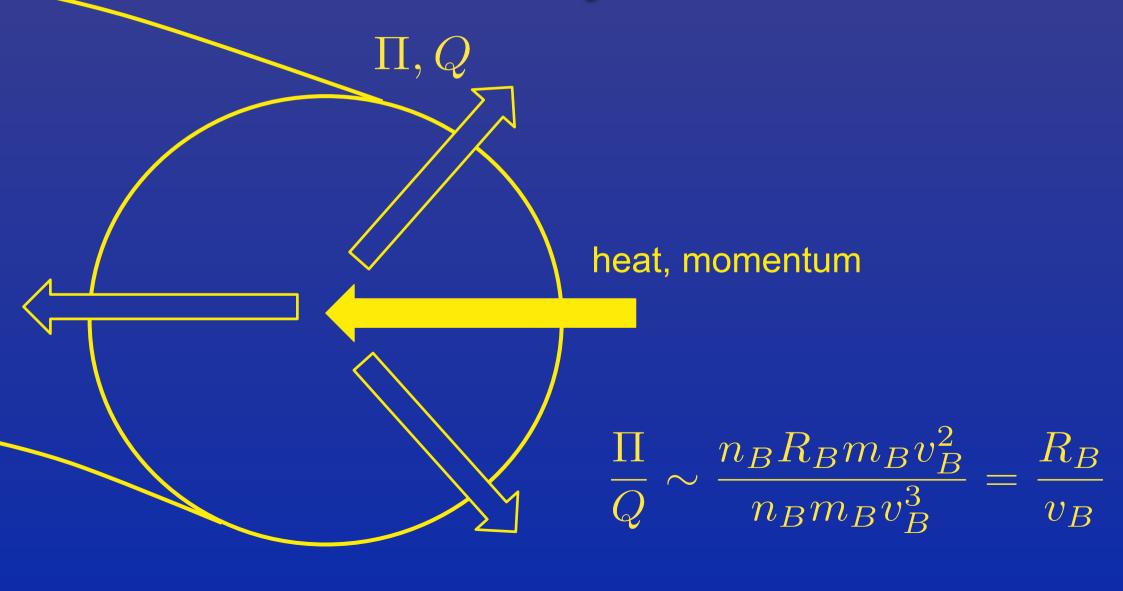


- Similar...sort of
- All turbulence subcritical
- Very different critical flow shear values

Overview

- Theoretical and numerical model
- Effect of rotational shear on turbulent transport
- Implications for local gradients (0D)
- Extension to radial profiles (1D)

Power/Torque balance for beam injection



Model fluxes

 Simple model for fluxes with parameters chosen to fit zero magnetic shear results from GS2:

$$Q = Q_t + Q_n$$

$$\Pi = \Pi_t + \Pi_n$$

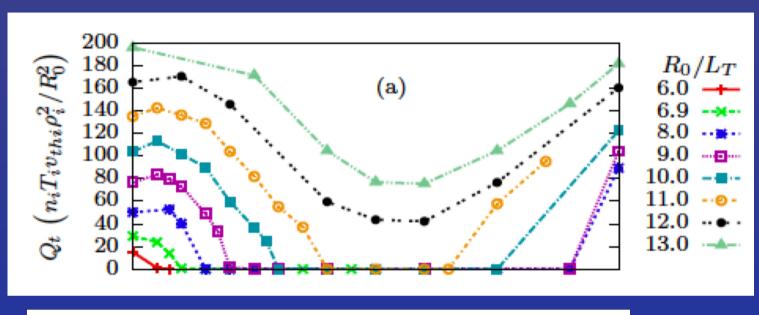
$$\overline{Q}_t \equiv \frac{Q_t}{nTv_{th}} \left(\frac{R}{\rho}\right)^2 \equiv \chi_t \left[\frac{R}{L_T} - \left(\frac{R}{L_T}\right)_c\right]$$

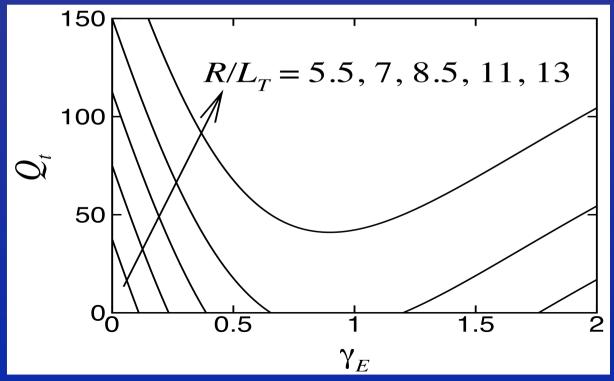
$$\overline{Q}_n \equiv \frac{Q_n}{nTv_{th}} \left(\frac{R}{\rho}\right)^2 \equiv \frac{\chi_n}{T^2} \frac{R}{L_T}$$

$$\frac{Q_n}{nTv_{th}} \left(\frac{R}{\rho}\right)^2 \equiv \frac{\chi_n}{T^2} \frac{R}{L_T} \qquad \left(\frac{R}{L_T}\right)_c \equiv \frac{\alpha_1 \gamma_E + (R/L_T)_{c0}}{1 + \alpha_2 \gamma_E^2}$$

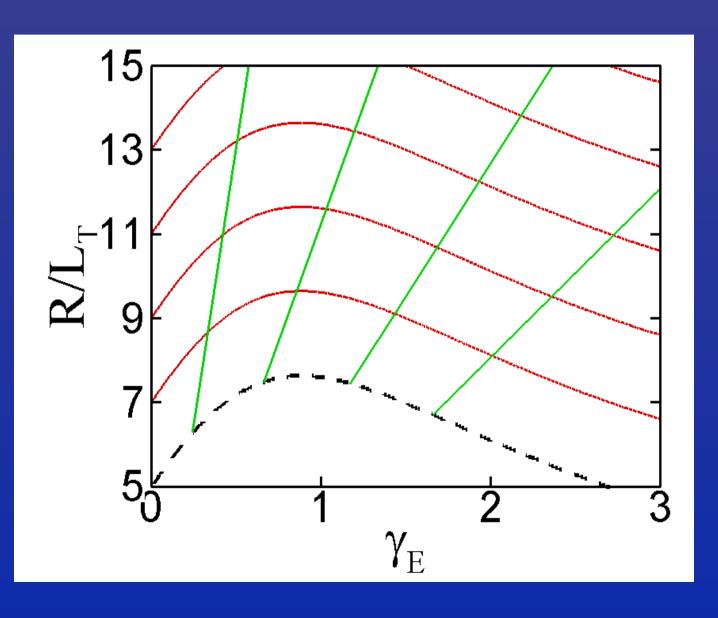
$$\overline{\Pi}_{t,n} \equiv \frac{\Pi_{t,n}}{mnRv_{th}^2} \left(\frac{R}{\rho}\right)^2 = \overline{Q}_{t,n} \operatorname{Pr}_{t,n} \frac{\gamma_E}{R/L_T}$$

Model fluxes





Balance w/o neoclassical

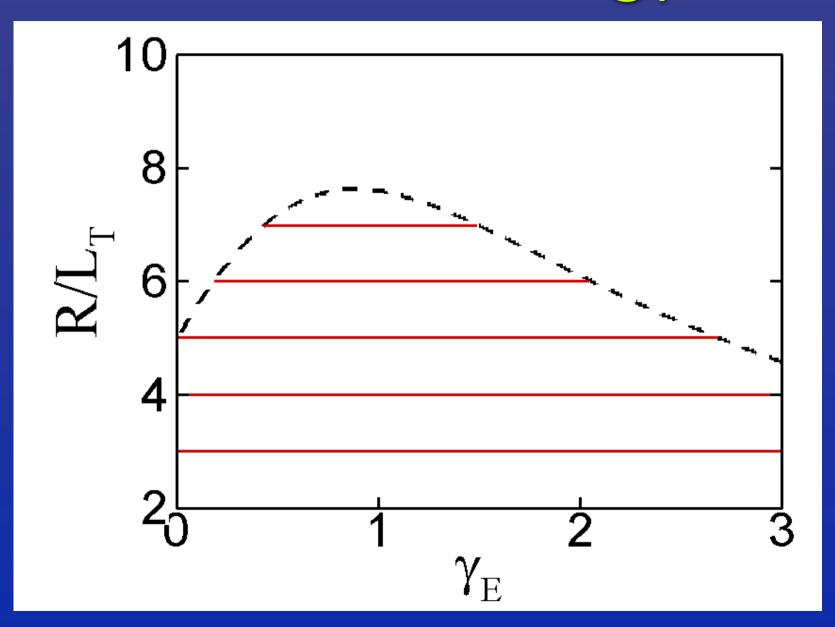


- \overline{Q} = red lines
- $\overline{\Pi}/\overline{Q}$ = green lines

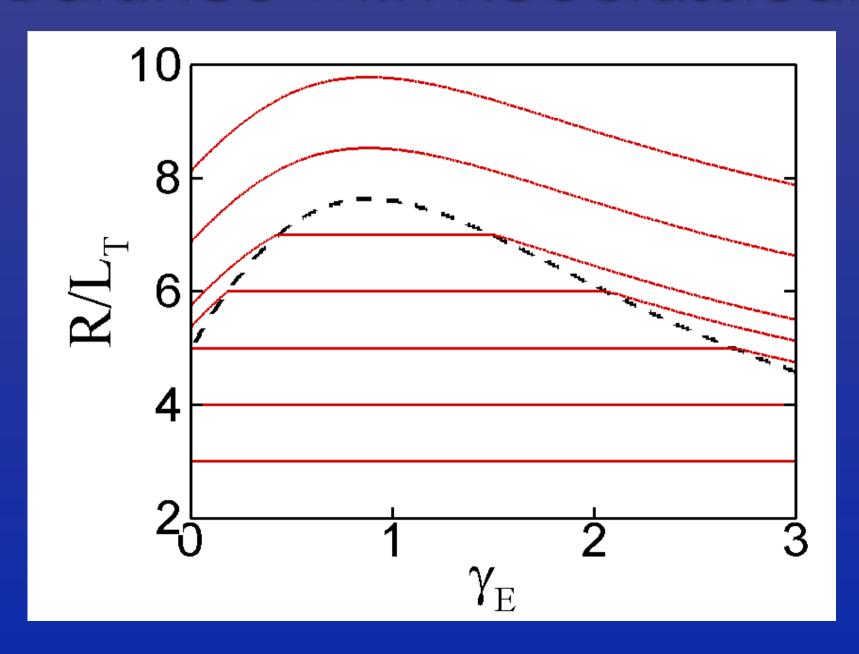
$$\frac{R}{L_t} = \frac{\Pr_t}{\overline{\Pi}/\overline{Q}} \gamma_E$$

- Critical gradient = dashed line
- For given $\overline{\Pi}/\overline{Q}$ and \overline{Q} , only one solution No bifurcation!

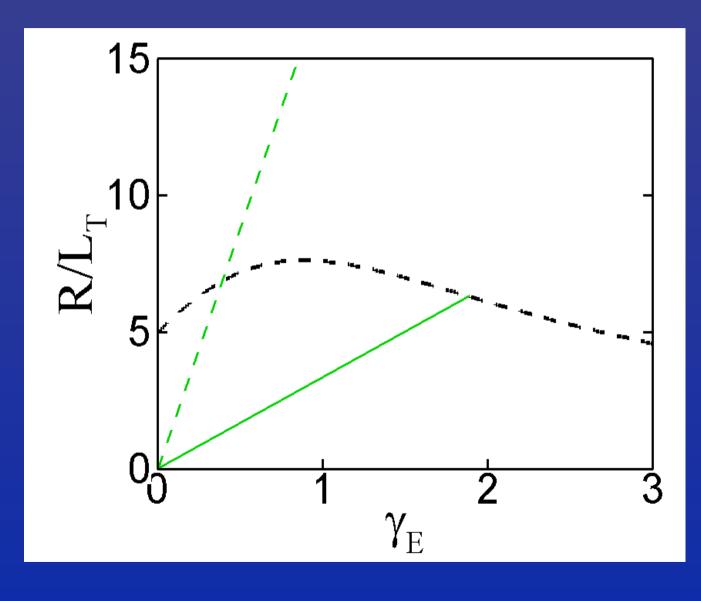
Neoclassical energy flux



Balance with neoclassical



Curves of constant $\overline{\Pi}/\overline{Q}$



Neoclassical

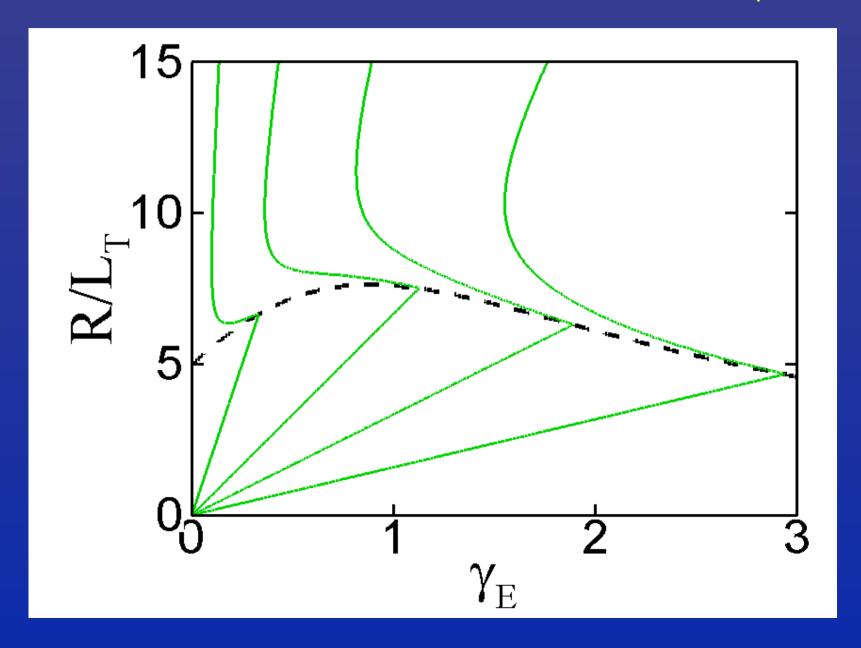
$$\frac{R}{L_t} = \frac{\Pr_n}{\overline{\Pi}/\overline{Q}} \gamma_E$$

Turbulent

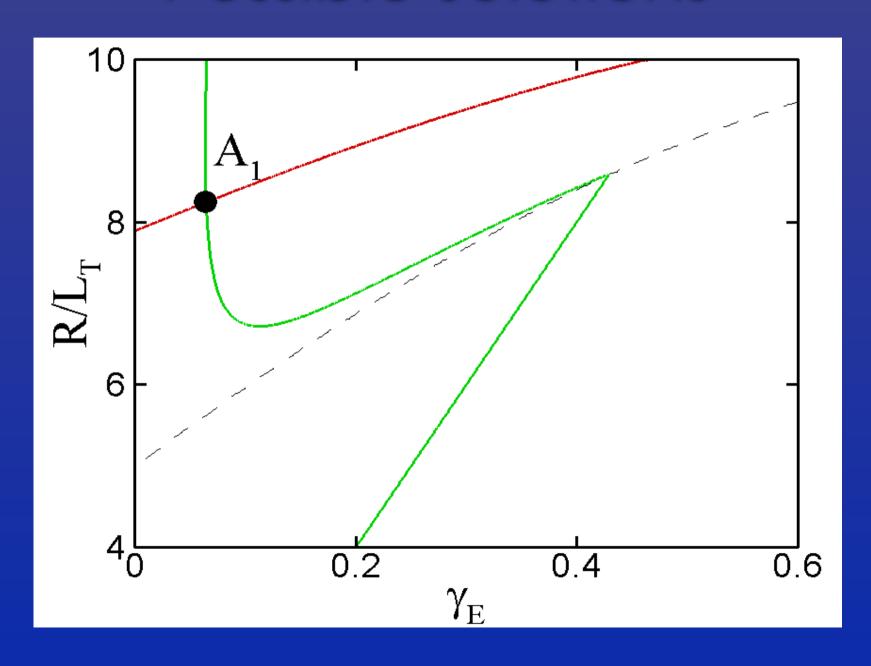
$$\frac{R}{L_t} = \frac{\Pr_t}{\overline{\Pi}/\overline{Q}} \gamma_E$$

• Prandtl numbers $\Pr_n \ll \Pr_t$

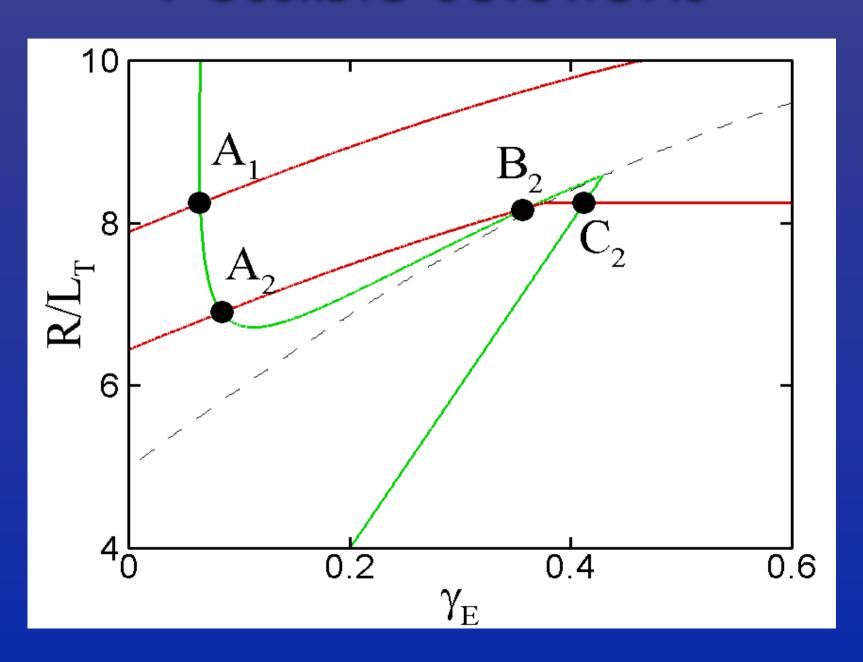
Curves of constant $\overline{\Pi}/\overline{Q}$



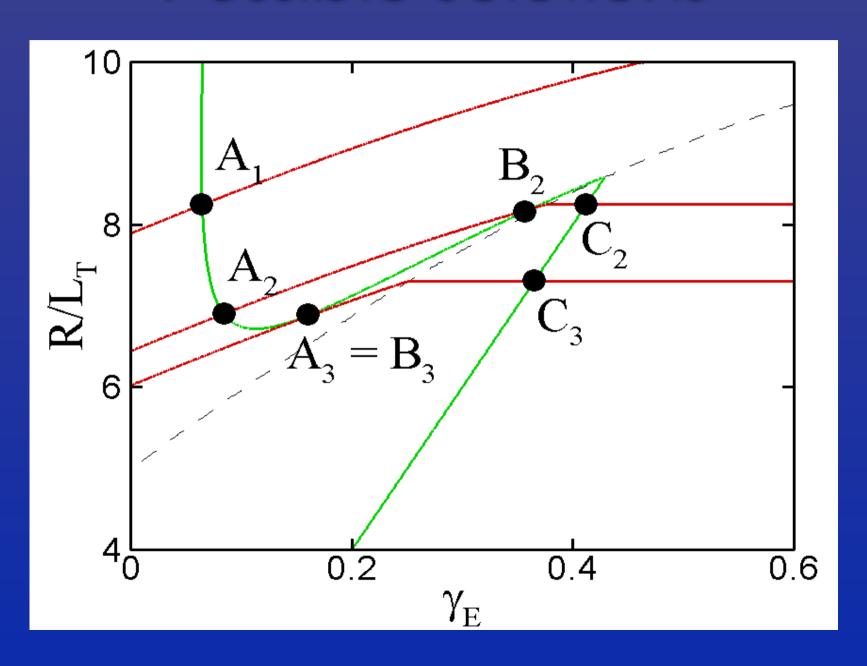
Possible solutions



Possible solutions



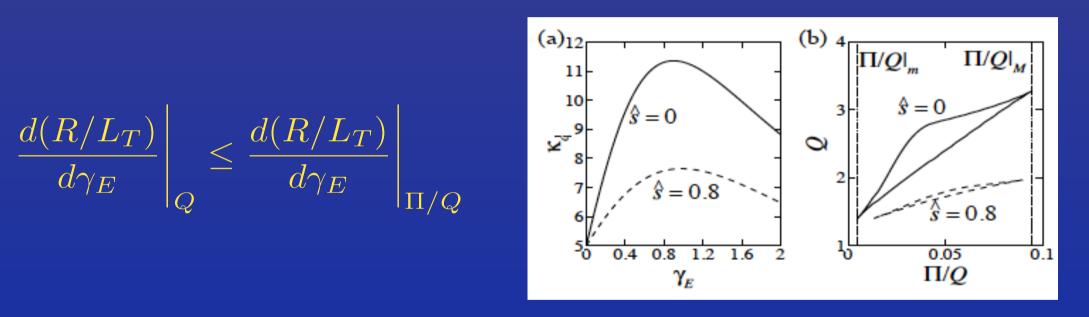
Possible solutions



Bifurcation condition

Bifurcations only occur when Q_t ~ Q_n so take R/L_T ≈ R/L_{Tc}

$$\left. \frac{d(R/L_T)}{d\gamma_E} \right|_Q \le \left. \frac{d(R/L_T)}{d\gamma_E} \right|_{\Pi/Q}$$

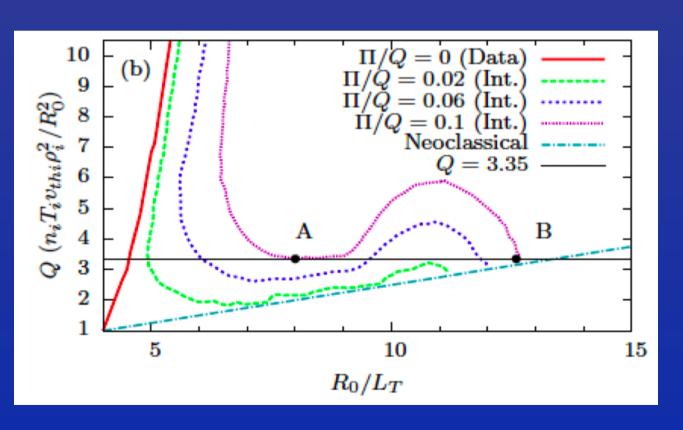


$$\Rightarrow \frac{\Pr_n^2}{\Pr_t} \frac{qR}{r} \left(\frac{d(R/L_{Tc})}{d\gamma_E} \bigg|_{\gamma_E = 0} \right)^{-1} < \frac{\Pi}{Q} \le \Pr_t \frac{qR}{r} \left(\frac{\gamma_{E,max}}{R/L_{Tc,max}} \right)^2 \frac{d(R/L_{Tc})}{d\gamma_E} \bigg|_{\gamma_E = 0}$$

Parra et al., PRL submitted (2010), arXiv:1009.0733

Bifurcations in GS2

 Use many nonlinear GS2 simulations to generate constant Pi/Q contours



- With inclusion of neoclassical fluxes, we see potential bifurcations to much larger flow shear and R/LT
- Very similar to simplified model predictions

Highcock PRL (2010)

Overview

- Theoretical and numerical model
- Effect of rotational shear on turbulent transport
- Implications for local gradients (0D)
- Extension to radial profiles (1D)

Solving for radial profiles

Expressions for fluxes:

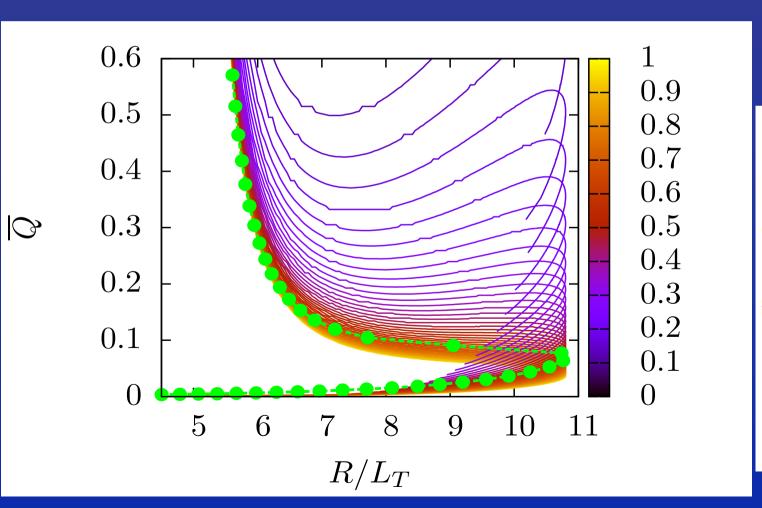
$$\hat{Q}(\kappa, \gamma_E, T) = \hat{T}^{5/2} \left(\hat{\chi}_t \left(\kappa - \kappa_c \right) + \frac{\hat{\chi}_n}{\hat{T}^2} \kappa \right)$$

$$\hat{\Pi}(\kappa, \gamma_E, T) = \gamma_E \left(\hat{\chi}_t \left(1 - \frac{\kappa_c}{\kappa} \right) \operatorname{Pr}_t \hat{T}^2 + \hat{\chi}_n \operatorname{Pr}_n \right)$$

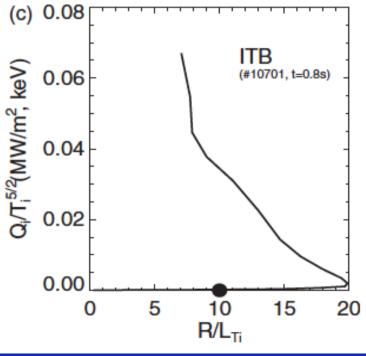
• Radial profiles of \hat{Q} and $\hat{\Pi}$ are inputs. Given \hat{T} at one radius, we can solve for γ_E and κ at that radius. With \hat{T} and κ , we can obtain \hat{T} at nearby radii. Repeat process to construct radial profiles.

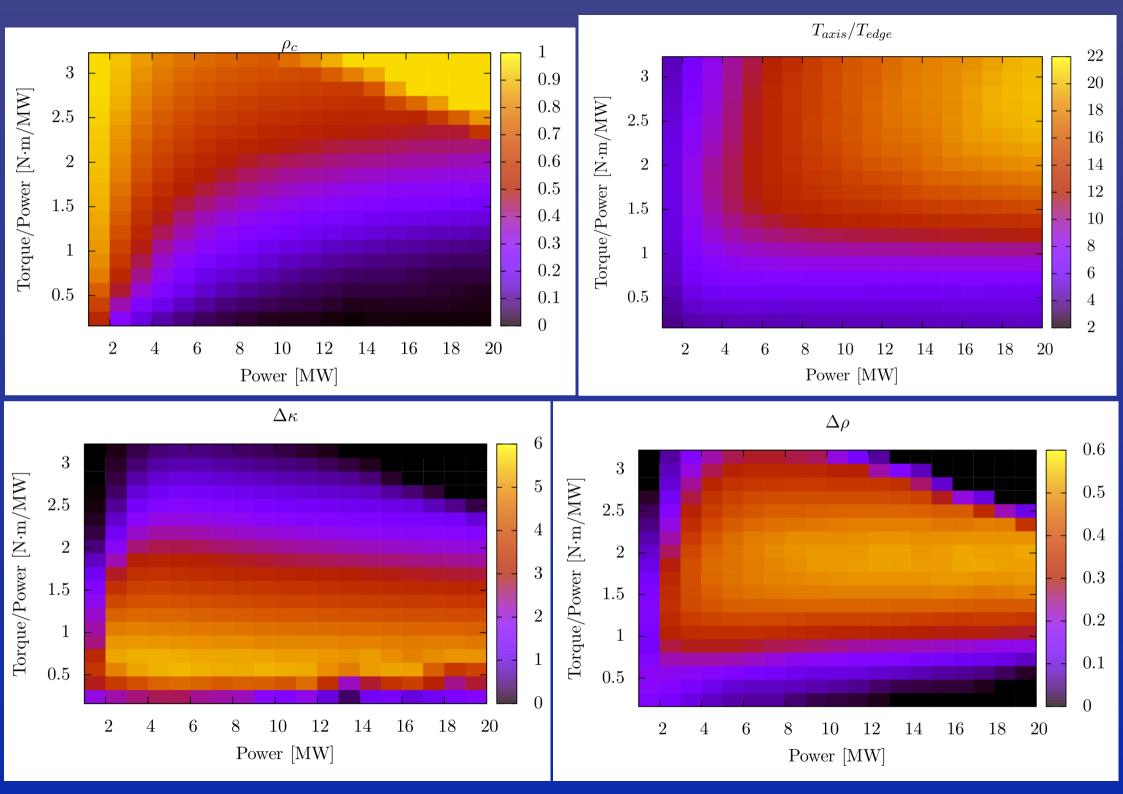
Numerical results

Here, Q~sqrt(r/a), Pi/Q=0.1, Edge T=2 keV

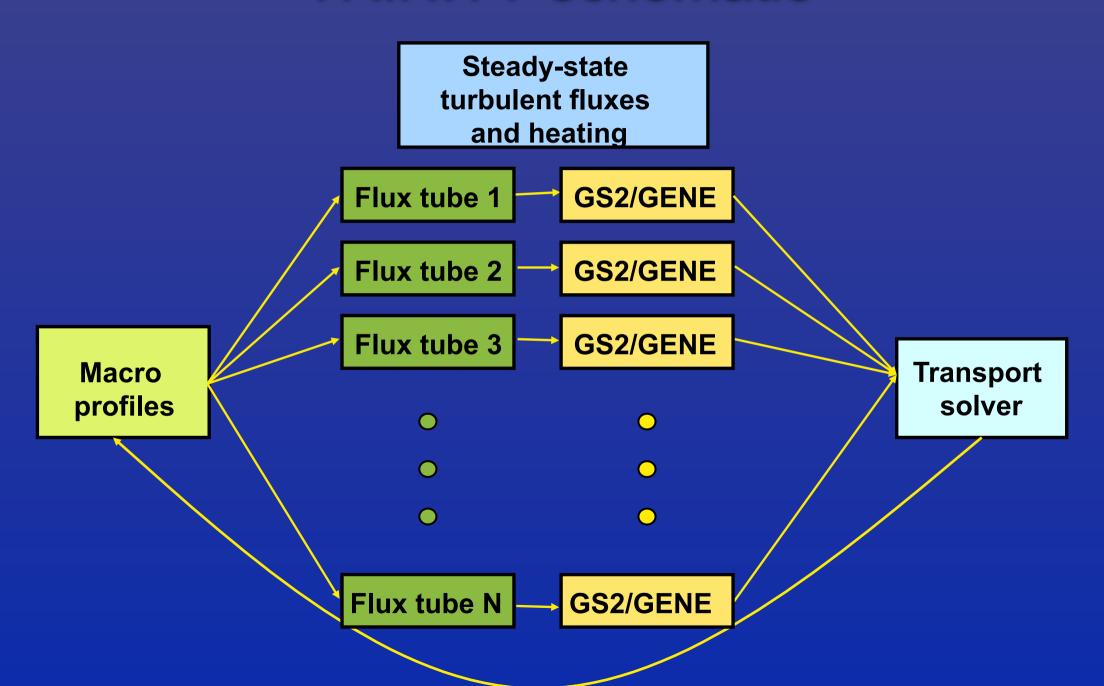


Wolf, PPCF 45 (2003)

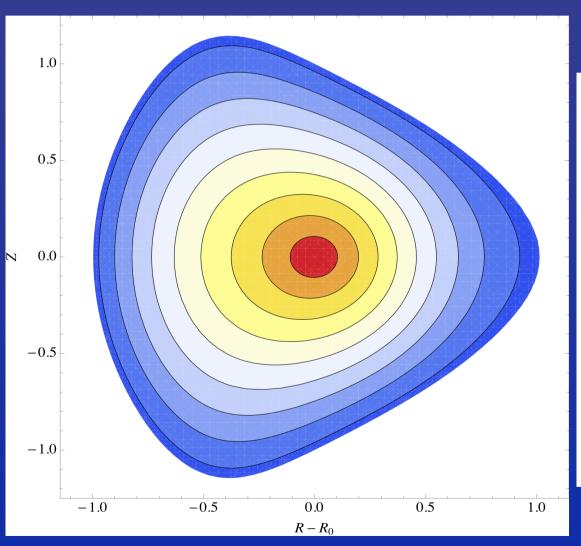


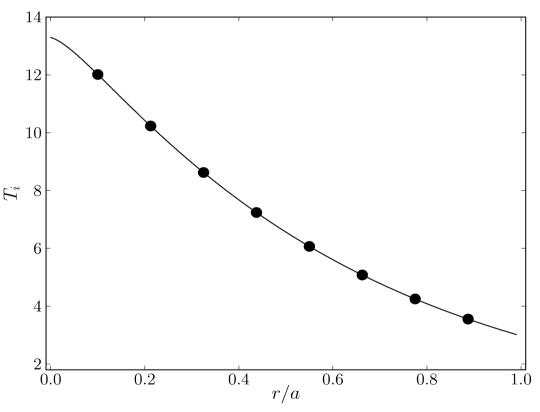


TRINITY schematic

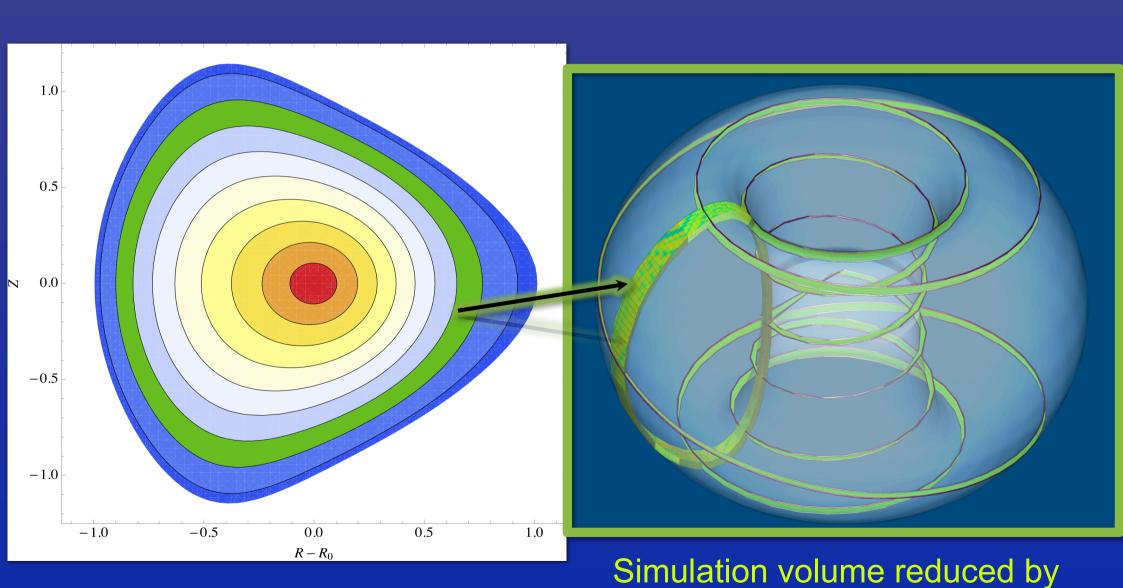


Sampling profile with flux tubes



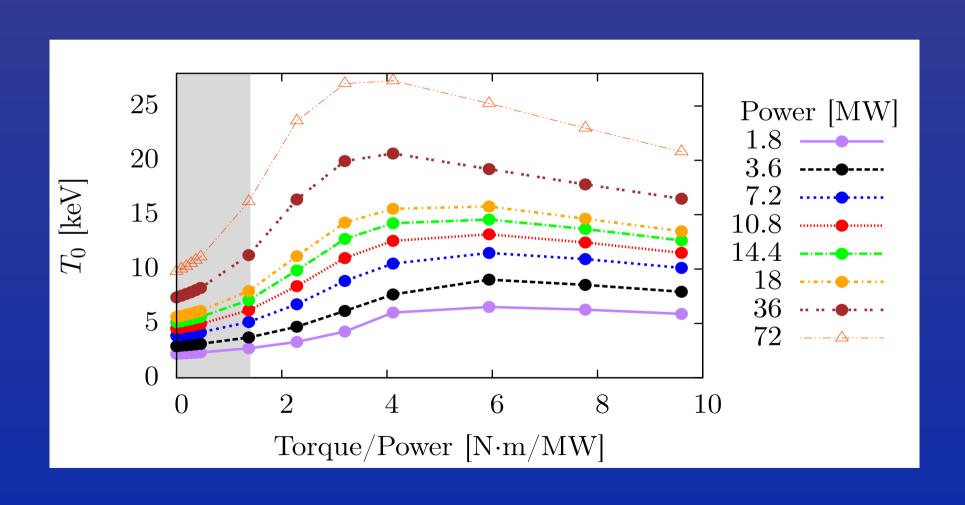


Sampling profile with flux tubes



factor of ~10s

Results with model fluxes



Conclusions and future directions

- Mean flow shear can fully suppress turbulence in tokamak plasmas (in certain parameter regimes)
- Turbulence suppression can give rise to bifurcation in flow shear and temperature gradient
- Such bifurcations are candidates for thermal transport barriers in core of tokamak experiments
- Still a lot of work to be done in understanding underlying theory and determining parametric dependencies
- Need self-consistent treatment including back-reaction of turbulence on mean flow (evolution of mean profiles)