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Multiple scale problem

Physics

Perpendicular
spatial scale

Temporal scale

Turbulence from ETG
modes

k'~ 0005-0.05cm

Wy ~ 0.5 - 5.0 MHz

Turbulence from ITG
modes

k11~03—30cm

W ~ 10 - 100 kHz

Transport barriers

Measurements suggest
width ~ 1 - 10 cm

100 ms or more Iin coree

Discharge evolution

Profile scales ~ 200 cm

Energy confinement time
~2-45s

(Ly/A)) % (Li/AL)? x (Ly/AL)? x (Li/At) ~ 102
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Transport equations in GK

Moment equations for equilibrium evolution:
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Multiscale grid

Flux tube simulation domain

Turbulent fluxes calculated

INn small regions of fine grid
embedded in “coarse”

radial grid (for equilibrium)

o Steady-state (time-
averaged) turbulent fluxes
calculated in small regions
of fine grid embedded in
‘coarse” time grid (for
equilibrium)

Flux tube simulation domain




Flux tubbe assumptions

Macroscopic quantities (density, flow,
temperature, etc. constant across simulation
domain)

Gradient scale lengths of macroscopic quantifies
constant across simulation domain

— Total gradient NOT constant (corrugations
possible due to fluctuation + equilibrium
gradients)

In addifion to delta-f assumption that equilibrium
guantities constant in time over simulation

=> No Important meso-scale physics




Validity of flux tube approximation
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Trinity schematic
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Sampling profile with flux tubes




Sampling profile with flux tubes

Simulation volume reduced
by factor of ~100




Trinity tfransport solver

Transport equations are stiff, honlinear PDEs. Implicit
treatment via Newton's Method (multi-step BDF,
adaptive time step) allows for time steps ~0.1 seconds
(vs. turbulence sim time ~0.001 seconds)

Challenge: requires computation of quanfities like

or;
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* Local approximation: or; Ty N or;, O(R/L,),

on, On; O(R/Ly); Ong

o Simplitying assumption: normalized fluxes depend
primarily on gradient scale lengths




Trinity tfransport solver

e Calculating flux derivative approximations:

— at every radial grid point, simultaneously calculate
I';[(R/L,)5"] and L;[(R/Ly)5" + 0] using 2
different flux tubbes

Possible because flux tubes independent (do not
communicate during calculation)

Perfect parallelization

use 2-point finite differences:
or; Tl(R/Ln)}'] — I'[(R/Ln)j" + 0]
O(R/Ly); )




Trinity scaling

e Example calculation with 10 radial grid points:

evolve density, toroidal angular momentum, and
electron/ion pressures

simultaneously calculate fluxes for equilibrium
profile and for 4 separate profiles (one for each
perturbed gradient scale length)

total of 50 flux fube simulations running
simultaneously

~2000-4000 processors per flux tube => scaling to
over 100,000 processors with >85% efficiency



Multi-scale simulation savings

Statistical periodicity in foroidal direction takes

advantage of k' < Ly : volume savings factor of
~100

Exploitation of scale separation between
turbulence and equilibrium evolution: time savings
factor of ~100

Extreme parallelizabillity: savings factor of ~10

Total saving of ~10°: simulation possible on current
machines
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JET shot #42982
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Evolving density profile
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Power balance
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Profile stiffness

e ~ flat grad scale lengths indicative of stiffness (near
critical gradient across most of minor radius)
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Fluctuations
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AUG shot #1315

Fluxes calculated
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Conclusions and future work

Multi-scale approach provides savings of ~10°

Routine first-principles simulations of self-consistent
Inferaction between turbulence and equilibrium
possible

Future work;

— Further comparisons with experimental
measurements

— Momentum fransport simulations

— Magnetic equilibrium evolution

— MHD stabillity

— Improved neoclassical model

— Pre-conditioning with reduced flux models




