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Motivation 
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•  High flow GK (Artun ‘94) with subsidiary 
expansion in Mach: 

•  Focus on flow shear (no coriolis) by 
ordering u’ ~ vt/L      but u~M vt    , i.e. Lu ~ 
M LT 
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•  Local, nonlinear gyrokinetic simulations 
•  Simulation reference frame chosen so u=0 

at center of domain 
• Make change of variable                 (t=0)    

+ky*                        u’*t   (Hammett ’06): 

~ M LT 

Numerical model 
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Results: stability 

Cyclone base-case 
parameters 

Linearly stabilized 
for u’ ~ 1 

Transiently 
unstable beyond 

u’~1 



Results: heat flux 
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Subcritical 
turbulence beyond 

u’~1 



Results: heat flux 



Results: stiffness 

General shifting of 
critical gradient 
without much 

relaxation 

Does flow shear 
shift critical 
gradient or 

decrease stiffness? 





Results: momentum flux 
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Results: flux ratio 



Prandtl number 



Conclusions 

•  Flow shear can both suppress and drive 
turbulent heat and momentum flux 

•  Subcritical turbulence present when flow 
shear sufficiently large 

•  Dependence of stiffness on flow shear 
nontrivial, but has general property that 
stiffness increases with flow shear when ITG 
dominant and decreases with flow shear 
when PVG dominant 

•  Empirically constant Prandtl number.  
Universality? 


