Transport scalings for critically-balanced ITG turbulence in tokamaks

M. Barnes¹, F. I. Parra¹, A. A. Schekochihin²

¹Massachusetts Institute of Technology ²University of Oxford

What's the point?

Core density and temperature limited by turbulent transport

What's the point?

Suppression of turbulence

 We know it's possible to suppress turbulence, as reduced transport regions (transport barriers) are routinely observed in experiment

What we have done

• Determined ITG turbulence scalings with important plasma parameters (safety factor and temp. grad.)

Outline

- Plasma turbulence in tokamaks -- description and gyrokinetic model
- Brief overview of basic turbulence concepts
- Conjectures on ITG turbulence, derivation of scaling laws, numerical tests
- Conclusions

Outline

- Plasma turbulence in tokamaks -- description and gyrokinetic model
- Brief overview of basic turbulence concepts
- Conjectures on ITG turbulence, derivation of scaling laws, numerical tests
- Conclusions

Resultant turbulence

Low-amplitude, small-scale, anisotropic turbulence

Gyrokinetic model

Dynamics slow compared to Larmor frequency so gyroaverage:

Removes fast gyromotion from problem, eliminating gyroangle as a phase space variable

Now solving for trajectories of rings of charge as they stream along mean field and slowly drift across it

Delta-f gyrokinetic model

Decompose f into mean and fluctuating components:

$$f = F + \delta f$$

Turbulent fluctuations are low amplitude: $\delta f \sim \epsilon f$

Turbulence slow compared to gyrofrequency, but fast compared to mean profile evolution:

$$\frac{\partial \ln \delta f}{\partial t} \sim \omega \sim \epsilon \Omega \qquad \qquad \frac{\partial \ln F}{\partial t} \sim \epsilon^2 \omega \sim \epsilon^3 \Omega$$

Mean varies perpendicular to mean field on system size while fluctuations vary on Larmor scale:

$$\nabla_{\perp} \ln F \sim L^{-1} \qquad \nabla_{\perp} \ln \delta f \sim \rho^{-1}$$

Fluctuations are anisotropic with respect to the mean field:

$$\nabla_{\parallel} \ln \delta f \sim L^{-1}$$

Gyrokinetic-Poisson system

$$\delta f_s = h_s - \frac{e_s \varphi}{T_s} F_{M,s}$$

Gyrokinetic equation:

$$\frac{\partial}{\partial t} \left(h_s - \frac{e \langle \varphi \rangle_{\mathbf{R}}}{T_s} F_{M,s} \right) + \left(\mathbf{v}_{\parallel} + \mathbf{v}_{M,s} + \langle \mathbf{v}_E \rangle_{\mathbf{R}} \right) \cdot \nabla h_s$$
$$= \langle C[h_s] \rangle_{\mathbf{R}} - \langle \mathbf{v}_E \rangle_{\mathbf{R}} \cdot \nabla F_{M,s}$$

Quasineutrality:
$$\sum_{s} e_s \left(\int d^3 v \ h_s - \frac{e_s \varphi}{T_s} n_s \right) = 0$$

Outline

- Plasma turbulence in tokamaks -- description and gyrokinetic model
- Brief overview of basic turbulence concepts
- Conjectures on ITG turbulence, derivation of scaling laws, numerical tests
- Conclusions

Turbulence spectrum: outer scale

 Outer scale = energy-containing scale, roughly corresponds to where energy injected

Energy balance and dissipation

$$\frac{\partial W}{\partial t} + \sum_{s} T_s \int_{V} h_s \left\langle \mathbf{v}_E \right\rangle_{\mathbf{R}} \cdot \nabla \ln F_{M,s} = \sum_{s} \int_{V} \frac{h_s T_s}{F_{M,s}} \left\langle C[h_s] \right\rangle_{\mathbf{R}}$$

Turbulence cascade

 Large eddies break into smaller eddies repeatedly, transferring energy to smaller scales

Turbulence cascade: inertial range

• Inertial range contains scales that 'feel' neither injection mechanism or dissipation mechanism

• Want to predict how each of the quantities in this cartoon depend on safety factor and temp. gradient

Outline

- Plasma turbulence in tokamaks -- description
 and gyrokinetic model
- Brief overview of basic turbulence concepts
- Conjectures on ITG turbulence, derivation of scaling laws, numerical tests
- Conclusions

- Smooth, isotropic v-space
- Isotropy in plane perpendicular to B-field
- Parallel streaming time and nonlinear turnover time comparable at all scales (critical balance)
- Parallel length at outer scale set by system size (connection length)

Smooth, isotropic v-space

Smooth, isotropic v-space

Quasineutrality:

$$\sum_{s} e_s \left(\int d^3 v \ h_s - \frac{e_s \varphi}{T_s} n_s \right) = 0$$

$$\int d^3 v \ h \sim v_{th}^3 h \Rightarrow \frac{h}{F_M} \sim \frac{e\varphi}{T}$$

Spatial isotropy

• Physical idea: linear drive favors structures with $k_x \lesssim k_y$. Larger k_x formed through magnetic and flow shear:

Critical balance

 Physical idea: two points along field correlated only if information propagates between them before turbulence decorrelated in perpendicular plane

$$\frac{h_k}{\tau_k} \sim \left(\mathbf{v}_E \cdot \nabla h\right)_k \sim \frac{v_{th}}{R} \left(k_\perp \rho_i\right)^2 \Phi_k h_k$$

Critical balance:
$$k_{\parallel}v_{th} \sim \tau_k^{-1} \sim \frac{v_{th}}{R} \left(k_{\perp}\rho_i\right)^2 \Phi_k$$

$$\Phi_k \equiv \frac{e\varphi_k}{T} \frac{R}{\rho_i}$$

Outer scale

$$\omega_* h_k \sim \left(\mathbf{v}_E \cdot \nabla F_M \right)_k \sim k_\perp \rho_i \frac{v_{th}}{L_T} \frac{\rho_i}{R} \Phi_k F_M$$

Injection rate comparable to nonlinear decorrelation time:

$$\tau_k^{-1} \sim \omega_*^{out} \sim k_\perp^{out} \rho_i \frac{v_{th}}{L_T}$$

• Combine with critical balance:

$$k_{\parallel}^{out}v_{th} \sim \tau_k^{-1} \sim \omega_*^{out}$$

$$\Rightarrow k_{\parallel}^{out} L_T \sim k_{\perp}^{out} \rho_i$$

Outer scale

$$k_{\parallel}^{out}L_T \sim k_{\perp}^{out}\rho_i$$

- Take parallel length scale to be connection length
- Physical idea: Good curvature and magnetic shear limit parallel extent of turbulence

$$k_{\parallel}^{out} \sim (qR)^{-1} \Rightarrow k_{\perp}^{out} \rho_i \sim \frac{L_T}{qR}$$

- With k_{\parallel}^{out} and k_{\perp}^{out} , can solve for Φ_k^{out} and τ_k^{-1}

$$\Rightarrow \Phi_k^{out} \sim q \left(\frac{R}{L_T}\right)^2 \quad \text{and} \quad \tau_k^{-1} \sim \frac{v_{th}}{qR}$$

Heat flux

$$k_{\perp}^{out} \rho_i \sim rac{L_T}{qR}$$
 and $\tau_k^{-1} \sim rac{v_{th}}{qR}$

• Turbulence scale is

$$1/k_{\perp}^{out} \sim q\rho_i \sim (B/B_{\theta})\rho_i \sim \rho_{\theta,i}$$

• Assume most energy contained in outer scale and use diffusive estimate for heat flux:

$$\begin{aligned} Q &\sim \chi \frac{R}{L_T} \quad \text{with} \quad \chi \sim \frac{\left(\Delta x\right)^2}{\Delta t} \sim \frac{\left(k_{\perp}^{out}\right)^{-2}}{\tau_k} \\ &\Rightarrow Q \sim q \left(\frac{R}{L_T}\right)^3 \end{aligned}$$

Simulation system

- Use continuum, local, delta-f GK code GS2
- Base case is Cyclone (widely benchmarked)
 - Unshifted, circular flux surface
 - Safety factor is 1.4, magnetic shear=0.8, R/Ln=2.2, R/LT=6.9
 - Electrostatic
 - Modified Boltzmann response for electrons
- Fix R/LT and vary q from 1.4 up to 7.0
- Fix q and vary R/LT from 6.9 to 17.5

Turbulence scaling tests

Note that Q at large R/L_T much larger than found in previous studies (box size used here for R/L_T \approx 20 was \approx 1000 ρ_i)

Inertial range

Free energy:
$$W = V^{-1} \sum_{s} \int d^3r \int d^3v \left(\frac{T_s \delta f_s^2}{F_{M,s}}\right)$$

• Flux of free energy (nonlinear invariant) scaleindependent in inertial range:

$$\frac{W_k}{\tau_k} \sim \left(k_\perp \rho_i\right)^2 \frac{v_{th}}{R} \left(\frac{\rho_i}{R}\right)^2 \Phi_k^3 \sim \text{constant}$$

Matching

Inertial range

Free energy:
$$W = V^{-1} \sum_{s} \int d^3r \int d^3v \left(\frac{T_s \delta f_s^2}{F_{M,s}}\right)$$

• Flux of free energy (nonlinear invariant) scaleindependent in inertial range:

$$\frac{W_k}{\tau_k} \sim \left(k_\perp \rho_i\right)^2 \frac{v_{th}}{R} \left(\frac{\rho_i}{R}\right)^2 \Phi_k^3 \sim \text{constant}$$

$$\Phi_k \sim q^{1/3} \left(\frac{R}{L_T}\right)^{4/3} (k_\perp \rho_i)^{-2/3}$$

Inertial range

- Use critical balance with Φ_k to relate $k_{||}$ and k_{\perp}

$$k_{\parallel}qR \sim \left(k_{\perp}\rho_{i}\frac{qR}{L_{T}}\right)^{4/3}$$

• Convert expression for Φ_k into 1D spectrum

$$\int dk_y \ \rho_i E(k_y) = V^{-1} \int d^3 r \ \Phi^2$$

$$E(k_y) \sim q^{2/3} \left(\frac{R}{L_T}\right)^{8/3} (k_y \rho_i)^{-7/3}$$

Inertial range spectra

$$\int dk_y \ \rho_i E(k_y) = V^{-1} \int d^3 r \ \Phi^2$$

Critical balance test

Inertial range critical balance

Dissipation scale

$$\left(k_{\perp}\rho_{i}\right)_{c} \sim q^{1/5} \left(\frac{R}{L_{T}}\right)^{4/5} \left(\frac{v_{th}}{\nu_{i}R}\right)^{3/5}$$

Back to big picture

Conclusions

- Simple scalings for turbulence spatial scales and amplitudes derived and numerically confirmed.
 Predictions for scalings of:
 - Turbulence amplitude, heat flux, peak space scale, spectrum, decorrelation time, cutoff scale
- Critical balance robustly satisified plasma turbulence three dimensional
- Scalings allow for B/Bp expansion of higher order GK Eq., making it tractable to solve numerically. This allows us to address problem of intrinsic rotation.

Dissipation scale

• In analogy with Reynolds number, define

$$Do \equiv \left(\nu_i \tau_{\rho_i}\right)^{-1} \sim q^{1/3} \left(\frac{R}{L_T}\right)^{4/3} \left(\frac{v_{th}}{\nu_i R}\right)$$

• At dissipation scale, dissipation rate comparable to nonlinear decorrelation rate

$$\nu_i \left(\frac{v_{th}}{\delta v}\right)^2 \sim \tau_{nl}^{-1} \Rightarrow \text{Do} \sim \left(\frac{v_{th}}{\delta v}\right)^2 \frac{\tau_{nl}}{\tau_{\rho_i}} \sim \left(\frac{v_{th}}{\delta v}\right)^2 \left(\frac{\ell_\perp}{\rho_i}\right)^2 \frac{\Phi_{\rho_i}}{\Phi_\ell}$$

Dissipation scale assumed below ion Larmor scale

Perpendicular phase mixing

Schekochihin et al., PPCF 2008

- Drift velocity = $F[\langle \Phi \rangle]$
- Particles with Larmor orbits separated by turbulence wavelength 'see' different averaged potential
- Drift velocities
 decorrelated, thus phase
 mixing

$$\frac{k_{\perp} \delta v_{\perp}}{\Omega} \sim 1$$
$$\Rightarrow \frac{\delta v_{\perp}}{v_{th}} \sim (k_{\perp} \rho_i)^{-1}$$

Dissipation scale

$$\mathrm{Do} \sim \left(\frac{v_{th}}{\delta v} \frac{\ell_{\perp}}{\rho_i}\right)^2 \frac{\Phi_{\rho_i}}{\Phi_\ell} \qquad \qquad \frac{\delta v}{v_{th}} \sim \frac{\ell_{\perp}}{\rho_i}$$

• Carrying out inertial range analysis (as before, but with $J_0(k_\perp \rho_i) \sim (k_\perp \rho_i)^{-1/2}$) gives*

$$\Phi_{\ell} \sim \left(\frac{\ell_{\perp}}{\rho_i}\right)^{7/6} \Rightarrow \left(k_{\perp}\rho_i\right)_c \sim \text{Do}^{3/5}$$
$$(k_{\perp}\rho_i)_c \sim q^{1/5} \left(\frac{R}{L_T}\right)^{4/5} \left(\frac{v_{th}}{\nu_i R}\right)^{3/5}$$

*Schekochihin et al., PPCF 2008