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What’s the point?	



ITER 

Approximate size of 
device without 

significant 
turbulent transport 



Suppression of turbulence	



JT-60U data. Y. Miura et al. 

•  We know it’s possible to suppress turbulence, as 
reduced transport regions (transport barriers) are 
routinely observed in experiment 

C-Mod data. D. A. Mossessian et al. 



What we have done	



•  Determined ITG turbulence scalings with important 
plasma parameters (safety factor and temp. grad.) 



Outline	



•  Plasma turbulence in tokamaks -- description 
and gyrokinetic model 

•  Brief overview of basic turbulence concepts 
•  Conjectures on ITG turbulence, derivation of 

scaling laws, numerical tests 
•  Conclusions 
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Low-amplitude, small-scale, anisotropic turbulence 

GYRO simulation 

Resultant turbulence	





Gyrokinetic model	



Dynamics slow compared to Larmor frequency so gyroaverage:  

Removes fast 
gyromotion from 
problem, eliminating 
gyroangle as a phase 
space variable 

Now solving for 
trajectories of rings of 
charge as they stream 
along mean field and 
slowly drift across it  



Delta-f gyrokinetic model	



Decompose f into mean and fluctuating components: 

Turbulent fluctuations are low amplitude: 

Mean varies perpendicular to mean field on system size 
while fluctuations vary on Larmor scale:  

Turbulence slow compared to gyrofrequency, but fast 
compared to mean profile evolution: 

f = F + δf

∂ ln δf

∂t
∼ ω ∼ �Ω

δf ∼ �f

∂ lnF

∂t
∼ �2ω ∼ �3Ω

∇⊥ lnF ∼ L−1 ∇⊥ ln δf ∼ ρ−1

Fluctuations are anisotropic with respect to the mean field: 

∇� ln δf ∼ L−1



Gyrokinetic-Poisson system	



Quasineutrality: 

Gyrokinetic equation: 
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Turbulence spectrum: outer scale	



Outer scale 

•  Outer scale = energy-containing scale, roughly 
corresponds to where energy injected 



Energy balance and dissipation	



∂W

∂t
+

�

s

Ts

�

V
hs �vE�R · ∇ lnFM,s =

�

s

�

V

hsTs

FM,s
�C[hs]�R

Dissipation 
range 



Turbulence cascade	



•  Large eddies break into smaller eddies repeatedly, 
transferring energy to smaller scales 

… 



Turbulence cascade: inertial range	



Inertial range 

•  Inertial range contains scales that ‘feel’ neither 
injection mechanism or dissipation mechanism 



Big picture	



Inertial range 

•  Want to predict how each of the quantities in this 
cartoon depend on safety factor and temp. gradient 

Outer scale 

Dissipation 
range 
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Conjectures	



•  Smooth, isotropic v-space 
•  Isotropy in plane perpendicular to B-field 
•  Parallel streaming time and nonlinear turnover 

time comparable at all scales (critical balance) 
•  Parallel length at outer scale set by system size 

(connection length) 



Smooth, isotropic v-space	





Smooth, isotropic v-space	



Assume 

Quasineutrality: 
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Spatial isotropy	


•  Physical idea: linear drive favors structures with  

a             .  Larger      formed through magnetic 
and flow shear: 
kx � ky kx

x

y x



Critical balance	



•  Physical idea: two points along field correlated only 
if information propagates between them before 
turbulence decorrelated in perpendicular plane 

hk

τk
∼ (vE ·∇h)k ∼

vth

R
(k⊥ρi)

2 Φkhk

k�vth ∼ τ−1
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R
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R
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Critical 
balance: 



Big picture	



Outer scale 



Outer scale	



•  Injection rate comparable to nonlinear decorrelation 
time: 

•  Combine with critical balance: 

ω∗hk ∼ (vE ·∇FM )k ∼ k⊥ρi
vth

LT
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R
ΦkFM
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Outer scale	



•  Take parallel length scale to be connection length 
•  Physical idea: Good curvature and magnetic shear 

limit parallel extent of turbulence 

•  With         and         , can solve for          and  
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Heat flux	



•  Turbulence scale is  

•  Assume most energy contained in outer scale and 
use diffusive estimate for heat flux: 

Q ∼ χ
R

LT
χ ∼ (∆x)2
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⊥ ∼ qρi ∼ (B/Bθ)ρi ∼ ρθ,i



Simulation system	



•  Use continuum, local, delta-f GK code GS2 
•  Base case is Cyclone (widely benchmarked) 

–  Unshifted, circular flux surface 
–  Safety factor is 1.4, magnetic shear=0.8, R/Ln=2.2,   

R/LT=6.9 
–  Electrostatic 
–  Modified Boltzmann response for electrons 

•  Fix R/LT and vary q from 1.4 up to 7.0 
•  Fix q and vary R/LT from 6.9 to 17.5 



Turbulence scaling tests	



Note that Q at large R/LT much larger than found in previous studies 
(box size used here for R/LT≈20 was ≈1000ρi) 
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Inertial range 



Inertial range	



•  Flux of free energy (nonlinear invariant) scale-
independent in inertial range: 

Free energy: 

Wk

τk
∼ (k⊥ρi)
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Matching	



Match solution from outer and inertial scales 



Inertial range	



•  Flux of free energy (nonlinear invariant) scale-
independent in inertial range: 

Free energy: 
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Inertial range	



•  Use critical balance with       to relate      and 

•  Convert expression for       into 1D spectrum 
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Inertial range spectra	





Critical balance test	



Correlation 
function: 

k�qR ∼ (k⊥ρi)
4/3



Inertial range critical balance	
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Dissipation scale	



Dissipation 
range 



Back to big picture	





Conclusions	



•  Simple scalings for turbulence spatial scales and 
amplitudes derived and numerically confirmed.  
Predictions for scalings of: 
–  Turbulence amplitude, heat flux, peak space scale, 

spectrum, decorrelation time, cutoff scale 
•  Critical balance robustly satisified – plasma 

turbulence three dimensional 
•  Scalings allow for B/Bp expansion of higher order GK 

Eq., making it tractable to solve numerically.  This 
allows us to address problem of intrinsic rotation. 



Dissipation scale	



•  In analogy with Reynolds number, define 

•  At dissipation scale, dissipation rate comparable to 
nonlinear decorrelation rate 

•  Dissipation scale assumed below ion Larmor scale 



Perpendicular phase mixing	



Schekochihin et al., PPCF 2008 

•  Drift velocity = 
•  Particles with Larmor 

orbits separated by 
turbulence wavelength 
‘see’ different averaged 
potential 

•  Drift velocities 
decorrelated, thus phase 
mixing 



Dissipation scale	



•  Carrying out inertial range analysis (as before, but 
with                                    ) gives* 

*Schekochihin et al., PPCF 2008 


