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•  Grid spacings in space (3D), velocity (3D) and time: 

•  Grid points required: 

•  Factor of ~1010 more than largest fluid turbulence 
calculations 

•  Direct simulation not possible; need physics guidance 

(Lx/∆x)3 × (Lv/∆v)3 × (Lt/∆t) ∼ 1025



Improved simulation cost 

•  Field-aligned coordinates take advantage of                                       
a              :  savings of ~1000 

•  Statistical periodicity in poloidal direction takes 
advantage of                  : savings of ~100 

•  Total saving of ~105 

•  Factor of ~105 more than largest fluid turbulence 
calculations 

•  Simulation still not possible; need multiscale 
approach 
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•  Separation of space scales: 
∇F ∼ F/L, ∇‖δf ∼ δf/L, ∇⊥δf ∼ δf/ρ

•  “Smooth” velocity space: 
ε ! ν/ω ! 1⇒

√
ε ! δv/vth ! 1

•  Sub-sonic drifts: vD ∼ εvth
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Key results: turbulence and transport 

Gyrokinetic equation for turbulence: 

Moment equations for equilibrium evolution: 
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•  Small regions of fine grid (for 
turbulence) embedded in “coarse” 
radial grid (for equilibrium) 

•  Turbulent fluxes and heating in 
small regions calculated using flux 
tubes (equivalent to flux surfaces) 

•  Flux tubes = radial grid points in 
large-scale transport equations 

Flux tube spatial simulation  
domain for microturbulence 

Flux tube temporal simulation 
domain for microturbulence 

•  Small regions of fine grid (for 
turbulence) embedded in “coarse” 
time grid (for equilibrium) 

•  Steady-state (time-averaged) 
turbulent fluxes and heating in this 
volume simulated using flux tubes 

•  Flux tube sim = time grid point in 
long-time transport equations  



Flux tubes minimize flux surface grid points 

Image of MAST simulation courtesty of G. Stantchev  



More flux tube savings 

•  (Near) perfect 
parallelization: 
–  Only communication 

between flux tubes occurs 
when solving transport 
equations, which is 
infrequent 

–  Flux tube calculations are 
independent 

Strong scaling of a single 
flux tube simulation (GS2) 



Validity of flux tube approximation 

•  Lines represent 
global 
simulations from 
GYRO 

•  Dots represent 
local (flux tube) 
simulations from 
GS2 

•  Excellent 
agreement for  

*J. Candy, R.E. Waltz and W. Dorland, The local limit of global gyrokinetic 
simulations, Phys. Plasmas 11 (2004) L25. 



Multiscale simulation cost 
•  Grid spacings in radius and velocity (2D) roughly 

unchanged 

•  Savings in time domain: 

•  Savings due to radial parallelization: 

•  Required number of grid points: 

•  Savings of ~103 over conventional numerical simulation 

Coarse space-time grid 
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 Turbulence: 

Transport: ∆τ ∼ 10−2s, Lτ ∼ 1s

Lr ∼ (100/nr) cm, nr ∼ 10

(Lr/∆r)× (Lθ/∆θ)× (Lφ/∆φ)× (Lv/∆v)2 × (Lt/∆t)× (Lτ/∆τ) ∼ 1017



Trinity schematic 

Initial 
profiles 

Steady-state 
turbulent fluxes 

and heating 

Updated 
profiles GS2 

Flux tube 1 

Flux tube 2 

Flux tube N 

Flux tube 3 
Transport 

solver 



Trinity schematic 

Initial 
profiles 

Steady-state 
turbulent fluxes 

and heating 

Updated 
profiles GS2 

Flux tube 1 

Flux tube 2 

Flux tube N 

Flux tube 3 
Transport 

solver 



Sampling profile with flux tubes 



Sampling profile with flux tubes 



Sampling profile with flux tubes 



Trinity schematic 

Initial 
profiles 

Steady-state 
turbulent fluxes 

and heating 

Updated 
profiles GS2 

Flux tube 1 

Flux tube 2 

Flux tube N 

Flux tube 3 
Transport 

solver 



Trinity transport solver 

•  Transport equations are stiff, nonlinear PDEs: 

•  General (single-step) time discretization: 

•  2nd order centered difference in radial coordinate 
(equally spaced grid): 

*S.C. Jardin, G. Bateman, G.W. Hammett, and L.P. Ku, On 1D diffusion problems with 
a gradient-dependent diffusion coefficient, J. Comp. Phys. 227, 8769 (2008). 



Trinity transport solver 

•  Treat nonlinear terms implicitly with (single-iteration) 
Newton’s Method 

•  Simplifying assumption: normalized fluxes depend 
primarily on gradient scale lengths 



Trinity transport solver 
•  Calculating flux derivative approximations: 

–  at every radial grid point, simultaneously calculate                           
and                     a             using 2 different flux tubes 

–  use 2-point finite differences: 

•  Example calculation with 10 radial grid points: 
–  evolve density and electron/ion pressures 
–  simultaneously calculate fluxes for equilibrium profile and 

for 3 separate profiles (one for each perturbed gradient 
scale length) 

–  total of 40 flux tube simulations running simultaneously 
–  ~2000-4000 processors per flux tube => scaling to over 

100,000 processors with >80% efficiency 



Trinity transport solver 
•  Nonlinear turbulence simulation runs until fluxes converged 

–  convergence criterion: 

–  turbulence for new transport time step initialized to saturated 
state from previous transport time step -- faster convergence 

•  Sources and initial profiles are analytically specified.  In 
process of adding capability to read in experimental 
profiles for these quantities 

•  Option to use model fluxes (IFS-PPPL, offset linear, 
quasilinear, etc.) 

•  Boundary conditions: 
–  fixed n and T at outer edge of simulation domain 
–  zero flux boundary condition at magnetic axis 
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Preliminary tests for Trinity 
•  Test 1: choose fluxes so that heat transport equations 

reduce to diffusion equation 

•  Test 2: choose fluxes so that heat transport equations 
reduce to advection equation 
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Conclusions 

•  Multiscale nature of turbulent transport can be exploited 
to provide significant savings in time domain 

•  Highly parallelized -- should scale to over 105 processors 

•  Trinity (interfaced with GS2 and soon GENE) is capable 
of running with multiple species, electromagnetic 
effects, realistic geometry, physical collisional effects 
(such as heating), etc. 

•  Still in development: higher order implicit scheme (BDF3), 
higher order finite differences, model for momentum 
transport, etc. 

•  Turbulent transport/heating code like Trinity necessary 
and feasible part of full numerical tokamak simulations 


