The TRINITY algorithm: local gyrokinetics + global transport = predictive model of core plasma dynamics

Michael Barnes
University of Oxford
UKAEA Culham

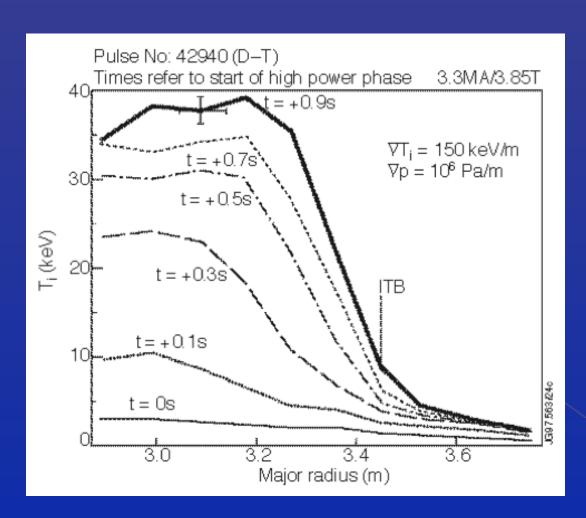
Overview

- Motivation
- Theoretical framework
- Numerical approach
- Example simulation results
- Conclusions

Overview

- Motivation
- Theoretical framework
- Numerical approach
- Example simulation results
- Conclusions

Objective

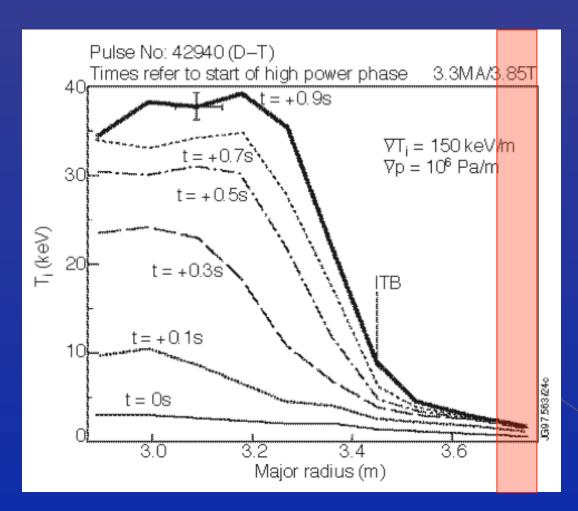


Core: multi-physics, multi-scale

Edge: multi-physics, multi-scale

Connor et al. (2004)

Objective



Core: multi-physics, multi-scale

- kinetic turbulence
- neoclassical
- sources
- magnetic equilibrium
- MHD

Connor et al. (2004)

Scale separation in ITER

$$\frac{\partial n}{\partial t} + \nabla \cdot \mathbf{\Gamma} = S_n$$
 $\frac{\partial p}{\partial t} + \nabla \cdot \mathbf{Q} + \dots = S_p$

Physics	Perpendicular spatial scale	Temporal scale
Turbulence from ETG modes	k_{\perp}^{-1} ~ 0.001 - 0.1 cm	ω_* ~ 0.5 - 5.0 MHz
Turbulence from ITG modes	k_{\perp}^{-1} ~ 0.1 - 8.0 cm	ω_* ~ 10 - 100 kHz
Transport barriers	Measurements suggest width ~ 1 - 10 cm	100 ms or more in core?
Discharge evolution	Profile scales ~ 100 cm	Energy confinement time ~ 2 - 4 s

Direct simulation cost

• Grid spacings in space (3D), velocity (3D) and time:

$$\Delta x \sim 0.001 \ cm, \ L_x \sim 100 \ cm$$

$$\Delta v \sim 0.1 \ v_{th}, \ L_v \sim v_{th}$$

$$\Delta t \sim 10^{-7} \ s$$
, $L_t \sim 1 \ s$

Temp

r/a

Grid points required:

$$(L_x/\Delta x)^3 \times (L_v/\Delta v)^3 \times (L_t/\Delta t) \sim 10^{25}$$

- Factor of ~10¹⁰ more than largest fluid turbulence calculations
- Direct simulation not possible; need physics guidance

Improved simulation cost

- Field-aligned coordinates take advantage of $k_{\parallel} \ll k_{\perp}$: savings of ~1000
- Statistical periodicity in poloidal direction takes advantage of $k_\perp^{-1} \ll L_\theta$: savings of ~100
- Eliminate gyro-angle variable: savings of ~10
- Total saving of ~10⁶
- Factor of ~10⁴ more than largest fluid turbulence calculations
- Simulation still not possible; need multiscale approach

Overview

- Motivation
- Theoretical framework
- Numerical approach
- Example simulation results
- Conclusions

$$\frac{\partial f}{\partial t} + \frac{d\mathbf{R}}{dt} \cdot \frac{\partial f}{\partial \mathbf{R}} + \frac{d\mu}{dt} \frac{\partial f}{\partial \mu} + \frac{dE}{dt} \frac{\partial f}{\partial E} + \frac{d\vartheta}{dt} \frac{\partial f}{\partial \vartheta} = C[f]$$

$$\frac{\partial f}{\partial t} + \frac{d\mathbf{R}}{dt} \cdot \frac{\partial f}{\partial \mathbf{R}} + \frac{d\mu}{dt} \frac{\partial f}{\partial \mu} + \frac{dE}{dt} \frac{\partial f}{\partial E} + \frac{d\vartheta}{dt} \frac{\partial f}{\partial \vartheta} = C[f]$$

Turbulent fluctuations are low amplitude:

$$f = F + \delta f$$
 $\delta f \sim \epsilon f$

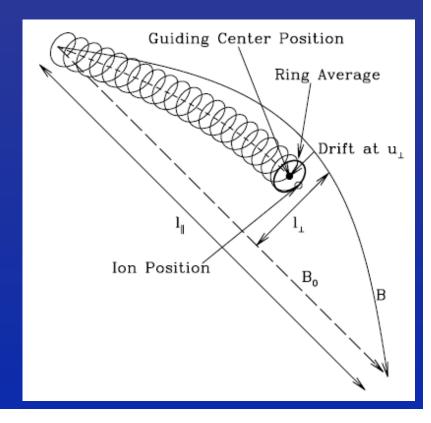
$$\frac{\partial f}{\partial t} + \frac{d\mathbf{R}}{dt} \cdot \frac{\partial f}{\partial \mathbf{R}} + \frac{d\mu}{dt} \frac{\partial f}{\partial \mu} + \frac{dE}{dt} \frac{\partial f}{\partial E} + \frac{d\vartheta}{dt} \frac{\partial f}{\partial \vartheta} = C[f]$$

Turbulent fluctuations are low amplitude:

$$f = F + \delta f$$
 $\delta f \sim \epsilon f$

Separation of time scales:

$$\frac{\partial_t \delta f}{\delta f} \sim \omega \sim \epsilon \Omega$$



$$\frac{\partial f}{\partial t} + \frac{d\mathbf{R}}{dt} \cdot \frac{\partial f}{\partial \mathbf{R}} + \frac{d\mu}{dt} \frac{\partial f}{\partial \mu} + \frac{dE}{dt} \frac{\partial f}{\partial E} + \frac{d\vartheta}{dt} \frac{\partial f}{\partial \vartheta} = C[f]$$

Turbulent fluctuations are low amplitude:

$$f = F + \delta f$$
 $\delta f \sim \epsilon f$

Separation of time scales:

$$\frac{\partial_t \delta f}{\delta f} \sim \omega \sim \epsilon \Omega \qquad \frac{\partial_t F}{F} \sim \tau^{-1} \sim \epsilon^2 \omega$$

$$\frac{\partial f}{\partial t} + \frac{d\mathbf{R}}{dt} \cdot \frac{\partial f}{\partial \mathbf{R}} + \frac{d\mu}{dt} \frac{\partial f}{\partial \mu} + \frac{dE}{dt} \frac{\partial f}{\partial E} + \frac{d\vartheta}{dt} \frac{\partial f}{\partial \vartheta} = C[f]$$

Turbulent fluctuations are low amplitude:

$$f = F + \delta f$$
 $\delta f \sim \epsilon f$

Separation of time scales:

$$\frac{\partial_t \delta f}{\delta f} \sim \omega \sim \epsilon \Omega \qquad \frac{\partial_t F}{F} \sim \tau^{-1} \sim \epsilon^2 \omega$$

Separation of space scales:

$$\nabla F \sim F/L, \quad \nabla_{\parallel} \delta f \sim \delta f/L, \quad \nabla_{\perp} \delta f \sim \delta f/\rho$$

$$\frac{\partial f}{\partial t} + \frac{d\mathbf{R}}{dt} \cdot \frac{\partial f}{\partial \mathbf{R}} + \frac{d\mu}{dt} \frac{\partial f}{\partial \mu} + \frac{dE}{dt} \frac{\partial f}{\partial E} + \frac{d\vartheta}{dt} \frac{\partial f}{\partial \vartheta} = C[f]$$

Turbulent fluctuations are low amplitude:

$$f = F + \delta f$$
 $\delta f \sim \epsilon f$

Separation of time scales:

$$\frac{\partial_t \delta f}{\delta f} \sim \omega \sim \epsilon \Omega \qquad \frac{\partial_t F}{F} \sim \tau^{-1} \sim \epsilon^2 \omega$$

Separation of space scales:

$$\nabla F \sim F/L$$
, $\nabla_{\parallel} \delta f \sim \delta f/L$, $\nabla_{\perp} \delta f \sim \delta f/\rho$

"Smooth" velocity space:

$$\epsilon \lesssim \nu/\omega \lesssim 1 \Rightarrow \sqrt{\epsilon} \lesssim \delta v/v_{th} \lesssim 1$$

$$\frac{\partial f}{\partial t} + \frac{d\mathbf{R}}{dt} \cdot \frac{\partial f}{\partial \mathbf{R}} + \frac{d\mu}{dt} \frac{\partial f}{\partial \mu} + \frac{dE}{dt} \frac{\partial f}{\partial E} + \frac{d\vartheta}{dt} \frac{\partial f}{\partial \vartheta} = C[f]$$

Turbulent fluctuations are low amplitude:

$$f = F + \delta f$$
 $\delta f \sim \epsilon f$

Separation of time scales:

$$\frac{\partial_t \delta f}{\delta f} \sim \omega \sim \epsilon \Omega \qquad \frac{\partial_t F}{F} \sim \tau^{-1} \sim \epsilon^2 \omega$$

Separation of space scales:

$$\nabla F \sim F/L$$
, $\nabla_{\parallel} \delta f \sim \delta f/L$, $\nabla_{\perp} \delta f \sim \delta f/\rho$

"Smooth" velocity space:

$$\epsilon \lesssim \nu/\omega \lesssim 1 \Rightarrow \sqrt{\epsilon} \lesssim \delta v/v_{th} \lesssim 1$$

• Sub-sonic drifts: $v_D \sim \epsilon v_{th}$

Key results: turbulence and transport

$$f = F_0 + h + \dots$$
 $F_0 = F_M(\mathbf{R}) \exp\left(-\frac{q\Phi}{T}\right)$

Key results: turbulence and transport

$$f = F_0 + h + \dots$$
 $F_0 = F_M(\mathbf{R}) \exp\left(-\frac{q\Phi}{T}\right)$

Gyrokinetic equation for turbulence:

$$\partial h/\partial t + v_{\parallel} \hat{\mathbf{b}} \cdot \nabla h + \langle \mathbf{v}_{\chi} \rangle_{\mathbf{R}} \cdot \nabla (F_0 + h) + \mathbf{v}_{\mathbf{B}} \cdot \nabla h = \frac{qF_0}{T_0} \frac{\partial \langle \chi \rangle_{\mathbf{R}}}{\partial t} + \langle C[h] \rangle_{\mathbf{R}}$$

Key results: turbulence and transport

$$f = F_0 + h + \dots$$
 $F_0 = F_M(\mathbf{R}) \exp\left(-\frac{q\Phi}{T}\right)$

Gyrokinetic equation for turbulence:

$$\partial h/\partial t + v_{\parallel} \hat{\mathbf{b}} \cdot \nabla h + \langle \mathbf{v}_{\chi} \rangle_{\mathbf{R}} \cdot \nabla (F_0 + h) + \mathbf{v}_{\mathbf{B}} \cdot \nabla h = \frac{qF_0}{T_0} \frac{\partial \langle \chi \rangle_{\mathbf{R}}}{\partial t} + \langle C[h] \rangle_{\mathbf{R}}$$

Moment equations for equilibrium evolution:

$$\frac{\partial n_s}{\partial t} = -\frac{1}{V'} \frac{\partial}{\partial \psi} \left(V' \left\langle \mathbf{\Gamma}_s \cdot \nabla \psi \right\rangle \right) + S_n$$

$$\frac{3}{2} \frac{\partial n_s T_s}{\partial t} = -\frac{1}{V'} \frac{\partial}{\partial \psi} \left(V' \left\langle \mathbf{Q}_s \cdot \nabla \psi \right\rangle \right)$$

$$+ T_s \left(\frac{\partial \ln n_s}{\partial \psi} - \frac{3}{2} \frac{\partial \ln T_s}{\partial \psi} \right) \left\langle \mathbf{\Gamma}_s \cdot \nabla \psi \right\rangle + \frac{\partial \ln T_s}{\partial \psi} \left\langle \mathbf{Q}_s \cdot \nabla \psi \right\rangle$$

$$- \left\langle \int d^3 v \frac{h_s T_s}{F_{0s}} \left\langle C[h_s] \right\rangle_{\mathbf{R}} \right\rangle + n_s \nu_{\epsilon}^{su} \left(T_u - T_s \right) + S_p$$

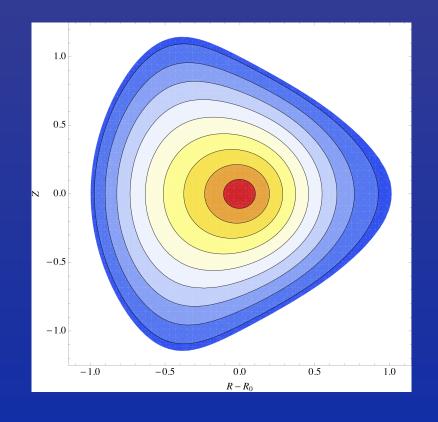
Space-time averages

- Flux surface average
- Intermediate space average:

$$\rho \ll \Delta_{\psi} \ll L$$

 Intermediate time average:

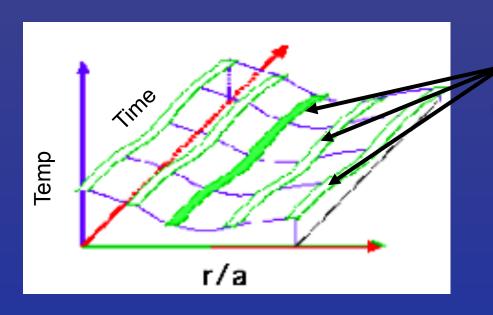
$$au_t \ll \Delta_{ au} \ll au_E$$



Overview

- Motivation
- Theoretical framework
- Numerical approach
- Example simulation results
- Conclusions

Multiscale grid

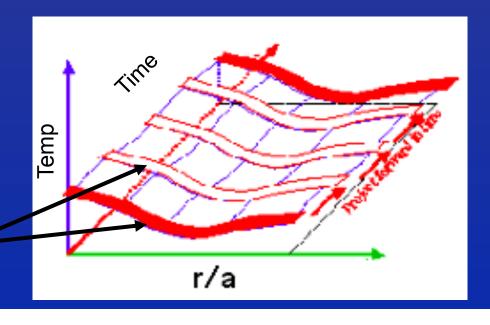


Flux tube simulation domain

 Turbulent fluxes calculated in small regions of fine grid embedded in "coarse" radial grid (for equilibrium)

 Steady-state (timeaveraged) turbulent fluxes calculated in small regions of fine grid embedded in "coarse" time grid (for equilibrium)

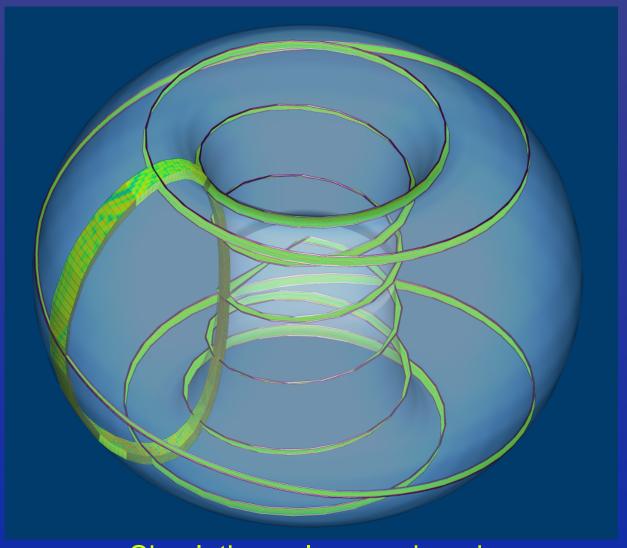
Flux tube simulation domain



Flux tube assumptions

- Macroscopic quantities (density, flow, temperature, etc. constant across simulation domain)
- Gradient scale lengths of macroscopic quantities constant across simulation domain
 - Total gradient NOT constant (corrugations possible due to fluctuation + equilibrium gradients)
- In addition to delta-f assumption that equilibrium quantities constant in time over simulation
- => No important meso-scale physics

Flux tubes minimize flux surface grid points



Simulation volume reduced by factor of ~100

Magnetic geometry

Clebsch coordinates

$$\mathbf{B} = \nabla \psi \times \nabla \alpha$$

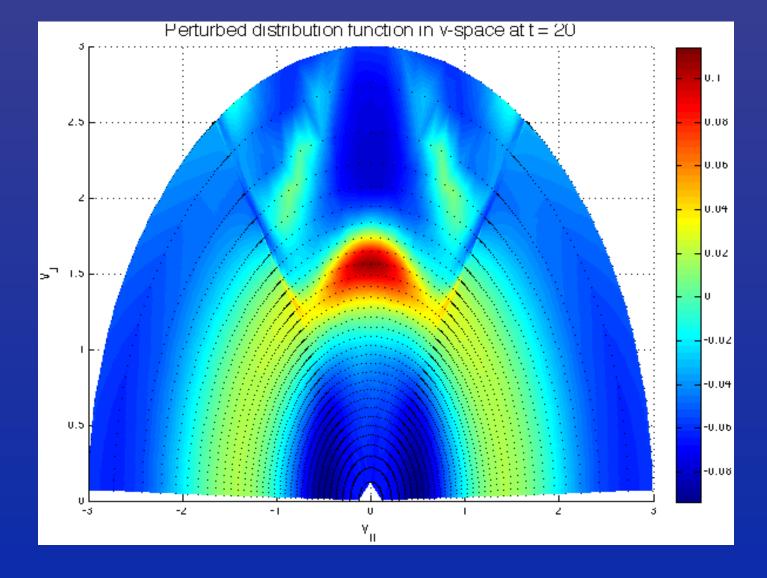
- ullet ψ flux surface label
- ullet α field line label
- $m{ heta}$ ballooning angle



GS2 features

- V-space variables: energy and magnetic moment
- Realistic magnetic geometry
 - Numerical equilibrium from experiment
 - Miller local equilibrium
 - S-alpha model
- Multiple kinetic species
- Model Fokker-Planck collision operator
- Implicit treatment of linear physics
- Includes background flow shear

GS2 v-space

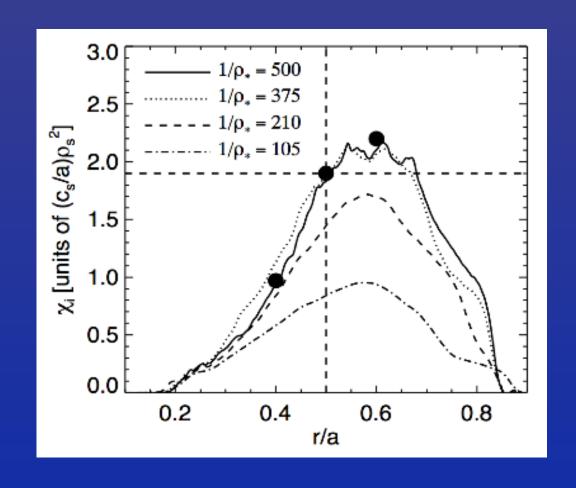


GS2 features

- V-space variables: energy and magnetic moment
- Realistic magnetic geometry
 - Numerical equilibrium from experiment
 - Miller local equilibrium
 - S-alpha model
- Multiple kinetic species
- Model Fokker-Planck collision operator
- Implicit treatment of linear physics
- Includes background flow shear

Validity of flux tube approximation

- Lines represent global simulations from GYRO
- Dots represent local (flux tube) simulations from GS2
- Excellent agreement for $\rho_* \ll 1$

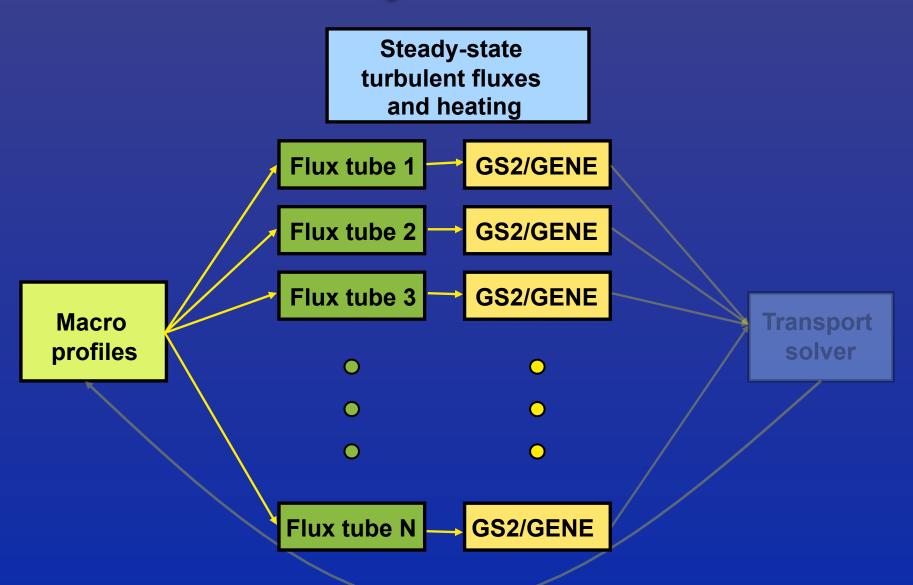


^{*}J. Candy, R.E. Waltz and W. Dorland, The local limit of global gyrokinetic simulations, Phys. Plasmas 11 (2004) L25.

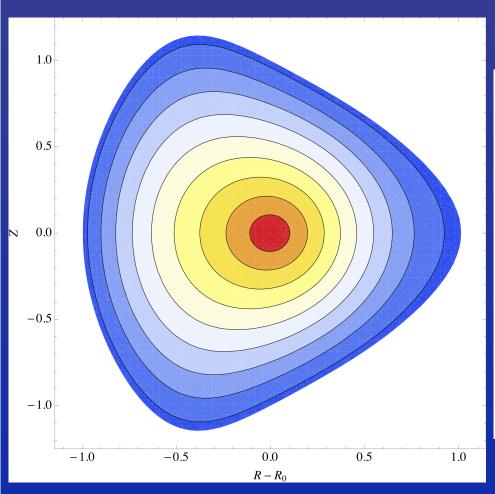
Trinity schematic

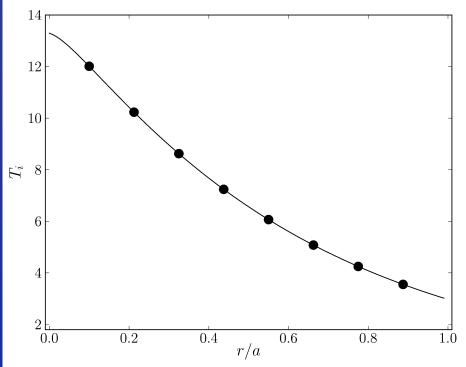


Trinity schematic

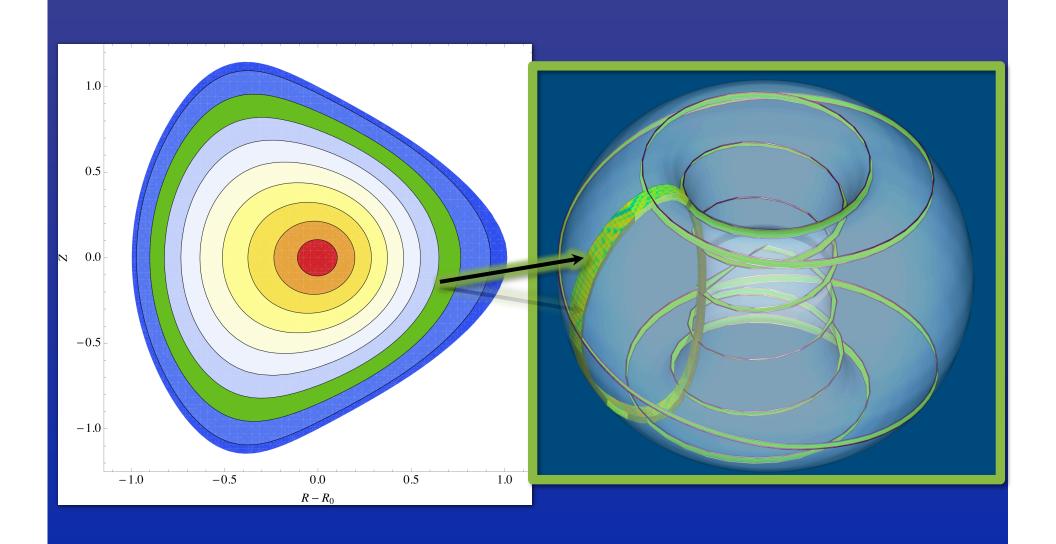


Sampling profile with flux tubes

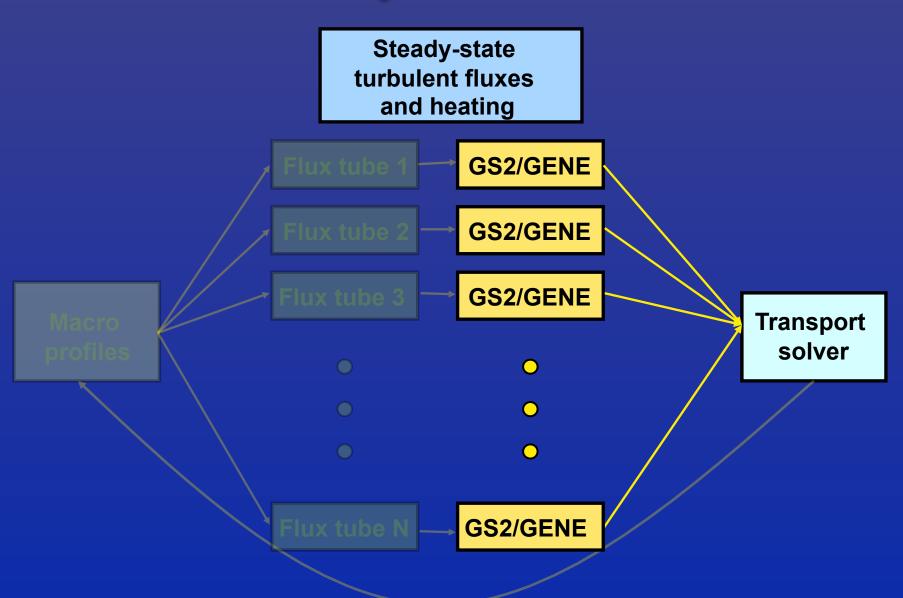




Sampling profile with flux tubes



Trinity schematic



Trinity transport solver

 Need to solve transport equations with fluxes from gyrokinetic turbulence code

$$\frac{\partial n_s}{\partial t} = -\frac{1}{V'} \frac{\partial}{\partial \psi} \left(V' \left\langle \mathbf{\Gamma}_s \cdot \nabla \psi \right\rangle \right) + S_n$$

$$\frac{3}{2} \frac{\partial n_s T_s}{\partial t} = -\frac{1}{V'} \frac{\partial}{\partial \psi} \left(V' \left\langle \mathbf{Q}_s \cdot \nabla \psi \right\rangle \right)$$

$$+ T_s \left(\frac{\partial \ln n_s}{\partial \psi} - \frac{3}{2} \frac{\partial \ln T_s}{\partial \psi} \right) \left\langle \mathbf{\Gamma}_s \cdot \nabla \psi \right\rangle + \frac{\partial \ln T_s}{\partial \psi} \left\langle \mathbf{Q}_s \cdot \nabla \psi \right\rangle$$

$$- \left\langle \int d^3 v \frac{h_s T_s}{F_{0s}} \left\langle C[h_s] \right\rangle_{\mathbf{R}} \right\rangle + n_s \nu_{\epsilon}^{su} \left(T_u - T_s \right) + S_p$$

Trinity transport solver

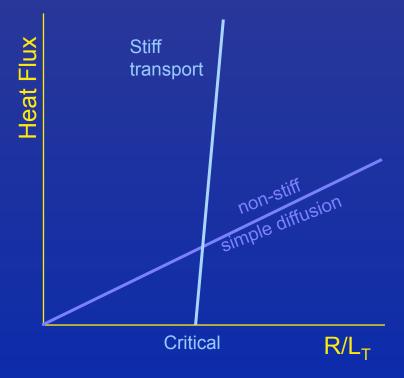
Transport equations are stiff, nonlinear PDEs:

$$\frac{3}{2}\frac{\partial p_s}{\partial t} = -\frac{1}{V'}\frac{\partial}{\partial \psi}\left(V'\langle \mathbf{Q}_s \cdot \nabla \psi \rangle\right) + \dots$$

$$\mathbf{Q}_s = \mathbf{Q}_s(n(\psi, t), T(\psi, t); \psi, t)$$

stiffness

Implicit treatment needed for



$$\frac{\partial n}{\partial t} = H(r) \frac{\partial}{\partial r} G[n(r,t), T(r,t); r, t]$$

General (single-step or multi-step) time discretization:

$$\frac{n^{m+1} - n^m}{\Delta \tau} = \alpha \left[H \frac{\partial G}{\partial r} \right]^{m+1} + (1 - \alpha) \left[H \frac{\partial G}{\partial r} \right]^m$$

 2nd order centered difference in radial coordinate (equally spaced grid):

$$\frac{\partial G}{\partial r} = \frac{G_{j+1/2} - G_{j-1/2}}{\Delta r}$$

- Implicit treatment via Newton's Method) allows for time steps ~0.1 seconds (vs. turbulence sim time ~0.001 seconds)
- Challenge: requires computation of quantities like

$$\Gamma_j^{m+1} \approx \Gamma_j^m + (\mathbf{y}^{m+1} - \mathbf{y}^m) \frac{\partial \Gamma_j}{\partial \mathbf{y}} \bigg|_{\mathbf{y}^m} \qquad \mathbf{y} = [\{n_k\}, \{p_{i_k}\}, \{p_{e_k}\}]^T$$

- Local approximation: $\frac{\partial \Gamma_j}{\partial n_k} = \frac{\partial \Gamma_j}{\partial n_j} + \frac{\partial \Gamma_j}{\partial (R/L_n)_j} \frac{\partial (R/L_n)_j}{\partial n_k}$
- Simplifying assumption: normalized fluxes depend primarily on gradient scale lengths

*S.C. Jardin, G. Bateman, G.W. Hammett, and L.P. Ku, On 1D diffusion problems with a gradient-dependent diffusion coefficient, J. Comp. Phys. **227**, 8769 (2008).

- Calculating flux derivative approximations:
 - at every radial grid point, simultaneously calculate $\Gamma_j[(R/L_n)_j^m]$ and $\Gamma_j[(R/L_n)_j^m+\delta]$ using 2 different flux tubes
 - Possible because flux tubes independent (do not communicate during calculation)
 - Perfect parallelization
 - use 2-point finite differences:

$$\frac{\partial \Gamma_j}{\partial (R/L_n)_i} \approx \frac{\Gamma_j[(R/L_n)_j^m] - \Gamma_j[(R/L_n)_j^m + \delta]}{\delta}$$

Trinity scaling

- Example calculation with 10 radial grid points:
 - evolve density, toroidal angular momentum, and electron/ion pressures
 - simultaneously calculate fluxes for equilibrium profile and for 4 separate profiles (one for each perturbed gradient scale length)
 - total of 50 flux tube simulations running simultaneously
 - ~2000-4000 processors per flux tube => scaling to over 100,000 processors with >85% efficiency

- Nonlinear turbulence simulation runs until fluxes converged
- Turbulence for new transport time step initialized to saturated state from previous transport time step – faster convergence
- Option to use model fluxes (IFS-PPPL, quasilinear, etc.)
- Sources specified analytically or taken from experiment

Boundary conditions

- Various initialization options:
 - Analytic specification
 - Experimental profiles
 - Numerical profiles (from IFS-PPPL, etc.)
- Fix density and temperature at outer edge of simulation domain
 - Predict performance as a function of pedestal height
- Vanishing fluxes at magnetic axis:

$$\psi \to 0: V'Q = V'\Gamma = 0$$

Multiscale simulation cost

- Grid spacings in radius and velocity (2D) roughly unchanged
- Savings in time domain:

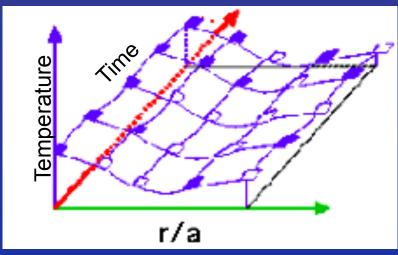
Turbulence:
$$\Delta \tau \sim 10^{-7} s$$
, $L_t \sim 10^{-3} s$

Transport:
$$\Delta \tau \sim 0.1s, \quad L_{\tau} \sim 1s$$

- Savings due to radial parallelization ~ factor 10
- Required number of grid points:

$$(L_r/\Delta r) \times (L_\theta/\Delta \theta) \times (L_\phi/\Delta \phi) \times (L_v/\Delta v)^2 \times (L_t/\Delta t) \times (L_\tau/\Delta \tau) \sim 10^{17}$$

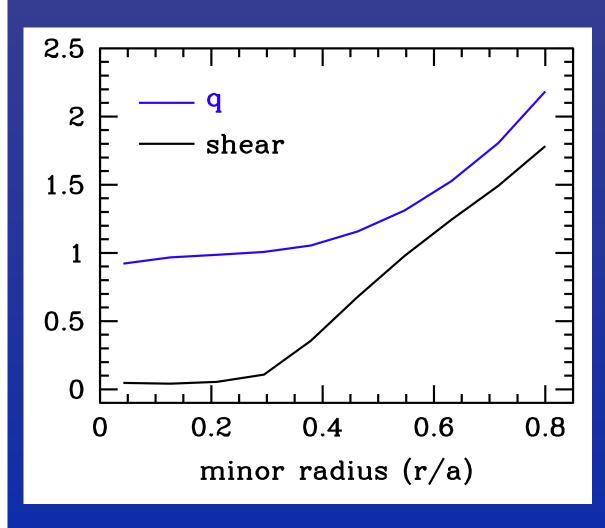
Savings of ~10³ over conventional numerical simulation



Overview

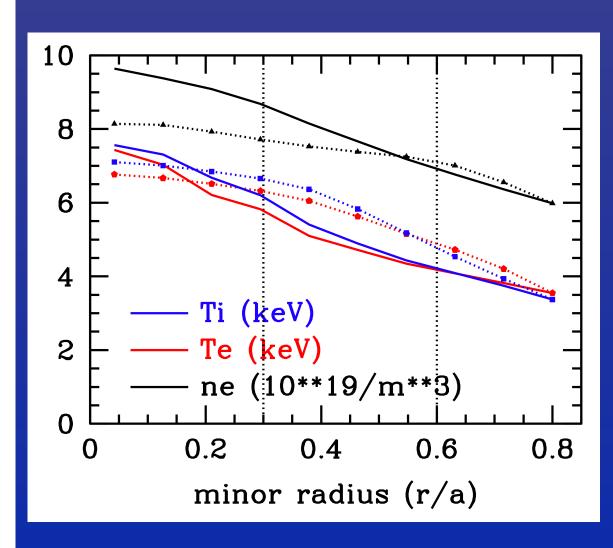
- Motivation
- Theoretical framework
- Numerical approach
- Example simulation results
- Conclusions

JET shot #42982



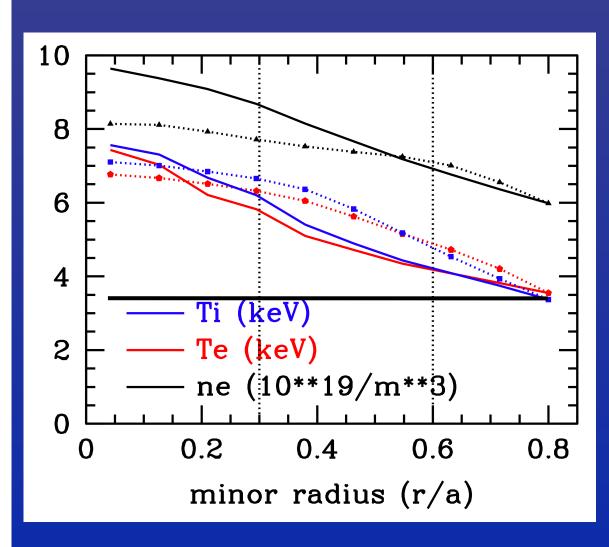
- ITER demo discharge
- H-mode D-T plasma, record fusion energy yield
- Miller local equilibrium model: q, shear, shaping
- B = 3.9 T on axis
- TRANSP fits to experimental data taken from ITER profile database

Evolving density profile



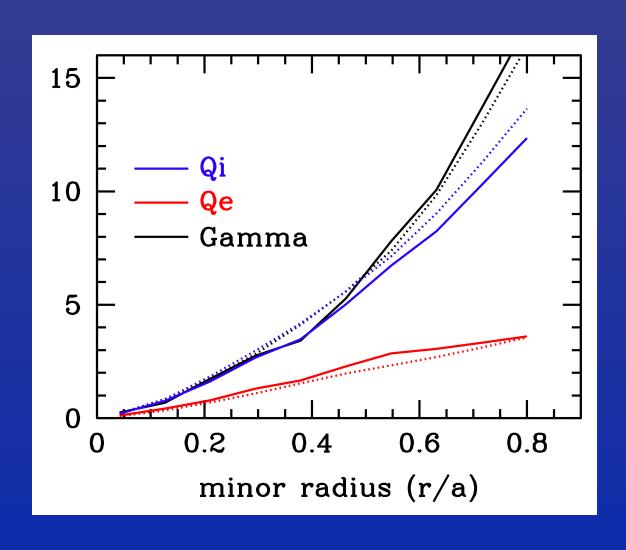
- 10 radial grid points
- Costs ~120k CPU hrs (<10 clock hrs)
- Dens and temp profiles agree within ~15% across device
- Energy off by 5%
- Incremental energy off by 15%
- Sources of discrepancy:
 - Large error bars
 - Flow shear absent

Evolving density profile



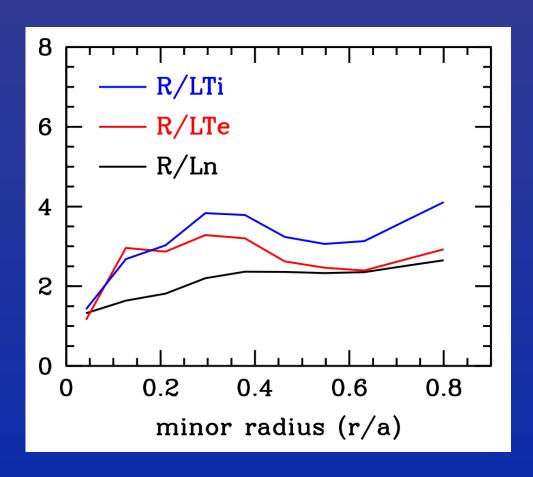
- 10 radial grid points
- Costs ~120k CPU hrs (<10 clock hrs)
- Dens and temp profiles agree within ~15% across device
- Energy off by 5%
- Incremental energy off by 15%
- Sources of discrepancy:
 - Large error bars
 - Flow shear absent

Power balance

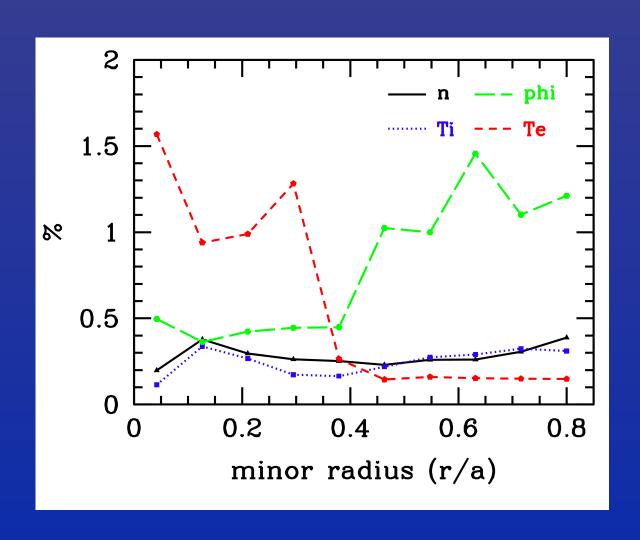


Profile stiffness

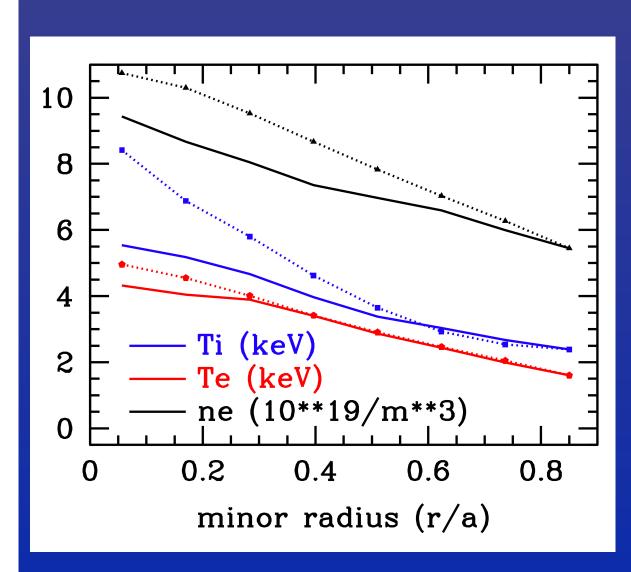
 ~ flat grad scale lengths indicative of stiffness (near critical gradient across most of minor radius)



Fluctuations



AUG shot #13151



- Fluxes calculated with GENE
- 8 radial grid points
- Costs ~400k CPU hrs (<24 clock hrs)
- Dens and electron temp profiles agree within ~10% across device
- Flow shear absent

Overview

- Motivation
- Theoretical framework
- Numerical approach
- Example simulation results
- Conclusions

Conclusions and possibilities

- Multi-scale approach provides savings of ~10⁵
- Routine first-principles simulations of self-consistent interaction between turbulence and equilibrium possible
- Possibilities:
 - Coupling to global GK code (finite ρ_* effects)
 - Momentum transport simulations
 - Magnetic equilibrium evolution
 - MHD stability
 - Improved neoclassical model
 - Pre-conditioning with reduced flux models