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Inserting this relation in (10.53) and integrating over χ, we have finally

∑

k

Pk =
2πt

h̄
g(Eout) |〈out|V |in〉|2. (10.57)

This equation establishes Fermi’s golden rule6 of perturbation theory:
a perturbation V eiωt causes a system to transition to a new state lower

in energy by h̄ω at a rate equal to 2π/h̄ times the mod-square of the

matrix element of V between the initial and final states times the density

of relevant states at the final energy. It is easy to see that if the time-
dependence of the perturbation were e−iωt, it would cause transitions at
the same rate to states higher in energy by h̄ω.

10.3.2 Radiative transition rates

We now use equation (10.51) to calculate the rate at which electromag-
netic waves induce an atom to make radiative transitions between discrete
stationary states. Our treatment is valid when the quantum uncertainty
in the electromagnetic field may be neglected, and the field treated as a
classical object. This condition is satisfied, for example, in a laser, or at
the focus of the antenna of a radio telescope.

Whereas in our derivation of Fermi’s golden rule, we took the fre-
quency ω of the perturbation to be fixed and assumed a continuum of
final states, now that we are considering the case of a discrete final state,
we argue that the electromagnetic field is a superposition of plane waves
of various frequencies, and that we should sum the transition probability
(10.51) that each wave independently contributes. Thus we write

∑

waves

Pk(t) = 4
∑

waves

|〈Ek|δV0|EN 〉|2
sin2 ((h̄ω + Ek − EN )t/2h̄)

(h̄ω + Ek − EN )2
, (10.58)

where δV0 and ω relate to an individual wave.
In vacuo the electric field of an electromagnetic wave is divergence

free, being entirely generated by Faraday’s law, ∇ × E = −∂B/∂t. It
follows that the whole electromagnetic field of the wave can be described
by the vector potential A through the equations

B = ∇×A and E = −∂A/∂t. (10.59)

We are considering a superposition of plane waves, which individually
have a potential

δA(x, t) = δA0 cos(k · x− ωt), (10.60)

where δA0 is a constant vector and k is the wavevector. From equations
(10.59) and (10.60) we have that the wave’s contribution to the electric
field is

δE(x, t) = −ωδA0 sin(k · x− ωt), (10.61)

6 The golden rule was actually first given by P.A.M. Dirac, Proc. Roy. Soc. A, 114,
243 (1927).
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so δE is parallel to δA0. From ∇ · δE = 0 it follows that

k · δA0 = 0, (10.62)

so k · δE = 0 and the wave is transverse. As a consequence of the orthog-
onality of A0 and k, δA0 ·p commutes with k ·x because a component of
momentum always commutes with a perpendicular component of position.

In §10.1.3 we saw that an external electromagnetic field adds to an
atom’s Hamiltonian the perturbing term (10.27) for each electron. In the
present case the perturbation is

δV (x, t) =
e

me
cos(k · x− ωt)δA0 · p

=
e

2me
δA0 · p

(

ei(k·x−ωt) + e−i(k·x−ωt)
)

.
(10.63)

We now make the approximation that the electromagnetic wavelength
is much bigger than the characteristic size of the atom or molecule. This
is a good approximation providing the atom or molecule moves between
states that are separated in energy by much less than αmec

2 (Prob-
lem 10.21), as will be the case for waves with frequencies that are less
than those of soft X-rays. In this case we will have k · x ≪ 1 for all loca-
tions x in the atom or molecule at which there is significant probability
of finding an electron. When this condition is satisfied, it makes sense to
expand the factors e±ik·x in equation (10.63) as a power series and discard
all but the constant term. We then have

δV (x, t) =
e

2me
δA0 · p

(

e−iωt + eiωt
)

, (10.64)

where we have retained the exponentials in time because large values of
t cannot be excluded in the way that we can exclude large values of x.
Finally, we note that in the gross-structure HamiltonianH0, p occurs only
in the term p2/2me, so [x, H0] = i(h̄/me)p. When we use this relation to
eliminate p from equation (10.64), we have

δV (x, t) = −i
eδA0

2h̄
[n · x, H0](e

−iωt + eiωt), (10.65)

where n is the unit vector in the direction of δA0. Thus a plane electro-
magnetic wave gives rise to perturbations with both positive and negative
frequencies. Above we derived the frequency condition ω = (EN −Ek)/h̄
for transitions from |EN 〉 to |Ek〉, so the negative frequency perturbation
is associated with excitation of the system (Ek > EN ), while the positive
frequency perturbation is associated with radiative decays.

We identify the time-independent part of δV as the operator δV0

that occurs in equation (10.58) and then have that the net transition
probability is

∑

waves

Pk(t) =
e2

h̄2

∑

waves

(δA0)
2|〈Ek|[n · x, H0]|EN 〉|2

sin2((h̄ω + Ek − EN )t/2h̄)

(h̄ω + Ek − EN )2

=
e2

4h̄4 (Ek − EN )2
∑

waves

|〈Ek|n · x|EN 〉|2(δA0)
2 sin

2(χt)

χ2
,

(10.66a)



280 Chapter 10: Perturbation theory

where
χ ≡ (h̄ω + Ek − EN )/2h̄. (10.66b)

Even though the expression

ρ =
1

2µ0
{(E/c)2 +B2} (10.67)

for the energy density of an electromagnetic field is quadratic in the field
amplitudes E and B, the volume-averaged energy density of a super-
position of plane waves is just the sum of the energy densities of each
individual wave. Moreover, the electric and magnetic energy densities of
a plane wave are equal, so the energy density contributed by our plane
wave is just twice its electric energy density, and from equations (10.61)
and (10.67) we infer that one wave contributes the time-averaged energy
density

δρ =
ω2(δA0)

2

2µ0c2
= 1

2ω
2ǫ0(δA0)

2, (10.68)

where the second equality uses µ0c
2 = 1/ǫ0. Using this expression to

eliminate δA0 from equation (10.66a), we obtain

∑

waves

Pk(t) =
e2

2ǫ0h̄
4 (Ek − EN )2

∑

waves

|〈Ek|n · x|EN 〉|2δρ
sin2(χt)

ω2χ2
. (10.69)

Let ρ(ω) be the power contained in all waves that have frequencies less
than ω. Then if the radiation is isotropic (no preferred polarisation) we
have

∑

waves

δρ =

∫

dω
dρ

dω

∫

d2Ω

4π
, (10.70)

where d2Ω is an element of the solid angle that embraces a sheaf of the
waves’ polarisation directions n. When we use this expression to replace
the sum on the right side of equation (10.69) by an integral, and we use
equation (10.66b) to replace dω with 2dχ, we obtain

∑

waves

Pk(t) =
e2

ǫ0h̄
4 (Ek − EN )2I

∫

dχ
dρ

dω

sin2(χt)

ω2χ2
, (10.71a)

where

I ≡
1

4π

∫

d2Ω |〈Ek|n · x|EN 〉|2. (10.71b)

Now

|〈Ek|n · x|EN 〉|2 = 〈Ek|n · x|EN 〉〈EN |n · x|Ek〉

=
∑

ij

ninj〈Ek|xi|EN 〉〈EN |xj |Ek〉.
(10.72)

When we integrate this expression over the sphere of unit vectors n, the
only terms in the sum over ij to contribute are those with i = j be-
cause when i 6= j the product ninj is equally often negative as positive.
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Dropping the terms with i 6= j, we write n in terms of the usual polar
coordinates θ, φ: nx = sin θ cosφ, ny = sin θ sinφ, nz = cos θ. Then

I =
1

4π

∫ π

0

dθ sin θ

∫ 2π

0

dφ
{

sin2θ
(

cos2φ|〈Ek|x|EN 〉|2 + sin2φ|〈Ek|y|EN 〉|2
)

+ cos2θ|〈Ek|z|EN〉|2
}

= 1
3

(

|〈Ek|x|EN 〉|2 + 〈Ek|y|EN 〉|2 + |〈Ek|z|EN 〉|2
)

.
(10.73)

After inserting this expression for I into equation (10.71a), we let t become
large and exploit equation (10.56) to evaluate the integral. The result is

∑

waves

Pk(t) = t
πe2

3ǫ0h̄
2

∑

i

|〈Ek|xi|EN 〉|2
dρ

dω

∣

∣

∣

∣

ω=|EN−Ek|/h̄

. (10.74)

The coefficient of t on the right of this equation gives the rate R at which
transitions occur. When we express the cumulative energy density of the
wave-field in terms of frequency ν rather than angular frequency ω and
use equation (8.15) to eliminate ǫ0 in favour of the Bohr radius, the rate
becomes

R =
2π

3a0me

∑

i

|〈Ek|xi|EN 〉|2
dρ

dν

∣

∣

∣

∣

ν=|EN−Ek|/h

. (10.75)

When Ek > EN , the negative-frequency term in equation (10.64)
gives rise to excitations at an identical rate. Thus we have recovered from
a dynamical argument Einstein’s famous result that stimulated emission of
photons occurs, and that the coefficient B that controls the rate of stimu-
lated emission is equal to the absorption coefficient (Box 10.2). Einstein’s
prediction of stimulated emission led 38 years later to the demonstration
of a maser (§5.2.1) and 44 years later to the construction of the first laser
by Theodore Maiman.7 In view of this history, it’s a remarkable fact
that a laser operates in the regime in which the electromagnetic field can
be treated as a classical object, as we have done here. Emission of light
by a humble candle, by contrast, is an inherently quantum-mechanical
phenomenon because it occurs through spontaneous emission. Our treat-
ment does not include spontaneous emission because we have neglected
the quantum uncertainty in the electromagnetic field. This uncertainty
endows the field with zero-point energy (§3.1), and spontaneous emission
can be thought of as emission stimulated by the zero-point energy of the
electromagnetic field.

Using the argument given in Box 10.2, Einstein was able to relate
the coefficient A of spontaneous emission to B. Einstein’s argument does
not yield a numerical value for either A or B. Our quantum mechanical

7 The word ‘laser’ is an acronym for “light amplification by stimulated emission”.
Curiously Maiman’s paper (Nature, 187, 493 (1960)) about his laser was rejected by
the Physical Review.
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Box 10.2: Einstein A and B coefficients

In 1916, when only the merest fragments of quantum physics were
known, Einstein showed (Verh. Deutsch. Phys. Ges. 18, 318) that
systems must be capable of both spontaneous and stimulated emis-
sion of photons, and that the coefficient of stimulated emission must
equal that for absorption of a photon. He obtained these results by
requiring that in thermal equilibrium there are equal rates of absorp-
tion and emission of photons of a given frequency ν by an ensemble of
systems. He considered a frequency ν for which hν = ∆E, the energy
difference between two states |1〉 and |2〉 of the systems. The rate of
absorptions he assumed to be Nabs = BaN1(dρ/dν), where Ba is the
absorption coefficient, N1 is the number of systems in the state |1〉,
and dρ/dν is the energy density in radiation of frequency ν. The rate
of emissions he assumed to be Nem = BeN2(dρ/dν) +AN2, where Be

is the coefficient for stimulated emission and A is that for spontaneous
emission. Equating Nabs to Nem yields

0 = (BeN2 −BaN1)
dρ

dν
+AN2.

In thermal equilibrium N1 = N2e
hν/kT and dρ/dν is given by the

Planck function. Using these relations to eliminate N1 and dρ/dν and
then cancelling N2, we find

0 = (Be −Bae
hν/kT )

8πhν3

c3(ehν/kT − 1)
−A.

In the limit of very large T , ehν/kT → 1, so the factor multiplying the
bracket with the Bs becomes large, and the contents of this bracket
tends to Be − Ba. It follows that these coefficients must be equal.
We therefore drop the subscripts on them, take B out of the bracket,
cancel the factors with exponentials, and finally deduce that

A = 8πh(ν/c)3B. (1)

treatment has yielded a value for B, and with Einstein’s relation (eq. 1 in
Box 10.2) between B and A we can infer the value of A:

A =
16π2hν3

3c3a0me

∑

i

|〈Ek|xi|EN 〉|2. (10.76)

From this we can estimate the typical lifetime for radiative decay from an
excited state of an atom.

When the radiation density ρ is very small, the numberN2 of atoms in
an excited state obeys Ṅ2 = −AN2 (Box 10.2), so N2 decays exponentially
with a characteristic time A−1. Unless some symmetry condition causes
the matrix element in equation (10.76) to vanish, we expect the sum
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of squared matrix elements to be ∼ a20. So the characteristic radiative
lifetime of a state is

τ = A−1 =
mec

2

hν

λ

a0

3

16π2ν
. (10.77)

For an optical transition, hν ∼ 2 eV, λ ∼ 650 nm ∼ 1.2 × 104a0, and
ν ∼ 4.6× 1014Hz, so τ ∼ 10−7 s. It follows that ∼ 4 × 107 oscillations of
the atom occur before the radiation of energy causes the atom to slump
into the lower state.

10.3.3 Selection rules

Equation (10.75) states that the rate of radiative transitions is propor-
tional to the mod-square of the electric dipole operator ez. For this reason
the approximation we made, that k ·x ≪ 1, is called the electric dipole

approximation.
There are important circumstances in which symmetry causes the

matrix element of the dipole operator to vanish between the initial and
final states. Transitions between such states are said to be forbidden

in contrast to allowed transitions, for which the matrix element does
not vanish. Some approximations were involved in our derivation of equa-
tion (10.75), so the transition rate does not necessarily vanish completely
when the matrix element is zero. In fact, forbidden transitions often do

occur, but at rates that are much smaller than the characteristic rate of
allowed transitions (eq. 10.77) because the rate of a forbidden transition is
proportional to terms that we could neglect in the derivation of equation
(10.75). We now investigate relations between the initial and final states
that must be satisfied if the states are to be connected by an allowed
transition. Such relations are called selection rules. The slower rate
of forbidden transitions must be determined by either including the next
term of the Taylor expansion of eik·x, or taking into account the pertur-
bation µBS · B that arises from the interaction of the intrinsic magnetic
moment of an electron with the wave’s magnetic field.

We are interested in matrix elements between states that are eigen-
states of operators that commute with the Hamiltonian H that the atom
would have if it were decoupled from electromagnetic waves. The Hamilto-
nian should include spin–orbit coupling as well as interaction with what-
ever steady external electric or magnetic fields are being applied. The
operator in the matrix element is the component of the position operator
parallel to the electric field of the radiation that is being either absorbed
or emitted.

Even in the presence of an external field, the angular momentum
parallel to the field, which we may call Jz, commutes with H , so the kets
of interest are labelled with m. Since [Jz , z] = 0, the ket z|E,m〉 is an
eigenket of Jz with eigenvalue m. It follows that 〈E,m|z|E′,m′〉 = 0
unless m = m′. This gives us the first selection rule listed in Table 10.1,
namely that when the electric vector of the radiation is parallel to the
imposed field, the quantum number m is unchanged by radiation.


