Introduction to Quantum Mechanics HT 2010

Problems 3 (Christmas vacation)

3.1 After choosing units in which everything, including $\hbar=1$, the Hamiltonian of a harmonic oscillator may be written $H=\frac{1}{2}\left(p^{2}+x^{2}\right)$, where $[x, p]=\mathrm{i}$. Show that if $|\psi\rangle$ is a ket that satisfies $H|\psi\rangle=E|\psi\rangle$, then

$$
\begin{equation*}
\frac{1}{2}\left(p^{2}+x^{2}\right)(x \mp \mathrm{i} p)|\psi\rangle=(E \pm 1)(x \mp \mathrm{i} p)|\psi\rangle . \tag{3.1}
\end{equation*}
$$

Explain how this algebra enables one to determine the energy eigenvalues of a harmonic oscillator.
3.2 Given that $A\left|E_{n}\right\rangle=\alpha\left|E_{n-1}\right\rangle$ and $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$, where the annihilation operator of the harmonic oscillator is

$$
\begin{equation*}
A \equiv \frac{m \omega x+\mathrm{i} p}{\sqrt{2 m \hbar \omega}} \tag{3.2}
\end{equation*}
$$

show that $\alpha=\sqrt{n}$. Hint: consider $\left.|A| E_{n}\right\rangle\left.\right|^{2}$.
3.3 The pendulum of a grandfather clock has a period of 1 s and makes excursions of 3 cm either side of dead centre. Given that the bob weighs 0.2 kg , around what value of n would you expect its non-negligible quantum amplitudes to cluster?
3.4 Show that the minimum value of $E(p, x) \equiv p^{2} / 2 m+\frac{1}{2} m \omega^{2} x^{2}$ with respect to the real numbers p, x when they are constrained to satisfy $x p=\frac{1}{2} \hbar$, is $\frac{1}{2} \hbar \omega$. Explain the physical significance of this result.
3.5 How many nodes are there in the wavefunction $\langle x \mid n\rangle$ of the $n^{\text {th }}$ excited state of a harmonic oscillator?
3.6 Show for a harmonic oscillator that the wavefunction of the second excited state is $\langle x \mid 2\rangle=$ constant $\times\left(x^{2} / \ell^{2}-1\right) \mathrm{e}^{-x^{2} / 4 \ell^{2}}$, where $\ell \equiv \sqrt{\frac{\hbar}{2 m \omega}}$, and find the normalising constant. Hint: apply A^{\dagger} to $|0\rangle$ twice in the position representation.
3.7 Use

$$
\begin{equation*}
x=\sqrt{\frac{\hbar}{2 m \omega}}\left(A+A^{\dagger}\right)=\ell\left(A+A^{\dagger}\right) \tag{3.3}
\end{equation*}
$$

to show for a harmonic oscillator that in the energy representation the operator x is

$$
x_{j k}=\ell\left(\begin{array}{ccccccccc}
0 & \sqrt{ } 1 & 0 & 0 & \ldots & & & & \tag{3.4}\\
\sqrt{ } 1 & 0 & \sqrt{ } 2 & 0 & & & & & \\
0 & \sqrt{ } 2 & 0 & \sqrt{ } 3 & \ldots & & & & \\
& & \sqrt{ } 3 & \cdots & & & & & \\
\cdots & & \cdots & & \ldots & & \cdots & & \\
& & & \cdots & 0 & \sqrt{n-1} & \cdots & & \\
& & & & & \sqrt{n-1} & 0 & \sqrt{n} & \\
& & & & & & \sqrt{n} & 0 & \sqrt{n+1} \\
\cdots & & \cdots & & \cdots & & \cdots & \cdots & \\
\cdots & \cdots & \cdots
\end{array}\right)
$$

Calculate the same entries for the matrix $p_{j k}$.
3.8 At $t=0$ the state of a harmonic oscillator of mass m and frequency ω is

$$
\begin{equation*}
|\psi\rangle=\frac{1}{2}|N-1\rangle+\frac{1}{\sqrt{ } 2}|N\rangle+\frac{1}{2}|N+1\rangle . \tag{3.5}
\end{equation*}
$$

Calculate the expectation value of x as a function of time and interpret your result physically in as much detail as you can.
3.9* In terms of the usual ladder operators A, A^{\dagger}, a Hamiltonian can be written

$$
\begin{equation*}
H=\mu A^{\dagger} A+\lambda\left(A+A^{\dagger}\right) \tag{3.6}
\end{equation*}
$$

What restrictions on the values of the numbers μ and λ follow from the requirement for H to be Hermitian?

Show that for a suitably chosen operator B, H can be rewritten

$$
\begin{equation*}
H=\mu B^{\dagger} B+\text { constant } \tag{3.7}
\end{equation*}
$$

where $\left[B, B^{\dagger}\right]=1$. Hence determine the spectrum of H.

