Introduction to Quantum Mechanics MT 2009

Problems 1 (weeks 5-6 of MT)

- 1.1 What physical phenomenon requires us to work with probability amplitudes rather than just with probabilities, as in other fields of endeavour?
- What properties cause complete sets of amplitudes to constitute the elements of a vector space?
- 1.3 V' is the adjoint space of the vector space V. For a mathematician, what objects comprise V'?
- 1.4 In quantum mechanics, what objects are the members of the vector space V? Give an example for the case of quantum mechanics of a member of the adjoint space V' and explain how members of V' enable us to predict the outcomes of experiments.
- Given that $|\psi\rangle = e^{i\pi/5}|a\rangle + e^{i\pi/4}|b\rangle$, express $\langle\psi|$ as a linear combination of $\langle a|$ and $\langle b|$.
- What properties characterise the bra $\langle a |$ that is associated with the ket $|a\rangle$?
- An electron can be in one of two potential wells that are so close that it can "tunnel" from one to the other. Its state vector can be written

$$|\psi\rangle = a|A\rangle + b|B\rangle,\tag{1.1}$$

where $|A\rangle$ is the state of being in the first well and $|B\rangle$ is the state of being in the second well and all kets are correctly normalised. What is the probability of finding the particle in the first well given that: (a) a = i/2; (b) $b = e^{i\pi}$; (c) $b = \frac{1}{3} + i/\sqrt{2}$?

1.8 An electron can "tunnel" between potential wells that form a chain, so its state vector can be written

$$|\psi\rangle = \sum_{-\infty}^{\infty} a_n |n\rangle,$$
 (1.2a)

where
$$|n\rangle$$
 is the state of being in the $n^{\rm th}$ well, where n increases from left to right. Let
$$a_n = \frac{1}{\sqrt{2}} \left(\frac{-\mathrm{i}}{3}\right)^{|n|/2} \mathrm{e}^{\mathrm{i}n\pi}. \tag{1.2b}$$

- **a.** What is the probability of finding the electron in the n^{th} well?
- **b**. What is the probability of finding the electron in well 0 or anywhere to the right of it?
- 1.9 How is a wave-function $\psi(x)$ written in Dirac's notation? What's the physical significance of the complex number $\psi(x)$ for given x?
- 1.10 Let Q be an operator. Under what circumstances is the complex number $\langle a|Q|b\rangle$ equal to the complex number $(\langle b|Q|a\rangle)^*$ for any states $|a\rangle$ and $|b\rangle$?
- **1.11** Let Q be the operator of an observable and let $|\psi\rangle$ be the state of our system.
 - **a.** What are the physical interpretations of $\langle \psi | Q | \psi \rangle$ and $|\langle q_n | \psi \rangle|^2$, where $|q_n\rangle$ is the n^{th} eigenket of the observable Q and q_n is the corresponding eigenvalue?
- b. What is the operator ∑_n |q_n⟩⟨q_n|, where the sum is over all eigenkets of Q? What is the operator ∑_n q_n|q_n⟩⟨q_n|?
 c. If u_n(x) is the wavefunction of the state |q_n⟩, write dow an integral that evaluates to ⟨q_n|ψ⟩.
- 1.12 What does it mean to say that two operators commute? What is the significance of two observables having mutually commuting operators?

Given that the commutator $[P,Q] \neq 0$ for some observables P and Q, does it follow that for all $|\psi\rangle \neq 0$ we have $[P,Q]|\psi\rangle \neq 0$?

1.13 Let $\psi(x,t)$ be the correctly normalised wavefunction of a particle of mass m and potential energy V(x). Write down expressions for the expectation values of (a) x; (b) x^2 ; (c) the momentum p_x ; (d) p_x^2 ; (e) the energy.

What is the probability that the particle will be found in the interval (x_1, x_2) ?

- 1.14 A system has a time-independent Hamiltonian that has spectrum $\{E_n\}$. Prove that the probability P_k that a measurement of energy will yield the value E_k is is time-independent. Hint: you can do this either from Ehrenfest's theorem, or by differentiating $\langle E_k | \psi \rangle$ w.r.t. t and using the TDSE.
- 1.15 A particle moves in the potential $V(\mathbf{x})$ and is known to have energy E_n . (a) Can it have well defined momentum for some particular $V(\mathbf{x})$? (b) Can the particle simultaneously have well-defined energy and position?
- 1.16 The states $\{|1\rangle, |2\rangle\}$ form a complete orthonormal set of states for a two-state system. With respect to these basis states the operator σ_y has matrix

$$\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}. \tag{1.3}$$

Could σ be an observable? What are its eigenvalues and eigenvectors in the $\{|1\rangle, |2\rangle\}$ basis? Determine the result of operating with σ_y on the state

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|1\rangle - |2\rangle). \tag{1.4}$$

1.17 Prove for any four operators A, B, C, D that

$$[ABC, D] = AB[C, D] + A[B, D]C + [A, D]BC.$$
 (1.5)

Explain the similarity with the rule for differentiating a product.

- **1.18** Show that a classical harmonic oscillator satisfies the virial equation $2\langle KE \rangle = \alpha \langle PE \rangle$ and determine the relevant value of α .
- **1.19** A classical fluid of density $\rho(\mathbf{x})$ flows with velocity $\mathbf{v}(\mathbf{x})$. By differentiating with respect to time the mass $m \equiv \int_V d^3\mathbf{x} \, \rho$ contained in an arbitrary volume V, show that conservation of mass requires that

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0. \tag{1.6}$$

Hint: the flux of matter at any point is $\rho \mathbf{v}$ and the integral of this flux over the boundary of V must equal the rate of accumulation of mass within V.

J is defined to be

$$\mathbf{J}(\mathbf{x}) \equiv \frac{\mathrm{i}\hbar}{2m} \Big(\psi \mathbf{\nabla} \psi^* - \psi^* \mathbf{\nabla} \psi \Big), \tag{1.7}$$

where $\psi(\mathbf{x})$ is the wavefunction of a spinless particle of mass m. Working from the TDSE, show that

$$\frac{\partial |\psi|^2}{\partial t} + \nabla \cdot \mathbf{J} = 0. \tag{1.8}$$

Give a physical interpretation of this result.

Show that when we write the wavefunction in amplitude-modulus form, $\psi = |\psi|e^{i\theta}$,

$$\mathbf{J} = |\psi|^2 \frac{\hbar \nabla \theta}{m}.\tag{1.9}$$

Interpret this result physically. Given that $\psi = Ae^{i(kz-\omega t)} + Be^{-i(kz+\omega t)}$, where A and B are constants, show that

$$\mathbf{J} = v(|A|^2 - |B|^2)\,\hat{\mathbf{z}},\tag{1.10}$$

where $v = \hbar k/m$. Interpret the result physically.