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Introduction to Quantum Mechanics MT 2009
Problems 1 (weeks 5-6 of MT)

1.1 What physical phenomenon requires us to work with probability amplitudes rather than just
with probabilities, as in other fields of endeavour?

1.2 What properties cause complete sets of amplitudes to constitute the elements of a vector space?

1.3 V ′ is the adjoint space of the vector space V . For a mathematician, what objects comprise
V ′?

1.4 In quantum mechanics, what objects are the members of the vector space V ? Give an example
for the case of quantum mechanics of a member of the adjoint space V ′ and explain how members
of V ′ enable us to predict the outcomes of experiments.

1.5 Given that |ψ〉 = eiπ/5|a〉 + eiπ/4|b〉, express 〈ψ| as a linear combination of 〈a| and 〈b|.
1.6 What properties characterise the bra 〈a| that is associated with the ket |a〉?
1.7 An electron can be in one of two potential wells that are so close that it can “tunnel” from
one to the other. Its state vector can be written

|ψ〉 = a|A〉 + b|B〉, (1.1)
where |A〉 is the state of being in the first well and |B〉 is the state of being in the second well and all
kets are correctly normalised. What is the probability of finding the particle in the first well given
that: (a) a = i/2; (b) b = eiπ; (c) b = 1

3 + i/
√

2?

1.8 An electron can “tunnel” between potential wells that form a chain, so its state vector can be
written

|ψ〉 =
∞∑
−∞

an|n〉, (1.2a)

where |n〉 is the state of being in the nth well, where n increases from left to right. Let

an =
1√
2

(
−i
3

)|n|/2

einπ. (1.2b)

a. What is the probability of finding the electron in the nth well?
b. What is the probability of finding the electron in well 0 or anywhere to the right of it?

1.9 How is a wave-function ψ(x) written in Dirac’s notation? What’s the physical significance of
the complex number ψ(x) for given x?

1.10 Let Q be an operator. Under what circumstances is the complex number 〈a|Q|b〉 equal to
the complex number (〈b|Q|a〉)∗ for any states |a〉 and |b〉?
1.11 Let Q be the operator of an observable and let |ψ〉 be the state of our system.
a. What are the physical interpretations of 〈ψ|Q|ψ〉 and |〈qn|ψ〉|2, where |qn〉 is the nth eigenket

of the observable Q and qn is the corresponding eigenvalue?
b. What is the operator

∑
n |qn〉〈qn|, where the sum is over all eigenkets of Q? What is the

operator
∑

n qn|qn〉〈qn|?
c. If un(x) is the wavefunction of the state |qn〉, write dow an integral that evaluates to 〈qn|ψ〉.

1.12 What does it mean to say that two operators commute? What is the significance of two
observables having mutually commuting operators?

Given that the commutator [P,Q] 6= 0 for some observables P and Q, does it follow that for all
|ψ〉 6= 0 we have [P,Q]|ψ〉 6= 0?

1.13 Let ψ(x, t) be the correctly normalised wavefunction of a particle of mass m and potential
energy V (x). Write down expressions for the expectation values of (a) x; (b) x2; (c) the momentum
px; (d) p2

x; (e) the energy.
What is the probability that the particle will be found in the interval (x1, x2)?
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1.14 A system has a time-independent Hamiltonian that has spectrum {En}. Prove that the
probability Pk that a measurement of energy will yield the value Ek is is time-independent. Hint:
you can do this either from Ehrenfest’s theorem, or by differentiating 〈Ek|ψ〉 w.r.t. t and using the
tdse.

1.15 A particle moves in the potential V (x) and is known to have energy En. (a) Can it have well
defined momentum for some particular V (x)? (b) Can the particle simultaneously have well-defined
energy and position?

1.16 The states {|1〉, |2〉} form a complete orthonormal set of states for a two-state system. With
respect to these basis states the operator σy has matrix

σy =
(

0 −i
i 0

)
. (1.3)

Could σ be an observable? What are its eigenvalues and eigenvectors in the {|1〉, |2〉} basis? Deter-
mine the result of operating with σy on the state

|ψ〉 =
1√
2
(|1〉 − |2〉). (1.4)

1.17 Prove for any four operators A,B,C,D that
[ABC,D] = AB[C,D] +A[B,D]C + [A,D]BC. (1.5)

Explain the similarity with the rule for differentiating a product.

1.18 Show that a classical harmonic oscillator satisfies the virial equation 2〈KE〉 = α〈PE〉 and
determine the relevant value of α.

1.19 A classical fluid of density ρ(x) flows with velocity v(x). By differentiating with respect to
time the mass m ≡

∫
V

d3x ρ contained in an arbitrary volume V , show that conservation of mass
requires that

∂ρ

∂t
+ ∇ · (ρv) = 0. (1.6)

Hint: the flux of matter at any point is ρv and the integral of this flux over the boundary of V must
equal the rate of accumulation of mass within V .

J is defined to be
J(x) ≡ ih̄

2m

(
ψ∇ψ∗ − ψ∗∇ψ

)
, (1.7)

where ψ(x) is the wavefunction of a spinless particle of mass m. Working from the tdse, show that
∂|ψ|2

∂t
+ ∇ · J = 0. (1.8)

Give a physical interpretation of this result.
Show that when we write the wavefunction in amplitude-modulus form, ψ = |ψ|eiθ,

J = |ψ|2 h̄∇θ

m
. (1.9)

Interpret this result physically. Given that ψ = Aei(kz−ωt) + Be−i(kz+ωt), where A and B are
constants, show that

J = v
(
|A|2 − |B|2

)
ẑ, (1.10)

where v = h̄k/m. Interpret the result physically.


