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Further Quantum Mechanics HT 2014

Problems 1 (HT weeks 6 – 8)

1.1 A harmonic oscillator with mass m and angular frequency ω is perturbed by δH = ǫx2. (a)
What is the exact change in the ground-state energy? Expand this change in powers of ǫ up to order
ǫ2. (b) Show that the change given by first-order perturbation theory agrees with the exact result to
O(ǫ) (c) Show that the first-order change in the ground state is |b〉 = −(ǫℓ2/

√
2h̄ω)|E2〉. (d) Show

that second-order perturbation theory yields an energy change Ec = −ǫ2h̄/4m2ω3 in agreement with
the exact result.

1.2 The harmonic oscillator of Problem 1.1 is perturbed by δH = ǫx. Show that the perturbed
Hamiltonian can be written

H =
1

2m

(

p2 +m2ω2X2 − ǫ2

ω2

)

,

where X = x + ǫ/mω2 and hence deduce the exact change in the ground-state energy. Interpret
these results physically.

What value does first-order perturbation theory give? From perturbation theory determine the
coefficient b1 of the unperturbed first-excited state in the perturbed ground state. Discuss your
result in relation to the exact ground state of the perturbed oscillator.

1.3 The harmonic oscillator of Problem 1.1 is perturbed by δH = ǫx4. Show that the first-order
change in the energy of the nth excited state is

δE = 3(2n2 + 2n+ 1)ǫ

(

h̄

2mω

)2

. (1.1)

Hint: express x in terms of A+A†.

1.4 The infinite square-well potential V (x) = 0 for |x| < a and ∞ for |x| > a is perturbed by the
potential δV = ǫx/a. Show that to first order in ǫ the energy levels of a particle of mass m are
unchanged. Show that even to this order the ground-state wavefunction is changed to

ψ1(x) =
1√
a
cos(πx/2a) +

16ǫ

π2E1
√
a

∑

n=2,4,

(−1)n/2
n

(n2 − 1)3
sin(nπx/2a),

where E1 is the ground-state energy. Explain physically why this wavefunction does not have well-
defined parity but predicts that the particle is more likely to be found on one side of the origin than
the other. State with reasons but without further calculation whether the second-order change in
the ground-state energy will be positive or negative.

1.5 An atomic nucleus has a finite size, and inside it the electrostatic potential Φ(r) deviates from
Ze/(4πǫr). Take the proton’s radius to be ap ≃ 10−15 m and its charge density to be uniform.
Then treating the difference between Φ and Ze/(4πǫ0r) to be a perturbation on the Hamiltonian
of hydrogen, calculate the first-order change in the ground-state energy of hydrogen. Why is the
change in the energy of any P state extremely small? Comment on how the magnitude of this energy
shift varies with Z in hydrogenic ions of charge Z. Hint: exploit the large difference between ap and
a0 to approximate the integral you formally require.

Degenerate perturbation theory

1.6 A particle of mass m moves in the potential V (x, y) = 1
2mω

2(x2 + y2), where ω is a constant.
Show that the Hamiltonian can be written as the sum Hx+Hy of the Hamiltonians of two identical
one-dimensional harmonic oscillators. Write down the particle’s energy spectrum. Write down kets
for two stationary states in the first-excited level in terms of the stationary states |nx〉 of Hx and
|ny〉 of Hy. Show that the nth excited level is n+ 1 fold degenerate.

The oscillator is disturbed by a small potential H1 = λxy. Show that this perturbation lifts the
degeneracy of the first excited level, producing states with energies 2h̄ω±λh̄/2mω. Give expressions
for the corresponding kets.

The mirror operator M is defined such that 〈x, y|M |ψ〉 = 〈y, x|ψ〉 for any state |ψ〉. Explain
physically the relationship between the states |ψ〉 and M |ψ〉. Show that [M,H1] = 0. Show that
MHx = HyM and thus that [M,H ] = 0. What do you infer from these commutation relations?
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Figure 1.0 The relation of input
and output vectors of a 2 × 2 Hermi-
tian matrix with positive eigenvalues
λ1 > λ2. An input vector (X, Y ) on
the unit circle produces the output
vector (x, y) that lies on the ellipse
that has the eigenvalues as semi-
axes.

1.7∗ The Hamiltonian of a two-state system can be written

H =

(

A1 +B1ǫ B2ǫ
B2ǫ A2

)

, (1.2)

where all quantities are real and ǫ is a small parameter. To first order in ǫ, what are the allowed
energies in the cases (a) A1 6= A2, and (b) A1 = A2?

Obtain the exact eigenvalues and recover the results of perturbation theory by expanding in
powers of ǫ.

Variational Principle

1.8 State Rayleigh’s theorem. The 2 × 2 Hermitian matrix H has positive eigenvalues λ1 > λ2.
The vectors (X,Y ) and (x, y) are related by

H ·
(

X
Y

)

=

(

x
y

)

.

Show that the points (λ1X,λ1Y ) and (x, y) are related as shown in Figure 1.0. How does this result
generalise to 3× 3 matrices? Explain the relation of Rayleigh’s theorem to this result.

1.9 We find an upper limit on the ground-state energy of the harmonic oscillator from the trial
wavefunction ψ(x) = (a2 + x2)−α. Using the substitution x = a tan θ, or otherwise, show that when
α = 1

∫ ∞

0

dx |ψ|2 = 1
4πa

−3

∫ ∞

0

dxx2|ψ|2 = 1
4πa

−1

∫ ∞

0

dx |pψ|2 = 1
8πh̄

2a−5. (1.3)

Hence show that 〈ψ|H |ψ〉/〈ψ|ψ〉 is minimised by setting a = 2l/4ℓ, where ℓ is the characteristic
length of the oscillator. Show that our upper limit on E0 is h̄ω/

√
2. Plot the final trial wavefunction

and the actual ground-state wavefunction and infer how α should be changed to obtain a better trial
wavefunction.

1.10∗ Show that with the trial wavefunction ψ(x) = (a2 + x2)−2 the variational principle yields
an upper limit E0 < (

√
7/5)h̄ω ≃ 0.529 h̄ω on the ground-state energy of the harmonic oscillator.

1.11 Show that for the unnormalised spherically symmetric wavefunction ψ(r) the expectation
value of the gross-structure Hamiltonian of hydrogen is

〈H〉 =
(

h̄2

2me

∫

dr r2
∣

∣

∣

∣

dψ

dr

∣

∣

∣

∣

2

− e2

4πǫ0

∫

dr r|ψ|2
)/

∫

dr r2|ψ|2. (1.4)

For the trial wavefunction ψb = e−br show that

〈H〉 = h̄2b2

2me
− e2b

4πǫ0
,

and hence recover the definitions of the Bohr radius and the Rydberg constant.

1.12∗ Using the result proved in Problem 1.11, show that the trial wavefunction ψb = e−b2r2/2

yields −8/(3π)R as an estimate of hydrogen’s ground-state energy, whereR is the Rydberg constant.
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1.13 Show that the stationary point of 〈ψ|H |ψ〉 associated with an excited state of H is a saddle
point. Hint: consider the state |ψ〉 = cos θ|k〉+ sin θ|l〉, where θ is a parameter.

Time-dependent perturbation theory

1.14 At early times (t ∼ −∞) a harmonic oscillator of mass m and natural angular frequency ω is

in its ground state. A perturbation δH = Exe−t2/τ2

is then applied, where E and τ are constants.
a. What is the probability according to first-order theory that by late times the oscillator transi-

tions to its second excited state, |2〉?
b. Show that to first order in δH the probability that the oscillator transitions to the first excited

state, |1〉, is
P =

πE2τ2

2mh̄ω
e−ω2τ2/2, (1.5)

c. Plot P as a function of τ and comment on its behaviour as ωτ → 0 and ωτ → ∞.

1.15 A particle of mass m executes simple harmonic motion at angular frequency ω. Initially it is
in its ground state but from t = 0 its motion is disturbed by a steady force F . Show that at time
t > 0 and to first order in F the state is

|ψ, t〉 = e−iE0t/h̄|0〉+ a1e
−iE1t/h̄|1〉

where

a1 =
i√

2mh̄ω

∫ t

0

dt′ F (t′)eiωt′ .

Calculate 〈x〉 (t) and show that your expression coincides with the classical solution

x(t) =

∫ t

0

dt′ F (t′)G(t − t′),

where the Green’s function is G(t − t′) = sin[ω(t − t′)]/mω. Show that a suitable displacement of
the point to which the oscillator’s spring is anchored could give rise to the perturbation.

1.16∗ A particle of mass m is initially trapped by the well with potential V (x) = −Vδδ(x), where
Vδ > 0. From t = 0 it is disturbed by the time-dependent potential v(x, t) = −Fxe−iωt. Its
subsequent wavefunction can be written

|ψ〉 = a(t)e−iE0t/h̄|0〉+
∫

dk {bk(t)|k, e〉+ ck(t)|k, o〉} e−iEkt/h̄, (1.6)

where E0 is the energy of the bound state |0〉 and Ek ≡ h̄2k2/2m and |k, e〉 and |k, o〉 are, respectively
the even- and odd-parity states of energy Ek (see Problem 5.17). Obtain the equations of motion

ih̄

{

ȧ|0〉e−iE0t/h̄ +

∫

dk
(

ḃk|k, e〉+ ċk|k, o〉
)

e−iEkt/h̄

}

= v

{

a|0〉e−iE0t/h̄ +

∫

dk (bk|k, e〉+ ck|k, o〉) e−iEkt/h̄

}

.

(1.7)

Given that the free states are normalised such that 〈k′, o|k, o〉 = δ(k − k′), show that to first order
in v, bk = 0 for all t, and that

ck(t) =
iF

h̄
〈k, o|x|0〉 eiΩkt/2

sin(Ωkt/2)

Ωk/2
, where Ωk ≡ Ek − E0

h̄
− ω. (1.8)

Hence show that at late times the probability that the particle has become free is

Pfr(t) =
2πmF 2t

h̄3
|〈k, o|x|0〉|2

k

∣

∣

∣

∣

Ωk=0

. (1.9)
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Given that from Problem 5.17 we have

〈x|0〉 = √
Ke−K|x| where K =

mVδ

h̄2
and 〈x|k, o〉 = 1√

π
sin(kx), (1.10)

show that

〈k, o|x|0〉 =
√

K

π

4kK

(k2 +K2)2
. (1.11)

Hence show that the probability of becoming free is

Pfr(t) =
8h̄F 2t

mE2
0

√

Ef/|E0|
(1 + Ef/|E0|)4

, (1.12)

where Ef > 0 is the final energy. Check that this expression for Pfr is dimensionless and give a
physical explanation of the general form of the energy-dependence of Pfr(t)

1.17∗ A particle travelling with momentum p = h̄k > 0 from −∞ encounters the steep-sided
potential well V (x) = −V0 < 0 for |x| < a. Use the Fermi golden rule to show that the probability
that a particle will be reflected by the well is

Preflect ≃
V 2
0

4E2
sin2(2ka),

where E = p2/2m. Show that in the limit E ≫ V0 this result is consistent with the exact reflection
probability derived in Problem 5.10. Hint: adopt periodic boundary conditions so the wavefunctions
of the in and out states can be normalised.

1.18∗ Show that the number of states g(E) dE d2Ω with energy in (E,E + dE) and momentum
in the solid angle d2Ω around p = h̄k of a particle of mass m that moves freely subject to periodic
boundary conditions on the walls of a cubical box of side length L is

g(E) dE d2Ω =

(

L

2π

)3
m3/2

h̄3
√
2E dE dΩ2. (1.13)

Hence show from Fermi’s golden rule that the cross-section for elastic scattering of such particles by
a weak potential V (x) from momentum h̄k into the solid angle d2Ω around momentum h̄k′ is

dσ =
m2

(2π)2h̄4
d2Ω

∣

∣

∣

∣

∫

d3x ei(k−k
′)·xV (x)

∣

∣

∣

∣

2

. (1.14)

Explain in what sense the potential has to be ‘weak’ for this Born approximation to the scattering
cross-section to be valid.


