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Figure 1.0 The relation of input
and output vectors of a 2 × 2 Hermi-
tian matrix with positive eigenvalues
λ1 > λ2. An input vector (X, Y ) on
the unit circle produces the output
vector (x, y) that lies on the ellipse
that has the eigenvalues as semi-
axes.

Further Quantum Mechanics HT 2014

Problems 1 (HT weeks 6 – 8)

Degenerate perturbation theory

1.7∗ The Hamiltonian of a two-state system can be written

H =

(

A1 +B1ǫ B2ǫ
B2ǫ A2

)

, (1.1)

where all quantities are real and ǫ is a small parameter. To first order in ǫ, what are the allowed
energies in the cases (a) A1 6= A2, and (b) A1 = A2?

Obtain the exact eigenvalues and recover the results of perturbation theory by expanding in
powers of ǫ.
Soln: When A1 6= A2, the eigenvectors ofH0 are (1, 0) and (0, 1) so to first-order in ǫ the perturbed
energies are the diagonal elements of H , namely A1 +B1ǫ and A2.

When A1 = A2 the unperturbed Hamiltonian is degenerate and degenerate perturbation theory
applies: we diagonalise the perturbation

H1 =

(

B1ǫ B2ǫ
B2ǫ 0

)

= ǫ

(

B1 B2

B2 0

)

The eigenvalues λ of the last matrix satisfy

λ2 −B1λ−B2
2 = 0 ⇒ λ = 1

2

(

B1 ±
√

B2
1 + 4B2

2

)

and the perturbed energies are

A1 + λǫ = A1 +
1
2B1ǫ± 1

2

√

B2
1 + 4B2

2 ǫ

Solving for the exact eigenvalues of the given matrix we find

λ = 1
2 (A1 +A2 +B1ǫ)± 1

2

√

(A1 +A2 +B1ǫ)2 − 4A2(A1 +B1ǫ) + 4B2ǫ2

= 1
2 (A1 +A2 +B1ǫ)± 1

2

√

(A1 −A2)2 + 2(A1 −A2)B1ǫ+ (B2
1 + 4B2

2)ǫ
2

If A1 = A2 this simplifies to

λ = A1 +
1
2B1ǫ+± 1

2

√

B2
1 + 4B2

2 ǫ

in agreement with perturbation theory. If A1 6= A2 we expand the radical to first order in ǫ

λ = 1
2 (A1 +A2 +B1ǫ)± 1

2 (A1 −A2)

(

1 +
B1

A1 −A2
ǫ+O(ǫ2)

)

=

{

A1 +B1ǫ if +
A2 if −

again in agreement with perturbation theory

Variational Principle
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1.10∗ Show that with the trial wavefunction ψ(x) = (a2 + x2)−2 the variational principle yields
an upper limit E0 < (

√
7/5)h̄ω ≃ 0.529 h̄ω on the ground-state energy of the harmonic oscillator.

Soln: We set x = a tan θ and have
∫ ∞

0

dx |ψ|2 = a−7

∫ π/2

0

dθ cos6 θ = a−7

∫ π/2

0

dθ { 1
2 (1 + cos 2θ)}3

= 1
8a

−7

∫ π/2

0

dθ (1 + 3 cos 2θ + 3 cos2 2θ + cos3 2θ) = 1
8a

−7 1
2π(1 +

3
2 ) =

5
32πa

−7

where we have used the facts (i) that an odd power of a cosine averages to zero over (0, π) and (ii)
that cos2 θ has average value 1

2 over this interval.
Similarly
∫ ∞

0

dxx2|ψ|2 = a−5

∫ π/2

0

dθ cos4 θ sin2 θ = a−5

∫ π/2

0

dθ 1
2 (1 + cos 2θ)14 sin

2 2θ

= 1
8a

−5

∫ π/2

0

dθ (sin2 2θ + cos 2θ sin2 2θ) = 1
8a

−5(14π + 1
6 [sin

3 2θ]) = 1
32πa

−5

and

〈x|p|ψ〉 = −ih̄
−2

(a2 + x2)3
2x

so
∫ ∞

0

dx |pψ|2 = 16h̄2a−9

∫ π/2

0

dθ cos8 θ sin2 θ = 16h̄2a−9

∫ π/2

0

dθ 1
8 (1 + cos 2θ)3 1

4 sin
2 2θ

= 1
2 h̄

2a−9

(
∫ π/2

0

dθ (sin2 2θ + 3 cos2 2θ sin2 2θ) +

∫ π/2

0

dθ cos 2θ(3 + 1− sin2 2θ)

)

= 1
2 h̄

2a−9

(

1
4π(1 +

3
4 ) +

[

2
3 sin

3 2θ − 1
10 sin

5 2θ

])

= 7
32 h̄

2πa−9

Hence

〈H〉 =
7
32 h̄

2a−9π/2m+ 1
2mω

2 1
32a

−5π
5
32a

−7π
=

h̄2

2m
7
5a

−2 + 1
10mω

2a2

0 =
∂ 〈H〉
∂a

= − h̄
2

m
7
5a

−3 + 1
5mω

2a

a4 = 7

(

h̄

mω

)2

⇒ a = 71/4
√
2 ℓ 〈H〉 =

√
7

5
h̄ω

1.12∗ Using the result proved in Problem 10.13, show that the trial wavefunction ψb = e−b2r2/2

yields −8/(3π)R as an estimate of hydrogen’s ground-state energy, whereR is the Rydberg constant.

Soln: With ψ = e−b2r2/2, dψ/dr = −b2re−b2r2/2, so

〈H〉 =
(

h̄2b4

2m

∫

dr r4e−b2r2 − e2

4πǫ0

∫

dr re−b2r2
)

/

∫

dr r2e−b2r2

=

(

h̄2

2mb

∫

dxx4e−x2 − e2

4πǫ0b2

∫

dxxe−x2

)

/

1

b3

∫

dxx2e−x2

Now
∫

dxxe−x2

=

[

e−x2

−2

]∞

0

= 1
2

∫

dxx2e−x2

=

[

xe−x2

−2

]∞

0

+ 1
2

∫

dx e−x2

=

√
π

4

∫

dxx4e−x2

=

[

x3e−x2

−2

]∞

0

+ 3
2

∫

dxx2e−x2

=
3
√
π

8
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so

〈H〉 =
(

h̄2

2mb

3
√
π

8
− e2

4πǫ0b2
1
2

)

/√
π

4b3
=

3h̄2b2

4m
− e2b

2π3/2ǫ0

At the stationary point of 〈H〉 b = me2/(3π3/2ǫ0h̄
2). Plugging this into 〈H〉 we find

〈H〉 = 3h̄2

4m

m2e4

9π3ǫ20h̄
4 − e2

2π3/2ǫ0

me2

3π3/2ǫ0h̄
2 = − 8

3π

m

2

(

e2

4πǫ0

)2

=
8

3π
R

Time-dependent perturbation theory

1.16∗ A particle of mass m is initially trapped by the well with potential V (x) = −Vδδ(x), where
Vδ > 0. From t = 0 it is disturbed by the time-dependent potential v(x, t) = −Fxe−iωt. Its
subsequent wavefunction can be written

|ψ〉 = a(t)e−iE0t/h̄|0〉+
∫

dk {bk(t)|k, e〉+ ck(t)|k, o〉} e−iEkt/h̄, (1.2)

where E0 is the energy of the bound state |0〉 and Ek ≡ h̄2k2/2m and |k, e〉 and |k, o〉 are, respectively
the even- and odd-parity states of energy Ek (see Problem 5.17). Obtain the equations of motion

ih̄

{

ȧ|0〉e−iE0t/h̄ +

∫

dk
(

ḃk|k, e〉+ ċk|k, o〉
)

e−iEkt/h̄

}

= v

{

a|0〉e−iE0t/h̄ +

∫

dk (bk|k, e〉+ ck|k, o〉) e−iEkt/h̄

}

.

(1.3)

Given that the free states are normalised such that 〈k′, o|k, o〉 = δ(k − k′), show that to first order
in v, bk = 0 for all t, and that

ck(t) =
iF

h̄
〈k, o|x|0〉 eiΩkt/2

sin(Ωkt/2)

Ωk/2
, where Ωk ≡ Ek − E0

h̄
− ω. (1.4)

Hence show that at late times the probability that the particle has become free is

Pfr(t) =
2πmF 2t

h̄3
|〈k, o|x|0〉|2

k

∣

∣

∣

∣

Ωk=0

. (1.5)

Given that from Problem 5.17 we have

〈x|0〉 = √
Ke−K|x| where K =

mVδ

h̄2
and 〈x|k, o〉 = 1√

π
sin(kx), (1.6)

show that

〈k, o|x|0〉 =
√

K

π

4kK

(k2 +K2)2
. (1.7)

Hence show that the probability of becoming free is

Pfr(t) =
8h̄F 2t

mE2
0

√

Ef/|E0|
(1 + Ef/|E0|)4

, (1.8)

where Ef > 0 is the final energy. Check that this expression for Pfr is dimensionless and give a
physical explanation of the general form of the energy-dependence of Pfr(t)
Soln: When we substitute the given expansion of |ψ〉 in stationary states of the unperturbed Hamil-
tonian H0 into the tise, the terms generated by differentiating the exponentials in time cancel on
H0|ψ〉. The given expression contains the surviving terms, namely the derivatives of the amplitudes
a, bk and ck on the left and on the right v|ψ〉. In the first order approximation we put a = 1 and
bk = ck = 0 on the right. Then we bra through with 〈k′, e| and 〈k′, o| and exploit the orthonormality

of the stationary states to obtain equations for ḃk(t) and ċk(t). The equation for ḃk is proportional
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to the matrix element 〈k, e|v|0〉, which vanishes by parity because v is an odd-parity operator. Then
we replace v by −xF e−iωt and have

ck(t) =

∫ t

0

dt′ ċk =
iF

h̄
〈k, o|x|0〉

∫ t

0

dt′ ei[(Ek−E0)/h̄−ω]t′ =
iF

h̄
〈k, o|x|0〉e

iΩkt − 1

iΩk

=
iF

h̄
〈k, o|x|0〉 eiΩkt/2

sin(Ωkt/2)

Ωk/2
.

The probability that the particle is free is

Pfr(t) =

∫

dk |ck|2 =
F 2

h̄2

∫

dk |〈k, o|x|0〉|2 sin
2(Ωkt/2)

(Ωk/2)2
.

As t→ ∞ we have sin2 xt/x2 → πtδ(x), so at large t

Pfr(t) =
F 2

h̄2

∫

dk |〈k, o|x|0〉|2πtδ(Ωk/2) =
F 2

h̄2
|〈k, o|x|0〉|2πt
d(Ωk/2)/dk

∣

∣

∣

∣

Ωk=0

Moreover, Ωk = 1
2 h̄k

2/m+ constant, so dΩk/dk = h̄k/m and therefore

Pfr(t) =
2πmF 2t

h̄3
|〈k, o|x|0〉|2

k

∣

∣

∣

∣

Ωk=0

.

Evaluating 〈k, o|x|0〉 in the position representation, we have

〈k, o|x|0〉 = 2

∫ ∞

0

dx
sinkx√

π
x
√
Ke−Kx = 2

√

K

π

1

2i

∫ ∞

0

dxx
(

e(ik−K)x − e−(ik+K)x
)

= −i

√

K

π

(

1

(ik −K)2
− 1

(ik +K)2

)

=

√

K

π

4kK

(k2 +K2)2
.

The probability of becoming free is therefore

Pfr(t) =
2πmF 2t

h̄3
K

π

16kK2

(k2 +K2)4
=

32mF 2t

h̄3K4

k/K

(k2/K2 + 1)4
(1.9)

The required result follows when we substitute into the above k2/K2 = Ef/|E0| and h̄4K2 =
(2mE0)

2.
Regarding dimensions, [F ] = E/L and [h̄] = ET , so

[Pfr] =
(E/L)2ETT

ME2
=
ET 2

ML2
=
ML2T−2T 2

ML2
.

Pfr(t) is small for small E because at such energies the free state, which always has a node at
the location of the well, has a long wavelength, so it is practically zero throughout the region of scale
2/K within which the bound particle is trapped. Consequently for small E the coupling between the
bound and free state is small. At high E the wavelength of the free state is much smaller than 2/K
and the positive and negative contributions from neighbouring half cycles of the free state nearly
cancel, so again the coupling between the bound and free states is small. The coupling is most
effective when the wavelength of the free state is just a bit smaller than the size of the bound state.

1.17∗ A particle travelling with momentum p = h̄k > 0 from −∞ encounters the steep-sided
potential well V (x) = −V0 < 0 for |x| < a. Use the Fermi golden rule to show that the probability
that a particle will be reflected by the well is

Preflect ≃
V 2
0

4E2
sin2(2ka),

where E = p2/2m. Show that in the limit E ≫ V0 this result is consistent with the exact reflection
probability derived in Problem 5.10. Hint: adopt periodic boundary conditions so the wavefunctions
of the in and out states can be normalised.
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Soln: We consider a length L of the x axis where L ≫ a and k = 2nπ/L, where n ≫ 1 is an
integer. Then correctly normalised wavefunctions of the in and out states are

〈x|in〉 = 1√
L
eikx ; 〈x|out〉 = 1√

L
e−ikx

The required matrix element is

1

L

∫ L/2

−L/2

dx eikxV (x)eikx = −V0
∫ a

−a

dx e2ikx = −V0
sin(2ka)

Lk

so the rate of transitions from the in to the out state is

Ṗ =
2π

h̄
g(E)|〈out|V |in〉|2 =

2π

h̄
g(E)V 2

0

sin2(2ka)

L2k2

Now we need the density of states g(E). E = p2/2m = h̄2k2/2m is just kinetic energy. Eliminating
k in favour of n, we have

n =
L

2πh̄

√
2mE

As n increases by one, we get one extra state to scatter into, so

g =
dn

dE
=

L

4πh̄

√

2m

E
.

Substituting this value into our scattering rate we find

Ṗ =
V 2
0

2h̄2

√

2m

E

sin2(2ka)

Lk2

This vanishes as L→ ∞ because the fraction of the available space that is occupied by the scattering
potential is ∼ 1/L. If it is not scattered, the particle covers distance L in a time τ = L/v =

L/
√

2E/m. So the probability that it is scattered on a single encounter is

Ṗ τ =
V 2
0 m

2Eh̄2
sin2(2ka)

k2
=

V 2
0

4E2
sin2(2ka)

Equation (5.78) gives the reflection probability as

P =
(K/k − k/K)2 sin2(2Ka)

(K/k + k/K)2 sin2(2Ka) + 4 cos2(2Ka)

When V0 ≪ E, K2 − k2 = 2mV0/h̄
2 ≪ k2, so we approximate Ka with ka and, using K/k ≃ 1 in

the denominator, the reflection probability becomes

P ≃
(

K2 − k2

2kK

)2

sin2(2ka) ≃
(

2mV0

2h̄2k2

)2

sin2(2ka) =
V 2
0

4E2
sin2(2ka),

which agrees with the value we obtained from Fermi’s rule.

1.18∗ Show that the number of states g(E) dE d2Ω with energy in (E,E + dE) and momentum
in the solid angle d2Ω around p = h̄k of a particle of mass m that moves freely subject to periodic
boundary conditions on the walls of a cubical box of side length L is

g(E) dE d2Ω =

(

L

2π

)3
m3/2

h̄3
√
2E dE dΩ2. (1.10)

Hence show from Fermi’s golden rule that the cross-section for elastic scattering of such particles by
a weak potential V (x) from momentum h̄k into the solid angle d2Ω around momentum h̄k′ is

dσ =
m2

(2π)2h̄4
d2Ω

∣

∣

∣

∣

∫

d3x ei(k−k
′)·xV (x)

∣

∣

∣

∣

2

. (1.11)



Oxford Physics Prof J Binney

Explain in what sense the potential has to be ‘weak’ for this Born approximation to the scattering
cross-section to be valid.
Soln: We have kx = 2nxπ/L, where nx is an integer, and similarly for ky, kz . So each state
occupies volume (2π/L)3 in k-space. So the number of states in the volume element k2 dkd2Ω is

g(E)dEd2Ω =

(

L

2π

)3

k2 dkd2Ω

Using k2 = 2mE/h̄2 to eliminate k we obtain the required expression.
In Fermi’s formula we must replace g(E) dE by g(E) dE d2Ω because this is the density of states

that will make our detector ping if d2Ω is its angular resolution. Then the probability per unit time
of pinging is

Ṗ =
2π

h̄
g(E)d2Ω|〈out|V |in〉|2 =

2π

h̄

(

L

2π

)3

k2
dk

dE
d2Ω|〈out|V |in〉|2

The matrix element is

〈out|V |in〉 = 1

L3

∫

d3x e−ik′·xV (x)eik·x

Now the cross section dσ is defined by Ṗ = dσ× incoming flux = (v/L3)dσ = (h̄k/mL3)dσ. Putting
everything together, we find

h̄k

mL3
dσ =

1

L6

∣

∣

∣

∣

∫

d3x e−ik′·xV (x)eik·x
∣

∣

∣

∣

2
2π

h̄

(

L

2π

)3

k2
dk

dE
d2Ω

⇒ dσ =
mk dk/dE

(2π)2h̄2

∣

∣

∣

∣

∫

d3x e−ik′·xV (x)eik·x
∣

∣

∣

∣

2

.

Eliminating k with h̄2k dk = mdE we obtain the desired expression.
The Born approximation is valid providing the unperturbed wavefunction is a reasonable ap-

proximation to the true wavefunction throughout the scattering potential. That is, we must be able
to neglect “shadowing” by the scattering potential.
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Further Quantum Mechanics HT 2014

Problems 2 (Easter Vacation)

Radiative transitions

2.1∗ Let |E, l,m〉 denote a stationary state of an atom with orbital angular-momentum quantum
numbers l,m, and let x± = x ± iy be complex position operators while L± = Lx ± iLy are the
usual orbital angular-momentum ladder operators. Show that x±|E, l,m〉 is an eigenket of Lz with
eigenvalue m± 1. Show also that

[L+, x+] = [L−, x−] = 0 and [L+, x−] = −[L−, x+] = 2z.

Hence show that

〈E′, l′,m|z|E, l,m〉 = α+(l,m)〈E′, l′,m|x|E, l,m+ 1〉 − α−(l
′,m)〈E′, l′,m− 1|x|E, l,m〉.

where α±(l,m) ≡
√

l(l+ 1)−m(m± 1). [Hint: compute 〈E′, l′,m|x|E, l,m+ 1〉]
Soln:

[Lz, x±] = [Lz, x]± i[Lz, y] = iy ± i(−ix) = ±x±.
So

Lzx±|E, l,m〉 = (x±Lz + [Lz, x±])|E, l,m〉 = (m± 1)x±|E, l,m〉
as required.

[L+, x±] = [Lx + iLy, x± iy] = i([Ly, x]± [Lx, y]) = i(−iz ± iz) = z ∓ z

as required. The corresponding results for L− can be obtained by taking the complex conjugate of
this equation.

Expressing z as a quarter of the difference of the non-zero commutators, we have

〈E′, l′,m|x|E, l,m+ 1〉 = 1
2 〈E

′, l′,m|(x+ − x−)|E, l,m+ 1〉

=
1

2α+(l,m)
〈E′, l′,m|(x+ − x−)L+|E, l,m〉

=
1

2α+(l,m)
〈E′, l′,m|

{

L+(x+ − x−) + [L+, x−]
}

|E, l,m〉

=
α−(l

′,m)

2α+(l,m)
〈E′, l′,m− 1|(x+ − x−)|E, l,m〉+ 1

α+(l,m)
〈E′, l′,m|z|E, l,m〉

Hence

〈E′, l′,m|z|E, l,m〉 = α+(l,m)〈E′, l′,m|x|E, l,m+ 1〉 − α−(l
′,m)〈E′, l′,m− 1|x|E, l,m〉.
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Further Quantum Mechanics TT 2014

Problems 3 (TT)

Exchange Symmetry

Helium

3.6∗ In terms of the position vectors xα, x1 and x2 of the α particle and two electrons, the centre
of mass and relative coordinates of a helium atom are

X ≡ mαxα +me(x1 + x2)

mt
, r1 ≡ x1 −X, r2 ≡ x2 −X, (3.1)

where mt ≡ mα + 2me. Write the atom’s potential energy operator in terms of the ri.
Show that

∂

∂X
=

∂

∂xα
+

∂

∂x1
+

∂

∂x2

∂

∂r1
=

∂

∂x1
− me

mα

∂

∂xα

∂

∂r2
=

∂

∂x2
− me

mα

∂

∂xα

(3.2)

and hence that the kinetic energy operator of the helium atom can be written

K = − h̄2

2mt

∂2

∂X2
− h̄2

2µ

(

∂2

∂r21
+

∂2

∂r22

)

− h̄2

2mt

(

∂

∂x1
− ∂

∂x2

)2

, (3.3)

where µ ≡ me(1 + 2me/mα). What is the physical interpretation of the third term on the right?
Explain why it is reasonable to neglect this term.
Soln: We have from the definitions

x1 = X+ r1 x2 = X+ r2

xα =
1

mα
(mtX−me(x1 + x2)) =

1

mα
(mtX−me(2X+ r1 + r2))

= X− me

mα
(r1 + r2)

Directly computing the differences xi − xα, etc, one finds easily that

V = − e2

4πǫ0

(

2

|r1 + (me/mα)(r1 + r2)|
+

2

|r1 + (me/mα)(r1 + r2)|
− 1

|r1 − r2|

)

.

By the chain rule

∂

∂X
=
∂xα

∂X
· ∂

∂xα
+
∂x1

∂X
· ∂

∂x1
+
∂x2

∂X
· ∂

∂x2
=

∂

∂xα
+

∂

∂x1
+

∂

∂x2

as required. Similarly

∂

∂r1
=
∂xα

∂r1
· ∂

∂xα
+
∂x1

∂r1
· ∂

∂x1
= −me

mα

∂

∂xα
+

∂

∂x1

and similarly for ∂/∂r2. Squaring these expressions, we have

∂2

∂X2
=

∂2

∂x2
α

+ 2
∂

∂xα

(

∂

∂x1
+

∂

∂x2

)

+

(

∂

∂x1
+

∂

∂x2

)2

∂2

∂r21
=
m2

e

m2
α

∂2

∂x2
α

− 2
me

mα

∂2

∂x1∂xα
+

∂2

∂x2
1

∂2

∂r22
=
m2

e

m2
α

∂2

∂x2
α

− 2
me

mα

∂2

∂x2∂xα
+

∂2

∂x2
2
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If we add the first of these eqns to mα/me times the sum of the other two, the mixed derivatives in
xα cancel and we are left with

∂2

∂X2
+
mα

me

(

∂2

∂r21
+

∂2

∂r22

)

=

(

1 + 2
me

mα

)

∂2

∂x2
α

+

(

1 +
mα

me

)(

∂2

∂x2
1

+
∂2

∂x2
2

)

+ 2
∂2

∂x1∂x2

Dividing through by mt we obtain

1

mt

∂2

∂X2
+

mα

memt

(

∂2

∂r21
+

∂2

∂r22

)

=
1

mα

∂2

∂x2
α

+
1

me

(

1− me

mt

)(

∂2

∂x2
1

+
∂2

∂x2
2

)

+
2

mt

∂2

∂x1∂x2

After multiplication by −h̄2/2 the first term on the right and the unity part of the second term
constitute the atom’s KE operator. So we transfer the remaining terms to the left side and have the
stated result.

The final term in K must represent the kinetic energy that the α-particle has as it moves around
the centre of mass in reflex to the faster motion of the electrons. It will be smaller than the double
derivatives with respect to ri by at least a factor me/mα. (Classically we’d expect the velocities to
be smaller by this factor and therefore the kinetic energies to be in the ratio m2

e/m
2
α.)

3.7∗ In this problem we use the variational principle to estimate the energies of the singlet and
triplet states 1s2s of helium by refining the working of Appendix K.

The idea is to use as the trial wavefunction symmetrised products of the 1s and 2s hydrogenic
wavefunctions (Table 8.1) with the scale length aZ replaced by a1 in the 1s wavefunction and by a
different length a2 in the 2s wavefunction. Explain physically why with this choice of wavefunction
we expect 〈H〉 to be minimised with a1 ∼ 0.5a0 but a2 distinctly larger.

Using the scaling properties of the expectation values of the kinetic-energy and potential-energy
operators, show that

〈H〉 =
{

a20
a21

− 4a0
a1

+
a20
4a22

− a0
a2

+ 2a0(D(a1, a2)± E(a1, a2))

}

R,

where D and E are the direct and exchange integrals.
Show that the direct integral can be written

D =
2

a2

∫ ∞

0

dxx2e−2x 1

4y

{

8− (8 + 6y + 2y2 + y3)e−y
}

,

where x ≡ r1/a1 and y = r1/a2. Hence show that with α ≡ 1 + 2a2/a1 we have

D =
1

a1

{

1− a22
a21

(

4

α2
+

6

α3
+

6

α4
+

12

α5

)}

.

Show that with y = r1/a2 and ρ = αr2/2a2 the exchange integral is

E =

√
2

(a1a2)3/2

∫

d3x1 Ψ
0∗
10(x1)Ψ

0
20(x1)

×
{

1

r1

(

2a2
α

)3 ∫ αy/2

0

dρ (ρ2 − ρ3/α)e−ρ

+

(

2a2
α

)2 ∫ ∞

αy/2

dρ (ρ− ρ2/α)e−ρ

}

.

Using
∫ b

a

dρ (ρ2 − ρ3/α)e−ρ = −[{(1− 3
α )(2 + 2ρ+ ρ2)− 1

αρ
3}e−ρ]ba

and
∫ b

a

dρ (ρ− ρ2/α)e−ρ = −[{(1− 2
α )(1 + ρ)− 1

αρ
2}e−ρ]ba
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show that

E =
2

(a1a2)3

∫ ∞

0

dr1 r
2
1

(

1− r1
2a2

)

e−αr1/2a2

×
{

1

r1

(

2a2
α

)3
[

2(1− 3
α )− {(1− 3

α )(2 + αy + 1
4α

2y2)− 1
8α

2y3}e−αy/2
]

+

(

2a2
α

)2

{(1− 2
α )(1 +

1
2αy)− 1

4αy
2}e−αy/2

}

=
8a22
α5a31

(

10− 50

α
+

66

α2

)

,

Using the above results, show numerically that the minimum of 〈H〉 occurs near a1 = 0.5a0 and
a2 = 0.8a0 in both the singlet and triplet cases. Show that for the triplet the minimum is −60.11 eV
and for the singlet it is −57.0 eV. Compare these results with the experimental values and the values
obtained in Appendix K.
Soln: We’d expect the 2s electron to see a smaller nuclear charge than the 1s electron and therefore
to have a longer scale length since the latter scales inversely with the nuclear charge.

The 1s orbit taken on its own has K = (a0/a1)
2R because the kinetic energy is R for hydrogen

and it is proportional to the inverse square of the wavefunction’s scale length. The 1s potential
energy is W = −4(a0/a1)R because in hydrogen it is −2R, and it’s proportional to the nuclear
charge and to the inverse of the wavefunction’s scale length. Similarly, the 2s orbit taken on its
own has K = 1

4 (a0/a2)
2R and W = −(a0/a2)R, both just 1

4 of the 1s values from the 1/n2 in the
Rydberg formula. The electron-electron energies are (D ± E)2a0R because R = e2/8πǫ0a0. The
required expression for 〈H〉 now follows.

When the scale length aZ is relabelled a1 where it relates to the 1s electron and is relabelled a2
where it relates to the 2s electron, equation (K.2) remains valid with ρ redefined to ρ ≡ r2/a2 and x
replaced by y ≡ r1/a2. With these definitions the first line of equation (K.2) remains valid and the
second line becomes

D =
2

a2

∫ ∞

0

dxx2e−2x 1

4y

{

8− (8 + 6y + 2y2 + y3)e−y
}

=
1

2a2

{

8

∫ ∞

0

dxx
x

y
e−2x −

∫ ∞

0

dx
x2

y2
(8y + 6y2 + 2y3 + y4)e−(2x+y)

} (3.4)

Now x/y = a2/a1 and
∫∞

0 dy yne−αy = α−(n+1)n! so with α ≡ 1 + 2a2/a1 we have

D =
1

2a2

{

2
a2
a1

− a32
a31

(

8

α2
+

6

α3
2! +

2

α4
3! +

1

α5
4!

)}

=
1

a1

{

1− a22
a21

(

4

α2
+

6

α3
+

6

α4
+

12

α5

)} (3.5)

which agrees with equation (K.2) when a1 = a2 = aZ as it should.
Equation (K.3) for the exchange integral becomes

E =
1√

2(a1a2)3/2

∫

d3x1 Ψ
0∗
10(x1)Ψ

0
20(x1)

×
∫

dr2dθ2
r22(1− r2/2a2) sin θ2e

−αr2/2a2

√

|r21 + r22 − 2r1r2 cos θ2|
.

(3.6)

After integrating over θ as in Box 11.1, we have

E =

√
2

(a1a2)3/2

∫

d3x1 Ψ
0∗
10(x1)Ψ

0
20(x1)

×
{
∫ r1

0

dr2
r22
r1

(

1− r2
2a2

)

e−αr2/2a2 +

∫ ∞

r1

dr2 r2

(

1− r2
2a2

)

e−αr2/2a2

}
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With y ≡ r1/a2 and ρ ≡ αr2/2a2

E =

√
2

(a1a2)3/2

∫

d3x1 Ψ
0∗
10(x1)Ψ

0
20(x1)

×
{

1

r1

(

2a2
α

)3 ∫ αy/2

0

dρ (ρ2 − ρ3/α)e−ρ +

(

2a2
α

)2 ∫ ∞

αy/2

dρ (ρ− ρ2/α)e−ρ

}

.

Now
∫ b

a

dρ (ρ2 − ρ3/α)e−ρ = −[{(1− 3
α )(2 + 2ρ+ ρ2)− 1

αρ
3}e−ρ]ba

and
∫ b

a

dρ (ρ− ρ2/α)e−ρ = −[{(1− 2
α )(1 + ρ)− 1

αρ
2}e−ρ]ba

Thus

E =

√
2

(a1a2)3/2

∫

d3x1 Ψ
0∗
10(x1)Ψ

0
20(x1)

×
{

1

r1

(

2a2
α

)3
[

2(1− 3
α )− {(1− 3

α )(2 + αy + 1
4α

2y2)− 1
8α

2y3}e−αy/2
]

+

(

2a2
α

)2

{(1− 2
α )(1 +

1
2αy)− 1

4αy
2}e−αy/2

}

=
2

(a1a2)3

∫

dr1 r
2
1

(

1− r1
2a2

)

e−αr1/2a2

×
{

1

r1

(

2a2
α

)3
[

2(1− 3
α )− {(1− 3

α )(2 + αy + 1
4α

2y2)− 1
8α

2y3}e−αy/2
]

+

(

2a2
α

)2

{(1− 2
α )(1 +

1
2αy)− 1

4αy
2}e−αy/2

}

Simplifying further

E =
2

a31

(

2a2
α

)2
8

α2a2

a32
a31

∫ ∞

0

dy y2
(

1− 1
2y

)

×
{(

2

αy

)

[

2(1− 3
α )e

−αy/2 −
{

(1− 3
α )(2 + αy + 1

4α
2y2)− 1

8α
2y3

}

e−αy
]

+ {(1− 2
α )(1 +

1
2αy)− 1

4αy
2}e−αy

}

Now let’s collect terms with factors
8a22
α2a31

∫ ∞

0

dy (1− 1
2y)y

ne−αy =
8a22
α2a31

n!

αn+1

(

1− n+ 1

2α

)

.

The two terms with n = 4 cancel. The coefficient of the remaining terms are

n = 3 : (1− 2
α )

1
2α− (1− 3

α )
1
2α = 1

2

n = 2 : (1− 2
α )− (1− 3

α )2 = 4
α − 1

n = 1 : −(1− 3
α )

4
α

The final contribution to E is

8a22
α2a31

4

α
(1 − 3

α )

∫

dy y(1− 1
2y)e

−αy/2 =
8a22
α2a31

4

α

(

1− 3
α

)

(

2

α

)2
(

1− 2
α

)

=
8a22
α2a31

16

α3

(

1− 3
α

) (

1− 2
α

)
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Figure 3.1 Estimates of the energy in electron volts of the 1s2s triplet excited state of helium. The estimates are
obtained by taking the expectation of the Hamiltonian using anti-symmetrised products of 1s and 2s hydrogenic
wavefunctions that have scale lengths a1 and a2, respectively.

our final result is

E =
8a22
α2a31

[

16

α3

(

1− 3
α

) (

1− 2
α

)

− (1− 3
α )

4
α

1
α2 (1 − 2

2α ) + ( 4
α − 1)

2

α3
(1− 3

2α ) +
1
2

6

α4
(1− 4

2α )

]

=
8a22
α5a31

[

16
(

1− 3
α

) (

1− 2
α

)

− 4(1− 3
α )(1 − 1

α ) + ( 4
α − 1)(2− 3

α ) +
3
α (1 − 2

α )
]

=
8a22
α5a31

(

10− 50

α
+

66

α2

)

,

which when a1 = a2 = aZ agrees with equation (K.4) as it should.
Figure 3.1 shows 〈H〉 for the triplet state as a function of a1 and a2. The surface has its

minimum −60.11 eV at a1 = 0.50a0, a2 = 0.82a0. As expected, this minimum is deeper than our
estimate −57.8 eV from perturbation theory, and it occurs when a2 is significantly greater than
0.5a0. It is closer to the experimental value, −59.2 eV, than the estimate from perturbation theory.
A variational value is guaranteed to be larger than the experimental value only for the ground state,
and our variational value for the first excited state lies below rather than above the experimental
value. The variational estimate of the singlet 1s2s state’s energy is −57.0 eV, which lies between the
values from experiment (−58.4 eV) and perturbation theory (−55.4 eV).

Adiabatic Principle


