

Figure 1.0 The relation of input and output vectors of a 2×2 Hermitian matrix with positive eigenvalues $\lambda_{1}>\lambda_{2}$. An input vector (X, Y) on the unit circle produces the output vector (x, y) that lies on the ellipse that has the eigenvalues as semiaxes.

Further Quantum Mechanics HT 2014

Problems 1 (HT weeks 6 -8)

Degenerate perturbation theory

1.7* The Hamiltonian of a two-state system can be written

$$
H=\left(\begin{array}{cc}
A_{1}+B_{1} \epsilon & B_{2} \epsilon \tag{1.1}\\
B_{2} \epsilon & A_{2}
\end{array}\right)
$$

where all quantities are real and ϵ is a small parameter. To first order in ϵ, what are the allowed energies in the cases (a) $A_{1} \neq A_{2}$, and (b) $A_{1}=A_{2}$?

Obtain the exact eigenvalues and recover the results of perturbation theory by expanding in powers of ϵ.
Soln: When $A_{1} \neq A_{2}$, the eigenvectors of H_{0} are $(1,0)$ and $(0,1)$ so to first-order in ϵ the perturbed energies are the diagonal elements of H, namely $A_{1}+B_{1} \epsilon$ and A_{2}.

When $A_{1}=A_{2}$ the unperturbed Hamiltonian is degenerate and degenerate perturbation theory applies: we diagonalise the perturbation

$$
H_{1}=\left(\begin{array}{cc}
B_{1} \epsilon & B_{2} \epsilon \\
B_{2} \epsilon & 0
\end{array}\right)=\epsilon\left(\begin{array}{cc}
B_{1} & B_{2} \\
B_{2} & 0
\end{array}\right)
$$

The eigenvalues λ of the last matrix satisfy

$$
\lambda^{2}-B_{1} \lambda-B_{2}^{2}=0 \quad \Rightarrow \quad \lambda=\frac{1}{2}\left(B_{1} \pm \sqrt{B_{1}^{2}+4 B_{2}^{2}}\right)
$$

and the perturbed energies are

$$
A_{1}+\lambda \epsilon=A_{1}+\frac{1}{2} B_{1} \epsilon \pm \frac{1}{2} \sqrt{B_{1}^{2}+4 B_{2}^{2}} \epsilon
$$

Solving for the exact eigenvalues of the given matrix we find

$$
\begin{aligned}
\lambda & =\frac{1}{2}\left(A_{1}+A_{2}+B_{1} \epsilon\right) \pm \frac{1}{2} \sqrt{\left(A_{1}+A_{2}+B_{1} \epsilon\right)^{2}-4 A_{2}\left(A_{1}+B_{1} \epsilon\right)+4 B_{2} \epsilon^{2}} \\
& =\frac{1}{2}\left(A_{1}+A_{2}+B_{1} \epsilon\right) \pm \frac{1}{2} \sqrt{\left(A_{1}-A_{2}\right)^{2}+2\left(A_{1}-A_{2}\right) B_{1} \epsilon+\left(B_{1}^{2}+4 B_{2}^{2}\right) \epsilon^{2}}
\end{aligned}
$$

If $A_{1}=A_{2}$ this simplifies to

$$
\lambda=A_{1}+\frac{1}{2} B_{1} \epsilon+ \pm \frac{1}{2} \sqrt{B_{1}^{2}+4 B_{2}^{2}} \epsilon
$$

in agreement with perturbation theory. If $A_{1} \neq A_{2}$ we expand the radical to first order in ϵ

$$
\begin{aligned}
\lambda & =\frac{1}{2}\left(A_{1}+A_{2}+B_{1} \epsilon\right) \pm \frac{1}{2}\left(A_{1}-A_{2}\right)\left(1+\frac{B_{1}}{A_{1}-A_{2}} \epsilon+\mathrm{O}\left(\epsilon^{2}\right)\right) \\
& = \begin{cases}A_{1}+B_{1} \epsilon & \text { if }+ \\
A_{2} & \text { if }-\end{cases}
\end{aligned}
$$

again in agreement with perturbation theory

Variational Principle

Oxford Physics

Prof J Binney

1.10* Show that with the trial wavefunction $\psi(x)=\left(a^{2}+x^{2}\right)^{-2}$ the variational principle yields an upper limit $E_{0}<(\sqrt{ } 7 / 5) \hbar \omega \simeq 0.529 \hbar \omega$ on the ground-state energy of the harmonic oscillator.
Soln: We set $x=a \tan \theta$ and have

$$
\begin{aligned}
\int_{0}^{\infty} \mathrm{d} x|\psi|^{2} & =a^{-7} \int_{0}^{\pi / 2} \mathrm{~d} \theta \cos ^{6} \theta=a^{-7} \int_{0}^{\pi / 2} \mathrm{~d} \theta\left\{\frac{1}{2}(1+\cos 2 \theta)\right\}^{3} \\
& =\frac{1}{8} a^{-7} \int_{0}^{\pi / 2} \mathrm{~d} \theta\left(1+3 \cos 2 \theta+3 \cos ^{2} 2 \theta+\cos ^{3} 2 \theta\right)=\frac{1}{8} a^{-7} \frac{1}{2} \pi\left(1+\frac{3}{2}\right)=\frac{5}{32} \pi a^{-7}
\end{aligned}
$$

where we have used the facts (i) that an odd power of a cosine averages to zero over ($0, \pi$) and (ii) that $\cos ^{2} \theta$ has average value $\frac{1}{2}$ over this interval.

Similarly

$$
\begin{aligned}
\int_{0}^{\infty} \mathrm{d} x x^{2}|\psi|^{2} & =a^{-5} \int_{0}^{\pi / 2} \mathrm{~d} \theta \cos ^{4} \theta \sin ^{2} \theta=a^{-5} \int_{0}^{\pi / 2} \mathrm{~d} \theta \frac{1}{2}(1+\cos 2 \theta) \frac{1}{4} \sin ^{2} 2 \theta \\
& =\frac{1}{8} a^{-5} \int_{0}^{\pi / 2} \mathrm{~d} \theta\left(\sin ^{2} 2 \theta+\cos 2 \theta \sin ^{2} 2 \theta\right)=\frac{1}{8} a^{-5}\left(\frac{1}{4} \pi+\frac{1}{6}\left[\sin ^{3} 2 \theta\right]\right)=\frac{1}{32} \pi a^{-5}
\end{aligned}
$$

and

$$
\langle x| p|\psi\rangle=-\mathrm{i} \hbar \frac{-2}{\left(a^{2}+x^{2}\right)^{3}} 2 x
$$

so

$$
\begin{aligned}
\int_{0}^{\infty} \mathrm{d} x|p \psi|^{2} & =16 \hbar^{2} a^{-9} \int_{0}^{\pi / 2} \mathrm{~d} \theta \cos ^{8} \theta \sin ^{2} \theta=16 \hbar^{2} a^{-9} \int_{0}^{\pi / 2} \mathrm{~d} \theta \frac{1}{8}(1+\cos 2 \theta)^{3} \frac{1}{4} \sin ^{2} 2 \theta \\
& =\frac{1}{2} \hbar^{2} a^{-9}\left(\int_{0}^{\pi / 2} \mathrm{~d} \theta\left(\sin ^{2} 2 \theta+3 \cos ^{2} 2 \theta \sin ^{2} 2 \theta\right)+\int_{0}^{\pi / 2} \mathrm{~d} \theta \cos 2 \theta\left(3+1-\sin ^{2} 2 \theta\right)\right) \\
& =\frac{1}{2} \hbar^{2} a^{-9}\left(\frac{1}{4} \pi\left(1+\frac{3}{4}\right)+\left[\frac{2}{3} \sin ^{3} 2 \theta-\frac{1}{10} \sin ^{5} 2 \theta\right]\right)=\frac{7}{32} \hbar^{2} \pi a^{-9}
\end{aligned}
$$

Hence

$$
\begin{gathered}
\langle H\rangle=\frac{\frac{7}{32} \hbar^{2} a^{-9} \pi / 2 m+\frac{1}{2} m \omega^{2} \frac{1}{32} a^{-5} \pi}{\frac{5}{32} a^{-7} \pi}=\frac{\hbar^{2}}{2 m} \frac{7}{5} a^{-2}+\frac{1}{10} m \omega^{2} a^{2} \\
0=\frac{\partial\langle H\rangle}{\partial a}=-\frac{\hbar^{2}}{m} \frac{7}{5} a^{-3}+\frac{1}{5} m \omega^{2} a \\
a^{4}=7\left(\frac{\hbar}{m \omega}\right)^{2} \Rightarrow \quad a=7^{1 / 4} \sqrt{ } 2 \ell \quad\langle H\rangle=\frac{\sqrt{ } 7}{5} \hbar \omega
\end{gathered}
$$

1.12* Using the result proved in Problem 10.13, show that the trial wavefunction $\psi_{b}=\mathrm{e}^{-b^{2} r^{2} / 2}$ yields $-8 /(3 \pi) \mathcal{R}$ as an estimate of hydrogen's ground-state energy, where \mathcal{R} is the Rydberg constant.
Soln: With $\psi=\mathrm{e}^{-b^{2} r^{2} / 2}, \mathrm{~d} \psi / \mathrm{d} r=-b^{2} r \mathrm{e}^{-b^{2} r^{2} / 2}$, so

$$
\begin{aligned}
\langle H\rangle & =\left(\frac{\hbar^{2} b^{4}}{2 m} \int \mathrm{~d} r r^{4} \mathrm{e}^{-b^{2} r^{2}}-\frac{e^{2}}{4 \pi \epsilon_{0}} \int \mathrm{~d} r r \mathrm{e}^{-b^{2} r^{2}}\right) / \int \mathrm{d} r r^{2} \mathrm{e}^{-b^{2} r^{2}} \\
& =\left(\frac{\hbar^{2}}{2 m b} \int \mathrm{~d} x x^{4} \mathrm{e}^{-x^{2}}-\frac{e^{2}}{4 \pi \epsilon_{0} b^{2}} \int \mathrm{~d} x x \mathrm{e}^{-x^{2}}\right) / \frac{1}{b^{3}} \int \mathrm{~d} x x^{2} \mathrm{e}^{-x^{2}}
\end{aligned}
$$

Now

$$
\begin{aligned}
\int \mathrm{d} x x \mathrm{e}^{-x^{2}} & =\left[\frac{\mathrm{e}^{-x^{2}}}{-2}\right]_{0}^{\infty}=\frac{1}{2} \\
\int \mathrm{~d} x x^{2} \mathrm{e}^{-x^{2}} & =\left[\frac{x \mathrm{e}^{-x^{2}}}{-2}\right]_{0}^{\infty}+\frac{1}{2} \int \mathrm{~d} x \mathrm{e}^{-x^{2}}=\frac{\sqrt{ } \pi}{4} \\
\int \mathrm{~d} x x^{4} \mathrm{e}^{-x^{2}} & =\left[\frac{x^{3} \mathrm{e}^{-x^{2}}}{-2}\right]_{0}^{\infty}+\frac{3}{2} \int \mathrm{~d} x x^{2} \mathrm{e}^{-x^{2}}=\frac{3 \sqrt{ } \pi}{8}
\end{aligned}
$$

so

$$
\langle H\rangle=\left(\frac{\hbar^{2}}{2 m b} \frac{3 \sqrt{ } \pi}{8}-\frac{e^{2}}{4 \pi \epsilon_{0} b^{2}} \frac{1}{2}\right) / \frac{\sqrt{ } \pi}{4 b^{3}}=\frac{3 \hbar^{2} b^{2}}{4 m}-\frac{e^{2} b}{2 \pi^{3 / 2} \epsilon_{0}}
$$

At the stationary point of $\langle H\rangle b=m e^{2} /\left(3 \pi^{3 / 2} \epsilon_{0} \hbar^{2}\right)$. Plugging this into $\langle H\rangle$ we find

$$
\langle H\rangle=\frac{3 \hbar^{2}}{4 m} \frac{m^{2} e^{4}}{9 \pi^{3} \epsilon_{0}^{2} \hbar^{4}}-\frac{e^{2}}{2 \pi^{3 / 2} \epsilon_{0}} \frac{m e^{2}}{3 \pi^{3 / 2} \epsilon_{0} \hbar^{2}}=-\frac{8}{3 \pi} \frac{m}{2}\left(\frac{e^{2}}{4 \pi \epsilon_{0}}\right)^{2}=\frac{8}{3 \pi} \mathcal{R}
$$

Time-dependent perturbation theory

1.16* A particle of mass m is initially trapped by the well with potential $V(x)=-V_{\delta} \delta(x)$, where $V_{\delta}>0$. From $t=0$ it is disturbed by the time-dependent potential $v(x, t)=-F x \mathrm{e}^{-\mathrm{i} \omega t}$. Its subsequent wavefunction can be written

$$
\begin{equation*}
|\psi\rangle=a(t) \mathrm{e}^{-\mathrm{i} E_{0} t / \hbar}|0\rangle+\int \mathrm{d} k\left\{b_{k}(t)|k, \mathrm{e}\rangle+c_{k}(t)|k, o\rangle\right\} \mathrm{e}^{-\mathrm{i} E_{k} t / \hbar} \tag{1.2}
\end{equation*}
$$

where E_{0} is the energy of the bound state $|0\rangle$ and $E_{k} \equiv \hbar^{2} k^{2} / 2 m$ and $|k, \mathrm{e}\rangle$ and $|k, \mathrm{o}\rangle$ are, respectively the even- and odd-parity states of energy E_{k} (see Problem 5.17). Obtain the equations of motion

$$
\begin{align*}
& \mathrm{i} \hbar\left\{\dot{a}|0\rangle \mathrm{e}^{-\mathrm{i} E_{0} t / \hbar}+\int \mathrm{d} k\left(\dot{b}_{k}|k, \mathrm{e}\rangle+\dot{c}_{k}|k, \mathrm{o}\rangle\right) \mathrm{e}^{-\mathrm{i} E_{k} t / \hbar}\right\} \tag{1.3}\\
& \quad=v\left\{a|0\rangle \mathrm{e}^{-\mathrm{i} E_{0} t / \hbar}+\int \mathrm{d} k\left(b_{k}|k, \mathrm{e}\rangle+c_{k}|k, \mathrm{o}\rangle\right) \mathrm{e}^{-\mathrm{i} E_{k} t / \hbar}\right\}
\end{align*}
$$

Given that the free states are normalised such that $\left\langle k^{\prime}, \mathrm{o} \mid k, o\right\rangle=\delta\left(k-k^{\prime}\right)$, show that to first order in $v, b_{k}=0$ for all t, and that

$$
\begin{equation*}
c_{k}(t)=\frac{\mathrm{i} F}{\hbar}\langle k, \mathrm{o}| x|0\rangle \mathrm{e}^{\mathrm{i} \Omega_{k} t / 2} \frac{\sin \left(\Omega_{k} t / 2\right)}{\Omega_{k} / 2}, \quad \text { where } \quad \Omega_{k} \equiv \frac{E_{k}-E_{0}}{\hbar}-\omega \tag{1.4}
\end{equation*}
$$

Hence show that at late times the probability that the particle has become free is

$$
\begin{equation*}
P_{\mathrm{fr}}(t)=\left.\frac{2 \pi m F^{2} t}{\hbar^{3}} \frac{|\langle k, \mathrm{o}| x| 0\rangle\left.\right|^{2}}{k}\right|_{\Omega_{k}=0} \tag{1.5}
\end{equation*}
$$

Given that from Problem 5.17 we have

$$
\begin{equation*}
\langle x \mid 0\rangle=\sqrt{ } K \mathrm{e}^{-K|x|} \quad \text { where } \quad K=\frac{m V_{\delta}}{\hbar^{2}} \quad \text { and } \quad\langle x \mid k, o\rangle=\frac{1}{\sqrt{ } \pi} \sin (k x) \tag{1.6}
\end{equation*}
$$

show that

$$
\begin{equation*}
\langle k, o| x|0\rangle=\sqrt{\frac{K}{\pi}} \frac{4 k K}{\left(k^{2}+K^{2}\right)^{2}} \tag{1.7}
\end{equation*}
$$

Hence show that the probability of becoming free is

$$
\begin{equation*}
P_{\mathrm{fr}}(t)=\frac{8 \hbar F^{2} t}{m E_{0}^{2}} \frac{\sqrt{E_{\mathrm{f}} /\left|E_{0}\right|}}{\left(1+E_{\mathrm{f}} /\left|E_{0}\right|\right)^{4}} \tag{1.8}
\end{equation*}
$$

where $E_{\mathrm{f}}>0$ is the final energy. Check that this expression for P_{fr} is dimensionless and give a physical explanation of the general form of the energy-dependence of $P_{\mathrm{fr}}(t)$
Soln: When we substitute the given expansion of $|\psi\rangle$ in stationary states of the unperturbed Hamiltonian H_{0} into the TISE, the terms generated by differentiating the exponentials in time cancel on $H_{0}|\psi\rangle$. The given expression contains the surviving terms, namely the derivatives of the amplitudes a, b_{k} and c_{k} on the left and on the right $v|\psi\rangle$. In the first order approximation we put $a=1$ and $b_{k}=c_{k}=0$ on the right. Then we bra through with $\left\langle k^{\prime}, \mathrm{e}\right|$ and $\left\langle k^{\prime}, \mathrm{o}\right|$ and exploit the orthonormality of the stationary states to obtain equations for $\dot{b}_{k}(t)$ and $\dot{c}_{k}(t)$. The equation for \dot{b}_{k} is proportional
to the matrix element $\langle k, \mathrm{e}| v|0\rangle$, which vanishes by parity because v is an odd-parity operator. Then we replace v by $-x F \mathrm{e}^{-\mathrm{i} \omega t}$ and have

$$
\begin{aligned}
c_{k}(t) & =\int_{0}^{t} \mathrm{~d} t^{\prime} \dot{c}_{k}=\frac{\mathrm{i} F}{\hbar}\langle k, \mathrm{o}| x|0\rangle \int_{0}^{t} \mathrm{~d} t^{\prime} \mathrm{e}^{\mathrm{i}\left[\left(E_{k}-E_{0}\right) / \hbar-\omega\right] t^{\prime}}=\frac{\mathrm{i} F}{\hbar}\langle k, \mathrm{o}| x|0\rangle \frac{\mathrm{e}^{\mathrm{i} \Omega_{k} t}-1}{\mathrm{i} \Omega_{k}} \\
& =\frac{\mathrm{i} F}{\hbar}\langle k, \mathrm{o}| x|0\rangle \mathrm{e}^{\mathrm{i} \Omega_{k} t / 2} \frac{\sin \left(\Omega_{k} t / 2\right)}{\Omega_{k} / 2} .
\end{aligned}
$$

The probability that the particle is free is

$$
\left.P_{\mathrm{fr}}(t)=\int \mathrm{d} k\left|c_{k}\right|^{2}=\frac{F^{2}}{\hbar^{2}} \int \mathrm{~d} k|\langle k, \mathrm{o}| x| 0\right\rangle\left.\right|^{2} \frac{\sin ^{2}\left(\Omega_{k} t / 2\right)}{\left(\Omega_{k} / 2\right)^{2}}
$$

As $t \rightarrow \infty$ we have $\sin ^{2} x t / x^{2} \rightarrow \pi t \delta(x)$, so at large t

$$
\left.P_{\mathrm{fr}}(t)=\frac{F^{2}}{\hbar^{2}} \int \mathrm{~d} k|\langle k, \mathrm{o}| x| 0\right\rangle\left.\right|^{2} \pi t \delta\left(\Omega_{k} / 2\right)=\left.\frac{F^{2}}{\hbar^{2}} \frac{|\langle k, \mathrm{o}| x| 0\rangle\left.\right|^{2} \pi t}{\mathrm{~d}\left(\Omega_{k} / 2\right) / \mathrm{d} k}\right|_{\Omega_{k}=0}
$$

Moreover, $\Omega_{k}=\frac{1}{2} \hbar k^{2} / m+$ constant, so $\mathrm{d} \Omega_{k} / \mathrm{d} k=\hbar k / m$ and therefore

$$
P_{\mathrm{fr}}(t)=\left.\frac{2 \pi m F^{2} t}{\hbar^{3}} \frac{|\langle k, \mathrm{o}| x| 0\rangle\left.\right|^{2}}{k}\right|_{\Omega_{k}=0}
$$

Evaluating $\langle k, \mathrm{o}| x|0\rangle$ in the position representation, we have

$$
\begin{aligned}
\langle k, \mathrm{o}| x|0\rangle & =2 \int_{0}^{\infty} \mathrm{d} x \frac{\sin k x}{\sqrt{ } \pi} x \sqrt{ } K \mathrm{e}^{-K x}=2 \sqrt{\frac{K}{\pi}} \frac{1}{2 \mathrm{i}} \int_{0}^{\infty} \mathrm{d} x x\left(\mathrm{e}^{(\mathrm{i} k-K) x}-\mathrm{e}^{-(\mathrm{i} k+K) x}\right) \\
& =-\mathrm{i} \sqrt{\frac{K}{\pi}}\left(\frac{1}{(\mathrm{i} k-K)^{2}}-\frac{1}{(\mathrm{i} k+K)^{2}}\right)=\sqrt{\frac{K}{\pi}} \frac{4 k K}{\left(k^{2}+K^{2}\right)^{2}}
\end{aligned}
$$

The probability of becoming free is therefore

$$
\begin{equation*}
P_{\mathrm{fr}}(t)=\frac{2 \pi m F^{2} t}{\hbar^{3}} \frac{K}{\pi} \frac{16 k K^{2}}{\left(k^{2}+K^{2}\right)^{4}}=\frac{32 m F^{2} t}{\hbar^{3} K^{4}} \frac{k / K}{\left(k^{2} / K^{2}+1\right)^{4}} \tag{1.9}
\end{equation*}
$$

The required result follows when we substitute into the above $k^{2} / K^{2}=E_{\mathrm{f}} /\left|E_{0}\right|$ and $\hbar^{4} K^{2}=$ $\left(2 m E_{0}\right)^{2}$.

Regarding dimensions, $[F]=E / L$ and $[\hbar]=E T$, so

$$
\left[P_{\mathrm{fr}}\right]=\frac{(E / L)^{2} E T T}{M E^{2}}=\frac{E T^{2}}{M L^{2}}=\frac{M L^{2} T^{-2} T^{2}}{M L^{2}}
$$

$P_{\mathrm{fr}}(t)$ is small for small E because at such energies the free state, which always has a node at the location of the well, has a long wavelength, so it is practically zero throughout the region of scale $2 / K$ within which the bound particle is trapped. Consequently for small E the coupling between the bound and free state is small. At high E the wavelength of the free state is much smaller than $2 / K$ and the positive and negative contributions from neighbouring half cycles of the free state nearly cancel, so again the coupling between the bound and free states is small. The coupling is most effective when the wavelength of the free state is just a bit smaller than the size of the bound state.
1.17* A particle travelling with momentum $p=\hbar k>0$ from $-\infty$ encounters the steep-sided potential well $V(x)=-V_{0}<0$ for $|x|<a$. Use the Fermi golden rule to show that the probability that a particle will be reflected by the well is

$$
P_{\text {reflect }} \simeq \frac{V_{0}^{2}}{4 E^{2}} \sin ^{2}(2 k a)
$$

where $E=p^{2} / 2 m$. Show that in the limit $E \gg V_{0}$ this result is consistent with the exact reflection probability derived in Problem 5.10. Hint: adopt periodic boundary conditions so the wavefunctions of the in and out states can be normalised.

Soln: We consider a length L of the x axis where $L \gg a$ and $k=2 n \pi / L$, where $n \gg 1$ is an integer. Then correctly normalised wavefunctions of the in and out states are

$$
\left.\langle x| \text { in }\rangle=\frac{1}{\sqrt{ } L} \mathrm{e}^{\mathrm{i} k x} \quad ; \quad\langle x| \text { out }\right\rangle=\frac{1}{\sqrt{ } L} \mathrm{e}^{-\mathrm{i} k x}
$$

The required matrix element is

$$
\frac{1}{L} \int_{-L / 2}^{L / 2} \mathrm{~d} x \mathrm{e}^{\mathrm{i} k x} V(x) \mathrm{e}^{\mathrm{i} k x}=-V_{0} \int_{-a}^{a} \mathrm{~d} x \mathrm{e}^{2 \mathrm{i} k x}=-V_{0} \frac{\sin (2 k a)}{L k}
$$

so the rate of transitions from the in to the out state is

$$
\left.\left.\left.\dot{P}=\frac{2 \pi}{\hbar} g(E) \right\rvert\,\langle\text { out }| V \right\rvert\, \text { in }\right\rangle\left.\right|^{2}=\frac{2 \pi}{\hbar} g(E) V_{0}^{2} \frac{\sin ^{2}(2 k a)}{L^{2} k^{2}}
$$

Now we need the density of states $g(E)$. $E=p^{2} / 2 m=\hbar^{2} k^{2} / 2 m$ is just kinetic energy. Eliminating k in favour of n, we have

$$
n=\frac{L}{2 \pi \hbar} \sqrt{2 m E}
$$

As n increases by one, we get one extra state to scatter into, so

$$
g=\frac{\mathrm{d} n}{\mathrm{~d} E}=\frac{L}{4 \pi \hbar} \sqrt{\frac{2 m}{E}}
$$

Substituting this value into our scattering rate we find

$$
\dot{P}=\frac{V_{0}^{2}}{2 \hbar^{2}} \sqrt{\frac{2 m}{E}} \frac{\sin ^{2}(2 k a)}{L k^{2}}
$$

This vanishes as $L \rightarrow \infty$ because the fraction of the available space that is occupied by the scattering potential is $\sim 1 / L$. If it is not scattered, the particle covers distance L in a time $\tau=L / v=$ $L / \sqrt{2 E / m}$. So the probability that it is scattered on a single encounter is

$$
\dot{P} \tau=\frac{V_{0}^{2} m}{2 E \hbar^{2}} \frac{\sin ^{2}(2 k a)}{k^{2}}=\frac{V_{0}^{2}}{4 E^{2}} \sin ^{2}(2 k a)
$$

Equation (5.78) gives the reflection probability as

$$
P=\frac{(K / k-k / K)^{2} \sin ^{2}(2 K a)}{(K / k+k / K)^{2} \sin ^{2}(2 K a)+4 \cos ^{2}(2 K a)}
$$

When $V_{0} \ll E, K^{2}-k^{2}=2 m V_{0} / \hbar^{2} \ll k^{2}$, so we approximate $K a$ with $k a$ and, using $K / k \simeq 1$ in the denominator, the reflection probability becomes

$$
P \simeq\left(\frac{K^{2}-k^{2}}{2 k K}\right)^{2} \sin ^{2}(2 k a) \simeq\left(\frac{2 m V_{0}}{2 \hbar^{2} k^{2}}\right)^{2} \sin ^{2}(2 k a)=\frac{V_{0}^{2}}{4 E^{2}} \sin ^{2}(2 k a)
$$

which agrees with the value we obtained from Fermi's rule.
1.18* Show that the number of states $g(E) \mathrm{d} E \mathrm{~d}^{2} \Omega$ with energy in $(E, E+\mathrm{d} E)$ and momentum in the solid angle $\mathrm{d}^{2} \Omega$ around $\mathbf{p}=\hbar \mathbf{k}$ of a particle of mass m that moves freely subject to periodic boundary conditions on the walls of a cubical box of side length L is

$$
\begin{equation*}
g(E) \mathrm{d} E \mathrm{~d}^{2} \Omega=\left(\frac{L}{2 \pi}\right)^{3} \frac{m^{3 / 2}}{\hbar^{3}} \sqrt{2 E} \mathrm{~d} E \mathrm{~d} \Omega^{2} \tag{1.10}
\end{equation*}
$$

Hence show from Fermi's golden rule that the cross-section for elastic scattering of such particles by a weak potential $V(\mathbf{x})$ from momentum $\hbar \mathbf{k}$ into the solid angle $\mathrm{d}^{2} \Omega$ around momentum $\hbar \mathbf{k}^{\prime}$ is

$$
\begin{equation*}
\mathrm{d} \sigma=\frac{m^{2}}{(2 \pi)^{2} \hbar^{4}} \mathrm{~d}^{2} \Omega\left|\int \mathrm{~d}^{3} \mathbf{x} \mathrm{e}^{\mathrm{i}\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{x}} V(\mathbf{x})\right|^{2} \tag{1.11}
\end{equation*}
$$

Oxford Physics

Explain in what sense the potential has to be 'weak' for this Born approximation to the scattering cross-section to be valid.
Soln: We have $k_{x}=2 n_{x} \pi / L$, where n_{x} is an integer, and similarly for k_{y}, k_{z}. So each state occupies volume $(2 \pi / L)^{3}$ in k-space. So the number of states in the volume element $k^{2} \mathrm{~d} k \mathrm{~d}^{2} \Omega$ is

$$
g(E) \mathrm{d} E \mathrm{~d}^{2} \Omega=\left(\frac{L}{2 \pi}\right)^{3} k^{2} \mathrm{~d} k \mathrm{~d}^{2} \Omega
$$

Using $k^{2}=2 m E / \hbar^{2}$ to eliminate k we obtain the required expression.
In Fermi's formula we must replace $g(E) \mathrm{d} E$ by $g(E) \mathrm{d} E \mathrm{~d}^{2} \Omega$ because this is the density of states that will make our detector ping if $\mathrm{d}^{2} \Omega$ is its angular resolution. Then the probability per unit time of pinging is

$$
\left.\left.\left.\left.\dot{P}=\frac{2 \pi}{\hbar} g(E) \mathrm{d}^{2} \Omega \right\rvert\,\langle\text { out }| V \right\rvert\, \text { in }\right\rangle \left.\left.\left.\right|^{2}=\frac{2 \pi}{\hbar}\left(\frac{L}{2 \pi}\right)^{3} k^{2} \frac{\mathrm{~d} k}{\mathrm{~d} E} \mathrm{~d}^{2} \Omega \right\rvert\,\langle\text { out }| V \right\rvert\, \text { in }\right\rangle\left.\right|^{2}
$$

The matrix element is

$$
\langle\text { out }| V \mid \text { in }\rangle=\frac{1}{L^{3}} \int \mathrm{~d}^{3} \mathbf{x} \mathrm{e}^{-\mathrm{i} \mathbf{k}^{\prime} \cdot \mathbf{x}} V(\mathbf{x}) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}
$$

Now the cross section $\mathrm{d} \sigma$ is defined by $\dot{P}=\mathrm{d} \sigma \times$ incoming flux $=\left(v / L^{3}\right) \mathrm{d} \sigma=\left(\hbar k / m L^{3}\right) \mathrm{d} \sigma$. Putting everything together, we find

$$
\begin{aligned}
& \frac{\hbar k}{m L^{3}} \mathrm{~d} \sigma=\frac{1}{L^{6}}\left|\int \mathrm{~d}^{3} \mathbf{x} \mathrm{e}^{-\mathrm{i} \mathbf{k}^{\prime} \cdot \mathbf{x}} V(\mathbf{x}) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}\right|^{2} \frac{2 \pi}{\hbar}\left(\frac{L}{2 \pi}\right)^{3} k^{2} \frac{\mathrm{~d} k}{\mathrm{~d} E} \mathrm{~d}^{2} \Omega \\
& \Rightarrow \mathrm{~d} \sigma=\frac{m k \mathrm{~d} k / \mathrm{d} E}{(2 \pi)^{2} \hbar^{2}}\left|\int \mathrm{~d}^{3} \mathbf{x} \mathrm{e}^{-\mathrm{i} \mathbf{k}^{\prime} \cdot \mathbf{x}} V(\mathbf{x}) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}\right|^{2}
\end{aligned}
$$

Eliminating k with $\hbar^{2} k \mathrm{~d} k=m \mathrm{~d} E$ we obtain the desired expression.
The Born approximation is valid providing the unperturbed wavefunction is a reasonable approximation to the true wavefunction throughout the scattering potential. That is, we must be able to neglect "shadowing" by the scattering potential.

Further Quantum Mechanics HT 2014
 Problems 2 (Easter Vacation)

Radiative transitions

2.1* Let $|E, l, m\rangle$ denote a stationary state of an atom with orbital angular-momentum quantum numbers l, m, and let $x_{ \pm}=x \pm \mathrm{i} y$ be complex position operators while $L_{ \pm}=L_{x} \pm \mathrm{i} L_{y}$ are the usual orbital angular-momentum ladder operators. Show that $x_{ \pm}|E, l, m\rangle$ is an eigenket of L_{z} with eigenvalue $m \pm 1$. Show also that

$$
\left[L_{+}, x_{+}\right]=\left[L_{-}, x_{-}\right]=0 \quad \text { and } \quad\left[L_{+}, x_{-}\right]=-\left[L_{-}, x_{+}\right]=2 z .
$$

Hence show that

$$
\left\langle E^{\prime}, l^{\prime}, m\right| z|E, l, m\rangle=\alpha_{+}(l, m)\left\langle E^{\prime}, l^{\prime}, m\right| x|E, l, m+1\rangle-\alpha_{-}\left(l^{\prime}, m\right)\left\langle E^{\prime}, l^{\prime}, m-1\right| x|E, l, m\rangle .
$$

where $\alpha_{ \pm}(l, m) \equiv \sqrt{l(l+1)-m(m \pm 1)}$. [Hint: compute $\left\langle E^{\prime}, l^{\prime}, m\right| x|E, l, m+1\rangle$]
Soln:

$$
\left[L_{z}, x_{ \pm}\right]=\left[L_{z}, x\right] \pm \mathrm{i}\left[L_{z}, y\right]=\mathrm{i} y \pm \mathrm{i}(-\mathrm{i} x)= \pm x_{ \pm} .
$$

So

$$
L_{z} x_{ \pm}|E, l, m\rangle=\left(x_{ \pm} L_{z}+\left[L_{z}, x_{ \pm}\right]\right)|E, l, m\rangle=(m \pm 1) x_{ \pm}|E, l, m\rangle
$$

as required.

$$
\left[L_{+}, x_{ \pm}\right]=\left[L_{x}+\mathrm{i} L_{y}, x \pm \mathrm{i} y\right]=\mathrm{i}\left(\left[L_{y}, x\right] \pm\left[L_{x}, y\right]\right)=\mathrm{i}(-\mathrm{i} z \pm \mathrm{i} z)=z \mp z
$$

as required. The corresponding results for L_{-}can be obtained by taking the complex conjugate of this equation.

Expressing z as a quarter of the difference of the non-zero commutators, we have

$$
\begin{aligned}
\left\langle E^{\prime}, l^{\prime}, m\right| x|E, l, m+1\rangle & =\frac{1}{2}\left\langle E^{\prime}, l^{\prime}, m\right|\left(x_{+}-x_{-}\right)|E, l, m+1\rangle \\
& =\frac{1}{2 \alpha_{+}(l, m)}\left\langle E^{\prime}, l^{\prime}, m\right|\left(x_{+}-x_{-}\right) L_{+}|E, l, m\rangle \\
& =\frac{1}{2 \alpha_{+}(l, m)}\left\langle E^{\prime}, l^{\prime}, m\right|\left\{L_{+}\left(x_{+}-x_{-}\right)+\left[L_{+}, x_{-}\right]\right\}|E, l, m\rangle \\
& =\frac{\alpha_{-}\left(l^{\prime}, m\right)}{2 \alpha_{+}(l, m)}\left\langle E^{\prime}, l^{\prime}, m-1\right|\left(x_{+}-x_{-}\right)|E, l, m\rangle+\frac{1}{\alpha_{+}(l, m)}\left\langle E^{\prime}, l^{\prime}, m\right| z|E, l, m\rangle
\end{aligned}
$$

Hence

$$
\left\langle E^{\prime}, l^{\prime}, m\right| z|E, l, m\rangle=\alpha_{+}(l, m)\left\langle E^{\prime}, l^{\prime}, m\right| x|E, l, m+1\rangle-\alpha_{-}\left(l^{\prime}, m\right)\left\langle E^{\prime}, l^{\prime}, m-1\right| x|E, l, m\rangle .
$$

Further Quantum Mechanics TT 2014
 Problems 3 (TT)

Exchange Symmetry

Helium

3.6* In terms of the position vectors $\mathbf{x}_{\alpha}, \mathbf{x}_{1}$ and \mathbf{x}_{2} of the α particle and two electrons, the centre of mass and relative coordinates of a helium atom are

$$
\begin{equation*}
\mathbf{X} \equiv \frac{m_{\alpha} \mathbf{x}_{\alpha}+m_{\mathrm{e}}\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)}{m_{t}}, \quad \mathbf{r}_{1} \equiv \mathbf{x}_{1}-\mathbf{X}, \quad \mathbf{r}_{2} \equiv \mathbf{x}_{2}-\mathbf{X} \tag{3.1}
\end{equation*}
$$

where $m_{t} \equiv m_{\alpha}+2 m_{\mathrm{e}}$. Write the atom's potential energy operator in terms of the \mathbf{r}_{i}.
Show that

$$
\begin{gather*}
\frac{\partial}{\partial \mathbf{X}}=\frac{\partial}{\partial \mathbf{x}_{\alpha}}+\frac{\partial}{\partial \mathbf{x}_{1}}+\frac{\partial}{\partial \mathbf{x}_{2}} \\
\frac{\partial}{\partial \mathbf{r}_{1}}=\frac{\partial}{\partial \mathbf{x}_{1}}-\frac{m_{\mathrm{e}}}{m_{\alpha}} \frac{\partial}{\partial \mathbf{x}_{\alpha}} \quad \frac{\partial}{\partial \mathbf{r}_{2}}=\frac{\partial}{\partial \mathbf{x}_{2}}-\frac{m_{\mathrm{e}}}{m_{\alpha}} \frac{\partial}{\partial \mathbf{x}_{\alpha}} \tag{3.2}
\end{gather*}
$$

and hence that the kinetic energy operator of the helium atom can be written

$$
\begin{equation*}
K=-\frac{\hbar^{2}}{2 m_{t}} \frac{\partial^{2}}{\partial \mathbf{X}^{2}}-\frac{\hbar^{2}}{2 \mu}\left(\frac{\partial^{2}}{\partial \mathbf{r}_{1}^{2}}+\frac{\partial^{2}}{\partial \mathbf{r}_{2}^{2}}\right)-\frac{\hbar^{2}}{2 m_{t}}\left(\frac{\partial}{\partial \mathbf{x}_{1}}-\frac{\partial}{\partial \mathbf{x}_{2}}\right)^{2} \tag{3.3}
\end{equation*}
$$

where $\mu \equiv m_{\mathrm{e}}\left(1+2 m_{\mathrm{e}} / m_{\alpha}\right)$. What is the physical interpretation of the third term on the right? Explain why it is reasonable to neglect this term.
Soln: We have from the definitions

$$
\begin{aligned}
\mathbf{x}_{1} & =\mathbf{X}+\mathbf{r}_{1} \quad \mathbf{x}_{2}=\mathbf{X}+\mathbf{r}_{2} \\
\mathbf{x}_{\alpha} & =\frac{1}{m_{\alpha}}\left(m_{t} \mathbf{X}-m_{\mathrm{e}}\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)\right)=\frac{1}{m_{\alpha}}\left(m_{t} \mathbf{X}-m_{\mathrm{e}}\left(2 \mathbf{X}+\mathbf{r}_{1}+\mathbf{r}_{2}\right)\right) \\
& =\mathbf{X}-\frac{m_{\mathrm{e}}}{m_{\alpha}}\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right)
\end{aligned}
$$

Directly computing the differences $\mathbf{x}_{i}-\mathbf{x}_{\alpha}$, etc, one finds easily that

$$
V=-\frac{e^{2}}{4 \pi \epsilon_{0}}\left(\frac{2}{\left|\mathbf{r}_{1}+\left(m_{\mathrm{e}} / m_{\alpha}\right)\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right)\right|}+\frac{2}{\left|\mathbf{r}_{1}+\left(m_{\mathrm{e}} / m_{\alpha}\right)\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right)\right|}-\frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}\right)
$$

By the chain rule

$$
\frac{\partial}{\partial \mathbf{X}}=\frac{\partial \mathbf{x}_{\alpha}}{\partial \mathbf{X}} \cdot \frac{\partial}{\partial \mathbf{x}_{\alpha}}+\frac{\partial \mathbf{x}_{1}}{\partial \mathbf{X}} \cdot \frac{\partial}{\partial \mathbf{x}_{1}}+\frac{\partial \mathbf{x}_{2}}{\partial \mathbf{X}} \cdot \frac{\partial}{\partial \mathbf{x}_{2}}=\frac{\partial}{\partial \mathbf{x}_{\alpha}}+\frac{\partial}{\partial \mathbf{x}_{1}}+\frac{\partial}{\partial \mathbf{x}_{2}}
$$

as required. Similarly

$$
\frac{\partial}{\partial \mathbf{r}_{1}}=\frac{\partial \mathbf{x}_{\alpha}}{\partial \mathbf{r}_{1}} \cdot \frac{\partial}{\partial \mathbf{x}_{\alpha}}+\frac{\partial \mathbf{x}_{1}}{\partial \mathbf{r}_{1}} \cdot \frac{\partial}{\partial \mathbf{x}_{1}}=-\frac{m_{\mathrm{e}}}{m_{\alpha}} \frac{\partial}{\partial \mathbf{x}_{\alpha}}+\frac{\partial}{\partial \mathbf{x}_{1}}
$$

and similarly for $\partial / \partial \mathbf{r}_{2}$. Squaring these expressions, we have

$$
\begin{aligned}
\frac{\partial^{2}}{\partial \mathbf{X}^{2}} & =\frac{\partial^{2}}{\partial \mathbf{x}_{\alpha}^{2}}+2 \frac{\partial}{\partial \mathbf{x}_{\alpha}}\left(\frac{\partial}{\partial \mathbf{x}_{1}}+\frac{\partial}{\partial \mathbf{x}_{2}}\right)+\left(\frac{\partial}{\partial \mathbf{x}_{1}}+\frac{\partial}{\partial \mathbf{x}_{2}}\right)^{2} \\
\frac{\partial^{2}}{\partial \mathbf{r}_{1}^{2}} & =\frac{m_{\mathrm{e}}^{2}}{m_{\alpha}^{2}} \frac{\partial^{2}}{\partial \mathbf{x}_{\alpha}^{2}}-2 \frac{m_{\mathrm{e}}}{m_{\alpha}} \frac{\partial^{2}}{\partial \mathbf{x}_{1} \partial \mathbf{x}_{\alpha}}+\frac{\partial^{2}}{\partial \mathbf{x}_{1}^{2}} \\
\frac{\partial^{2}}{\partial \mathbf{r}_{2}^{2}} & =\frac{m_{\mathrm{e}}^{2}}{m_{\alpha}^{2}} \frac{\partial^{2}}{\partial \mathbf{x}_{\alpha}^{2}}-2 \frac{m_{\mathrm{e}}}{m_{\alpha}} \frac{\partial^{2}}{\partial \mathbf{x}_{2} \partial \mathbf{x}_{\alpha}}+\frac{\partial^{2}}{\partial \mathbf{x}_{2}^{2}}
\end{aligned}
$$

If we add the first of these eqns to $m_{\alpha} / m_{\mathrm{e}}$ times the sum of the other two, the mixed derivatives in \mathbf{x}_{α} cancel and we are left with

$$
\frac{\partial^{2}}{\partial \mathbf{X}^{2}}+\frac{m_{\alpha}}{m_{\mathrm{e}}}\left(\frac{\partial^{2}}{\partial \mathbf{r}_{1}^{2}}+\frac{\partial^{2}}{\partial \mathbf{r}_{2}^{2}}\right)=\left(1+2 \frac{m_{\mathrm{e}}}{m_{\alpha}}\right) \frac{\partial^{2}}{\partial \mathbf{x}_{\alpha}^{2}}+\left(1+\frac{m_{\alpha}}{m_{\mathrm{e}}}\right)\left(\frac{\partial^{2}}{\partial \mathbf{x}_{1}^{2}}+\frac{\partial^{2}}{\partial \mathbf{x}_{2}^{2}}\right)+2 \frac{\partial^{2}}{\partial \mathbf{x}_{1} \partial \mathbf{x}_{2}}
$$

Dividing through by m_{t} we obtain

$$
\frac{1}{m_{t}} \frac{\partial^{2}}{\partial \mathbf{X}^{2}}+\frac{m_{\alpha}}{m_{\mathrm{e}} m_{t}}\left(\frac{\partial^{2}}{\partial \mathbf{r}_{1}^{2}}+\frac{\partial^{2}}{\partial \mathbf{r}_{2}^{2}}\right)=\frac{1}{m_{\alpha}} \frac{\partial^{2}}{\partial \mathbf{x}_{\alpha}^{2}}+\frac{1}{m_{\mathrm{e}}}\left(1-\frac{m_{\mathrm{e}}}{m_{t}}\right)\left(\frac{\partial^{2}}{\partial \mathbf{x}_{1}^{2}}+\frac{\partial^{2}}{\partial \mathbf{x}_{2}^{2}}\right)+\frac{2}{m_{t}} \frac{\partial^{2}}{\partial \mathbf{x}_{1} \partial \mathbf{x}_{2}}
$$

After multiplication by $-\hbar^{2} / 2$ the first term on the right and the unity part of the second term constitute the atom's KE operator. So we transfer the remaining terms to the left side and have the stated result.

The final term in K must represent the kinetic energy that the α-particle has as it moves around the centre of mass in reflex to the faster motion of the electrons. It will be smaller than the double derivatives with respect to \mathbf{r}_{i} by at least a factor $m_{\mathrm{e}} / m_{\alpha}$. (Classically we'd expect the velocities to be smaller by this factor and therefore the kinetic energies to be in the ratio $m_{\mathrm{e}}^{2} / m_{\alpha}^{2}$.)
3.7* In this problem we use the variational principle to estimate the energies of the singlet and triplet states 1 s 2 s of helium by refining the working of Appendix K.

The idea is to use as the trial wavefunction symmetrised products of the $1 s$ and 2 s hydrogenic wavefunctions (Table 8.1) with the scale length a_{Z} replaced by a_{1} in the 1 s wavefunction and by a different length a_{2} in the $2 s$ wavefunction. Explain physically why with this choice of wavefunction we expect $\langle H\rangle$ to be minimised with $a_{1} \sim 0.5 a_{0}$ but a_{2} distinctly larger.

Using the scaling properties of the expectation values of the kinetic-energy and potential-energy operators, show that

$$
\langle H\rangle=\left\{\frac{a_{0}^{2}}{a_{1}^{2}}-\frac{4 a_{0}}{a_{1}}+\frac{a_{0}^{2}}{4 a_{2}^{2}}-\frac{a_{0}}{a_{2}}+2 a_{0}\left(D\left(a_{1}, a_{2}\right) \pm E\left(a_{1}, a_{2}\right)\right)\right\} \mathcal{R}
$$

where D and E are the direct and exchange integrals.
Show that the direct integral can be written

$$
D=\frac{2}{a_{2}} \int_{0}^{\infty} \mathrm{d} x x^{2} \mathrm{e}^{-2 x} \frac{1}{4 y}\left\{8-\left(8+6 y+2 y^{2}+y^{3}\right) \mathrm{e}^{-y}\right\},
$$

where $x \equiv r_{1} / a_{1}$ and $y=r_{1} / a_{2}$. Hence show that with $\alpha \equiv 1+2 a_{2} / a_{1}$ we have

$$
D=\frac{1}{a_{1}}\left\{1-\frac{a_{2}^{2}}{a_{1}^{2}}\left(\frac{4}{\alpha^{2}}+\frac{6}{\alpha^{3}}+\frac{6}{\alpha^{4}}+\frac{12}{\alpha^{5}}\right)\right\} .
$$

Show that with $y=r_{1} / a_{2}$ and $\rho=\alpha r_{2} / 2 a_{2}$ the exchange integral is

$$
\begin{aligned}
E= & \frac{\sqrt{ } 2}{\left(a_{1} a_{2}\right)^{3 / 2}} \int \mathrm{~d}^{3} \mathbf{x}_{1} \Psi_{10}^{0 *}\left(\mathbf{x}_{1}\right) \Psi_{20}^{0}\left(\mathbf{x}_{1}\right) \\
& \times\left\{\frac{1}{r_{1}}\left(\frac{2 a_{2}}{\alpha}\right)^{3} \int_{0}^{\alpha y / 2} \mathrm{~d} \rho\left(\rho^{2}-\rho^{3} / \alpha\right) \mathrm{e}^{-\rho}\right. \\
& \left.+\left(\frac{2 a_{2}}{\alpha}\right)^{2} \int_{\alpha y / 2}^{\infty} \mathrm{d} \rho\left(\rho-\rho^{2} / \alpha\right) \mathrm{e}^{-\rho}\right\}
\end{aligned}
$$

Using

$$
\int_{a}^{b} \mathrm{~d} \rho\left(\rho^{2}-\rho^{3} / \alpha\right) \mathrm{e}^{-\rho}=-\left[\left\{\left(1-\frac{3}{\alpha}\right)\left(2+2 \rho+\rho^{2}\right)-\frac{1}{\alpha} \rho^{3}\right\} \mathrm{e}^{-\rho}\right]_{a}^{b}
$$

and

$$
\int_{a}^{b} \mathrm{~d} \rho\left(\rho-\rho^{2} / \alpha\right) \mathrm{e}^{-\rho}=-\left[\left\{\left(1-\frac{2}{\alpha}\right)(1+\rho)-\frac{1}{\alpha} \rho^{2}\right\} \mathrm{e}^{-\rho}\right]_{a}^{b}
$$

show that

$$
\begin{aligned}
& E=\frac{2}{\left(a_{1} a_{2}\right)^{3}} \int_{0}^{\infty} \mathrm{d} r_{1} r_{1}^{2}\left(1-\frac{r_{1}}{2 a_{2}}\right) \mathrm{e}^{-\alpha r_{1} / 2 a_{2}} \\
& \times\left\{\frac{1}{r_{1}}\left(\frac{2 a_{2}}{\alpha}\right)^{3}\left[2\left(1-\frac{3}{\alpha}\right)-\left\{\left(1-\frac{3}{\alpha}\right)\left(2+\alpha y+\frac{1}{4} \alpha^{2} y^{2}\right)-\frac{1}{8} \alpha^{2} y^{3}\right\} \mathrm{e}^{-\alpha y / 2}\right]\right. \\
& \left.\quad+\left(\frac{2 a_{2}}{\alpha}\right)^{2}\left\{\left(1-\frac{2}{\alpha}\right)\left(1+\frac{1}{2} \alpha y\right)-\frac{1}{4} \alpha y^{2}\right\} \mathrm{e}^{-\alpha y / 2}\right\} \\
& =\frac{8 a_{2}^{2}}{\alpha^{5} a_{1}^{3}}\left(10-\frac{50}{\alpha}+\frac{66}{\alpha^{2}}\right),
\end{aligned}
$$

Using the above results, show numerically that the minimum of $\langle H\rangle$ occurs near $a_{1}=0.5 a_{0}$ and $a_{2}=0.8 a_{0}$ in both the singlet and triplet cases. Show that for the triplet the minimum is -60.11 eV and for the singlet it is -57.0 eV . Compare these results with the experimental values and the values obtained in Appendix K.
Soln: We'd expect the 2 s electron to see a smaller nuclear charge than the 1 s electron and therefore to have a longer scale length since the latter scales inversely with the nuclear charge.

The 1 s orbit taken on its own has $K=\left(a_{0} / a_{1}\right)^{2} \mathcal{R}$ because the kinetic energy is \mathcal{R} for hydrogen and it is proportional to the inverse square of the wavefunction's scale length. The 1 s potential energy is $W=-4\left(a_{0} / a_{1}\right) \mathcal{R}$ because in hydrogen it is $-2 \mathcal{R}$, and it's proportional to the nuclear charge and to the inverse of the wavefunction's scale length. Similarly, the 2 s orbit taken on its own has $K=\frac{1}{4}\left(a_{0} / a_{2}\right)^{2} \mathcal{R}$ and $W=-\left(a_{0} / a_{2}\right) \mathcal{R}$, both just $\frac{1}{4}$ of the 1 s values from the $1 / n^{2}$ in the Rydberg formula. The electron-electron energies are $(D \pm E) 2 a_{0} \mathcal{R}$ because $\mathcal{R}=e^{2} / 8 \pi \epsilon_{0} a_{0}$. The required expression for $\langle H\rangle$ now follows.

When the scale length a_{Z} is relabelled a_{1} where it relates to the 1 s electron and is relabelled a_{2} where it relates to the 2 s electron, equation (K.2) remains valid with ρ redefined to $\rho \equiv r_{2} / a_{2}$ and x replaced by $y \equiv r_{1} / a_{2}$. With these definitions the first line of equation (K.2) remains valid and the second line becomes

$$
\begin{align*}
D & =\frac{2}{a_{2}} \int_{0}^{\infty} \mathrm{d} x x^{2} \mathrm{e}^{-2 x} \frac{1}{4 y}\left\{8-\left(8+6 y+2 y^{2}+y^{3}\right) \mathrm{e}^{-y}\right\} \\
& =\frac{1}{2 a_{2}}\left\{8 \int_{0}^{\infty} \mathrm{d} x x \frac{x}{y} \mathrm{e}^{-2 x}-\int_{0}^{\infty} \mathrm{d} x \frac{x^{2}}{y^{2}}\left(8 y+6 y^{2}+2 y^{3}+y^{4}\right) \mathrm{e}^{-(2 x+y)}\right\} \tag{3.4}
\end{align*}
$$

Now $x / y=a_{2} / a_{1}$ and $\int_{0}^{\infty} \mathrm{d} y y^{n} \mathrm{e}^{-\alpha y}=\alpha^{-(n+1)} n$! so with $\alpha \equiv 1+2 a_{2} / a_{1}$ we have

$$
\begin{align*}
D & =\frac{1}{2 a_{2}}\left\{2 \frac{a_{2}}{a_{1}}-\frac{a_{2}^{3}}{a_{1}^{3}}\left(\frac{8}{\alpha^{2}}+\frac{6}{\alpha^{3}} 2!+\frac{2}{\alpha^{4}} 3!+\frac{1}{\alpha^{5}} 4!\right)\right\} \tag{3.5}\\
& =\frac{1}{a_{1}}\left\{1-\frac{a_{2}^{2}}{a_{1}^{2}}\left(\frac{4}{\alpha^{2}}+\frac{6}{\alpha^{3}}+\frac{6}{\alpha^{4}}+\frac{12}{\alpha^{5}}\right)\right\}
\end{align*}
$$

which agrees with equation (K.2) when $a_{1}=a_{2}=a_{Z}$ as it should.
Equation (K.3) for the exchange integral becomes

$$
\begin{align*}
E= & \frac{1}{\sqrt{ } 2\left(a_{1} a_{2}\right)^{3 / 2}} \int \mathrm{~d}^{3} \mathbf{x}_{1} \Psi_{10}^{0 *}\left(\mathbf{x}_{1}\right) \Psi_{20}^{0}\left(\mathbf{x}_{1}\right) \\
& \times \int \mathrm{d} r_{2} \mathrm{~d} \theta_{2} \frac{r_{2}^{2}\left(1-r_{2} / 2 a_{2}\right) \sin \theta_{2} \mathrm{e}^{-\alpha r_{2} / 2 a_{2}}}{\sqrt{\left|r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \theta_{2}\right|}} \tag{3.6}
\end{align*}
$$

After integrating over θ as in Box 11.1, we have

$$
\begin{aligned}
E= & \frac{\sqrt{ } 2}{\left(a_{1} a_{2}\right)^{3 / 2}} \int \mathrm{~d}^{3} \mathbf{x}_{1} \Psi_{10}^{0 *}\left(\mathbf{x}_{1}\right) \Psi_{20}^{0}\left(\mathbf{x}_{1}\right) \\
& \times\left\{\int_{0}^{r_{1}} \mathrm{~d} r_{2} \frac{r_{2}^{2}}{r_{1}}\left(1-\frac{r_{2}}{2 a_{2}}\right) \mathrm{e}^{-\alpha r_{2} / 2 a_{2}}+\int_{r_{1}}^{\infty} \mathrm{d} r_{2} r_{2}\left(1-\frac{r_{2}}{2 a_{2}}\right) \mathrm{e}^{-\alpha r_{2} / 2 a_{2}}\right\}
\end{aligned}
$$

With $y \equiv r_{1} / a_{2}$ and $\rho \equiv \alpha r_{2} / 2 a_{2}$

$$
\begin{aligned}
E= & \frac{\sqrt{ } 2}{\left(a_{1} a_{2}\right)^{3 / 2}} \int \mathrm{~d}^{3} \mathbf{x}_{1} \Psi_{10}^{0 *}\left(\mathbf{x}_{1}\right) \Psi_{20}^{0}\left(\mathbf{x}_{1}\right) \\
& \times\left\{\frac{1}{r_{1}}\left(\frac{2 a_{2}}{\alpha}\right)^{3} \int_{0}^{\alpha y / 2} \mathrm{~d} \rho\left(\rho^{2}-\rho^{3} / \alpha\right) \mathrm{e}^{-\rho}+\left(\frac{2 a_{2}}{\alpha}\right)^{2} \int_{\alpha y / 2}^{\infty} \mathrm{d} \rho\left(\rho-\rho^{2} / \alpha\right) \mathrm{e}^{-\rho}\right\} .
\end{aligned}
$$

Now

$$
\int_{a}^{b} \mathrm{~d} \rho\left(\rho^{2}-\rho^{3} / \alpha\right) \mathrm{e}^{-\rho}=-\left[\left\{\left(1-\frac{3}{\alpha}\right)\left(2+2 \rho+\rho^{2}\right)-\frac{1}{\alpha} \rho^{3}\right\} \mathrm{e}^{-\rho}\right]_{a}^{b}
$$

and

$$
\int_{a}^{b} \mathrm{~d} \rho\left(\rho-\rho^{2} / \alpha\right) \mathrm{e}^{-\rho}=-\left[\left\{\left(1-\frac{2}{\alpha}\right)(1+\rho)-\frac{1}{\alpha} \rho^{2}\right\} \mathrm{e}^{-\rho}\right]_{a}^{b}
$$

Thus

$$
\begin{aligned}
& E= \frac{\sqrt{ } 2}{\left(a_{1} a_{2}\right)^{3 / 2}} \int \mathrm{~d}^{3} \mathbf{x}_{1} \Psi_{10}^{0 *}\left(\mathbf{x}_{1}\right) \Psi_{20}^{0}\left(\mathbf{x}_{1}\right) \\
& \times\left\{\frac{1}{r_{1}}\left(\frac{2 a_{2}}{\alpha}\right)^{3}\left[2\left(1-\frac{3}{\alpha}\right)-\left\{\left(1-\frac{3}{\alpha}\right)\left(2+\alpha y+\frac{1}{4} \alpha^{2} y^{2}\right)-\frac{1}{8} \alpha^{2} y^{3}\right\} \mathrm{e}^{-\alpha y / 2}\right]\right. \\
&\left.+\left(\frac{2 a_{2}}{\alpha}\right)^{2}\left\{\left(1-\frac{2}{\alpha}\right)\left(1+\frac{1}{2} \alpha y\right)-\frac{1}{4} \alpha y^{2}\right\} \mathrm{e}^{-\alpha y / 2}\right\} \\
&= \frac{2}{\left(a_{1} a_{2}\right)^{3}} \int \mathrm{~d} r_{1} r_{1}^{2}\left(1-\frac{r_{1}}{2 a_{2}}\right) \mathrm{e}^{-\alpha r_{1} / 2 a_{2}} \\
& \times\left\{\frac{1}{r_{1}}\left(\frac{2 a_{2}}{\alpha}\right)^{3}\left[2\left(1-\frac{3}{\alpha}\right)-\left\{\left(1-\frac{3}{\alpha}\right)\left(2+\alpha y+\frac{1}{4} \alpha^{2} y^{2}\right)-\frac{1}{8} \alpha^{2} y^{3}\right\} \mathrm{e}^{-\alpha y / 2}\right]\right. \\
&\left.+\left(\frac{2 a_{2}}{\alpha}\right)^{2}\left\{\left(1-\frac{2}{\alpha}\right)\left(1+\frac{1}{2} \alpha y\right)-\frac{1}{4} \alpha y^{2}\right\} \mathrm{e}^{-\alpha y / 2}\right\}
\end{aligned}
$$

Simplifying further

$$
\begin{aligned}
& E=\frac{2}{a_{1}^{3}}\left(\frac{2 a_{2}}{\alpha}\right)^{2} \frac{8}{\alpha^{2} a_{2} a_{1}^{3}} \int_{0}^{\infty} \mathrm{d} y y^{2}\left(1-\frac{1}{2} y\right) \\
& \times\left\{\left(\frac{2}{\alpha y}\right)\left[2\left(1-\frac{3}{\alpha}\right) \mathrm{e}^{-\alpha y / 2}-\left\{\left(1-\frac{3}{\alpha}\right)\left(2+\alpha y+\frac{1}{4} \alpha^{2} y^{2}\right)-\frac{1}{8} \alpha^{2} y^{3}\right\} \mathrm{e}^{-\alpha y}\right]\right. \\
&\left.+\left\{\left(1-\frac{2}{\alpha}\right)\left(1+\frac{1}{2} \alpha y\right)-\frac{1}{4} \alpha y^{2}\right\} \mathrm{e}^{-\alpha y}\right\}
\end{aligned}
$$

Now let's collect terms with factors

$$
\frac{8 a_{2}^{2}}{\alpha^{2} a_{1}^{3}} \int_{0}^{\infty} \mathrm{d} y\left(1-\frac{1}{2} y\right) y^{n} \mathrm{e}^{-\alpha y}=\frac{8 a_{2}^{2}}{\alpha^{2} a_{1}^{3}} \frac{n!}{\alpha^{n+1}}\left(1-\frac{n+1}{2 \alpha}\right) .
$$

The two terms with $n=4$ cancel. The coefficient of the remaining terms are

$$
\begin{array}{ll}
n=3 & : \quad\left(1-\frac{2}{\alpha}\right) \frac{1}{2} \alpha-\left(1-\frac{3}{\alpha}\right) \frac{1}{2} \alpha=\frac{1}{2} \\
n=2 & : \quad\left(1-\frac{2}{\alpha}\right)-\left(1-\frac{3}{\alpha}\right) 2=\frac{4}{\alpha}-1 \\
n=1 & : \quad-\left(1-\frac{3}{\alpha}\right) \frac{4}{\alpha}
\end{array}
$$

The final contribution to E is

$$
\begin{aligned}
\frac{8 a_{2}^{2}}{\alpha^{2} a_{1}^{3}} \frac{4}{\alpha}\left(1-\frac{3}{\alpha}\right) \int \mathrm{d} y y\left(1-\frac{1}{2} y\right) \mathrm{e}^{-\alpha y / 2} & =\frac{8 a_{2}^{2}}{\alpha^{2} a_{1}^{3}} \frac{4}{\alpha}\left(1-\frac{3}{\alpha}\right)\left(\frac{2}{\alpha}\right)^{2}\left(1-\frac{2}{\alpha}\right) \\
& =\frac{8 a_{2}^{2}}{\alpha^{2} a_{1}^{3}} \frac{16}{\alpha^{3}}\left(1-\frac{3}{\alpha}\right)\left(1-\frac{2}{\alpha}\right)
\end{aligned}
$$

Figure 3.1 Estimates of the energy in electron volts of the 1s2s triplet excited state of helium. The estimates are obtained by taking the expectation of the Hamiltonian using anti-symmetrised products of 1 s and 2 s hydrogenic wavefunctions that have scale lengths a_{1} and a_{2}, respectively.
our final result is

$$
\begin{aligned}
E & =\frac{8 a_{2}^{2}}{\alpha^{2} a_{1}^{3}}\left[\frac{16}{\alpha^{3}}\left(1-\frac{3}{\alpha}\right)\left(1-\frac{2}{\alpha}\right)-\left(1-\frac{3}{\alpha}\right) \frac{4}{\alpha} \frac{1}{\alpha^{2}}\left(1-\frac{2}{2 \alpha}\right)+\left(\frac{4}{\alpha}-1\right) \frac{2}{\alpha^{3}}\left(1-\frac{3}{2 \alpha}\right)+\frac{1}{2} \frac{6}{\alpha^{4}}\left(1-\frac{4}{2 \alpha}\right)\right] \\
& =\frac{8 a_{2}^{2}}{\alpha^{5} a_{1}^{3}}\left[16\left(1-\frac{3}{\alpha}\right)\left(1-\frac{2}{\alpha}\right)-4\left(1-\frac{3}{\alpha}\right)\left(1-\frac{1}{\alpha}\right)+\left(\frac{4}{\alpha}-1\right)\left(2-\frac{3}{\alpha}\right)+\frac{3}{\alpha}\left(1-\frac{2}{\alpha}\right)\right] \\
& =\frac{8 a_{2}^{2}}{\alpha^{5} a_{1}^{3}}\left(10-\frac{50}{\alpha}+\frac{66}{\alpha^{2}}\right),
\end{aligned}
$$

which when $a_{1}=a_{2}=a_{Z}$ agrees with equation (K.4) as it should.
Figure 3.1 shows $\langle H\rangle$ for the triplet state as a function of a_{1} and a_{2}. The surface has its minimum -60.11 eV at $a_{1}=0.50 a_{0}, a_{2}=0.82 a_{0}$. As expected, this minimum is deeper than our estimate -57.8 eV from perturbation theory, and it occurs when a_{2} is significantly greater than $0.5 a_{0}$. It is closer to the experimental value, -59.2 eV , than the estimate from perturbation theory. A variational value is guaranteed to be larger than the experimental value only for the ground state, and our variational value for the first excited state lies below rather than above the experimental value. The variational estimate of the singlet 1 s 2 s state's energy is -57.0 eV , which lies between the values from experiment $(-58.4 \mathrm{eV})$ and perturbation theory $(-55.4 \mathrm{eV})$.

Adiabatic Principle

