Classical Fields III: Solutions

1. Let $e_{1}=\mathrm{e}^{\mathrm{i} \phi_{1}}, e_{2}=\mathrm{e}^{\mathrm{i} \phi_{2}}$ with ϕ_{1}, ϕ_{2} real, then

$$
\phi=u+\mathrm{i} v=\psi^{1} e_{1}+\psi^{2} e_{2}=\left(\psi^{1} \cos \phi_{1}+\psi^{2} \cos \phi_{2}\right)+\mathrm{i}\left(\psi^{1} \sin \phi_{1}+\psi^{2} \sin \phi_{2}\right)
$$

So we require

$$
\psi^{1}=\frac{\sin \phi_{2} u-\cos \phi_{2} v}{\sin \left(\phi_{2}-\phi_{1}\right)}
$$

and similarly for v. Given that $\phi_{1} \neq \phi_{2}$ the ψ^{i} can be be determined.
The general covariant derivative in this case is $\nabla_{\mu} \psi^{a}=\partial_{\mu} \psi^{a}+\Gamma_{1 \mu}^{a} \psi^{1}+\Gamma_{2 \mu}^{a} \psi^{2}$ which coincides with $D_{\mu} \psi=\partial_{\mu} \psi+\mathrm{i}(q / \hbar) A_{\mu} \psi$ if we adopt $\psi^{1}=\Re \mathrm{e}(\psi), \psi^{2}=\Im \mathrm{m}(\psi) \Gamma_{2 \mu}^{2}=\Gamma_{1 \mu}^{1}=0$ and $\Gamma_{2 \mu}^{1}=-\Gamma_{1 \mu}^{2}=$ $-q A_{\mu} / \hbar$.
2.

$$
\begin{aligned}
\nabla_{\mu} \nabla_{\nu} Z^{\alpha} & =\partial_{\mu} \nabla_{\nu} Z^{\alpha}+\Gamma_{\mu \beta}^{\alpha} \nabla_{\nu} Z^{\beta}-\Gamma_{\mu \nu}^{\beta} \nabla_{\beta} Z^{\alpha} \\
& =\partial_{\mu}\left(\partial_{\nu} Z^{\alpha}+\Gamma_{\nu \beta}^{\alpha} Z^{\beta}\right)+\Gamma_{\mu \beta}^{\alpha}\left(\partial_{\nu} Z^{\beta}+\Gamma_{\nu \gamma}^{\beta} Z^{\gamma}\right)-\Gamma_{\mu \nu}^{\beta} \nabla_{\beta} Z^{\alpha}
\end{aligned}
$$

The part of this that is antisymmetric in $\mu \nu$ is

$$
R_{\beta \mu \nu}^{\alpha} Z^{\beta}=\left[\partial_{\mu} \Gamma_{\nu \beta}^{\alpha}-\partial_{\nu} \Gamma_{\mu \beta}^{\alpha}\right] Z^{\beta}+\left[\Gamma_{\mu \beta}^{\alpha} \Gamma_{\nu \gamma}^{\beta}-\Gamma_{\nu \beta}^{\alpha} \Gamma_{\mu \gamma}^{\beta}\right] Z^{\gamma}
$$

Now

$$
\begin{aligned}
D_{\mu} D_{\nu} \psi & =\left[\partial_{\mu}-\mathrm{i}(q / \hbar) A_{\mu}\right]\left[\partial_{\nu}-\mathrm{i}(q / \hbar) A_{\nu}\right] \psi \\
& =\left[\partial_{\mu} \partial_{\nu}-\mathrm{i}(q / \hbar)\left(A_{\mu} \partial_{\nu}+A_{\nu} \partial_{\mu}\right)-\mathrm{i}(q / \hbar) \partial_{\mu} A_{\nu}-(q / \hbar)^{2} A_{\mu} A_{\nu}\right] \psi
\end{aligned}
$$

$R_{\mu \nu} \psi$ is the part of this that's antisymmetric in $\mu \nu$

$$
R_{\mu \nu} \psi=-\mathrm{i}(q / \hbar)\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right) \psi=-\mathrm{i}(q / \hbar) F_{\mu \nu} \psi
$$

Reintroducing labels 1 and 2 for real and imaginary parts, we can read off from this $R_{0 \mu \nu}^{1}=R_{2 \mu \nu}^{2}=0$ and $R_{2 \mu \nu}^{1}=-R_{1 \mu \nu}^{2}=(q / \hbar) F_{\mu \nu}$.
3. Extremizing the "Lagrangian"

$$
-c^{2} D \dot{t}^{2}+\frac{\dot{r}^{2}}{D}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}
$$

we find for the t equation of motion

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left(-2 c^{2} D \dot{t}\right)=0 \quad \Rightarrow \quad \ddot{t}+\frac{D^{\prime}}{D} \dot{r} \dot{t}=0
$$

so $\Gamma_{r t}^{t}=\frac{1}{2} D^{\prime} / D$. For a radially moving photon we have

$$
0=\frac{\mathrm{d} x^{\mu}}{\mathrm{d} s} \nabla_{\mu} k^{0}=\frac{\mathrm{d} k^{0}}{\mathrm{~d} s}+\Gamma_{\mu \nu}^{0} k^{\mu} k^{\nu}=\frac{\mathrm{d} k^{0}}{\mathrm{~d} s}+\frac{D^{\prime}}{D} k^{0} \frac{\mathrm{~d} r}{\mathrm{~d} s}=\frac{1}{D} \frac{\mathrm{~d}}{\mathrm{~d} s}\left(D k^{0}\right)
$$

so

$$
\omega(r)=\frac{\omega(\infty)}{D(r)}=\frac{\omega(\infty)}{1-r_{s} / r}
$$

This equation shows that as r increases ω decreases to its value at ∞ - this is the gravitational redshift in action.
4. For a B field along the x axis

$$
F^{\mu \nu}=F_{\mu \nu}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & B \\
0 & 0 & -B & 0
\end{array}\right)
$$

so

$$
\mathbf{F} \cdot \mathbf{F}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & B \\
0 & 0 & -B & 0
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & B \\
0 & 0 & -B & 0
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -B^{2} & 0 \\
0 & 0 & 0 & -B^{2}
\end{array}\right)
$$

and
$T_{\mu \nu}=\frac{1}{\mu_{0}}\left[\frac{1}{4} \operatorname{Tr}(\mathbf{F} \cdot \mathbf{F}) \eta_{\mu \nu}-(\mathbf{F} \cdot \mathbf{F})_{\mu \nu}\right]=\frac{B^{2}}{\mu_{0}}\left[-\frac{1}{2} \operatorname{diag}(-1,1,1,1)+\operatorname{diag}(0,0,1,1)\right]=\frac{B^{2}}{2 \mu_{0}} \operatorname{diag}(1,-1,1,1)$
so there's pressure $P=B^{2} / 2 \mu_{0}$ in the $y z$ directions and tension per unit area of the same magnitude along x.
5. The energy-momentum tensor is

$$
T^{\mu \nu}=\operatorname{diag}\left(\rho c^{2},-F / A, 0,0\right)
$$

Consider $T_{\mu \nu}^{\prime}$ in the frame boosted along x, showing only the x^{0}, x^{1} entries:

$$
T^{\prime \mu \nu}=\left(\begin{array}{cc}
\gamma & \beta \gamma \\
\beta \gamma & \gamma
\end{array}\right)\left(\begin{array}{cc}
\rho c^{2} & 0 \\
0 & -F / A
\end{array}\right)\left(\begin{array}{cc}
\gamma & \beta \gamma \\
\beta \gamma & \gamma
\end{array}\right)=\left(\begin{array}{cc}
\gamma & \beta \gamma \\
\beta \gamma & \gamma
\end{array}\right)\left(\begin{array}{cc}
\gamma \rho c^{2} & \beta \gamma \rho c^{2} \\
-\beta \gamma F / A & -\gamma F / A
\end{array}\right)
$$

Hence

$$
T^{\prime 00}=\gamma^{2} \rho c^{2}-(\beta \gamma)^{2} F / A=\gamma^{2}\left(\rho c^{2}-\beta^{2} F / A\right)
$$

and we need $F / A<\rho c^{2}$ if this is to remain >0 in the limit $\beta \rightarrow 1$.
The speed of transverse waves on the rope is

$$
c_{s}=\sqrt{\frac{\text { tension }}{\text { mass/length }}}=\sqrt{\frac{F}{\rho A}}
$$

so $F / A<\rho c^{2} \quad \Leftrightarrow \quad c_{s}<c$.
6. Extremizing the "Lagrangian" $-c^{2} \dot{t}^{2}+\dot{z}^{2}+r_{0}^{2}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)$ we find

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left(-2 c^{2} \dot{t}\right) & =0 & \frac{\mathrm{~d}}{\mathrm{~d} \tau}(2 \dot{z})=0 \\
\frac{\mathrm{~d}}{\mathrm{~d} \tau}\left(2 r_{0}^{2} \dot{\theta}\right)-2 r_{0}^{2} \sin \theta \cos \theta \dot{\phi}^{2} & =0 & \frac{\mathrm{~d}}{\mathrm{~d} \tau}\left(2 r_{0}^{2} \sin ^{2} \theta \dot{\phi}\right)=0 \\
\Rightarrow \ddot{\theta}-\frac{1}{2} \sin 2 \theta \dot{\phi}^{2} & =0 & \ddot{\phi}+2 \cot \theta \dot{\theta} \dot{\phi}=0
\end{aligned}
$$

so

$$
\Gamma_{\mu \nu}^{t}=0 \quad \Gamma_{\mu \nu}^{z}=0 \quad \Gamma_{\phi \phi}^{\theta}=-\frac{1}{2} \sin 2 \theta \quad \Gamma_{\theta \phi}^{\phi}=\cot \theta
$$

Now

$$
\begin{aligned}
R_{\theta \theta} & =\partial_{\theta} \Gamma_{\mu \theta}^{\mu}-\partial_{\mu} \Gamma_{\theta \theta}^{\mu}+\Gamma_{\theta \mu}^{\lambda} \Gamma_{\theta \lambda}^{\mu}-\Gamma_{\lambda \mu}^{\mu} \Gamma_{\theta \theta}^{\lambda} \\
& =\partial_{\theta} \cot \theta+\Gamma_{\theta \phi}^{\lambda} \Gamma_{\theta \lambda}^{\phi}=-\csc ^{2} \theta+\cot ^{2} \theta=-1
\end{aligned}
$$

and

$$
\begin{aligned}
R_{\phi \phi} & =\partial_{\phi} \Gamma_{\mu \phi}^{\mu}-\partial_{\mu} \Gamma_{\phi \phi}^{\mu}+\Gamma_{\phi \mu}^{\lambda} \Gamma_{\phi \lambda}^{\mu}-\Gamma_{\lambda \mu}^{\mu} \Gamma_{\phi \phi}^{\lambda} \\
& =\partial_{\phi} \cot \theta-\partial_{\theta}\left(-\frac{1}{2} \sin 2 \theta\right)+\Gamma_{\phi \theta}^{\phi} \Gamma_{\phi \phi}^{\theta}+\Gamma_{\phi \phi}^{\theta} \Gamma_{\phi \theta}^{\phi}-\Gamma_{\theta \phi}^{\phi} \Gamma_{\phi \phi}^{\theta} \\
& =\cos 2 \theta+\cot \theta\left(-\frac{1}{2} \sin 2 \theta\right)=-\sin ^{2} \theta
\end{aligned}
$$

So

$$
\begin{aligned}
& R_{\mu \nu}=\operatorname{diag}\left(0,0,-1,-\sin ^{2} \theta\right) \\
& R_{\mu}^{\nu}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -\sin ^{2} \theta
\end{array}\right)\left(\begin{array}{cccc}
-1 / c^{2} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / r_{0}^{2} & 0 \\
0 & 0 & 0 & 1 /\left(r_{0}^{2} \sin ^{2} \theta\right)
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 / r_{0}^{2} & 0 \\
0 & 0 & 0 & -1 / r_{0}^{2}
\end{array}\right)
\end{aligned}
$$

and $R=-2 / r_{0}^{2}$. Finally

$$
\begin{aligned}
G_{\mu \nu} & =\operatorname{diag}\left(0,0,-1,-\sin ^{2} \theta\right)+r_{0}^{-2} \operatorname{diag}\left(-c^{2}, 1, r_{0}^{2}, r_{0}^{2} \sin ^{2} \theta\right) \\
& =\operatorname{diag}\left(-c^{2} / r_{0}^{2}, 1 / r_{0}^{2}, 0,0\right)=-\frac{8 \pi G}{c^{4}} \operatorname{diag}\left(T_{00}, T_{z z}, 0,0\right)
\end{aligned}
$$

so $T_{z z}=-c^{4} /\left(8 \pi G r_{0}^{2}\right)$. The tension is

$$
F=r_{0}^{2} \int_{0}^{\theta_{m}} \mathrm{~d} \theta \sin \theta \int_{0}^{2 \pi} \mathrm{~d} \phi T_{z z}=2 \pi\left(1-\cos \theta_{m}\right) \frac{r_{0}^{2} c^{4}}{8 \pi G r_{0}^{2}}=\frac{c^{4}\left(1-\cos \theta_{m}\right)}{4 G}
$$

7. The Minkowski metric is $-\mathrm{d} u \mathrm{~d} v+\mathrm{d} y^{2}+\mathrm{d} z^{2}$.

Extremizing the "Lagrangian" $-\dot{u} \dot{v}+f^{2} \dot{y}^{2}+\dot{z}^{2}$ we obtain

$$
\begin{array}{rlrl}
\frac{\mathrm{d} \dot{u}}{\mathrm{~d} \tau}=0 \quad ; \quad-\frac{\mathrm{d} \dot{v}}{\mathrm{~d} \tau}-2 f f^{\prime} \dot{y}^{2}-2 g g^{\prime} \dot{z}^{2}=0 ; & 0 & =\frac{\mathrm{d}}{\mathrm{~d} \tau}\left(f^{2} \dot{y}\right) \\
& =f^{2} \ddot{y}+2 f f^{\prime} \dot{u} \dot{y}
\end{array} \quad ; \quad 0=\frac{\mathrm{d}}{\mathrm{~d} \tau}\left(g^{2} \dot{z}\right)
$$

so the non-vanishing Christoffel symbols are

$$
\Gamma_{y y}^{v}=2 f f^{\prime} \quad \Gamma_{z z}^{v}=2 g g^{\prime} \quad \Gamma_{u y}^{y}=f^{\prime} / f \quad \Gamma_{u z}^{z}=g^{\prime} / g
$$

From eqs of motion above can see that $\dot{y}=0 \Rightarrow \ddot{y}=0$ and similarly for z, so $y=$ const, $z=$ const are solutions. Also then $\ddot{u}=\ddot{v}$ are required, so u and v are linear in τ. If x is constant $c^{2} \mathrm{~d} \tau^{2}=\mathrm{d} u \mathrm{~d} v$, which is consistent with this linearity. Thus constant x, y, z defines geodesics.

$$
\begin{aligned}
& L f^{\prime}=\Theta+u \Theta^{\prime}, L f^{\prime \prime}=2 \Theta^{\prime}+u \Theta^{\prime \prime} \text { and } L g^{\prime}=-2 \Theta^{\prime}-u \Theta^{\prime \prime} \text { so } \\
& \qquad \frac{f^{\prime \prime}}{f}+\frac{g^{\prime \prime}}{g}=\frac{2 \Theta^{\prime}+u \Theta^{\prime \prime}}{L+u \Theta}-\frac{2 \Theta^{\prime}+u \Theta^{\prime \prime}}{L-u \Theta}
\end{aligned}
$$

which always vanishes because the numerators vanish unless $u=0$, and when $u=0$ the denominators are equal so the two terms cancel.

$$
\begin{aligned}
D_{z} & =\int_{-a}^{a} \mathrm{~d} z g=\int_{-a}^{a} \mathrm{~d} z\left[1-\frac{u}{L} \Theta(u)\right]=2 a\left[1-\frac{u}{L} \Theta(u)\right] \\
D_{y} & =2 a\left[1+\frac{u}{L} \Theta(u)\right] \\
D_{x} & =\int_{-a}^{a} \mathrm{~d} x=2 a
\end{aligned}
$$

Thus

$$
D_{z}=\left\{\begin{array}{ll}
2 a(1-c t / L) & \text { for } 0<c t \\
2 a & \text { otherwise }
\end{array} \quad ; \quad D_{y}= \begin{cases}2 a(1+c t / L) & \text { for } 0<c t \\
2 a & \text { otherwise }\end{cases}\right.
$$

so at $t=0$ particles are impelled towards each other along z and away from each other along y by a disturbance that propagates along x. This is a gravitational shock wave.
8. The eqns of $\theta \phi$ motion are

$$
\begin{aligned}
& 0=\frac{\mathrm{d}}{\mathrm{~d} \tau}\left(2 a^{2} r^{2} \dot{\theta}\right)-a^{2} r \sin 2 \theta \dot{\phi}^{2} \\
& 0=\frac{\mathrm{d}}{\mathrm{~d} \tau}\left(2 a^{2} r^{2} \sin ^{2} \theta \dot{\phi}\right)
\end{aligned}
$$

so $r^{2} \sin ^{2} \theta \dot{\phi}=$ const. If this const is zero and $\theta=\pi / 2$, then $\mathrm{d}\left(r^{2} \dot{\theta}\right) / \mathrm{d} \tau=0$, which is satisfied by $\dot{\theta}=0$ at all τ.

The current distance is obtained by integrating $\mathrm{d} s=a\left(t_{0}\right) \mathrm{d} r$ from zero to the coordinate r_{g} of the galaxy, and we have $D=a\left(t_{0}\right) r_{g}=r_{g}$ because currently $a=1$.

Since photon propagates radially, $\mathrm{d} t=a(t) \mathrm{d} r$, and $r_{g}=\int_{t_{1}}^{t_{0}} \mathrm{~d} t / a=\int_{t_{1}}^{t_{0}} \mathrm{~d} t /\left(t / t_{0}\right)^{2 / 3}=3 t_{0}^{2 / 3}\left(t_{0}^{1 / 3}-\right.$ $\left.t_{1}^{1 / 3}\right)$. Hence $D=3 t_{0}^{2 / 3}\left(t_{0}^{1 / 3}-t_{1}^{1 / 3}\right)$.

We have $K>0$ because the universe is closed, so the distance to the galaxy is.

$$
\begin{aligned}
D & =a\left(t_{0}\right) \int_{0}^{r_{g}} \frac{\mathrm{~d} r}{\sqrt{1-K r^{2}}} \\
& =\frac{a\left(t_{0}\right)}{\sqrt{K}} \int_{0}^{\psi_{g}} \mathrm{~d} \psi \quad \text { where } \quad \sin \psi \equiv \sqrt{K} r
\end{aligned}
$$

Hence $\sin \left(\sqrt{K} D / a\left(t_{0}\right)\right)=\sqrt{K} r_{g}$.
At t_{1} let the edge of the galaxy be at angular coordinate θ_{m}, so $R=a\left(t_{1}\right) r_{g} \theta_{m}$ and

$$
\theta_{m}=\frac{R}{a\left(t_{1}\right) r_{g}}=\frac{\sqrt{K} R}{a\left(t_{1}\right) \sin \left(\sqrt{K} D / a\left(t_{0}\right)\right)}=\frac{(1+z) \sqrt{K} R}{\sin (\sqrt{K} D)}
$$

because $a\left(t_{1}\right)=(1+z)^{-1}$.
9.

$$
u^{\alpha} \nabla_{\alpha} v^{\beta}-v^{\alpha} \nabla_{\alpha} u^{\beta}=u^{\alpha} \partial_{\alpha} v^{\beta}-v^{\alpha} \partial_{\alpha} u^{\beta}+\Gamma_{\gamma \alpha}^{\beta} u^{\alpha} v^{\gamma}-\Gamma_{\gamma \alpha}^{\beta} v^{\alpha} u^{\gamma}=[u, v]^{\beta}
$$

by the symmetry of Γ.

$$
\left[\frac{\mathrm{d} x}{\mathrm{~d} \tau}, \frac{\mathrm{~d} x}{\mathrm{~d} \epsilon}\right]^{\beta}=\frac{\mathrm{d} x^{\alpha}}{\mathrm{d} \tau} \nabla_{\alpha} \frac{\mathrm{d} x^{\beta}}{\mathrm{d} \epsilon}-\frac{\mathrm{d} x^{\alpha}}{\mathrm{d} \epsilon} \nabla_{\alpha} \frac{\mathrm{d} x^{\beta}}{\mathrm{d} \tau}=\frac{\mathrm{d}}{\mathrm{~d} \tau} \frac{\mathrm{~d} x^{\beta}}{\mathrm{d} \epsilon}-\frac{\mathrm{d}}{\mathrm{~d} \epsilon} \frac{\mathrm{~d} x \beta}{\mathrm{~d} \tau}=0
$$

In the given definition of R we put $u^{\lambda}=w^{\lambda}=\mathrm{d} x^{\lambda} / \mathrm{d} \tau$ and $v^{\nu}=\mathrm{d} x^{\nu} / \mathrm{d} \epsilon$ and have

$$
\left(\dot{x}^{\alpha} \nabla_{\alpha} \frac{\mathrm{d} x^{\beta}}{\mathrm{d} \epsilon} \nabla_{\beta}-\frac{\mathrm{d} x^{\beta}}{\mathrm{d} \epsilon} \nabla_{\beta} \dot{x}^{\alpha} \nabla_{\alpha}\right) \dot{x}^{\gamma}=R_{\lambda \mu \nu}^{\gamma} \dot{x}^{\lambda} \dot{x}^{\mu} \frac{\mathrm{d} x^{\nu}}{\mathrm{d} \epsilon}
$$

The second term in the brackets on the left vanishes because $\mathbf{x}(\tau)$ is geodesic. Moreover,

$$
\frac{\mathrm{d} x^{\beta}}{\mathrm{d} \epsilon} \nabla_{\beta} \dot{x}^{\alpha}=\dot{x}^{\beta} \nabla_{\beta} \frac{\mathrm{d} x^{\alpha}}{\mathrm{d} \epsilon} \quad \text { because } \quad[,]=0
$$

so we can rewrite the first term and then have the equation of geodesic deviation:

$$
\left(\dot{x}^{\alpha} \nabla_{\alpha}\right)\left(\dot{x}^{\beta} \nabla_{\beta}\right) \frac{\mathrm{d} x^{\gamma}}{\mathrm{d} \epsilon}=R_{\lambda \mu \nu}^{\gamma} \dot{x}^{\lambda} \dot{x}^{\mu} \frac{\mathrm{d} x^{\nu}}{\mathrm{d} \epsilon}
$$

Dropped masses have geodesic paths $x(\tau, \epsilon)$ with $\dot{x}^{0} \simeq c$. Since $\dot{x}^{\alpha} \nabla_{\alpha}=\mathrm{d} / \mathrm{d} \tau$, when we multiply the equation of geodesic deviation by a small number $\delta \epsilon$ we get

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} \tau^{2}} \delta x^{\gamma} \simeq c^{2} R^{\gamma}{ }_{00 \nu} \delta x^{\nu}
$$

But from elementary mechanics $\ddot{z}=-G M / R^{2}$, where M is the Earth's mass and R is the particle's distance from the centre of the Earth. Thus varying z we have

$$
\delta \ddot{z}=\frac{2 G M}{R^{3}} \delta z
$$

Comparing with the z component of the equation of geodesic deviation and setting $g=G M / R^{2}$ we obtain $R^{z}{ }_{00 z}=2 g /\left(c^{2} R\right)$.

