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The Physics of Quantum Mechanics

Solutions to starred problems

3.11∗ By expressing the annihilation operator A of the harmonic oscillator in the momentum
representation, obtain 〈p|0〉. Check that your expression agrees with that obtained from the Fourier
transform of

〈x|0〉 = 1

(2πℓ2)1/4
e−x2/4ℓ2 , where ℓ ≡

√

h̄

2mω
. (3.1)

Soln: In the momentum representation x = ih̄∂/∂p so [x, p] = ih̄∂p/∂p = ih̄. Thus from Problem
3.8

A =

(

x

2ℓ
+ i

ℓ

h̄
p

)

= i

(

ℓp

h̄
+
h̄

2ℓ

∂

∂p

)

0 = Au0 ⇒ ℓp

h̄
u0 = − h̄

2ℓ

∂u0
∂p

⇒ u0(p) ∝ e−p2ℓ2/h̄2

Alternatively, transforming u0(x):

〈p|0〉 =
∫

dx〈p|x〉〈x|0〉 = 1√
h

∫ ∞

−∞

dx e−ipx/h̄ e−x2/4ℓ2

(2πℓ2)1/4

=
1

(2πℓ2h2)1/4

∫ ∞

−∞

dx exp

(

−
{

x

2ℓ
+

ipℓ

h̄

}2
)

e−p2ℓ2/h̄2

=
2ℓ
√
π

(2πℓ2h2)1/4
e−p2ℓ2/h̄2

3.13∗ A Fermi oscillator has Hamiltonian H = f †f , where f is an operator that satisfies

f2 = 0, ff † + f †f = 1. (3.2)

Show that H2 = H , and thus find the eigenvalues of H . If the ket |0〉 satisfies H |0〉 = 0 with
〈0|0〉 = 1, what are the kets (a) |a〉 ≡ f |0〉, and (b) |b〉 ≡ f †|0〉?

In quantum field theory the vacuum is pictured as an assembly of oscillators, one for each
possible value of the momentum of each particle type. A boson is an excitation of a harmonic
oscillator, while a fermion in an excitation of a Fermi oscillator. Explain the connection between
the spectrum of f †f and the Pauli principle.
Soln:

H2 = f †ff †f = f †(1− f †f)f = f †f = H

Since eigenvalues have to satisfy any equations satisfied by their operators, the eigenvalues of H
must satisfy λ2 = λ, which restricts them to the numbers 0 and 1. The Fermi exclusion principle
says there can be no more than one particle in a single-particle state, so each such state is a Fermi
oscillator that is either excited once or not at all.

||a〉|2 = 〈0|f †f |0〉 = 0 so this ket vanishes.

||b〉|2 = 〈0|ff †|0〉 = 〈0|(1 − f †f)|0〉 = 1 so |b〉 is more interesting.

Moreover,
H |b〉 = f †ff †|0〉 = f †(1− f †f)|0〉 = f †|0〉 = |b〉

so |b〉 is the eigenket with eigenvalue 1.

3.15∗ P is the probability that at the end of the experiment described in Problem 3.14, the
oscillator is in its second excited state. Show that when f = 1

2 , P = 0.144 as follows. First show
that the annihilation operator of the original oscillator

A = 1
2

{

(f−1 + f)A′ + (f−1 − f)A′†
}

, (3.3)

where A′ and A′† are the annihilation and creation operators of the final oscillator. Then writing
the ground-state ket of the original oscillator as a sum |0〉 =∑n cn|n′〉 over the energy eigenkets of
the final oscillator, show that the condition A|0〉 = 0 yields the recurrence relation

cn+1 = −f
−1 − f

f−1 + f

√

n

n+ 1
cn−1. (3.4)
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Finally using the normalisation of |0〉, show numerically that c2 ≃ 0.3795. What value do you get
for the probability of the oscillator remaining in the ground state?

Show that at the end of the experiment the expectation value of the energy is 0.2656h̄ω. Explain
physically why this is less than the original ground-state energy 1

2 h̄ω.
This example contains the physics behind the inflationary origin of the universe: gravity explo-

sively enlarges the vacuum, which is an infinite collection of harmonic oscillators (Problem 3.13).
Excitations of these oscillators correspond to elementary particles. Before inflation the vacuum is
unexcited so every oscillator is in its ground state. At the end of inflation, there is non-negligible
probability of many oscillators being excited and each excitation implies the existence of a newly
created particle.
Soln: From Problem 3.6 we have

A ≡ mωx+ ip√
2mh̄ω

=
x

2ℓ
+

iℓ

h̄
p

A′ ≡ mf2ωx+ ip
√

2mh̄f2ω

=
fx

2ℓ
+

iℓ

f h̄
p

Hence

A′ +A′† =
f

ℓ
x A′ −A′† = f

2iℓ

f h̄
p so A =

1

2f
(A′ +A′†) +

f

2
(A′ −A′†)

0 = A|0〉 = 1
2

∑

k

{

(f−1 + f)ckA
′|k′〉+ (f−1 − f)ckA

′†|k′〉
}

= 1
2

∑

k

{

(f−1 + f)
√
kck|k − 1′〉+ (f−1 − f)

√
k + 1ck|k + 1′〉

}

Multiply through by 〈n′|:
0 = (f−1 + f)

√
n+ 1cn+1 + (f−1 − f)

√
ncn−1,

which is a recurrence relation from which all non-zero cn can be determined in terms of c0. Put
c0 = 1 and solve for the cn. Then evaluate S ≡ |cn|2 and renormalise: cn → cn/

√
S.

The probability of remaining in the ground state is |c0|2 = 0.8. 〈E〉 =∑n |cn|2(n+ 1
2 )h̄f

2ω. It
is less than the original energy because of the chance that energy is in the spring when the stiffness
is reduced.

3.16∗ In terms of the usual ladder operators A, A†, a Hamiltonian can be written

H = µA†A+ λ(A +A†). (3.5)

What restrictions on the values of the numbers µ and λ follow from the requirement for H to be
Hermitian?

Show that for a suitably chosen operator B, H can be rewritten

H = µB†B + constant, (3.6)

where [B,B†] = 1. Hence determine the spectrum of H .
Soln: Hermiticity requires µ and λ to be real. Defining B = A + a with a a number, we have
[B,B†] = 1 and

H = µ(B†−a∗)(B−a)+λ(B−a+B†−a∗) = µB†B+(λ−µa∗)B+(λ−µa)B†+(|a|2µ−λ(a+a∗)).
We dispose of the terms linear in B by setting a = λ/µ, a real number. Then H = µB†B − λ2/µ.
From the theory of the harmonic oscillator we know that the spectrum of B†B is 0, 1, . . ., so the
spectrum of H is nµ− λ2/µ.

3.17∗ Numerically calculate the spectrum of the anharmonic oscillator shown in Figure 3.2. From
it estimate the period at a sequence of energies. Compare your quantum results with the equivalent
classical results.
Soln:
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3.18∗ Let B = cA + sA†, where c ≡ cosh θ, s ≡ sinh θ with θ a real constant and A, A† are the
usual ladder operators. Show that [B,B†] = 1.

Consider the Hamiltonian

H = ǫA†A+ 1
2λ(A

†A† +AA), (3.7)

where ǫ and λ are real and such that ǫ > λ > 0. Show that when

ǫc− λs = Ec, λc− ǫs = Es (3.8)

with E a constant, [B,H ] = EB. Hence determine the spectrum of H in terms of ǫ and λ.
Soln:

[B,B†] = [cA+ sA†, cA† + sA] = (c2 − s2)[A,A†] = 1

[B,H ] = [cA+ sA†, ǫA†A+ 1
2λ(A

†A† +AA)] = c[A, ǫA†A+ 1
2λA

†A†] + s[A†, ǫA†A+ 1
2λAA]

= c(ǫA+ λA†)− s(ǫA† + λA) = cEA+ sEA† = EB

as required. Let H |E0〉 = E0|E0〉. Then multiplying through by B

E0B|E0〉 = BH |E0〉 = (HB + [B,H ])|E0〉 = (HB + EB)|E0〉
So H(B|E0〉) = (E0 − E)(B|E0〉), which says the B|E0〉 is an eigenket for eigenvalue E0 − E.

We assume that the sequence of eigenvaluesE0, E0−E,E0−2E, . . . terminates becauseB|Emin〉 =
0. Mod-squaring this equation we have

0 = 〈Emin|B†B|Emin〉 = 〈Emin|(cA† + sA)(cA + sA†)|Emin〉
= 〈Emin|{(c2 + s2)A†A+ s2 + cs(A†A† +AA)}|Emin〉
= cs〈Emin|{(c/s+ s/c)A†A+ s/c+ (A†A† +AA)}|Emin〉

But eliminating E from the given equations, we find λ(c/s + s/c) = 2ǫ. Putting this into the last
equation

0 = 〈Emin|
{

2ǫ

λ
A†A+ s/c+ (A†A† +AA)

}

|Emin〉

Multiplying through by λ/2 this becomes

0 = 〈Emin|{H + sλ/2c}|Emin〉
so Emin = −sλ/2c. Finally, x = s/c satisfies the quadratic

x2 − 2
ǫ

λ
x+ 1 = 0 ⇒ x =

ǫ

λ
±
√

ǫ2

λ2
− 1.

Also from the above E = ǫ − λx so the general eigenenergy is

En = Emin + nE = − 1
2λx+ nǫ− nλx = nǫ− (n+ 1

2 )λx = nǫ− (n+ 1
2 )
(

ǫ ±
√

ǫ2 − λ2
)

= − 1
2ǫ ∓ (n+ 1

2 )
√

ǫ2 − λ2

We have to choose the plus sign in order to achieve consistency with our previously established value
of Emin; thus finally

En = − 1
2ǫ+ (n+ 1

2 )
√

ǫ2 − λ2

4.2∗ Show that the vector product a × b of two classical vectors transforms like a vector under
rotations. Hint: A rotation matrix R satisfies the relations R · RT = I and det(R) = 1, which in
tensor notation read

∑

pRipRtp = δit and
∑

ijk ǫijkRirRjsRkt = ǫrst.
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Soln: Let the rotated vectors be a′ = Ra and b′ = Rb. Then

(a′ × b′)i =
∑

jklm

ǫijkRjlalRkmbm

=
∑

tjklm

δitǫtjkRjlRkmalbm

=
∑

ptjklm

RipRtpǫtjkRjlRkmalbm

=
∑

plm

Ripǫplmalbm = (Ra× b)i.

4.3∗ We have shown that [vi, Jj ] = i
∑

k ǫijkvk for any operator whose components vi form a
vector. The expectation value of this operator relation in any state |ψ〉 is then 〈ψ|[vi, Jj ]|ψ〉 =
i
∑

k ǫijk〈ψ|vk|ψ〉. Check that with U(α) = e−iα·J this relation is consistent under a further rotation
|ψ〉 → |ψ′〉 = U(α)|ψ〉 by evaluating both sides separately.
Soln: Under the further rotation the LHS → 〈ψ|U †[vi, Jj ]U |ψ〉. Now

U †[vi, Jj ]U = U †viJjU − U †JjviU = (U †viU)(U †JjU)− (U †JjU)(U †viU)

=
∑

kl

[Rikvk, RjlJl] =
∑

kl

RikRjl[vk, Jl].

Similar |ψ〉 → U |ψ〉 on the RHS yields

i
∑

km

Rkmǫijk〈ψ|vm|ψ〉.

We now multiply each side by RisRjt and sum over i and j. On the LHS this operation yields
[vs, Jt]. On the right it yields

i
∑

ijkm

RisRjtRkmǫijk〈ψ|vm|ψ〉 = i
∑

m

ǫstm〈ψ|vm|ψ〉,

which is what our original equation would give for [vs, Jt].

4.4∗ The matrix for rotating an ordinary vector by φ around the z-axis is

R(φ) ≡





cosφ − sinφ 0
sinφ cosφ 0
0 0 1



 . (4.1)

By considering the form taken by R for infinitesimal φ calculate from R the matrix JJz that appears
in R(φ) = exp(−iJJzφ). Introduce new coordinates u1 ≡ (−x+iy)/

√
2, u2 = z and u3 ≡ (x+iy)/

√
2.

Write down the matrix M that appears in u = M ·x [where x ≡ (x, y, z)] and show that it is unitary.
Then show that

JJ ′
z ≡ M · JJz ·M† (4.2)

is identical with Sz in the set of spin-one Pauli analogues

Sx =
1√
2





0 1 0
1 0 1
0 1 0



 , Sy =
1√
2





0 −i 0
i 0 −i
0 i 0



 , Sz =





1 0 0
0 0 0
0 0 −1



 . (4.3)

Write down the matrix JJx whose exponential generates rotations around the x-axis, calculate JJ ′
x

by analogy with equation (4.2) and check that your result agrees with Sx in the set (4.3). Explain
as fully as you can the meaning of these calculations.
Soln: For an infinitesimal rotation angle δφ to first order in δφ we have

1− iJJzδφ = R(δφ) =





1 −δφ 0
δφ 1 0
0 0 1
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comparing coefficients of δφ we find

JJz = i





0 −1 0
1 0 0
0 0 0





In components u = M · x reads




u1
u2
u3



 =
1√
2





−1 i 0
0 0

√
2

1 i 0









x
y
z





so M is the matrix above. We show that M is unitary by calculating the product MM†. Now we
have

JJ ′
z = 1

2





−1 i 0
0 0

√
2

1 i 0









0 −i 0
i 0 0
0 0 0









−1 0 1
−i 0 −i
0

√
2 0





= 1
2





−1 i 0
0 0

√
2

1 i 0









−1 0 −1
−i 0 i
0 0 0



 = 1
2





2 0 0
0 0 0
0 0 −2





Similarly, we have

JJx = i





0 0 0
0 0 −1
0 1 0





so

JJ ′
x = 1

2





−1 i 0
0 0

√
2

1 i 0









0 0 0
0 0 −i
0 i 0









−1 0 1
−i 0 −i
0

√
2 0





= 1
2





−1 i 0
0 0

√
2

1 i 0









0 0 0
0 −i

√
2 0

1 0 1



 = 1
2





0
√
2 0√

2 0
√
2

0
√
2 0





These results show that the only difference between the generators of rotations of ordinary 3d
vectors and the spin-1 representations of the angular-momentum operators, is that for conventional
vectors we use a different coordinate system than we do for spin-1 amplitudes. Apart from this, the
three amplitudes for the spin of a spin-1 particle to point in various directions are equivalent to the
components of a vector, and they transform among themselves when the particle is reoriented for
the same reason that the rotation of a vector changes its Cartesian components.

4.6∗ Show that if α and β are non-parallel vectors, α is not invariant under the combined rotation
R(α)R(β). Hence show that

RT(β)RT(α)R(β)R(α)

is not the identity operation. Explain the physical significance of this result.
Soln: R(α)α = α because a rotation leaves its axis invariant. But the only vectors that are
invariant under R(β) are multiples of the rotation axis β. So R(β)α is not parallel to α.

If RT(β)RT(α)R(β)R(α) were the identity, we would have

RT(β)RT(α)R(β)R(α)α = α ⇒ R(β)R(α)α = R(α)R(β)α ⇒ R(β)α = R(α)(R(β)α)

which would imply that R(β)α is invariant under R(α). Consequently we would have R(β)α = α.
But this is true only if α is parallel to β. So our original hypothesis thatRT(β)RT(α)R(β)R(α) = I

is wrong. This demonstrates that when you rotate about two non-parallel axes and then do the
reverse rotations in the same order, you always finish with a non-trivial rotation.

4.7∗ In this problem you derive the wavefunction

〈x|p〉 = eip·x/h̄ (4.4)

of a state of well-defined momentum from the properties of the translation operator U(a). The state
|k〉 is one of well-defined momentum h̄k. How would you characterise the state |k′〉 ≡ U(a)|k〉? Show
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Figure 5.0 The real part of the wavefunction when a free particle of energy E is scattered by a classically forbidden
square barrier barrier (top) and a potential well (bottom). The upper panel is for a barrier of height V0 = E/0.7 and
half-width a such that 2mEa2/h̄2 = 1. The lower panel is for a well of depth V0 = E/0.2 and half-width a such that
2mEa2/h̄2 = 9. In both panels (2mE/h̄2)1/2 = 40.

Figure 5.1 A triangle for Prob-
lem 5.10

that the wavefunctions of these states are related by uk′(x) = e−ia·kuk(x) and uk′(x) = uk(x − a).
Hence obtain equation (4.4).
Soln: U(a)|k〉 is the result of translating a state of well-defined momentum by k. Moving to the
position representation

uk′(x) = 〈x|U(a)|k〉 = 〈k|U †(a)|x〉∗ = 〈k|x − a〉∗ = uk(x− a)

Also
〈x|U(a)|k〉 = 〈x|e−ia·p/h̄|k〉 = e−ia·k〈x|k〉 = e−ia·kuk(x)

Putting these results together we have uk(x − a) = e−ia·kuk(x). Setting a = x we find uk(x) =
eik·xuk(0), as required.

5.13∗ This problem is about the coupling of ammonia molecules to electromagnetic waves in an
ammonia maser. Let |+〉 be the state in which the N atom lies above the plane of the H atoms and
|−〉 be the state in which the N lies below the plane. Then when there is an oscillating electric field
E cosωt directed perpendicular to the plane of the hydrogen atoms, the Hamiltonian in the |±〉 basis
becomes

H =

(

E + qEs cosωt −A
−A E − qEs cosωt

)

. (5.1)

Transform this Hamiltonian from the |±〉 basis to the basis provided by the states of well-defined
parity |e〉 and |o〉 (where |e〉 = (|+〉+ |−〉)/√2, etc). Writing

|ψ〉 = ae(t)e
−iEet/h̄|e〉+ ao(t)e

−iEot/h̄|o〉, (5.2)
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show that the equations of motion of the expansion coefficients are

dae
dt

= −iΩao(t)
(

ei(ω−ω0)t + e−i(ω+ω0)t
)

dao
dt

= −iΩae(t)
(

ei(ω+ω0)t + e−i(ω−ω0)t
)

,

(5.3)

where Ω ≡ qEs/2h̄ and ω0 = (Eo − Ee)/h̄. Explain why in the case of a maser the exponentials
involving ω + ω0 can be neglected so the equations of motion become

dae
dt

= −iΩao(t)e
i(ω−ω0)t,

dao
dt

= −iΩae(t)e
−i(ω−ω0)t. (5.4)

Solve the equations by multiplying the first equation by e−i(ω−ω0)t and differentiating the result.
Explain how the solution describes the decay of a population of molecules that are initially all in
the higher energy level. Compare your solution to the result of setting ω = ω0 in (5.4).
Soln: We have

〈e|H |e〉 = 1
2 (〈+|+ 〈−|)H (|+〉+ |−〉)

= 1
2 (〈+|H |+〉+ 〈−|H |−〉+ 〈−|H |+〉+ 〈+|H |−〉)

= E −A = Ee

〈o|H |o〉 = 1
2 (〈+| − 〈−|)H (|+〉 − |−〉)

= 1
2 (〈+|H |+〉+ 〈−|H |−〉 − 〈−|H |+〉 − 〈+|H |−〉)

= E + A = Eo

〈o|H |e〉 = 〈e|H |o〉 = 1
2 (〈+|+ 〈−|)H (|+〉 − |−〉)

= 1
2 (〈+|H |+〉 − 〈−|H |−〉+ 〈−|H |+〉 − 〈+|H |−〉)

= qEs cos(ωt)
Now we use the tdse to calculate the evolution of |ψ〉 = aee

−iEet/h̄|e〉+ aoe
−iEot/h̄|o〉:

ih̄
∂|ψ〉
∂t

= ih̄ȧee
−iEet/h̄|e〉+ aeEee

−iEet/h̄|e〉+ ih̄ȧoe
−iEot/h̄|o〉+ aoEoe

−iEot/h̄|o〉

= aee
−iEet/h̄H |e〉+ aoe

−iEot/h̄H |o〉
We now multiply through by first 〈e| and then 〈o|. After dividing through by some exponential
factors to simplify, we get

ih̄ȧe + aeEe = ae〈e|H |e〉+ aoe
i(Ee−Eo)t/h̄〈e|H |o〉

ih̄ȧo + aoEo = aee
i(Eo−Ee)t/h̄〈o|H |e〉+ ao〈o|H |o〉

With the results derived above

ih̄ȧe + aeEe = aeEe + aoe
i(Ee−Eo)t/h̄qEs cos(ωt)

ih̄ȧo + aoEo = aee
i(Eo−Ee)t/h̄qEs cos(ωt) + aoEo

After cancelling terms in each equation, we obtain the desired equations of motion on expressing
the cosines in terms of exponentials and using the new notation.

The exponential with frequency ω + ω0 oscillates so rapidly that it effectively averages to zero,
so we can drop it. Multiplying the first eqn through by e−i(ω−ω0)t and differentiating gives

d

dt

(

e−i(ω−ω0)tȧe

)

= e−i(ω−ω0)t [−i(ω − ω0)ȧe + äe] = −Ω2aee
−i(ω−ω0)t

The exponentials cancel leaving a homogeneous second-order o.d.e. with constant coefficients. Since
initially all molecules are in the higher-energy state |o〉, we have to solve subject to the boundary
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Figure 5.2 The symbols show the
ratio of the probability of reflection
to the probability of transmission
when particles move from x = −∞

in the potential (5.69) with energy
E = h̄2k2/2m and V0 = 0.7E. The
dotted line is the value obtained for
a step change in the potential

condition ae(0) = 0. With a0(0) = 1 we get from the original equations the second initial condition
ȧe(0) = −iΩ. For trial solution ae ∝ eαt the auxiliary eqn is

α2 − i(ω − ω0)α+Ω2 = 0 ⇒ α = 1
2

[

i(ω − ω0)±
√

−(ω − ω0)2 − 4Ω2
]

= iω±

with ω± = 1
2

[

(ω − ω0)±
√

(ω − ω0)2 + 4Ω2
]

. When ω ≃ ω0, these frequencies both lie close to Ω.

From the condition ae(0) = 0, the required solution is ae(t) ∝ (eiω+t − eiω−t) and the constant of
proportionality follows from the second initial condition, so finally

ae(t) =
−Ω

√

(ω − ω0)2 + 4Ω2
(eiω+t − eiω−t) (∗)

The probability oscillates between the odd and even states. First the oscillating field stimulates
emission of radiation and decay from |o〉 to |e〉. Later the field excites molecules in the ground state
to move back up to the first-excited state |o〉.

If we solve the original equations (1) exactly on resonance (ω = ω0), the relevant solution is

ae(t) =
1
2 (e

−iΩt − eiΩt),

which is what our general solution (∗) reduces to as ω → ω0.

5.15∗ Particles of mass m and momentum h̄k at x < −a move in the potential

V (x) = V0

{

0 for x < −a
1
2 [1 + sin(πx/2a)] for |x| < a
1 for x > a,

(5.5)

where V0 < h̄2k2/2m. Numerically reproduce the reflection probabilities plotted in Figure 5.20 as
follows. Let ψi ≡ ψ(xj) be the value of the wavefunction at xj = j∆, where ∆ is a small increment
in the x coordinate. From the tise show that

ψj ≃ (2−∆2k2)ψj+1 − ψj+2, (5.6)

where k ≡
√

2m(E − V )/h̄. Determine ψj at the two grid points with the largest values of x from
a suitable boundary condition, and use the recurrence relation (5.6) to determine ψj at all other
grid points. By matching the values of ψ at the points with the smallest values of x to a sum of
sinusoidal waves, determine the probabilities required for the figure. Be sure to check the accuracy
of your code when V0 = 0, and in the general case explicitly check that your results are consistent
with equal fluxes of particles towards and away from the origin.

Equation (12.40) gives an analytical approximation for ψ in the case that there is negligible
reflection. Compute this approximate form of ψ and compare it with your numerical results for
larger values of a.
Soln:

We discretise the tise

− h̄2

2m

d2ψ

dx2
+ V ψ = Eψ by − h̄2

2m

ψj+1 + ψj−1 − 2ψj

∆2
+ Vjψj = Eψj
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which readily yields the required recurrence relation. At the right-hand boundary we require a pure
outgoing wave, so ψj = exp(ijK∆) gives ψ at the two last grid points. From the recurrence relation
we obtain ψ elsewhere. At the left boundary we solve for A+ and A− the equations

A+ exp(i0k∆) +A− exp(−i0k∆) = ψ0

A+ exp(i1k∆) +A− exp(−i1k∆) = ψ1

The transmission probability is (K/k)/|A+|2. The code must reproduce the result of Problem 5.4
in the appropriate limit.

5.16∗ In this problem we obtain an analytic estimate of the energy difference between the even-
and odd-parity states of a double square well. Show that for large θ, coth θ − tanh θ ≃ 4e−2θ. Next
letting δk be the difference between the k values that solve

tan [rπ − k(b − a)]

√

W 2

(ka)2
− 1 =







coth
(

√

W 2 − (ka)2
)

even parity

tanh
(

√

W 2 − (ka)2
)

odd parity,
(5.7a)

where

W ≡
√

2mV0a2

h̄2
(5.7b)

for given r in the odd- and even-parity cases, deduce that
{

[

(

W 2

(ka)2
− 1

)1/2

+

(

W 2

(ka)2
− 1

)−1/2
]

(b − a) +
1

k

(

1− (ka)2

W 2

)−1}

δk

≃ −4 exp
[

−2
√

W 2 − (ka)2
]

.

(5.8)

Hence show that when W ≫ 1 the fractional difference between the energies of the ground and first
excited states is

δE

E
≃ −8a

W (b− a)
e−2W

√
1−E/V0 . (5.9)

Soln: First

coth θ − tanh θ =
eθ + e−θ

eθ − e−θ
− eθ − e−θ

eθ + e−θ
=

1 + e−2θ

1− e−2θ
− 1− e−2θ

1 + e−2θ
≃ (1 + 2e−2θ)− (1 − 2e−2θ) = 4e−2θ

So when W ≫ 1 the difference in the right side of the equations for k in the cases of even and odd
parity is small and we may estimate the difference in the left side by its derivative w.r.t. k times the
difference δk in the solutions. That is

− s2[rπ − k(b− a)](b− a)δk

√

W 2

(ka)2
− 1 + tan[rπ − k(b− a)]

−W 2/(ka)2δk/k
√

W 2

(ka)2 − 1
≃ 4e−2

√
W 2−(ka)2

In the case of interest the right side of the original equation is close to unity, so we can simplify the
last equation by using

tan [rπ − k(b− a)]

√

W 2

(ka)2
− 1 ≃ 1

With the help of the identity s2θ = 1+tan2 θ we obtain the required relation. We now approximate
the left side for W ≫ ka. This yields

W

ka
(b− a)δk ≃ −4e−2W

√
1−(ka/W )2 ($)

Since E = h̄2k2/2m, δE/E = 2δk/k and

(ka/W )2 =
2mEa2

h̄2
× h̄2

2mV0a2
= E/V0.

The required relation follows when we use these relations in ($).
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6.11∗ Show that when the density operator takes the form ρ = |ψ〉〈ψ|, the expressionQ = TrQρ for
the expectation value of an observable can be reduced to 〈ψ|Q|ψ〉. Explain the physical significance
of this result. For the given form of the density operator, show that the equation of motion of ρ
yields

|φ〉〈ψ| = |ψ〉〈φ| where |φ〉 ≡ ih̄
∂|ψ〉
∂t

−H |ψ〉. (6.1)

Show from this equation that |φ〉 = a|ψ〉, where a is real. Hence determine the time evolution of |ψ〉
given the at t = 0, |ψ〉 = |E〉 is an eigenket of H . Explain why ρ does not depend on the phase of
|ψ〉 and relate this fact to the presence of a in your solution for |ψ, t〉.
Soln:

Tr(Qρ) =
∑

n

〈n|Q|ψ〉〈ψ|n〉

We choose a basis that |ψ〉 is a member. Then there is only one non-vanishing term in the sum,
when |n〉 = |ψ〉, and the right side reduces to 〈ψ|Q|ψ〉 as required. This result shows that density
operators recover standard experimental predictions when the system is in a pure state.

Differentiating the given ρ we have

dρ

dt
=
∂|ψ〉
∂t

〈ψ|+ |ψ〉∂〈ψ|
∂t

=
1

ih̄
(H |ψ〉〈ψ| − |ψ〉〈ψ|H)

Gathering the terms proportional to 〈ψ| on the left and those proportional to |ψ〉 on the right we
obtain the required expression. Now

|φ〉〈ψ| = |ψ〉〈φ| ⇒ |φ〉〈ψ|φ〉 = |ψ〉〈φ|φ〉,
which establishes that |φ〉 ∝ |ψ〉. We define a as the constant of proportionality. Using |φ〉 = a|ψ〉
in |φ〉〈ψ| = |ψ〉〈φ| we learn that a = a∗ so a is real.

Returning to the definition of |φ〉 we now have

ih̄
∂|ψ〉
∂t

= (H − a)|ψ〉.
This differs from the tdse in having the term in a. If |ψ〉 is an eigenfunction of H , we find that its
time dependence is |ψ, t〉 = |ψ, 0〉e−i(E−a)t/h̄ rather than the expected result |ψ, t〉 = |ψ, 0〉e−iEt/h̄.
We cannot determine a from the density-matrix formalism because ρ is invariant under the trans-
formation |ψ〉 → e−iχ|ψ〉, where χ is any real number.

7.9∗ Repeat the analysis of Problem 7.8 for spin-one particles coming on filters aligned successively
along +z, 45◦ from z towards x [i.e. along (1,0,1)], and along x.

Use classical electromagnetic theory to determine the outcome in the case that the spin-one
particles were photons and the filters were Polaroid. Why do you get a different answer?
Soln: We adapt the calculation of Problem 7.8 by replacing the matrix for Jx by that for n · J =
(Jx + Jz)/

√
2. So if now (a, b, c) is |+ n〉 in the usual basis, we have





2−1/2 1
2 0

1
2 0 1

2

0 1
2 −2−1/2









a
b
c



 =





a
b
c



 ⇒















a =
b

2−√
2

c =
b

2 +
√
2

The normalisation yields b = 1
2 , so a = 1

2/(2−
√
2) and the required probability is the square of this,

0.25/(6− 4
√
2) ≃ 0.73. So the probability of getting through all three filters is 1

3 × (0.73)2 ≃ 0.177.
In electromagnetism just one of two polarisations gets through the first filter, so we must say

that a photon has a probability of half of passing the first filter. Then we resolve its E field along the
direction of the second filter and find that the amplitude of E falls by 1/

√
2 on passing the second

filter, so half the energy and therefore photons that pass the first filter pass the second. Of these
just a half pass the third filter. Hence in total 1

8 = 0.125 of the photons get right through.
Although photons are spin-one particles, there are two major difference between the two cases.

Most obviously, polaroid selects for linear polarisation rather than circular polarisation, and a photon
with well-defined angular momentum is circularly polarised. The other difference is that a photon
can be in the state |+ z〉 or | − z〉 but not the state |0z〉, where the z-axis is parallel to the photon’s
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motion. This fact arises because emag waves are transverse so they do not drive motion in the
direction of propagation k; an angular momentum vector perpendicular to k would require motion
along k. Our theory does not allow for this case because it is non-relativistic, whereas a photon,
having zero rest mass, is an inherently relativistic object; we cannot transform to a frame in which
a photon is at rest so all three directions would be equivalent.

7.13∗ Write a computer program that determines the amplitudes am in

|n; s, s〉 =
s
∑

m=−s

am|s,m〉

where n = (sin θ, 0, cos θ) with θ any angle and |n; s, s〉 is the ket that solves the equation (n ·
S)|n; s, s〉 = s|n; s, s〉. Explain physically the nature of this state.

Use your am to evaluate the expectation values 〈Sx〉 and
〈

S2
x

〉

for this state and hence show

that the rms fluctuation in measurements of Sx will be
√

s/2 cos θ.
Soln: We use a routine tridiag() that computes the e-values and e-kets of a real symmetric
tri-diagonal matrix – the routine tqli() in Numerical Recipies by Press et al. is suitable.

#define J 100
#define NT 3

double tridiag(double*,double*,int,double**)// evaluates & ekets of real,
// symmetric tridiagonal matrix

double alphap(int j,int m){
if(m>=j)return 0;

return sqrt((double)(j*(j+1)-m*(m+1)));
}
double alpham(int j,int m){
if(m<=-j) return 0;

return sqrt((double)(j*(j+1)-m*(m-1)));
}
void expect(double *a,int j,double st){//evaluate <Sx> and <Sx2>
double s1=0,s2=0;
for(int n=-j;n<=j;n++){
int nm2=n-2,nm1=n-1,np1=n+1,np2=n+2;
if(nm2>=-j) s2+=alpham(j,n)*alpham(j,nm1)*a[nm2]*a[n];

if(np2<=j) s2+=alphap(j,n)*alphap(j,np1)*a[np2]*a[n];
s2+=(alphap(j,nm1)*alpham(j,n)+alpham(j,np1)*alphap(j,n))*pow(a[n],2);

if(nm1>=-j) s1+=alpham(j,n)*a[nm1]*a[n];
if(np1<=j) s1+=alphap(j,n)*a[np1]*a[n];

}
s1*=.5; s2*=.25;

printf("%f %f %f %f\n",s1,j*st,s2,.5*j*(1-st*st)+pow(j*st,2));
}
int main(void){
double pi=acos(-1),theta[NT]={80, 120, 30};
double *D = new double[2*J+1];
double *E = new double[2*J+1];

double **Z = new double*[2*J+1];//allocate storage for square matrix
for(int i=0; i<2*J+1; i++) Z[i] = new double[2*J+1];

for(int it=0; it<3; it++){
theta[it]=theta[it]*pi/180;
double ct=cos(theta[it]), st=sin(theta[it]);

for(int m=-J; m<=J; m++){
D[J+m]=m*ct;//diagonal elements of matrix

if(m>-J) E[J+m]=st*.5*alpham(J,m);//sub-diagonal elements
}
tridiag(D,E,2*J+1,Z);//finds evalues & ekets of tridiagonal matrix
int mm;

for(int i=0; i<2*J+1; i++){
if(fabs(D[i]-J)<.05) mm=i; // identify eket m=J
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}
expect(Z[mm]+J,J,st);

}
}

7.14∗ We have that

L+ ≡ Lx + iLy = eiφ
( ∂

∂θ
+ i cot θ

∂

∂φ

)

. (7.1)

From the Hermitian nature of Lz = −i∂/∂φ we infer that derivative operators are anti-Hermitian.
So using the rule (AB)† = B†A† on equation (7.1), we infer that

L− ≡ L†
+ =

(

− ∂

∂θ
+ i

∂

∂φ
cot θ

)

e−iφ.

This argument and the result it leads to is wrong. Obtain the correct result by integrating by parts
∫

dθ sin θ
∫

dφ (f∗L+g), where f and g are arbitrary functions of θ and φ. What is the fallacy in
the given argument?
Soln:

∫

dθ sin θ

∫

dφ (f∗L+g) =

∫

dθ sin θ

∫

dφ f∗eiφ
(

∂g

∂θ
+ i cot θ

∂g

∂φ

)

=

∫

dφ eiφ
∫

dθ sin θf∗ ∂g

∂θ
+ i

∫

dθ cos θ

∫

dφ f∗eiφ
∂g

∂φ

=

∫

dφ eiφ
(

[sin θ f∗g]−
∫

dθ g
∂(sin θf∗)

∂θ

)

+ i

∫

dθ cos θ

(

[f∗eiφg]−
∫

dφ g
∂(f∗eiφ)

∂φ

)

The square brackets vanish so long f, g are periodic in φ. Differentiating out the products we get
∫

dθ sin θ

∫

dφ (f∗L+g) = −
∫

dφ eiφ
(∫

dθ sin θg
∂f∗

∂θ
+

∫

dθ cos θgf∗

)

− i

∫

dθ cos θ

(∫

dφ eiφg
∂f∗

∂φ
+ i

∫

dφ eiφgf∗

)

The two integrals containing f∗g cancel as required leaving us with
∫

dθ sin θ

∫

dφ (f∗L+g) = −
∫

dθ sin θ

∫

dφ geiφ
(

∂f∗

∂θ
+ i cot θ

∂f∗

∂φ

)

=

∫

dθ sin θ

∫

dφ g(L−f)
∗

where

L− = −e−iφ
( ∂

∂θ
− i cot θ

∂

∂φ

)

.

The fallacy is the proposition that ∂/∂θ is anti-Hermitian: the inclusion of the factor sin θ in the
integral prevents this being so.

7.15∗ By writing h̄2L2 = (x× p) · (x× p) =
∑

ijklm ǫijkxjpk ǫilmxlpm show that

p2 =
h̄2L2

r2
+

1

r2
{

(r · p)2 − ih̄r · p
}

. (7.2)

By showing that p · r̂− r̂ · p = −2ih̄/r, obtain r · p = rpr + ih̄. Hence obtain

p2 = p2r +
h̄2L2

r2
. (7.3)

Give a physical interpretation of one over 2m times this equation.
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Soln: From the formula for the product of two epsilon symbols we have

h̄2L2 =
∑

jklm

(δjlδkm − δjmδkl)xjpkxlpm

=
∑

jk

(

xjpkxjpk − xjpkxkpj
)

.

The first term is
∑

jk

xjpkxjpk =
∑

jk

xj(xjpk + [pk, xj ])pk =
∑

jk

xj(xjpk − ih̄δjk)pk

= r2p2 − ih̄r · p.
The second term is

∑

jk

xjpkxkpj =
∑

jk

xj(xkpk − ih̄)pj

=
∑

jk

xj(pjxkpk + ih̄δjkpk)− 3ih̄
∑

j

xjpj

= (r · p)(r · p)− 2ih̄(r · p).
When these relations are substituted above, the required result follows.

Using the position representaion

p · r̂− r̂ · p = −ih̄∇ · (r/r) = −3ih̄

r
− ih̄r ·∇(1/r) = −3ih̄

r
− ih̄r

∂r−1

∂r
= −3ih̄

r
+ ih̄r

1

r2

Using this relation and the definition of pr

rpr =
r

2
(r̂ · p+ p · r̂) = r

2

(

2r̂ · p− 2ih̄

r

)

= r · p− ih̄

Substituting this into our expression for p2 we have

p2 =
h̄2L2

r2
+

1

r2
((rpr + ih̄)(rpr + ih̄)− ih̄(rpr + ih̄))

When we multiply out the bracket, we encounter rprrpr = r2p2r + r[pr, r]pr = r2p2r − ih̄rpr. Now
when we clean up we find that all terms in the bracket that are proportional to h̄ cancel and we
have desired result.

This equation divided by 2m expresses the kinetic energy as a sum of tangetial and radial KE.

7.20∗ Show that [Ji, Lj] = i
∑

k ǫijkLk and [Ji, L
2] = 0 by eliminating Li using its definition

L = h̄−1x× p, and then using the commutators of Ji with x and p.
Soln:

h̄[Ji, Lj ] = ǫjkl[Ji, xkpl] = ǫjkl([Ji, xk]pl + xk[Ji, pl])

= ǫjkl(iǫikmxmpl + iǫilnxkpn) = i(ǫkljǫkmixmpl + ǫljkǫlnixkpn)

= i(δlmδji − δliδjm)xmpl + i(δjnδki − δjiδkn)xkpn

= i(x · pδij − xjpi + xipj − x · pδij) = i(xipj − xjpi)

But

ih̄ǫijkLk = iǫijkǫklmxlpm = iǫkijǫklmxlpm = i(δilδjm − δimδjl)xlpm = i(xipj − xjpi)

7.21∗ In this problem you show that many matrix elements of the position operator x vanish when
states of well-defined l,m are used as basis states. These results will lead to selection rules for electric
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dipole radiation. First show that [L2, xi] = i
∑

jk ǫjik(Ljxk + xkLj). Then show that L · x = 0 and
using this result derive

[L2, [L2, xi]] = i
∑

jk

ǫjik
(

Lj[L
2, xk] + [L2, xk]Lj

)

= 2(L2xi + xiL
2). (7.4)

By squeezing this equation between angular-momentum eigenstates 〈l,m| and |l′,m′〉 show that

0 =
{

(β − β′)2 − 2(β + β′)
}

〈l,m|xi|l′,m′〉,
where β ≡ l(l + 1) and β′ = l′(l′ + 1). By equating the factor in front of 〈l,m|xi|l′,m′〉 to zero,
and treating the resulting equation as a quadratic equation for β given β′, show that 〈l,m|xi|l′,m′〉
must vanish unless l + l′ = 0 or l = l′ ± 1. Explain why the matrix element must also vanish when
l = l′ = 0.
Soln:

∑

j

[L2
j , xi] =

∑

j

(Lj [Lj , xi] + [Lj , xi]Lj) = i
∑

jk

ǫjik(Ljxk + xkLj)

h̄L · x =
∑

ijk

ǫijkxjpkxi =
∑

ijk

ǫijk(xjxipk + xj [pk, xi]) =
∑

ijk

ǫijk(xjxipk − ih̄xjδki)

Both terms on the right side of this expression involve
∑

ik ǫijkSik where Sik = Ski so they vanish
by Problem 7.3. Hence x · L = 0 as in classical physics.

Now

[L2, [L2, xi]] = i
∑

jk

ǫjik[L
2, (Ljxk + xkLj)] = i

∑

jk

ǫjik(Lj [L
2, xk] + [L2, xk]Lj)

= −
∑

jklm

ǫjikǫlkm(Lj{Llxm + xmLl}+ {Llxm + xmLl}Lj)

= −
∑

jlm

(δjmδil − δjlδim)(Lj{Llxm + xmLl}+ {Llxm + xmLl}Lj)

= −
∑

j

(Lj{Lixj + xjLi}+ {Lixj + xjLi}Lj − Lj{Ljxi + xiLj} − {Ljxi + xiLj}Lj)

= −







∑

j

(LjLixj + xjLiLj)− L2xi −
∑

j

(LjxiLj + LjxiLj)− xiL
2







where to obtain the last line we have identified occurrences of L · x and x · L. Now
∑

j

LjLixj =
∑

j

(LjxjLi + Lj [Li, xj ]) = i
∑

jk

ǫijkLjxk

Similarly,
∑

j xjLiLj = i
∑

jk ǫjikxkLj. Moreover
∑

j

LjxiLj =
∑

j

([Lj , xi]Lj + xiLjLj) = i
∑

jk

ǫjikxkLj + xiL
2

=
∑

j

(Lj [xi, Lj ] + LjLjxi) = i
∑

jk

ǫijkLjxk + L2xi

Assembling these results we find

[L2, [L2, xi]] = −







i
∑

jk

ǫijk[Lj, xk]− L2xi − i
∑

jk

ǫjik[xk, Lj ]− xiL
2 − L2xi − xiL

2







= 2(L2xi + xiL
2)

as required. The relevant matrix element is

〈lm|[L2, [L2, xi]]|l′m′〉 = 〈lm|(L2L2xi − 2L2xiL
2 + xiL

2L2)|l′m′〉 = 2〈lm|(L2xi + xiL
2)|l′m′〉
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which implies

β2〈lm|xi|l′m′〉 − 2β〈lm|xi|l′m′〉β′ + 〈lm|xi|l′m′〉β′2 = 2β〈lm|xi|l′m′〉+ 2〈lm|xi|l′m′〉β′

Taking out the common factor we obtain the required result.
The quadratic for β(β′) is

β2 − 2(β′ + 1)β + β′(β′ − 2) = 0

so
β = β′ + 1±

√

(β′ + 1)2 − β′(β′ − 2) = β′ + 1±
√

4β′ + 1

= l′(l′ + 1) + 1±
√

4l′2 + 4l′ + 1 = l′(l′ + 1) + 1± (2l′ + 1)

= l′2 + 3l′ + 2 or l′2 − l′

We now have two quadratic equations to solve

l2 + l − (l′2 + 3l′ + 2) = 0 ⇒ l = 1
2 [−1± (2l′ + 3)]

l2 + l− (l′2 − l′) = 0 ⇒ l = 1
2 [−1± (2l′ − 1)]

Since l, l′ ≥ 0, the only acceptable solutions are l+ l′ = 0 and l = l′ ± 1 as required. However, when
l = l′ = 0 the two states have the same (even) parity so the matrix element vanishes by the proof
given in eq (4.42) of the book.

7.22∗ Show that l excitations can be divided amongst the x, y or z oscillators of a three-dimensional
harmonic oscillator in (12 l+1)(l+1) ways. Verify in the case l = 4 that this agrees with the number
of states of well-defined angular momentum and the given energy.
Soln: If we assign nx of the l excitations to the x oscillator, we can assign 0, 1, . . . , l−nx excitations
to the y oscillator [(l − nx + 1) possibilities], and the remaining excitations go to z. So the number
of ways is

S ≡
l
∑

nx=0

(l − nx + 1) =

l
∑

nx=0

(l + 1)−
l
∑

nx=1

nx = (l + 1)2 − 1
2 l(l+ 1) = (l + 1)(12 l + 1)

In the case of 4 excitations, the possible values of l are 4, 2 and 0, so the number of states is
(2 ∗ 4 + 1) + (2 ∗ 2 + 1) + 1 = 15, which is indeed equal to (4 + 1) ∗ (2 + 1).

7.23∗ Let

Al ≡
1√

2mh̄ω

(

ipr −
(l + 1)h̄

r
+mωr

)

. (7.5)

be the ladder operator of the three-dimensional harmonic oscillator and |E, l〉 be the stationary state
of the oscillator that has energy E and angular-momentum quantum number l. Show that if we
write Al|E, l〉 = α−|E − h̄ω, l+ 1〉, then α− =

√
L− l, where L is the angular-momentum quantum

number of a circular orbit of energy E. Show similarly that if A†
l−1|E, l〉 = α+|E + h̄ω, l − 1〉, then

α+ =
√
L− l + 2.

Soln: Taking the mod-square of each side of Al|E, l〉 = α−|E − h̄ω, l+ 1〉 we find

|α−|2 = 〈E, l|A†
lAl|E, l〉 = 〈E,L|

(

Hl

h̄ω
− (l + 3

2 )

)

|E, l〉 = E

h̄ω
− (l + 3

2 ).

In the case l = L, |α−|2 = 0, so L = (E/h̄ω) − 3
2 and therefore |α−|2 = L − l as required. We can

choose the phase of α− at our convenience.
Similarly

α2
+ = 〈E, l|Al−1A

†
l−1|E, l〉 = 〈E, l|(A†

l−1Al−1 + [Al−1, A
†
l−1])|E, l〉

= 〈E, l|
(

Hl−1

h̄ω
− (l + 1

2 ) +
Hl −Hl−1

h̄ω
+ 1

)

|E, l〉 = E

h̄ω
− l + 1

2 = L − l + 2
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7.24∗ Show that the probability distribution in radius of a particle that orbits in the three-
dimensional harmonic oscillator potential on a circular orbit with angular-momentum quantum
number l peaks at r/ℓ =

√

2(l+ 1), where

ℓ ≡
√

h̄

2mω
. (7.6)

Derive the corresponding classical result.
Soln: The radial wavefunctions of circular orbits are annihilated by Al, so Al|E, l〉 = 0. In the
position representation this is

(

∂

∂r
+

1

r
− l + 1

r
+

r

2ℓ2

)

u(r) = 0

Using the integrating factor,

exp

{∫

dr

(

− l

r
+

r

2ℓ2

)}

= r−l exp
(

r2/4ℓ2
)

, (7.7)

to solve the equation, we have u ∝ rle−r2/4ℓ2 . The radial distribution is P (r) ∝ r2|u|2 = r2(l+1)e−r2/2ℓ2 .
Differentiating to find the maximum, we have

2(l + 1)r2l+1 − r2(l+1)r/ℓ2 = 0 ⇒ r =
√
2(l + 1)1/2a

For the classical result we have

mrv = lh̄ and
mv2

r
= mω2r ⇒ r = v/ω =

lh̄

mrω

so r = (lh̄/mω)1/2 = (2l)1/2ℓ in agreement with the QM result when l ≫ 1.

7.25∗ A particle moves in the three-dimensional harmonic oscillator potential with the second
largest angular-momentum quantum number possible at its energy. Show that the radial wavefunc-
tion is

u1 ∝ xl
(

x− 2l+ 1

x

)

e−x2/4 where x ≡ r/ℓ with ℓ ≡
√

h̄

2mω
. (7.8)

How many radial nodes does this wavefunction have?
Soln: From Problem 7.24 we have that the wavefunction of the circular orbit with angular mo-

mentum l is 〈r|E, l〉 ∝ rle−r2/4ℓ2 . So the required radial wavefunction is

〈r|E + h̄ω, l − 1〉 ∝ 〈r|A†
l−1|E, l〉

∝
(

− ∂

∂r
− l + 1

r
+

r

2ℓ2

)

rle−r2/4ℓ2 =

(

−lrl−1 +
rl+1

2ℓ2
− (l + 1)rl−1 +

rl+1

2ℓ2

)

e−r2/4ℓ2

= rle−r2/4ℓ2
(

r

ℓ2
− 2l+ 1

r

)

∝ xle−x2/4

(

x− 2l + 1

x

)

This wavefunction clearly has one node at x =
√
2l + 1.

7.28∗ The interaction between neighbouring spin-half atoms in a crystal is described by the Hamil-
tonian

H = K

(

S(1) · S(2)

a
− 3

(S(1) · a)(S(2) · a)
a3

)

, (7.9)

where K is a constant, a is the separation of the atoms and S(1) is the first atom’s spin operator.

Explain what physical idea underlies this form of H . Show that S
(1)
x S

(2)
x + S

(1)
y S

(2)
y = 1

2 (S
(1)
+ S

(2)
− +

S
(1)
− S

(2)
+ ). Show that the mutual eigenkets of the total spin operators S2 and Sz are also eigenstates

of H and find the corresponding eigenvalues.
At time t = 0 particle 1 has its spin parallel to a, while the other particle’s spin is antiparallel

to a. Find the time required for both spins to reverse their orientations.
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Soln: This Hamiltonian recalls the mutual potential energy V of two classical magnetic dipoles
µ(i) that are separated by the vector a, which we can calculate by evaluating the magnetic field B

that the first dipole creates at the location of the second and then recognising that V = −µ ·B.

S
(1)
+ S

(2)
− = (S(1)

x + iS(1)
y )(S(2)

x − iS(2)
y ) = S(1)

x S(2)
x + S(1)

y S(2)
y + i(S(1)

y S(2)
x − S(1)

x S(2)
y )

Similarly,

S
(1)
− S

(2)
+ = S(1)

x S(2)
x + S(1)

y S(2)
y − i(S(1)

y S(2)
x − S(1)

x S(2)
y )

Adding these expressions we obtain the desired relation.
We choose to orient the z-axis along a. Then H becomes

H =
K

a

(

1
2 (S

(1)
+ S

(2)
− + S

(1)
− S

(2)
+ ) + S(1)

z S(2)
z − 3S(1)

z S(2)
z

)

. (7.10)

The eigenkets of S2 and Sz are the three spin-one kets |1, 1〉, |1, 0〉 and |1,−1〉 and the single spin-zero
ket |0, 0〉. We multiply each of these kets in turn by H :

H |1, 1〉 = H |+〉|+〉 = K

a

(

1
2 (S

(1)
+ S

(2)
− + S

(1)
− S

(2)
+ )− 2S(1)

z S(2)
z

)

|+〉|+〉

= −K

2a
|1, 1〉

which uses the fact that S
(i)
+ |+〉 = 0. Similarly H |1,−1〉 = H |−〉|−〉 = −(K/2a)|1,−1〉.

H |1, 0〉 = H
1√
2
(|+〉|−〉+ |−〉|+〉) = K√

2a

(

1
2 (S

(1)
+ S

(2)
− + S

(1)
− S

(2)
+ )− 2S(1)

z S(2)
z

)

(|+〉|−〉+ |−〉|+〉)

=
K√
2a

(

1
2 + 1

)

(|+〉|−〉+ |−〉|+〉) = K

a
|1, 0〉

where we have used S+|−〉 = |+〉, etc. Finally

H |0, 0〉 = H
1√
2
(|+〉|−〉 − |−〉|+〉) = K√

2a

(

1
2 (S

(1)
+ S

(2)
− + S

(1)
− S

(2)
+ )− 2S(1)

z S(2)
z

)

(|+〉|−〉 − |−〉|+〉)

=
K√
2a

(

− 1
2 + 1

2

)

(|+〉|−〉 − |−〉|+〉) = 0

The given initial condition

|ψ〉 = |+〉|−〉 = 1√
2
(|1, 0〉+ |0, 0〉),

which is a superposition of two stationary states of energies that differ by K/a. By analogy with the
symmetrical-well problem, we argue that after time πh̄/∆E = πh̄a/K the particle spins will have
reversed.

8.10∗ A spherical potential well is defined by

V (r) =

{

0 for r < a
V0 otherwise,

(8.1)

where V0 > 0. Consider a stationary state with angular-momentum quantum number l. By writing
the wavefunction ψ(x) = R(r)Ym

l (θ, φ) and using p2 = p2r + h̄2L2/r2, show that the state’s radial
wavefunction R(r) must satisfy

− h̄2

2m

(

d

dr
+

1

r

)2

R+
l(l + 1)h̄2

2mr2
R+ V (r)R = ER. (8.2)

Show that in terms of S(r) ≡ rR(r), this can be reduced to

d2S

dr2
− l(l+ 1)

S

r2
+

2m

h̄2
(E − V )S = 0. (8.3)
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Assume that V0 > E > 0. For the case l = 0 write down solutions to this equation valid at (a) r < a
and (b) r > a. Ensure that R does not diverge at the origin. What conditions must S satisfy at
r = a? Show that these conditions can be simultaneously satisfied if and only if a solution can be
found to k cot ka = −K, where h̄2k2 = 2mE and h̄2K2 = 2m(V0 − E). Show graphically that the
equation can only be solved when

√
2mV0 a/h̄ > π/2. Compare this result with that obtained for

the corresponding one-dimensional potential well.
The deuteron is a bound state of a proton and a neutron with zero angular momentum. Assume

that the strong force that binds them produces a sharp potential step of height V0 at interparticle
distance a = 2 × 10−15m. Determine in MeV the minimum value of V0 for the deuteron to exist.
Hint: remember to consider the dynamics of the reduced particle.
Soln: In the position representation pr = −ih̄(∂/∂r + r−1), so in this representation and for an
eigenfunction of L2 we get the required form of E|E〉 = H |E〉 = (p2/2m+ V )|E〉. Writing R = S/r
we have

(

d

dr
+

1

r

)

R =

(

d

dr
+

1

r

)

S

r
=

1

r

dS

dr
⇒

(

d

dr
+

1

r

)2

R =

(

d

dr
+

1

r

)

1

r

dS

dr
=

1

r

d2S

dr2

Inserting this into our tise and multiplying through by r, we obtain the required expression.
When l = 0 the equation reduces to either exponential decay or shm, so with the given condition

on E we have

S ∝
{

cos kr or sin kr at r < a
Ae−Kr at r > a

where k2 = 2mE/h̄2 and K2 = 2m(V0 − E)/h̄2. At r < a we must chose S ∝ sin kr because we
require R = S/r to be finite at the origin. We require S and its first derivative to be continuous at
r = a, so

sin(ka) = Ae−Ka

k cos(ka) = −KAe−Ka
⇒ cot(ka) = −K

k
= −

√

W 2/(ka)2 − 1

with W ≡
√

2mV0a2/h̄
2. In a plot of each side against ka, the right side starts at −∞ when ka = 0

and rises towards the x axis, where it terminates when ka = W . The left side starts at ∞ and
becomes negative when ka = π/2. There is a solution iff the right side has not already terminated,
i.e. iff W > π/2.

We obtain the minimum value of V0 for W = (a/h̄)
√
2mV0 = π/2, so

V0 =
π2h̄2

8ma2
=

(πh̄/a)2

4mp
= 25.6MeV

where m ≃ 1
2mp is the reduced mass of the proton.

8.13∗ From equation (8.50) show that l′+ 1
2 =

√

(l + 1
2 )

2 − β and that the increment ∆ in l′ when

l is increased by one satisfies ∆2 +∆(2l′ + 1) = 2(l + 1). By considering the amount by which the
solution of this equation changes when l′ changes from l as a result of β increasing from zero to a
small number, show that

∆ = 1 +
2β

4l2 − 1
+ O(β2). (8.4)

Explain the physical significance of this result.
Soln: The given eqn is a quadratic in l′:

l′2+ l′− l(l+1)+β = 0 ⇒ l′ =
−1±

√

1 + 4l(l+ 1)− 4β

2
⇒ l′+ 1

2 =
√

(l + 1
2 )

2 − β, (8.5)

where we’ve chosen the root that makes l′ > 0.
Squaring up this equation, we have

(l′ + 1
2 )

2 = (l + 1
2 )

2 − β ⇒ (l′ +∆+ 1
2 )

2 = (l + 3
2 )

2 − β

Taking the first eqn from the second yields

∆2 + 2(l′ + 1
2 )∆ = (l + 3

2 )
2 − (l + 1

2 )
2 = 2(l + 1)
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This is a quadratic equation for ∆, which is solved by ∆ = 1 when l′ = l. We are interested in
the small change δ∆ in this solution when l′ changes by a small amount δl′. Differentiating the
equation, we have

2∆δ∆+ 2∆δl′ + (2l′ + 1)δ∆ = 0 ⇒ δ∆ = − 2∆δl′

2∆ + 2l′ + 1
Into this we put ∆ = 1, l′ = l, and by binomial expansion of (8.5)

δl′ = − β

2l+ 1
and have finally

δ∆ =
−2β

(2l + 1)(2l + 3)

Eq (8.55) gives the energy of a circular orbit as

E = − Z2
0e

2

8πǫ0a0(l′(l) + k + 1)2
,

with k the number of nodes in the radial wavefunction. This differs from Rydberg’s formula in that
(l′(l)+k+1) is not an integer n. Crucially l′(l)+k does not stay the same if k in decreased by unity
and l increased by unity – in fact these changes (which correspond to shifting to a more circular
orbit) cause l′(l) + k to increase slightly and therefore E to decrease slightly: on a more circular
orbit, the electron is more effectively screened from the nucleus. So in the presence of screening the
degeneracy in H under which at the same E there are states of different angular momentum is lifted
by screening.

8.15∗ (a) A particle of mass m moves in a spherical potential V (r). Show that according to
classical mechanics

d

dt
(p× Lc) = mr2

dV

dr

der
dt

, (8.6)

where Lc = r × p is the classical angular-momentum vector and er is the unit vector in the radial
direction. Hence show that when V (r) = −K/r, with K a constant, the Runge–Lenz vector

Mc ≡ p × Lc −mKer is a constant of motion. Deduce that Mc lies in the orbital plane, and that
for an elliptical orbit it points from the centre of attraction to the pericentre of the orbit, while it
vanishes for a circular orbit.

(b) Show that in quantum mechanics (p×L)† −p×L = −2ip. Hence explain why in quantum
mechanics we take the Runge–Lenz vector operator to be

M ≡ 1
2 h̄N−mKer where N ≡ p× L− L× p. (8.7)

Explain why we can write down the commutation relation [Li,Mj] = i
∑

k ǫijkMk.
(c) Explain why [p2, N ] = 0 and why [1/r,p× L] = [1/r,p]× L. Hence show that

[1/r,N] = i

{

1

r3
(r2p− xx · p)−

(

pr2 − p · xx
) 1

r3

}

. (8.8)

(d) Show that

[p2, er] = ih̄

{

−
(

p
1

r
+

1

r
p

)

+
∑

j

(

pj
xj
r3

x+ x
xj
r3
pj

)

}

. (8.9)

(e) Hence show that [H,M] = 0. What is the physical significance of this result?
(f) Show that (i) [Mi, L

2] = i
∑

jk ǫijk(MkLj + LjMk), (ii) [Li,M
2] = 0, where M2 ≡ M2

x +

M2
y +M2

z . What are the physical implications of these results?
(g) Show that

[Ni, Nj ] = −4i
∑

u

ǫijup
2Lu (8.10)
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and that

[Ni, (er)j ]− [Nj, (er)i] = −4ih̄

r

∑

t

ǫijtLt (8.11)

and hence that
[Mi,Mj] = −2ih̄2mH

∑

k

ǫijkLk. (8.12)

What physical implication does this equation have?
Soln: (a) Since Lc is a constant of motion

d

dt
(p× Lc) = ṗ× Lc = −∂V

∂x
× Lc = −dV

dr
er × Lc, (8.13)

where we have used Hamilton’s equation ṗ = −∂H/∂x and ∂r/∂x = er. Also

der
dt

= ω× er,

where ω = Lc/mr
2 is the particle’s instantaneous angular velocity. So er × Lc = −mr2ω × er =

−mr2ėr. Using this equation to eliminate er × Lc from (8.13), we find that when dV/dr = Kr2,
the right side becomes mKėr, which is a total time-derivative, and the invariance of Mc follows.
Dotting Mc with Lc we find that Mc is perpendicular to Lc so it lies in the orbital plane. Also

Mc +mKer = p× (r× p) = p2 r− p · rp.
Evaluating the right side at pericentre, where p · r = 0, we have

Mc = (p2r −mK)er.

In the case of a circular orbit, by centripetal balance p2/mr = K/r2 and Mc = 0. At pericentre, the
particle is moving faster than the circular speed, so p2 > mK/r and the coefficient of er is positive,
so Mc points to pericentre.

(b) Since both p and L are Hermitian,

(p× L)†i =
∑

jk

ǫijk(pjLk)
† =

∑

jk

ǫijkLkpj

=
∑

jk

ǫijk(pjLk + [Lk, pj ]) =
∑

jk

ǫijk

(

pjLk + i
∑

m

ǫkjmpm

)

= (p× L)i − 2ipi.

We want the Runge–Lenz vector to be a Hermitian operator, so we apply the principle that 1
2 (AB+

BA) is Hermitian even when [A,B] 6= 0 and write

Mi =
1
2 h̄
∑

jk

ǫijk(pjLk + Lkpj)−mKer =
1
2 h̄(p× L− L× p)−mKer

M is a (pseudo) vector operator, so its components have the standard commutation relations with
the components of L.

(c) p2 is a scalar so it commutes with L, and of course it commutes with p, so it must commute
with both p× L and L× p. As a scalar 1/r commutes with L, so

[1/r,p× L] = [1/r,p]× L = − ih̄

2r3
[r2,p]× L = − ih̄

r3
x× L.

Similarly,

[1/r,L× p] = −ih̄L× x
1

r3
.
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Now

(x× L)i =
1

h̄

∑

jklm

ǫijkǫklmxjxlpm =
1

h̄

∑

jklm

ǫijkǫlmkxjxlpm =
1

h̄

∑

jlm

(δilδjm − δimδjl)xjxlpm

=
1

h̄
(xix · p− r2pi)

and

(L× x)i =
1

h̄

∑

jklm

ǫijkǫjlmxlpmxk =
1

h̄

∑

jklm

ǫjkiǫjlmxlpmxk =
1

h̄

∑

klm

(δklδim − δkmδil)xlpmxk

=
1

h̄

∑

k

(xkpixk − xipkxk) =
1

h̄

∑

k

(pixkxk + ih̄δikxk − pkxixk − ih̄δkixk)

=
1

h̄

(

pir
2 − p · xxi

)

Hence

[1/r,N] = [p× L, 1/r]− [L× p, 1/r] = i
{

− 1

r3
(xix · p− r2pi) +

(

pir
2 − p · xxi

) 1

r3
} (8.14)

(d)

[p2, (er)n] = [p2, xn/r] =
∑

j

(pj [pj , xn/r] + [pj , xn/r]pj)

=
∑

j

(pj [pj, xn]/r + pjxn[pj , 1/r] + [pj , xn]/rpj + xn[pj, 1/r]pj)

= ih̄
∑

j

(

−pj
δjn
r

+ pjxn
xj
r3

− δjn
r
pj + xn

xj
r3
pj

)

= ih̄

{

−
(

pn
1

r
+

1

r
pn

)

+
∑

j

(

pj
xj
r3
xn + xn

xj
r3
pj

)

}

(e)

[H,M] =

[

p2

2m
− K

r
, 12 h̄{p× L− L× p} −mKer

]

The results we have in hand imply that when we expand this commutator, there are only two
non-zero terms, so

[H,M] = − 1
2K

[

p2, er
]

− 1
2 h̄K

[

1

r
,p× L− L× p

]

= 1
2 ih̄K

{(

p
1

r
+

1

r
p

)

−
∑

j

(

pj
xj
r3

x+ x
xj
r3
pj

)

+
1

r3
(

xx · p− r2p
)

−
(

pr2 − p · xx
) 1

r3

}

= 0

This result shows: (i) that the eigenvalues of the Mi are good quantum numbers – if the particle
starts in an eigenstate of Mi, it will remain in that state; (ii) the unitary transformations Ui(θ) ≡
exp(−iθMi) are dynamical symmetries of a hydrogen atom. In particular, these operators turn
stationary states into other stationary states of the same energy.

(f) (i)

[Mi, L
2] =

∑

j

[Mi, L
2
j ] =

∑

j

([Mi, Lj ]Lj + Lj[Mi, Lj ]) = i
∑

jk

ǫijk(MkLj + LjMk) 6= 0.

so we do not expect to know the total angular momentum when the atom is in an eigenstate of any
of the Mi.
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(ii) [Li,M
2] =

∑

j [Li,M
2
j ] = i

∑

jk ǫijk(MkMj + MjMk) = 0, so there is a complete set of

mutual eigenstates of L2, Lz and M2.
(g)

[(p× L)i, pm] =
∑

jk

ǫijk[pjLk, pm] =
∑

jk

ǫijkpj [Lk, pm] = i
∑

jkn

ǫijkǫkmnpjpn = i
∑

jkn

ǫkijǫkmnpjpn

= i
∑

nj

(δimδjn − δinδjm)pjpn = i(p2δim − pipm)

Similarly [(L× p)i, pm] = −i(p2δim − pipm), so we have shown that

[Ni, pm] = 2i(p2δim − pipm).

Moreover, since N is a vector, [Ni, Lm] = i
∑

n ǫimnNn, so

[Ni, Ns] =
∑

tu

ǫstu[Ni, ptLu − Ltpu] =
∑

tu

ǫstu
{

[Ni, pt]Lu + pt[Ni, Lu]− [Ni, Lt]pu − Lt[Ni, pu]
}

= i
∑

tu

ǫstu
{

2(p2δit − pipt)Lu − 2Lt(p
2δiu − pipu) +

∑

n

(ǫiunptNn − ǫitnNnpu)
}

= 2i
∑

u

ǫsiup
2Lu − 2i

∑

t

ǫstiLtp
2 − 2i

∑

tu

ǫstu(piptLu − Ltpipu)

+ i
∑

tun

ǫstuǫiunptNn − i
∑

tun

ǫstuǫitnNnpu

= 2i
∑

u

ǫsiu(p
2Lu + Lup

2)− 2i
∑

tu

ǫstu(piptLu − Ltpipu)

+ i
∑

tn

(δsnδti − δsiδnt)ptNn − i
∑

nu

(δunδsi − δuiδsn)Nnpu

= 4i
∑

u

ǫsiup
2Lu − 2i

∑

tu

ǫstu(piptLu − Ltpipu) + i(piNs +Nspi)− i(p ·N+N · p)δis

= 4i
∑

u

ǫsiup
2Lu + i

(

− 2pi(p× L)s + 2(L× p)spi

+ pi(p× L)s − pi(L× p)s + (p× L)spi − (L × p)spi

)

− i(p ·N+N · p)δis,
(8.15)

where we have used the fact that [p2, Lu] = 0. We show that the terms with cross products sum to
zero by first ensuring that all terms with pi on the left contain p × L and all terms with pi on the
right contain L× p. We have to amend two terms to achieve this standardisation:

−pi(L× p)s + (p× L)spi =
∑

jk

ǫsjk (−piLjpk + pjLkpi)

=
∑

jk

ǫsjk

(

−pi
{

pkLj + i
∑

n

ǫjknpn

}

+
{

Lkpj + i
∑

n

ǫjknpn

}

pi

)

= pi(p× L)s − (L× p)spi
(8.16)

The standardised sum of cross products in equation (8.15) is now

i
(

− 2pi(p× L)s + 2(L× p)spi + pi(p× L)s + pi(p× L)s − (L × p)spi − (L× p)spi

)

and is manifestly zero. The last term in (8.15) has to vanish because it alone is symmetric in is,
and it’s not hard to show that it does:

p ·N+N · p =
∑

ijk

ǫijk

(

pi(pjLk − Ljpk) + (pjLk − Ljpk)pi

)

The first and last terms trivially vanish because they are symmetric in ij and ik,respectively. The
remaining terms can be written

−
∑

ijk

ǫijkpiLjpk +
∑

jki

ǫijkpjLkpi
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and they cancel.
Since er = x/r and in (8.8) we already have [1/r,N] we prepare for calculating [Ni, er] by

calculating

[(p× L)i, xj ] =
∑

st

ǫist[psLt, xj ] =
∑

st

ǫist(ps[Lt, xj ] + [ps, xj ]Lt) = i
∑

st

ǫist

(

ps
∑

n

ǫtjnxn − h̄δsjLt

)

= i

{

∑

sn

(δijδsn − δinδsj)psxn − h̄
∑

t

ǫijtLt

}

= i

(

p · x δij − pjxi − h̄
∑

t

ǫijtLt

)

Similarly

[(L× p)i, xj ] = −i

(

x · p δij − xipj − h̄
∑

t

ǫijtLt

)

so

[Ni, xj ] = i

{

(p · x+ x · p)δij − (pjxi + xipj)− 2h̄
∑

t

ǫijtLt

}

Now we can compute

[Ni, (er)j ] = [Ni, xj/r] = [Ni, xj ]/r + xj [Nj , 1/r]

= i

{

(p · x+ x · p)δij
r

− (pjxi + xipj)
1

r
− 2h̄

r

∑

t

ǫijtLt

}

+ xj [(p× L)i, 1/r]− xj [(L × p)i, 1/r]

= i

{

(p · x+ x · p)δij
r

− (pjxi + xipj)
1

r
− 2h̄

r

∑

t

ǫijtLt

+
xj
r3

(xi x · p− r2pi)− xj(pir
2 − p · xxi)

1

r3

}

when we calculate [Ni, (er)j ]− [Nj, (er)i] all terms above that are symmetric in ij and will vanish
and we find

[Ni, (er)j ]− [Nj , (er)i] = i

{

−(pjxi + xipj − pixj − xjpi)
1

r
− 4h̄

r

∑

t

ǫijtLt

− 1

r
(xjpi − xipj)− (xjpi − xipj)

1

r
+ (xjp · xxi − xip · xxj)

1

r3

}

= i

{

−4h̄

r

∑

t

ǫijtLt − (pjxi − pixj)
1

r
− 1

r
(xjpi − xipj) + (xjp · xxi − xip · xxj)

1

r3

}

(8.17)
Now
∑

k

xipkxkxj =
∑

k

xi(xjpk − ih̄δjk)xk =
∑

k

xixjpkxk − ih̄xixj =
∑

k

xj(pkxi + ih̄δki)xk − ih̄xixj

=
∑

k

xjpkxkxi

so the terms with dot products in (8.17) cancel. Finally [1/r, pj] = −ih̄xj/r
3 so

1

r
(xjpi − xipj) = xj(pi/r − ih̄xi/r

3)− xi(pj/r − ih̄xj/r
3) = (xjpi − xipj)

1

r
so the terms with factors 1/r in (8.17) cancel and we are left with

[Ni, (er)j ]− [Nj, (er)i] = −4ih̄

r

∑

t

ǫijtLt (8.18)

From the definition of M we have

[Mi,Mj] = [ 12 h̄Ni −mK(er)i,
1
2 h̄Ni −mK(er)i] =

1
4 h̄

2[Ni, Nj ]− 1
2mKh̄([Ni, (er)j ] + [(er)i, Nj ])

= 1
4 h̄

2[Ni, Nj]− 1
2mKh̄

(

[Ni, (er)j ]− [Nj , (er)i]
)

.

since the components of e commute with each other. We obtain the required result on substituting
from equations (8.10) and (8.11).

A physical consequence of (8.12) is that we will not normally be able to know the values of
more than one component of M – but we can in the exceptional case of completely radial orbits
(L2|ψ〉 = 0).
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10.8∗ The Hamiltonian of a two-state system can be written

H =

(

A1 +B1ǫ B2ǫ
B2ǫ A2

)

, (10.1)

where all quantities are real and ǫ is a small parameter. To first order in ǫ, what are the allowed
energies in the cases (a) A1 6= A2, and (b) A1 = A2?

Obtain the exact eigenvalues and recover the results of perturbation theory by expanding in
powers of ǫ.
Soln: When A1 6= A2, the eigenvectors ofH0 are (1, 0) and (0, 1) so to first-order in ǫ the perturbed
energies are the diagonal elements of H , namely A1 +B1ǫ and A2.

When A1 = A2 the unperturbed Hamiltonian is degenerate and degenerate perturbation theory
applies: we diagonalise the perturbation

H1 =

(

B1ǫ B2ǫ
B2ǫ 0

)

= ǫ

(

B1 B2

B2 0

)

The eigenvalues λ of the last matrix satisfy

λ2 −B1λ−B2
2 = 0 ⇒ λ = 1

2

(

B1 ±
√

B2
1 + 4B2

2

)

and the perturbed energies are

A1 + λǫ = A1 +
1
2B1ǫ± 1

2

√

B2
1 + 4B2

2 ǫ

Solving for the exact eigenvalues of the given matrix we find

λ = 1
2 (A1 +A2 +B1ǫ)± 1

2

√

(A1 +A2 +B1ǫ)2 − 4A2(A1 +B1ǫ) + 4B2ǫ2

= 1
2 (A1 +A2 +B1ǫ)± 1

2

√

(A1 −A2)2 + 2(A1 −A2)B1ǫ+ (B2
1 + 4B2

2)ǫ
2

If A1 = A2 this simplifies to

λ = A1 +
1
2B1ǫ+± 1

2

√

B2
1 + 4B2

2 ǫ

in agreement with perturbation theory. If A1 6= A2 we expand the radical to first order in ǫ

λ = 1
2 (A1 +A2 +B1ǫ)± 1

2 (A1 −A2)

(

1 +
B1

A1 −A2
ǫ+O(ǫ2)

)

=

{

A1 +B1ǫ if +
A2 if −

again in agreement with perturbation theory

10.9∗ For the P states of hydrogen, obtain the shift in energy caused by a weak magnetic field
(a) by evaluating the Landé g factor, and (b) by use equation (10.28) and the Clebsch–Gordan
coefficients calculated in §7.6.2.
Soln: (a) From l = 1 and s = 1

2 we can construct j = 3
2 and 1

2 so we have to evaluate two values

of gL. When j = 3
2 , j(j + 1) = 15/4, and when j = 1

2 , j(j + 1) = 3/4, so

gL = 3
2 − 1

2

l(l+ 1)− s(s+ 1)

j(j + 1)
=

{

4
3 for j = 3

2
2
3 for j = 1

2

So

EB/(µBB) = mgL =







2 for j = 3
2 ,m = 3

2
2
3 for j = 3

2 ,m = 1
2

1
3 for j = 1

2 ,m = 1
2

with the values for negative m being minus the values for positive m.
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Figure 10.3 The relation of input
and output vectors of a 2 × 2 Hermi-
tian matrix with positive eigenvalues
λ1 > λ2. An input vector (X, Y ) on
the unit circle produces the output
vector (x, y) that lies on the ellipse
that has the eigenvalues as semi-
axes.

(b) We have | 32 , 32 〉 = |+〉|11〉 so 〈32 , 32 |Sz| 32 3
2 〉 = 1

2 and EB/(µBB) = m+ 〈ψ|Sz |ψ〉 = 3
2 + 1

2 = 2
in agreement with the Landé factor. Similarly

| 32 , 12 〉 =
√

1
3 |−〉|11〉+

√

2
3 |+〉|10〉 ⇒ 〈32 , 12 |Sz| 32 , 12 〉 = 1

3 (− 1
2 ) +

2
3
1
2 = 1

6

so EB/(µBB) = 1
2 + 1

6 = 2
3 Finally

| 12 , 12 〉 =
√

2
3 |−〉|11〉 −

√

1
3 |+〉|10〉 ⇒ 〈12 , 12 |Sz| 12 , 12 〉 = 2

3 (− 1
2 ) +

1
2
1
3 = − 1

6

so EB/(µBB) = 1
2 − 1

6 = 1
3

10.12∗ Show that with the trial wavefunction ψ(x) = (a2 + x2)−2 the variational principle yields
an upper limit E0 < (

√
7/5)h̄ω ≃ 0.529 h̄ω on the ground-state energy of the harmonic oscillator.

Soln: We set x = a tan θ and have
∫ ∞

0

dx |ψ|2 = a−7

∫ π/2

0

dθ cos6 θ = a−7

∫ π/2

0

dθ { 1
2 (1 + cos 2θ)}3

= 1
8a

−7

∫ π/2

0

dθ (1 + 3 cos 2θ + 3 cos2 2θ + cos3 2θ) = 1
8a

−7 1
2π(1 +

3
2 ) =

5
32πa

−7

where we have used the facts (i) that an odd power of a cosine averages to zero over (0, π) and (ii)
that cos2 θ has average value 1

2 over this interval.
Similarly
∫ ∞

0

dxx2|ψ|2 = a−5

∫ π/2

0

dθ cos4 θ sin2 θ = a−5

∫ π/2

0

dθ 1
2 (1 + cos 2θ)14 sin

2 2θ

= 1
8a

−5

∫ π/2

0

dθ (sin2 2θ + cos 2θ sin2 2θ) = 1
8a

−5(14π + 1
6 [sin

3 2θ]) = 1
32πa

−5

and

〈x|p|ψ〉 = −ih̄
−2

(a2 + x2)3
2x

so
∫ ∞

0

dx |pψ|2 = 16h̄2a−9

∫ π/2

0

dθ cos8 θ sin2 θ = 16h̄2a−9

∫ π/2

0

dθ 1
8 (1 + cos 2θ)3 1

4 sin
2 2θ

= 1
2 h̄

2a−9

(∫ π/2

0

dθ (sin2 2θ + 3 cos2 2θ sin2 2θ) +

∫ π/2

0

dθ cos 2θ(3 + 1− sin2 2θ)

)

= 1
2 h̄

2a−9

(

1
4π(1 +

3
4 ) +

[

2
3 sin

3 2θ − 1
10 sin

5 2θ

])

= 7
32 h̄

2πa−9

Hence

〈H〉 =
7
32 h̄

2a−9π/2m+ 1
2mω

2 1
32a

−5π
5
32a

−7π
=

h̄2

2m
7
5a

−2 + 1
10mω

2a2
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0 =
∂ 〈H〉
∂a

= − h̄
2

m
7
5a

−3 + 1
5mω

2a

a4 = 7

(

h̄

mω

)2

⇒ a = 71/4
√
2 ℓ 〈H〉 =

√
7

5
h̄ω

10.14∗ Using the result proved in Problem 10.13, show that the trial wavefunction ψb = e−b2r2/2

yields −8/(3π)R as an estimate of hydrogen’s ground-state energy, whereR is the Rydberg constant.

Soln: With ψ = e−b2r2/2, dψ/dr = −b2re−b2r2/2, so

〈H〉 =
(

h̄2b4

2m

∫

dr r4e−b2r2 − e2

4πǫ0

∫

dr re−b2r2
)

/

∫

dr r2e−b2r2

=

(

h̄2

2mb

∫

dxx4e−x2 − e2

4πǫ0b2

∫

dxxe−x2

)

/

1

b3

∫

dxx2e−x2

Now
∫

dxxe−x2

=

[

e−x2

−2

]∞

0

= 1
2

∫

dxx2e−x2

=

[

xe−x2

−2

]∞

0

+ 1
2

∫

dx e−x2

=

√
π

4

∫

dxx4e−x2

=

[

x3e−x2

−2

]∞

0

+ 3
2

∫

dxx2e−x2

=
3
√
π

8

so

〈H〉 =
(

h̄2

2mb

3
√
π

8
− e2

4πǫ0b2
1
2

)

/√
π

4b3
=

3h̄2b2

4m
− e2b

2π3/2ǫ0

At the stationary point of 〈H〉 b = me2/(3π3/2ǫ0h̄
2). Plugging this into 〈H〉 we find

〈H〉 = 3h̄2

4m

m2e4

9π3ǫ20h̄
4 − e2

2π3/2ǫ0

me2

3π3/2ǫ0h̄
2 = − 8

3π

m

2

(

e2

4πǫ0

)2

=
8

3π
R

10.18∗ A particle of mass m is initially trapped by the well with potential V (x) = −Vδδ(x),
where Vδ > 0. From t = 0 it is disturbed by the time-dependent potential v(x, t) = −Fxe−iωt. Its
subsequent wavefunction can be written

|ψ〉 = a(t)e−iE0t/h̄|0〉+
∫

dk {bk(t)|k, e〉+ ck(t)|k, o〉} e−iEkt/h̄, (10.2)

where E0 is the energy of the bound state |0〉 and Ek ≡ h̄2k2/2m and |k, e〉 and |k, o〉 are, respectively
the even- and odd-parity states of energy Ek (see Problem 5.17). Obtain the equations of motion

ih̄

{

ȧ|0〉e−iE0t/h̄ +

∫

dk
(

ḃk|k, e〉+ ċk|k, o〉
)

e−iEkt/h̄

}

= v

{

a|0〉e−iE0t/h̄ +

∫

dk (bk|k, e〉+ ck|k, o〉) e−iEkt/h̄

}

.

(10.3)

Given that the free states are normalised such that 〈k′, o|k, o〉 = δ(k − k′), show that to first order
in v, bk = 0 for all t, and that

ck(t) =
iF

h̄
〈k, o|x|0〉 eiΩkt/2

sin(Ωkt/2)

Ωk/2
, where Ωk ≡ Ek − E0

h̄
− ω. (10.4)

Hence show that at late times the probability that the particle has become free is

Pfr(t) =
2πmF 2t

h̄3
|〈k, o|x|0〉|2

k

∣

∣

∣

∣

Ωk=0

. (10.5)
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Given that from Problem 5.17 we have

〈x|0〉 = √
Ke−K|x| where K =

mVδ

h̄2
and 〈x|k, o〉 = 1√

π
sin(kx), (10.6)

show that

〈k, o|x|0〉 =
√

K

π

4kK

(k2 +K2)2
. (10.7)

Hence show that the probability of becoming free is

Pfr(t) =
8h̄F 2t

mE2
0

√

Ef/|E0|
(1 + Ef/|E0|)4

, (10.8)

where Ef > 0 is the final energy. Check that this expression for Pfr is dimensionless and give a
physical explanation of the general form of the energy-dependence of Pfr(t)
Soln: When we substitute the given expansion of |ψ〉 in stationary states of the unperturbed Hamil-
tonian H0 into the tise, the terms generated by differentiating the exponentials in time cancel on
H0|ψ〉. The given expression contains the surviving terms, namely the derivatives of the amplitudes
a, bk and ck on the left and on the right v|ψ〉. In the first order approximation we put a = 1 and
bk = ck = 0 on the right. Then we bra through with 〈k′, e| and 〈k′, o| and exploit the orthonormality

of the stationary states to obtain equations for ḃk(t) and ċk(t). The equation for ḃk is proportional
to the matrix element 〈k, e|v|0〉, which vanishes by parity because v is an odd-parity operator. Then
we replace v by −xF e−iωt and have

ck(t) =

∫ t

0

dt′ ċk =
iF

h̄
〈k, o|x|0〉

∫ t

0

dt′ ei[(Ek−E0)/h̄−ω]t′ =
iF

h̄
〈k, o|x|0〉e

iΩkt − 1

iΩk

=
iF

h̄
〈k, o|x|0〉 eiΩkt/2

sin(Ωkt/2)

Ωk/2
.

The probability that the particle is free is

Pfr(t) =

∫

dk |ck|2 =
F 2

h̄2

∫

dk |〈k, o|x|0〉|2 sin
2(Ωkt/2)

(Ωk/2)2
.

As t→ ∞ we have sin2 xt/x2 → πtδ(x), so at large t

Pfr(t) =
F 2

h̄2

∫

dk |〈k, o|x|0〉|2πtδ(Ωk/2) =
F 2

h̄2
|〈k, o|x|0〉|2πt
d(Ωk/2)/dk

∣

∣

∣

∣

Ωk=0

Moreover, Ωk = 1
2 h̄k

2/m+ constant, so dΩk/dk = h̄k/m and therefore

Pfr(t) =
2πmF 2t

h̄3
|〈k, o|x|0〉|2

k

∣

∣

∣

∣

Ωk=0

.

Evaluating 〈k, o|x|0〉 in the position representation, we have

〈k, o|x|0〉 = 2

∫ ∞

0

dx
sinkx√

π
x
√
Ke−Kx = 2

√

K

π

1

2i

∫ ∞

0

dxx
(

e(ik−K)x − e−(ik+K)x
)

= −i

√

K

π

(

1

(ik −K)2
− 1

(ik +K)2

)

=

√

K

π

4kK

(k2 +K2)2
.

The probability of becoming free is therefore

Pfr(t) =
2πmF 2t

h̄3
K

π

16kK2

(k2 +K2)4
=

32mF 2t

h̄3K4

k/K

(k2/K2 + 1)4
(10.9)

The required result follows when we substitute into the above k2/K2 = Ef/|E0| and h̄4K2 =
(2mE0)

2.
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Regarding dimensions, [F ] = E/L and [h̄] = ET , so

[Pfr] =
(E/L)2ETT

ME2
=
ET 2

ML2
=
ML2T−2T 2

ML2
.

Pfr(t) is small for small E because at such energies the free state, which always has a node at
the location of the well, has a long wavelength, so it is practically zero throughout the region of scale
2/K within which the bound particle is trapped. Consequently for small E the coupling between the
bound and free state is small. At high E the wavelength of the free state is much smaller than 2/K
and the positive and negative contributions from neighbouring half cycles of the free state nearly
cancel, so again the coupling between the bound and free states is small. The coupling is most
effective when the wavelength of the free state is just a bit smaller than the size of the bound state.

10.19∗ A particle travelling with momentum p = h̄k > 0 from −∞ encounters the steep-sided
potential well V (x) = −V0 < 0 for |x| < a. Use the Fermi golden rule to show that the probability
that a particle will be reflected by the well is

Preflect ≃
V 2
0

4E2
sin2(2ka),

where E = p2/2m. Show that in the limit E ≫ V0 this result is consistent with the exact reflection
probability derived in Problem 5.10. Hint: adopt periodic boundary conditions so the wavefunctions
of the in and out states can be normalised.
Soln: We consider a length L of the x axis where L ≫ a and k = 2nπ/L, where n ≫ 1 is an
integer. Then correctly normalised wavefunctions of the in and out states are

ψin(x) =
1√
L
eikx ; ψout(x) =

1√
L
e−ikx

The required matrix element is

1

L

∫ L/2

−L/2

dx eikxV (x)eikx = −V0
∫ a

−a

dx e2ikx = −V0
sin(2ka)

Lk

so the rate of transitions from the in to the out state is

Ṗ =
2π

h̄
g(E)|〈out|V |in〉|2 =

2π

h̄
g(E)V 2

0

sin2(2ka)

L2k2

Now we need the density of states g(E). E = p2/2m = h̄2k2/2m is just kinetic energy. Eliminating
k in favour of n, we have

n =
L

2πh̄

√
2mE

As n increases by one, we get one extra state to scatter into, so

g =
dn

dE
=

L

4πh̄

√

2m

E
.

Substituting this value into our scattering rate we find

Ṗ =
V 2
0

2h̄2

√

2m

E

sin2(2ka)

Lk2

This vanishes as L→ ∞ because the fraction of the available space that is occupied by the scattering
potential is ∼ 1/L. If it is not scattered, the particle covers distance L in a time τ = L/v =

L/
√

2E/m. So the probability that it is scattered on a single encounter is

Ṗ τ =
V 2
0 m

2Eh̄2
sin2(2ka)

k2
=

V 2
0

4E2
sin2(2ka)
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Equation (5.78) gives the reflection probability as

P =
(K/k − k/K)2 sin2(2Ka)

(K/k + k/K)2 sin2(2Ka) + 4 cos2(2Ka)

When V0 ≪ E, K2 − k2 = 2mV0/h̄
2 ≪ k2, so we approximate Ka with ka and, using K/k ≃ 1 in

the denominator, the reflection probability becomes

P ≃
(

K2 − k2

2kK

)2

sin2(2ka) ≃
(

2mV0

2h̄2k2

)2

sin2(2ka) =
V 2
0

4E2
sin2(2ka),

which agrees with the value we obtained from Fermi’s rule.

10.20∗ Show that the number of states g(E) dE d2Ω with energy in (E,E + dE) and momentum
in the solid angle d2Ω around p = h̄k of a particle of mass m that moves freely subject to periodic
boundary conditions on the walls of a cubical box of side length L is

g(E) dE d2Ω =

(

L

2π

)3
m3/2

h̄3
√
2E dE dΩ2. (10.10)

Hence show from Fermi’s golden rule that the cross-section for elastic scattering of such particles by
a weak potential V (x) from momentum h̄k into the solid angle d2Ω around momentum h̄k′ is

dσ =
m2

(2π)2h̄4
d2Ω

∣

∣

∣

∣

∫

d3x ei(k−k′)·xV (x)

∣

∣

∣

∣

2

. (10.11)

Explain in what sense the potential has to be ‘weak’ for this Born approximation to the scattering
cross-section to be valid.
Soln: We have kx = 2nxπ/L, where nx is an integer, and similarly for ky, kz . So each state
occupies volume (2π/L)3 in k-space. So the number of states in the volume element k2 dkd2Ω is

g(E)dEd2Ω =

(

L

2π

)3

k2 dkd2Ω

Using k2 = 2mE/h̄2 to eliminate k we obtain the required expression.
In Fermi’s formula we must replace g(E) dE by g(E) dE d2Ω because this is the density of states

that will make our detector ping if d2Ω is its angular resolution. Then the probability per unit time
of pinging is

Ṗ =
2π

h̄
g(E)d2Ω|〈out|V |in〉|2 =

2π

h̄

(

L

2π

)3

k2
dk

dE
d2Ω|〈out|V |in〉|2

The matrix element is

〈out|V |in〉 = 1

L3

∫

d3x e−ik′·xV (x)eik·x

Now the cross section dσ is defined by Ṗ = dσ× incoming flux = (v/L3)dσ = (h̄k/mL3)dσ. Putting
everything together, we find

h̄k

mL3
dσ =

1

L6

∣

∣

∣

∣

∫

d3x e−ik′·xV (x)eik·x
∣

∣

∣

∣

2
2π

h̄

(

L

2π

)3

k2
dk

dE
d2Ω

⇒ dσ =
mk dk/dE

(2π)2h̄2

∣

∣

∣

∣

∫

d3x e−ik′·xV (x)eik·x
∣

∣

∣

∣

2

.

Eliminating k with h̄2k dk = mdE we obtain the desired expression.
The Born approximation is valid providing the unperturbed wavefunction is a reasonable ap-

proximation to the true wavefunction throughout the scattering potential. That is, we must be able
to neglect “shadowing” by the scattering potential.
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11.4∗ In terms of the position vectors xα, x1 and x2 of the α particle and two electrons, the centre
of mass and relative coordinates of a helium atom are

X ≡ mαxα +me(x1 + x2)

mt
, r1 ≡ x1 −X, r2 ≡ x2 −X, (11.1)

where mt ≡ mα + 2me. Write the atom’s potential energy operator in terms of the ri.
Show that

∂

∂X
=

∂

∂xα
+

∂

∂x1
+

∂

∂x2

∂

∂r1
=

∂

∂x1
− me

mα

∂

∂xα

∂

∂r2
=

∂

∂x2
− me

mα

∂

∂xα

(11.2)

and hence that the kinetic energy operator of the helium atom can be written

K = − h̄2

2mt

∂2

∂X2
− h̄2

2µ

(

∂2

∂r21
+

∂2

∂r22

)

− h̄2

2mt

(

∂

∂x1
− ∂

∂x2

)2

, (11.3)

where µ ≡ me(1 + 2me/mα). What is the physical interpretation of the third term on the right?
Explain why it is reasonable to neglect this term.
Soln: We have from the definitions

x1 = X+ r1 x2 = X+ r2

xα =
1

mα
(mtX−me(x1 + x2)) =

1

mα
(mtX−me(2X+ r1 + r2))

= X− me

mα
(r1 + r2)

Directly computing the differences xi − xα, etc, one finds easily that

V = − e2

4πǫ0

(

2

|r1 + (me/mα)(r1 + r2)|
+

2

|r1 + (me/mα)(r1 + r2)|
− 1

|r1 − r2|

)

.

By the chain rule

∂

∂X
=
∂xα

∂X
· ∂

∂xα
+
∂x1

∂X
· ∂

∂x1
+
∂x2

∂X
· ∂

∂x2
=

∂

∂xα
+

∂

∂x1
+

∂

∂x2

as required. Similarly

∂

∂r1
=
∂xα

∂r1
· ∂

∂xα
+
∂x1

∂r1
· ∂

∂x1
= −me

mα

∂

∂xα
+

∂

∂x1

and similarly for ∂/∂r2. Squaring these expressions, we have

∂2

∂X2
=

∂2

∂x2
α

+ 2
∂

∂xα

(

∂

∂x1
+

∂

∂x2

)

+

(

∂

∂x1
+

∂

∂x2

)2

∂2

∂r21
=
m2

e

m2
α

∂2

∂x2
α

− 2
me

mα

∂2

∂x1∂xα
+

∂2

∂x2
1

∂2

∂r22
=
m2

e

m2
α

∂2

∂x2
α

− 2
me

mα

∂2

∂x2∂xα
+

∂2

∂x2
2

If we add the first of these eqns to mα/me times the sum of the other two, the mixed derivatives in
xα cancel and we are left with

∂2

∂X2
+
mα

me

(

∂2

∂r21
+

∂2

∂r22

)

=

(

1 + 2
me

mα

)

∂2

∂x2
α

+

(

1 +
mα

me

)(

∂2

∂x2
1

+
∂2

∂x2
2

)

+ 2
∂2

∂x1∂x2

Dividing through by mt we obtain

1

mt

∂2

∂X2
+

mα

memt

(

∂2

∂r21
+

∂2

∂r22

)

=
1

mα

∂2

∂x2
α

+
1

me

(

1− me

mt

)(

∂2

∂x2
1

+
∂2

∂x2
2

)

+
2

mt

∂2

∂x1∂x2

After multiplication by −h̄2/2 the first term on the right and the unity part of the second term
constitute the atom’s KE operator. So we transfer the remaining terms to the left side and have the
stated result.

The final term in K must represent the kinetic energy that the α-particle has as it moves around
the centre of mass in reflex to the faster motion of the electrons. It will be smaller than the double
derivatives with respect to ri by at least a factor me/mα. (Classically we’d expect the velocities to
be smaller by this factor and therefore the kinetic energies to be in the ratio m2

e/m
2
α.)
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11.7∗ Assume that a LiH molecule comprises a Li+ ion electrostatically bound to an H− ion, and
that in the molecule’s ground state the kinetic energies of the ions can be neglected. Let the centres
of the two ions be separated by a distance b and calculate the resulting electrostatic binding energy
under the assumption that they attract like point charges. Given that the ionisation energy of Li
is 0.40R and using the result of Problem 11.6, show that the molecule has less energy than that of
well separated hydrogen and lithium atoms for b < 4.4a0. Does this calculation suggest that LiH is
a stable molecule? Is it safe to neglect the kinetic energies of the ions within the molecule?
Soln: When the LI and H are well separated, the energy required to strip an electron from the Li
and park it on the H− is E = (0.4 + 1 − 0.955)R = 0.445R. Now we recover some of this energy
by letting the Li+ and H− fall towards each other. When they have reached distance b the energy
released is

e2

4πǫ0b
= 2Ra0

b

This energy equals our original outlay when b = (2/0.445)a0 = 4.49a0, which establishes the required
proposition.

In LiH the Li-H separation will be ∼< 2a0, because only at a radius of this order will the electron
clouds of the two ions generate sufficient repulsion to balance the electrostatic attraction we have
been calculating. At this separation the energy will be decidedly less than that of isolated Li and
H, so yes the molecule will be stable.

In its ground state the molecule will have zero angular momentum, so there is no rotational
kinetic energy to worry about. However the length of the Li-H bond will oscillate around its equi-
librium value, roughly as a harmonic oscillator, so there will be zero-point energy. However, this
energy will suffice only to extend the bond length by a fraction of its equilibrium value, so it does
not endanger the stability of the molecule.

11.8∗ Two spin-one gyros are in a box. Express the states |j,m〉 in which the box has definite
angular momentum as linear combinations of the states |1,m〉|1,m′〉 in which the individual gyros
have definite angular momentum. Hence show that

|0, 0〉 = 1√
3
(|1,−1〉|1, 1〉 − |1, 0〉|1, 0〉+ |1, 1〉|1,−1〉). (11.4)

By considering the symmetries of your expressions, explain why the ground state of carbon has l = 1
rather than l = 2 or 0. What is the total spin angular momentum of a C atom?
Soln: We have that J−|2, 2〉 = 2|2, 1〉, J−|2, 1〉 =

√
6|2, 0〉, J−|1, 1〉 =

√
2|1, 0〉, J−|1, 0〉 =

√
2|1,−1〉.

We start from
|2, 2〉 = |1, 1〉|1, 1〉

and apply J− to both sides, obtaining

2|2, 1〉 = √
2(|1, 0〉|1, 1〉+ |1, 1〉|1, 0〉) ⇒ |2, 1〉 = 1√

2
(|1, 0〉|1, 1〉+ |1, 1〉|1, 0〉)

Applying J− again we find

|2, 0〉 = 1√
6
(|1,−1〉|1, 1〉+ 2|1, 0〉|1, 0〉+ |1, 1〉|1,−1〉)

Next we identify |1, 1〉 as the linear combination of |1, 1〉|1, 0〉 and |1, 0〉|1, 1〉 that’s orthogonal to
|2, 1〉. It clearly is

|1, 1〉 = 1√
2
(|1, 0〉|1, 1〉 − |1, 1〉|1, 0〉)

We obtain |1, 0〉 by applying J− to this

|1, 0〉 = 1√
2
(|1,−1〉|1, 1〉 − |1, 1〉|1,−1〉)

and applying J− again we have

|1,−1〉 = 1√
2
(|1,−1〉|1, 0〉 − |1, 0〉|1,−1〉)
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Finally we have that |0, 0〉 is the linear combination of |1,−1〉|1, 1〉, |1, 1〉|1,−1〉 and |1, 0〉|1, 0〉 that’s
orthogonal to both |2, 0〉 and |1, 0〉. By inspection it’s the given expression.

The kets for j = 2 and j = 0 are symmetric under interchange of the m values of the gyros,
while that for j = 1 is antisymmetric under interchange. Carbon has two valence electrons both in
an l = 1 state, so each electron maps to a gyro and the box to the atom. When the atom is in the
|1, 1〉 state, for example, from the above the part of the wavefunction that described the locations
of the two valence electrons is

〈x1,x2|1, 1〉 =
1√
2
(〈x1|1, 0〉〈x2|1, 1〉 − 〈x1|1, 1〉〈x2|1, 0〉)

This function is antisymmetric in its arguments so vanishes when x1 = x2. Hence in this state of
the atom, the electrons do a good job of keeping out of each other’s way and we can expect the
electron-electron repulsion to make this state (and the other two l = 1 states) lower-lying than the
l = 2 or l = 0 states, which lead to wavefunctions that are symmetric functions of x1 and x2.

Since the wavefunction has to be antisymmetric overall, for the l = 1 state it must be symmetric
in the spins of the electrons, so the total spin has to be 1.

11.9∗ Suppose we have three spin-one gyros in a box. Express the state |0, 0〉 of the box in which
it has no angular momentum as a linear combination of the states |1,m〉|1,m′〉|1,m′′〉 in which the
individual gyros have well-defined angular momenta. Hint: start with just two gyros in the box,
giving states |j,m〉 of the box, and argue that only for a single value of j will it be possible to get
|0, 0〉 by adding the third gyro; use results from Problem 11.8.

Explain the relevance of your result to the fact that the ground state of nitrogen has l = 0.
Deduce the value of the total electron spin of an N atom.
Soln: Since when we add gyros with spins j1 and j2 the resulting j satisfies |j1− j2| ≤ j ≤ j1 + j2,
we will be able to construct the state |0, 0〉 on adding the third gyro to the box, only if the box has
j = 1 before adding the last gyro. From Problem 11.8 we have that

|0, 0〉 = 1√
3
(|1,−1〉|1, 1〉 − |1, 0〉|1, 0〉+ |1, 1〉|1,−1〉),

where we can consider the first ket in each product is for the combination of 2 gyros and the second
ket is for the third gyro. We use Problem 11.8 again to express the kets of the 2-gyro box as linear
combinations of the kets of individual gyros:

|0, 0〉 = 1√
3

(

1√
2

(

|1,−1〉|1, 0〉 − |1, 0〉|1,−1〉
)

|1, 1〉 − 1√
2

(

|1,−1〉|1, 1〉 − |1, 1〉|1,−1〉
)

|1, 0〉

+
1√
2

(

|1, 0〉|1, 1〉 − |1, 1〉|1, 0〉
)

|1,−1〉
)

,

=
1√
6

(

|1,−1〉|1, 0〉|1, 1〉 − |1, 0〉|1,−1〉|1, 1〉 − |1,−1〉|1, 1〉|1, 0〉

+ |1, 1〉|1,−1〉|1, 0〉+ |1, 0〉|1, 1〉|1, 0〉 − |1, 1〉|1, 0〉|1, 0〉
)

This state is totally antisymmetric under exchange of the m values of the gyros.
When we interpret the gyros as electrons and move to the position representation we find that

the wavefunction of the valence electrons is a totally antisymmetric function of their coordinates,
x1,x2,x3. Hence the electrons do an excellent job of keeping out of each other’s way, and this will
be the ground state. To be totally antisymmetric overall, the state must be symmetric in the spin
labels of the electrons, so the spin states will be |+〉|+〉|+〉 and the states obtained from this by
application of J−. Thus the total spin will be s = 3

2 .

11.10∗ Consider a system made of three spin-half particles with individual spin states |±〉. Write
down a linear combination of states such as |+〉|+〉|−〉 (with two spins up and one down) that is
symmetric under any exchange of spin eigenvalues ±. Write down three other totally symmetric
states and say what total spin your states correspond to.

Show that it is not possible to construct a linear combination of products of |±〉 which is totally
antisymmetric.

What consequences do these results have for the structure of atoms such as nitrogen that have
three valence electrons?
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Soln: There are just three of these product states to consider because there are just three places
to put the single minus sign. The sum of these states is obviously totally symmetric:

|ψ〉 = 1√
3

(

|+〉|+〉|−〉+ |+〉|−〉|+〉+ |−〉|+〉|+〉
)

Three other totally symmetric state are clearly |+〉|+〉|+〉 and what you get from this ket and the
one given by everywhere interchanging + and −. These four kets are the kets | 32 ,m〉.

A totally antisymmetric state would have to be constructed from the same three basis kets used
above, so we write it as

|ψ′〉 = a|+〉|+〉|−〉+ b|+〉|−〉|+〉+ c|−〉|+〉|+〉
On swapping the spins of the first and the third particles, the first and third kets would interchange,
and this would have to generate a change of sign. So a = −c and b = 0. Similarly, by swapping the
spins on the first and second particles, we can show that a = 0. Hence |ψ〉 = 0, and we have shown
that no nonzero ket has the required symmetry.

States that satisfy the exchange principle can be constructed by multiplying a spatial wave-
function that is totally antisymmetric in its arguments by a totally symmetric spin function. Such
states have maximum total spin. In contrast to the situation with helium, conforming states can-
not be analogously constructed by multiplying a symmetric wavefunction by an antisymmetric spin
function.

11.11∗ In this problem we use the variational principle to estimate the energies of the singlet and
triplet states 1s2s of helium by refining the working of Appendix K.

The idea is to use as the trial wavefunction symmetrised products of the 1s and 2s hydrogenic
wavefunctions (Table 8.1) with the scale length aZ replaced by a1 in the 1s wavefunction and by a
different length a2 in the 2s wavefunction. Explain physically why with this choice of wavefunction
we expect 〈H〉 to be minimised with a1 ∼ 0.5a0 but a2 distinctly larger.

Using the scaling properties of the expectation values of the kinetic-energy and potential-energy
operators, show that

〈H〉 =
{

a20
a21

− 4a0
a1

+
a20
4a22

− a0
a2

+ 2a0(D(a1, a2)± E(a1, a2))

}

R,

where D and E are the direct and exchange integrals.
Show that the direct integral can be written

D =
2

a2

∫ ∞

0

dxx2e−2x 1

4y

{

8− (8 + 6y + 2y2 + y3)e−y
}

,

where x ≡ r1/a1 and y = r1/a2. Hence show that with α ≡ 1 + 2a2/a1 we have

D =
1

a1

{

1− a22
a21

(

4

α2
+

6

α3
+

6

α4
+

12

α5

)}

.

Show that with y = r1/a2 and ρ = αr2/2a2 the exchange integral is

E =

√
2

(a1a2)3/2

∫

d3x1 Ψ
0∗
10(x1)Ψ

0
20(x1)

×
{

1

r1

(

2a2
α

)3 ∫ αy/2

0

dρ (ρ2 − ρ3/α)e−ρ +

(

2a2
α

)2 ∫ ∞

αy/2

dρ (ρ− ρ2/α)e−ρ

}

.

Using
∫ b

a

dρ (ρ2 − ρ3/α)e−ρ = −[{(1− 3
α )(2 + 2ρ+ ρ2)− 1

αρ
3}e−ρ]ba

and
∫ b

a

dρ (ρ− ρ2/α)e−ρ = −[{(1− 2
α )(1 + ρ)− 1

αρ
2}e−ρ]ba
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show that

E =
2

(a1a2)3

∫ ∞

0

dr1 r
2
1

(

1− r1
2a2

)

e−αr1/2a2

×
{

1

r1

(

2a2
α

)3
[

2(1− 3
α )− {(1− 3

α )(2 + αy + 1
4α

2y2)− 1
8α

2y3}e−αy/2
]

+

(

2a2
α

)2

{(1− 2
α )(1 +

1
2αy)− 1

4αy
2}e−αy/2

}

=
8a22
α5a31

(

10− 50

α
+

66

α2

)

,

Using the above results, show numerically that the minimum of 〈H〉 occurs near a1 = 0.5a0 and
a2 = 0.8a0 in both the singlet and triplet cases. Show that for the triplet the minimum is −60.11 eV
and for the singlet it is −57.0 eV. Compare these results with the experimental values and the values
obtained in Appendix K.
Soln: We’d expect the 2s electron to see a smaller nuclear charge than the 1s electron and therefore
to have a longer scale length since the latter scales inversely with the nuclear charge.

The 1s orbit taken on its own has K = (a0/a1)
2R because the kinetic energy is R for hydrogen

and it is proportional to the inverse square of the wavefunction’s scale length. The 1s potential
energy is W = −4(a0/a1)R because in hydrogen it is −2R, and it’s proportional to the nuclear
charge and to the inverse of the wavefunction’s scale length. Similarly, the 2s orbit taken on its
own has K = 1

4 (a0/a2)
2R and W = −(a0/a2)R, both just 1

4 of the 1s values from the 1/n2 in the
Rydberg formula. The electron-electron energies are (D ± E)2a0R because R = e2/8πǫ0a0. The
required expression for 〈H〉 now follows.

When the scale length aZ is relabelled a1 where it relates to the 1s electron and is relabelled a2
where it relates to the 2s electron, equation (K.2) remains valid with ρ redefined to ρ ≡ r2/a2 and x
replaced by y ≡ r1/a2. With these definitions the first line of equation (K.2) remains valid and the
second line becomes

D =
2

a2

∫ ∞

0

dxx2e−2x 1

4y

{

8− (8 + 6y + 2y2 + y3)e−y
}

=
1

2a2

{

8

∫ ∞

0

dxx
x

y
e−2x −

∫ ∞

0

dx
x2

y2
(8y + 6y2 + 2y3 + y4)e−(2x+y)

} (11.5)

Now x/y = a2/a1 and
∫∞

0 dy yne−αy = α−(n+1)n! so with α ≡ 1 + 2a2/a1 we have

D =
1

2a2

{

2
a2
a1

− a32
a31

(

8

α2
+

6

α3
2! +

2

α4
3! +

1

α5
4!

)}

=
1

a1

{

1− a22
a21

(

4

α2
+

6

α3
+

6

α4
+

12

α5

)} (11.6)

which agrees with equation (K.2) when a1 = a2 = aZ as it should.
Equation (K.3) for the exchange integral becomes

E =
1√

2(a1a2)3/2

∫

d3x1 Ψ
0∗
10(x1)Ψ

0
20(x1)

×
∫

dr2dθ2
r22(1− r2/2a2) sin θ2e

−αr2/2a2

√

|r21 + r22 − 2r1r2 cos θ2|
.

(11.7)

After integrating over θ as in Box 11.1, we have

E =

√
2

(a1a2)3/2

∫

d3x1 Ψ
0∗
10(x1)Ψ

0
20(x1)

×
{∫ r1

0

dr2
r22
r1

(

1− r2
2a2

)

e−αr2/2a2 +

∫ ∞

r1

dr2 r2

(

1− r2
2a2

)

e−αr2/2a2

}
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With y ≡ r1/a2 and ρ ≡ αr2/2a2

E =

√
2

(a1a2)3/2

∫

d3x1 Ψ
0∗
10(x1)Ψ

0
20(x1)

×
{

1

r1

(

2a2
α

)3 ∫ αy/2

0

dρ (ρ2 − ρ3/α)e−ρ +

(

2a2
α

)2 ∫ ∞

αy/2

dρ (ρ− ρ2/α)e−ρ

}

.

Now
∫ b

a

dρ (ρ2 − ρ3/α)e−ρ = −[{(1− 3
α )(2 + 2ρ+ ρ2)− 1

αρ
3}e−ρ]ba

and
∫ b

a

dρ (ρ− ρ2/α)e−ρ = −[{(1− 2
α )(1 + ρ)− 1

αρ
2}e−ρ]ba

Thus

E =

√
2

(a1a2)3/2

∫

d3x1 Ψ
0∗
10(x1)Ψ

0
20(x1)

×
{

1

r1

(

2a2
α

)3
[

2(1− 3
α )− {(1− 3

α )(2 + αy + 1
4α

2y2)− 1
8α

2y3}e−αy/2
]

+

(

2a2
α

)2

{(1− 2
α )(1 +

1
2αy)− 1

4αy
2}e−αy/2

}

=
2

(a1a2)3

∫

dr1 r
2
1

(

1− r1
2a2

)

e−αr1/2a2

×
{

1

r1

(

2a2
α

)3
[

2(1− 3
α )− {(1− 3

α )(2 + αy + 1
4α

2y2)− 1
8α

2y3}e−αy/2
]

+

(

2a2
α

)2

{(1− 2
α )(1 +

1
2αy)− 1

4αy
2}e−αy/2

}

Simplifying further

E =
2

a31

(

2a2
α

)2
8

α2a2

a32
a31

∫ ∞

0

dy y2
(

1− 1
2y
)

×
{(

2

αy

)

[

2(1− 3
α )e

−αy/2 −
{

(1− 3
α )(2 + αy + 1

4α
2y2)− 1

8α
2y3
}

e−αy
]

+ {(1− 2
α )(1 +

1
2αy)− 1

4αy
2}e−αy

}

Now let’s collect terms with factors
8a22
α2a31

∫ ∞

0

dy (1− 1
2y)y

ne−αy =
8a22
α2a31

n!

αn+1

(

1− n+ 1

2α

)

.

The two terms with n = 4 cancel. The coefficient of the remaining terms are
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Figure 11.4 Estimates of the energy in electron volts of the 1s2s triplet excited state of helium. The estimates
are obtained by taking the expectation of the Hamiltonian using anti-symmetrised products of 1s and 2s hydrogenic
wavefunctions that have scale lengths a1 and a2, respectively.

our final result is
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which when a1 = a2 = aZ agrees with equation (K.4) as it should.
Figure 11.4 shows 〈H〉 for the triplet state as a function of a1 and a2. The surface has its

minimum −60.11 eV at a1 = 0.50a0, a2 = 0.82a0. As expected, this minimum is deeper than our
estimate −57.8 eV from perturbation theory, and it occurs when a2 is significantly greater than
0.5a0. It is closer to the experimental value, −59.2 eV, than the estimate from perturbation theory.
A variational value is guaranteed to be larger than the experimental value only for the ground state,
and our variational value for the first excited state lies below rather than above the experimental
value. The variational estimate of the singlet 1s2s state’s energy is −57.0 eV, which lies between the
values from experiment (−58.4 eV) and perturbation theory (−55.4 eV).


