Section 518 ADVANCED QUANTUM MECHANICS: SOLUTIONS

1. A non-relativistic quantum particle of mass m is incident on the one-dimensional
potential U(x), where U(z) — 0 for |z| — oo. Set up a scattering problem and write
down the asymptotics of the wave function 1y (Yr) at © — +co, assuming that the
particle is incident on the potential from the left (right). Show that the reflection and
transmission coefficients for a given potential depend only on the particle’s energy and
not on the direction from which it is incident on the potential. Hint: Multiply the
Schrédinger equation obeyed by ), by r and the equation obeyed by g by 11, subtract
and integrate over the real line. Compute the resulting quantity using the asymptotics

of ¥r, R

The two sets of asymptotics can be written down as follows:

Y (x) o ) T — —00,
PE(E) =<
Sy etk T — 400,
and
% ] H A ik o
it = e + Ape™®, T — 400,
K Spe~tz, B4 —08,

where 1)y, p satisfy the equation

9
B ke dg‘{i‘[’!ﬁ‘
2m  dz?

+U(2)¢r,r = EYrLR.

Following the instructions given in the problem, we find
o0
! Tyl 3 oY =
/ dz (Yryl — YrR) = 0.
e

Integrating by parts, we obtain F(400) = F(—00), where F = ¢pi)} — . Subsl’i;
tuting the expressions for asymptotics given above, we get S, = Sg. Since T = | S|
and R =1—T, the required result follows.

Using Fourier transform or any other method, show that the Green’s function
G(z,2') obeying the equation L G(x,2') = §(z—a') and the boundary conditions G(x, ') —
C exp (ik|z|) for |z| = co, where [ = —Qﬁ;% — E is the one-dimensional Schridinger
operator for a free particle with E > 0, C' is a constant and k = /2mE/h, is given by

G(z,2') = 2 exp (ik|z —2']).

The function G(z,2’) can be found by several methods:

1) Using Fourier transform.

2) From the solutions of the ODE with zero right-hand side.

3) By analytic continuation from the known result for £ < 0.

These methods were discussed in lectures in detail. For example, solving the ODE
directly with the b.c. G(z,2") = C exp (ik|z|) for || = oo, we have

e Ae—ith(z—a’) z<x,
G(.?,.J. ) = {BEM,(I_I:)‘. o _I;I.
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Matehing conditions Gz = o' +¢,2) = Gz = ¢ = ¢,2') and Gz = %'

62') — Gz = 2’ —e2') = —2m/h? imply A = B and A = im/kh?, so G(z,z')
% exp (ik|z — a']).

Il =

Alternatively, one can use Fourier transform to obtain the Green’s functon for
E<0,Glz—2a")= ﬁ;e"”lir*m'l (see below) and then analytically continue to E > 0:
this means setting x = +ik, where k = vV2mE/h, E > 0. We get

(o p
Gi(il'f o .“J.-'f) _ i—;ei‘f' [z—a’|
kh*

with G (x,2’) corresponding to the b.c. needed.

L]

The Fourier method to get G(xz, 2') for E < 0 works as follows. Using the standard
Fourier representation of G(z,2'),

B 1
~ 9rh

o0
/ PR Q(p)dp,

—oC

G(z,2")

we find from the equation L G(z,2') = §(z —2')

(’)2 +|E|) G(p) =1,

2m
since
1 o
élz—a') =+ / ek(@=2) g
b
—00
Therefore,
G / m T ek i
(3.—.L)—m | GETE

—co
9 22 y j §
where k* = 2m|E|/f". The integrand has poles at & = =ix. The integral can be
evaluated using the residue theorem. For o — 2’ > 0, we close the contour in the upper
half-plane, since the integrand then vanishes for Imk — co. By residue theorem,

oo . ’
gt g
e == T on(z—a')
k* + k2 K
—0Q

Therefore, Gz — ') = :?PC’_H(:E_T’) for # — 2’ > 0. Similarly, by closing the contour in

\ e o
te lower half-plane, we find G(x — 2/) = %e"("' *) for & —a’ < 0. Thus, G(z —z') =
’—gr_ye*“'i't"‘"‘, and then we can use analytic continuation. Of course, yet another way is
KiY .

to obtain the expression G(z,2") = 17 exp (ik|a — 2'|) directly using Fourier transform
for £ > 0. All this has been discussed in lectures.

A non-relativistic quantum particle of mass m is incident from the left on the
one-dimensional potential U(z) <0, where U(z) — 0 for |z| — co. Show that the wave
function of a stationary scattering state of the particle satisfies the integral equation

F (5.9}
bolo) = e — [ eI ol (ol

—0o0
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This is the standard procedure discussed in lectures in detail. The Schrodinger

w2y
2 d2ys

equation —g— "t — By = f(x) = —U(x)ths For E > 0 can be written as an integral
equation with the help of the Green's function G(z,z') = o exp (iklz — 2']) for a free
particle:
. o
Ps(z) = Aeh® 4 Be ™ — % / M=l (2" Wy (2)d! .
=00

For particles incident from the left, A = 1 and B = 0 (e.g. for U = 0 we must
have unperturbed wave ¢** propagating from left to right). Also, for 2 — oo only
waves ~ e** must be present, so the Green’s function must really be Gt (z,2') =

;;:*_, exp (ik|z — 2|).

Find the solution of the integral equation for the potential U(z) = —ad(z), o > 0.
Define and find the transmission and reflection coefficients T' and R, and show that
R+T=1.

For the potential U(z) = —ad(x), a > 0, the integral equation gives

Ra1Te"

'(’l'l.,;(.'l,') — (,’.”‘.'r + f'h‘z

eM-'_z-' ‘(;"_:,-(0) .

which also determines 14(0) = 1/(1 — ix), where & = ma/h%. Thus,

K

" ikl
ik + K

Ak Y= gt
Considering the asymptotics at @ — +oo and comparing with the standard scattering
set up (see the beginning of the present problem), we find S = ik/(ik + &) and A =
—k/(ik + ). Thus, T = |S|* = k?/(k* + &?) and R = |A|? = k2/(k? + K?). Clearly,
e o= 1.

Consider scattering of “slow” particles with energies obeying ka << 1 by a generic
potential U(x) characterised by the typical strength Uy and width a. Assume that the
potential is “weak”, i.e. that Uy < h? /ma®.

a) Set up a scattering problem and show, by analysing the Schrodinger equation
and matching its solution to the asymptotics at x — oo, that to leading order in
ka < 1 and Uy < ﬁg/mag, the solution in the region |z| < a is well approvimated by
1 7= C' = const.

We can write the Scluédinger equation in the form

2mUa?

2

2.0 —

Ll |
o™ Y=k,

The conditions ka < 1 and Uy < h?/ma® imply that 4" = 0 for slow particles and
weak potentials. Thus, ¢ ~ € + Cz. Matching to the asymptotics at z — +oo, to
leading order in ka << 1 we find C =0 and C =14+ A= 5.

b) By considering the integral equation for v in the limit ka < 1, show that
C=(1+ %})_1. Relate v and U(z). Compare with the delia-function potential above.
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The integral equation

. o9
Ph(z) = ¥ — ;;l, / M=l gy (2" )y (a")da!
72
—00

with all the aproximations taken into account becomes

i Ame T
P(z) = e — — / U(z')dz' .
e

oo

In the region 2 < |a|, we have 1 = C. Thus, C = (1 + ’;‘%})’1, where vy = [ U(x)dz.
-0
The delta-function potential above mimics this approximation, provided a = —.

¢) Show the location of singularities of the transmission coefficient in the complex
plane of k and E.

The situation is exactly the same as in the problem with delta-function potential,
so the scattering amplitude S = ik/(ik + k) with x = —m~y/h*. For v < 0, it has a pole
in the upper half-plane of complex k or, in terms of I, a pole on the negative real axis
of the “physical sheet” of E at E = —h?k?/2m.

d) Using the scattering data found above, identify the bound states in the potential
Ulz) < 0 and compute their energies to leading order in Uy < h?/ma®. What states do
we expect to appear if U(z) > 07

For U(z) < 0 we have v < 0 and there is a pole of S at E = —h*k%/2m corre-
sponding to the single bound state in the “weak” potential U(x) at low energies. For
~ > 0 we have a virtual state instead, as discussed in lectures.
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2. Show that the Green's function G(z,2') obeying LG(z,2') = §(z — 2'), where
L = —%gg + U(x) — E is the Schridinger operator, for a particle in an infinite
potential well of width a,

0; |#] =g

00, ] > &,

Ulx) = {
is given by

2m

Gl 3;’) = Eh? sin ka

sin [g (z+2' — |2/ — 2|+ a}} -sin E (42" + |2 — 2| - Q)J . (%)

where k? = QmE/hz. You may use the identity sina cos B — cosasin f = sin (. — j3).

The Green’s function can be constructed from the solutions of the equation L ¢ =
0, taking into account the appropriate boundary conditions: G(£%,z") = 0. We have
G(w,2") = 0 outside of the interval [-§, §]. For —§ < a' < § and z > 2’, one can write

the solution as
: P i a s a
Glz,z') = B(z')sink (z — 5l t B(z")cosk |z — 3
and the boundary condition at = § implies E(:r:’ ) = 0. Similarly, for z < 2/, we have

G(z,2") = A(z')sink (.’L’ + ;) + fi(fﬂf) cos k (1’4’ + %)

and the boundary condition at © = —3 gives A(z") = 0. Thus,
A(z)sink (z+ %), z<a
Gla, o) = { AF) AT +3) :
Bz jaink(z -3 x>zl

The coefficients A and B are determined by the matching conditions at 22 = 2/
(these conditions are obtained by integrating the equation, as discussed in lectures in
detail):

2m
" 2
Gz=a+e2)-Glz=2"—¢2') = 2T
2
Glz=2"+¢2)=Clz=2"—¢2).

We find

2m a
Alz') = ———si h‘(:"——).
(=) 1%k sin ka S e

2m a
B(z)=—-—"—"si k(:;’—}——).
(=) 1%k sin ka i
The expression (*) for G(z,z’) follows immediately.

Identify the singularities of the Green’s funetion and show that they correspond to
the energy levels E,, of the particle in the potential well.
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The only singularities are the zeros of the denominator, located at k,a = nm,
n=1,2,... (note that £ = 0 is not a singularity), i.e. at E, = h2n7? /2ma® which are
the energy levels in an infinite potential well.

Let {pn(z)} be an orthonormal set of eigenfunctions of the Schridinger operator
L with eigenvalues N, = E, — E. Argue that the Green’s function can be expanded as
G(z,2') = Y copn(z) and show that the coefficients ¢, are given by ¢, = @h(x') /M.

n
Thus show that the Green’s function can be written as

G(z,z') = 790:;1:,)1%%(37) : ()

We have iG’(:r,,:‘z:’) = §(z — 2'), and ﬁcp“ = A = (en — E)py, where L=
A din (x)—E. Since L is Hermitian, the eigenfuctions form a complete orthonormal

T 2modx?
= Z C'n.(Pn(m) .
n

set. Thus, we can expand

Acting by L on the left, we find
LG (%, 5" ch w— B, = 0z —2).
Since the eigenfuctions are orthonormal, one immediately finds ¢;,:

n
('R =

Therefore,
(Pn 99n (**)
; n =il
as expected.
Fizx > ' (orxz < '), compute the limits lim (Eﬂ —E)G(x,2"), where Gz, 2') is
—E

&

given by Eq. (*) and Eq. (**), correspondingly, and fmd the expression for o (2" )on(x)
by comparing the two results.

Taking the limit in the expansion (**) gives simply @7 (2')p,(x) for fixed n. To
take the limit in (*), note that

E,—E=

WPr2n?  R2E2 h2mr? ( 2,2 42 -;)
T = —(m°n” =k a”) .
2ma? 2m  2ma®

Also, expanding around k = k, gives sin ka = cos (kya)(ka — knpa) + ...

Fixing e.g. = < 2/, we get

, w3 fwmdt BEY . fnwmn o
lim (E, — E)G(z,2") = (-1)" — sin ( — ?) sin (T + 7)
2
a

a2 famy wm\ . fnmE  ow
= (—1)*— sin —=—= il | — ——+nw
‘ 2 a 2

= nra’ nw\ . [nmz  nw
= == 8in — — ] sin —-—.
a a 2 a 2
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Find the explicit form of p,(x). Compare the result with the normalised wave-

functions of the particle in an infinite potential well.

Comparing the two results above, we get

a a 2

2 . nTTr Nw
hnlte) = —ill| —====]

* (0 V. : nmx' nmw - nmwT nir
©n (2 )pn(x) = — sin =tz fy T = ===

therefore

which is the properly normalised wavefunetion in an infinite potential well of width a.

Now consider the Schradinger operator with a non-local potential, whose action

o0
on the wave-functon 1 is given by U(x)ip(z) = [ da'V(x, 2" )W (z"). Using the Green’s
—00

function G(z,2") = Zsexp(—kl|z—2'|) of a free particle with E < 0, where k =

KR

V=2mE/h, show that the Schridinger equation fﬂ/; = 0 with such a potential can be

written as an integral equation
o0 o0
m y
llb(.’L) — _? [ f 8—n|.1:—.1: ‘V(I'f,l'”)‘i,b(ﬂ”)diﬂrdﬂ’)” )
F —0Q =00

h? d*y

The Schrodinger equation —#==-% — Ei» = —U(z)y For £ < 0 can be written as

2m da?

an integral equation with the help of the Green’s function G(z,2’) (as discussed i

lectures):
= / Gz, 2" U(a")w(2')da' .

ot

1

Substituting the expressions for U and G(x,2'), we get the required result.

Assume that the potential V(x,2') is separable, i.e. V(z,2') = —aF(x)F*(2'),
where F' is a smooth function. Show that the solution of the Schridinger equation has

the form
amC'
Kh2

() =

o
—00

where C' is a constant. Write an explicit expression for C.

Substituting V(z,2") = —aF(x)F*(2') into the integral equation above we get

the required result with

f)(l_)
g = / Fa"y(@")dz".  (B)
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Show that the energy levels are determined by the equation

QT

oo o
rz—r—Qf fF{:C)F*(as’)e_"lm“"”dwdm'.
i
—o0

5 [4]

Substituting (A) into (B) and cancelling €' on both sides results in the equation

oo oo
am it
R=—g / / F(z)F*(a') e ="l dgda’
L. S
which ean be solved for & to determine the energy levels. [4]
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3. The Dirac equation for a free relativistic particle of mass m and spin s = 1/2 in
D =3+ 1 dimensions can be writlen in the form

67,1’) he v i ap 9,

Bt : ( 81+ 282+&38}§)+ﬁﬂ16’lf}:HD1ﬂ,

where 0:’ = I, ;32 = I, ajop + apoy = 285, B + Bay = 0 and I is the identity
Matriz. Show that each component v, a« = 1,...N, of the Dirac spinor i) satisfies the
Klein-Gordon equation. 2]

The Klein-Gordon equation contains second derivatives. By acting with ihid/at
on the left hand side of the Dirac equation, we find

I—'J.B‘Z'{L' H (H (/)
== P). .
or g [1]
The right hand side contains products of matrices a; and j3:
0 0% 22 3 24 3 o
i 31?20 = 2 i) pRre J-—Lhmc}; (e; 8 + Bay) 0—+/32r?z“rie‘;
Simplifying the products with the help of identities af = I, 3% = I, ayay, + opay = 265,
;3 + Ba; = 0, we find that each component 1p,, o« = 1,2, ...N of the spinor satisfies the
equation
;.20?1;?0. 2 202 9 4\
—IL W— = (7?’1 ¢ V f=m’e )'I;J(Y
which is the Klein-Gordon equation. [1]
Show that the eigenvalues of oy and B are equal to +1. 2]
Using the relations af = I, % = I, we find for a;¢ = Ao
a3 = Aoy = N2, [1]
Thus, A% = 1. Since «; are Hermitian, all A are real. Therefore, A = 1. Same for 3. [1]
Show that Tra; =0 and Trp = 0. [2]
Using the properties ;8 + By = 0 and a? = I, 8% = I, we find a; = —Baf.
Thus, tra; = —tr fa;3 = —troy, so tra; = 0. Same for . Note that all the matrices
here are finite-dimensional, and the property tr AB = tr BA holds. [2]
Show that N must be an even number greater than 2. 2]
N
Sineetro; = }, Ap=4+14+14+1+...—1-1-1=0, N must beeven, ¥ > 2, For
p=1
N = 2, we can use 3 Paili matrices. But for the Dirac equation in D = 341 dimensions,
we need 4 traceless matrices, not 3. So N > 2 and even. 1]
The case N = 4 gives irreducible representation, all representations with N > 4
are reducible. Note: all of this has been discussed in the lectures. 1]
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It is often useful to consider the Dirac equation in dimensions other than four.
Following the steps above, demonstrate that the Dirac equation in D = 2+ 1 dimensions
is given by

L O e N N 9
zﬁ.a = (O'I% +0.y@) + o.mc

. . 0 1 0 —i 1 0
where 0y, 0y, 0, are Pauli matrices o, = ( _— ) o ( P ) . 0= ( 0 i ) )
obeying o;op = 0 + 1€ik107.

In D = 2+ 1 dimensions, repeating the steps above we see that we need only 3
Dirac matrices. Thus N = 2 is an option now, and one can take Pauli matrices as a o
and S. The equation follows immediately.

In D = 3+ 1 dimensions. consider the spin and angular momentum operators,
whose components, correspondingly, are given by S; = —igjrajoy /4 and Ly = igyjxp,
and introduce J; = L; + ;.

Compute the commutators [S;, S;), [Li, Lj] and [J;, Jj].

This is a direct computation using the properties of Dirac matrices. We have
[k, ] = —2850 + 20 500; . Then [S;, o] = deyjn Sk and, finally, [S;, Sj] = i€k Sk

The commutator [L;, L;] is the standard quantum-mechanical result, [L;, L;] =
'iSiJ‘,!,-L,zV. Thus iJ,‘. Jj] = ’.’.'E,'j;,-.f;,».

Show that [Hp, J;] = 0. What are the quantum numbers associated with the Dirac
wavefunclion?

To compute [Hp,J;], the Dirac Hamiltonian operator can be written as Hp =
coypi +me?B. Then one finds [L;, Hp| = iceyj cjpr and [S;, Hp| = iesyp, agpj. Thus,
[Hp,J;] = 0 and, since [Hp, J.] = 0 and [HD,JQ] = (), the common set of eigenfunc-
tions of the commuting operators Hp, J, and J? can be labeled by E,M,J, where

o i
HpYeam = BYvegm, LVeam = Mg am, IYeam = J(J +1)¢¥E M.

The Dirac egquation in an external electromagnetic field A* = ($, A) is
|:'Y'U (ﬁu - EA,U) — ﬂlc} =0, (*)
c

where 1 = e~ imet/t ( :; ) s the four-component Dirac spinor. The Minkowski metric
is given by 1, = diag(+1,—1,—1,—1), p, = ihd,, and the Dirac matrices are 4° =

I 0 kL 0 o

o -1 ) 7T\ s 0o )

An alternative equation is proposed,
o ik YT
Yoy —me— o Fuy™" |9 =0,  (x¥)

where F,, is the electromagnetic field strength tensor related to the electric and magnetic

fields via B; = cfy; and B; = _%Eiijjks respectively. For equations (*) and (**), write
down the system of coupled equations obeyed by the spinors ¢ and .

Find the equations obeyed by the spinor ¢ to leading order in the non-relativistic
limit of the equations (*) and (**). Compare the two results. What is the physical
meaning of the parameter k¢
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The Minkowski metric is 7, = diag(+1, -1, -1, —1), we have A" = (&, A) and
A, =(®,—A). Also,
il O 0 ) )
P i = (o gl il i —)
i il ((:Ot’ m@z:’ “(')y m(’)z

and

ih d d J d

pu = thdy = | — =, ih—, ih=—, ih— ) .

. " (cat oz’ oy “(‘)z)
Equation (*) is the Dirac equation with the minimal coupling to electromagnetic field.
Using the explicit form of the Dirac matrices, we find

-
ingy =coi (b= SA) X+ e,
at c

o%
ot

In the non-relativistic limit \‘Z,JA < me?, ed| < me?, and the second equation gives

il

£
= E8 (pf - EA.i) @+ edi — 2me’y .

oi (P — 2A;) _
2me

T

Substituting this into the first equation and using the identity (0;4;)(0;B;) = A, By, +
o€, A; By (it follows from the given identity ;o = &, + i€ 07 and was discussed in
the lectures), we find that ¢ satisfies the non-relativistic Pauli equation

B 1 @ 32 -
zﬁa—f = {ﬁ (p - EA) +ed — /.IL)U;Bi] @,
where B = curl A and py = eli/2me.

Now the same procedure is applied to equation (**). We find

P ik
ih—,(p = (cagpi B Ea.,;E,:) X — ko By,
Jt c

ax ik
ih X _ (ccripi — %O’iEj) @ — (2??182 = f'{.O';jB.,') X

ot
In the non-relativistic limit the second equation gives
\_: - aiP; .
2me

Substituting this into the first equation, we obtain

~ D)
e _ [p— = m,;Bé] @,

2m

which is a non-relativistic Pauli equation for a neutral particle (e.g. a neutron) with a
non-vanishing magnetic moment  in an external electromagnetic field.

One can combine the minimal and non-minimal coupling to obtain the equation
e K
t & S B aly—
|}7'l (pg.'. - EA;¢> —mc— Eﬂw'}”““f :| Y =0.

This would correspond to a relativistic particle of mass m, charge e, spin s = 1/2 and
the magnetic moment p = eh/2me + k.
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