Section S18 ADVANCED QUANTUM MECHANICS

1. Using Fourier transform or any other method, show that the Green's function G(x,x') obeying the equation $\hat{L}G(x,x')=\delta(x-x')$ and the boundary conditions $G(x,x')\to C\exp{(ik|x|)}$ for $|x|\to\infty$, where $\hat{L}=-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}-E$ is the one-dimensional Schrödinger operator for a free particle with E>0, C is a constant and $k=\sqrt{2mE}/\hbar$, is given by $G(x,x')=\frac{im}{k\hbar^2}\exp{(ik|x-x'|)}$.

[5]

A non-relativistic quantum particle of mass m is incident from the left on the one-dimensional potential $U(x) \leq 0$, where $U(x) \to 0$ for $|x| \to \infty$. Show that the wave function of a stationary scattering state of the particle satisfies the integral equation

$$\psi_s(x) = e^{ikx} - \frac{im}{k\hbar^2} \int_{-\infty}^{\infty} e^{ik|x-x'|} U(x') \psi_s(x') dx'.$$
 [3]

Considering the asymptotics of $\psi_s(x)$ at $x \to \pm \infty$, define the reflection and transmission coefficients T and R. Show that the reflection coefficient is given by

$$R=rac{m^2}{k^2\hbar^4}\left|\int\limits_{-\infty}^{\infty}e^{ikx}U(x)\psi_s(x)dx
ight|^2\,,$$

where $\psi_s(x)$ is the solution of the integral equation above.

[4]

Find the solution of the integral equation for the potential $U(x) = -\alpha \delta(x)$, $\alpha > 0$. Find the transmission and reflection coefficients T and R, and show that R + T = 1.

[3]

Consider developing a perturbation theory for $\psi_s(x)$ in the form $\psi_s(x) = \psi_s^{(0)}(x) + \psi_s^{(1)}(x) + \dots$, where $\psi_s^{(0)}(x) = e^{ikx}$ is the solution of the free equation. Find R to leading order in the perturbation theory and compute it for the potential $U(x) = -\alpha \delta(x)$. Compare with the exact solution. Explain the physical meaning of the approximation made.

[3]

Now consider stationary states with E < 0. Show that the wave function $\psi(x)$ for such states obeying the boundary conditions $\psi(x) \to 0$ for $x \to \pm \infty$ satisfies the integral equation

$$\psi(x) = -\frac{m}{\kappa \hbar^2} \int_{-\infty}^{\infty} e^{-\kappa |x-x'|} U(x') \psi(x') dx', \qquad [4]$$

where $\kappa = \sqrt{-2mE}/\hbar$. Using the equation, find the energy levels in the potential $U(x) = -\alpha\delta(x)$, $\alpha > 0$. How are they related to the singularities of the transmission coefficient in the same potential?

[3]

2. Consider a non-relativistic quantum particle of mass m whose wavefunction $\psi(x)$ satisfies the one-dimensional Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + U(x)\psi(x) = E\psi(x),$$

where the potential $U(x) \to 0$ for $|x| \to \infty$. Find the Green's function G(x, x') of the free Schrödinger operator $\hat{L}G(x, x') = \delta(x - x')$, where $\hat{L} = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} - E$ with E < 0.

[3]

Show that the Schrödinger equation for the particle with E<0 can be written as an integral equation

$$\psi(x) = -\frac{m}{\kappa \hbar^2} \int_{-\infty}^{\infty} e^{-\kappa |x-x'|} U(x') \psi(x') dx',$$
[2]

where $\kappa = \sqrt{-2mE}/\hbar$.

Consider a potential of the form

$$U(x) = \begin{cases} -U_0, & |x| \leq \frac{a}{2} \\ 0, & |x| > \frac{a}{2} \end{cases},$$

where $U_0 > 0$.

a) Find the even and odd parity wave functions corresponding to the stationary states with E < 0 (bound states) in this potential.

[4]

b) Using the continuity conditions for the wave function $\psi(x)$ and its derivative $\psi'(x)$ at $x = \pm a/2$, show that the conditions determining the bound state energies in the potential U(x) are given by the equations

$$\begin{cases}
\sqrt{\frac{U_0}{|E|} - 1} \tan\left[\frac{\kappa a}{2} \sqrt{\frac{U_0}{|E|} - 1}\right] = 1 & \text{(even parity states)}, \\
\sqrt{\frac{U_0}{|E|} - 1} \cot\left[\frac{\kappa a}{2} \sqrt{\frac{U_0}{|E|} - 1}\right] = -1 & \text{(odd parity states)}.
\end{cases}$$
[4]

c) Now consider a non-relativistic quantum particle of mass m and wavenumber k incident from the left on the potential U(x). Show that the transmission coefficient T(E), where $E = \hbar^2 k^2 / 2m > 0$, is given by

$$T(E) = \left[\cos^2 \zeta a + \frac{(k^2 + \zeta^2)^2}{4k^2\zeta^2} \sin^2 \zeta a\right]^{-1},$$

where $\zeta^2 = 2m(E + U_0)/\hbar^2$.

[4]

d) Show that the singularities of the transmission coefficient T(E) for complex values of $k = i\sqrt{2m|E|}/\hbar$ correspond to the bound states energies in the potential U(x). Hint: Use the trigonometric identity $\tan 2x = 2\tan x/(1-\tan^2 x)$.

[4]

e) What is the maximum value of T(E)? At what energies is it attained? Sketch (qualitatively) the function T(E) for $E \geq 0$.

[2]

f) Sketch (qualitatively) the location of the singularities of the transmission coefficient T(E) in the complex k plane and in the complex E plane.

[2]

3. The Dirac equation in an external electromagnetic field $A^{\mu} = (\Phi, \mathbf{A})$ is

$$\left[\gamma^{\mu} \left(\hat{p}_{\mu} - rac{e}{c} A_{\mu}
ight) - mc
ight] \psi = 0 \, ,$$

where $\psi = \begin{pmatrix} \varphi \\ \chi \end{pmatrix}$ is the four-component Dirac spinor. The Minkowski metric is given by $\eta_{\mu\nu} = \mathrm{diag}(+1,-1,-1)$, $\hat{p}_{\mu} = i\hbar\partial_{\mu}$, and the Dirac matrices are

$$\gamma^0 = \left(egin{array}{cc} I & 0 \ 0 & -I \end{array}
ight), \quad \gamma^k = \left(egin{array}{cc} 0 & \sigma^k \ -\sigma^k & 0 \end{array}
ight),$$

where σ^k are Pauli matrices obeying $\sigma_i \sigma_k = \delta_{ik} + i\epsilon_{ikl}\sigma_l$. Consider a relativistic particle with spin 1/2 and charge e moving in a constant magnetic field $\mathbf{B} = \operatorname{curl} \mathbf{A} = (0,0,B)$. Choose the gauge $\mathbf{A} = (-By,0,0)$, write down the Dirac Hamiltonian explicitly, then justify and use the ansatz

$$\psi = e^{-i\frac{E}{\hbar}t + i\frac{p_{\alpha}}{\hbar}x + i\frac{p_{z}}{\hbar}z} \begin{pmatrix} \varphi(y) \\ \chi(y) \end{pmatrix},$$

to write the Dirac equation as a system of coupled equations for the spinors φ and χ .

Show that the spinor φ satisfies the equation

$$\left(\frac{d^2}{dy^2} - \frac{(p_x c + eBy)^2}{\hbar^2 c^2} + \frac{E^2 - m^2 c^4}{\hbar^2 c^2} - \frac{p_z^2}{\hbar^2} + \frac{eB}{\hbar c} \sigma_3\right) \varphi(y) = 0.$$
[5]

Show that this equation is identical to the Schrödinger equation for a harmonic oscillator,

$$\left(-rac{\hbar^2}{2M}rac{d^2}{d\xi^2}+rac{M\omega^2\xi^2}{2}
ight)\Psi(\xi)=arepsilon\Psi(\xi)\,,$$

and identify the parameters M and ε . Hint: change variable to $\xi = (p_x c + eBy)/\hbar c$.

Using the spectrum of the harmonic oscillator, $\varepsilon = \hbar \omega (n+1/2)$, and the property $\sigma_3 \varphi = \pm \varphi$, show that the energy levels E_{n,p_z} of the particle in a constant magnetic field satisfy the equation $(\mu = |e|\hbar/2me)$:

$$E_{n,p_z}^2 = m^2 c^4 + 2mc^2 \left[\frac{p_z^2}{2m} + \mu B(2n+1) \pm \mu B \right], \qquad n = 0, 1, 2, \dots$$
 [4]

A spinless relativistic particle of mass m and charge e in an external constant magnetic field $\mathbf{B} = (0,0,B)$ obeys the stationary Klein-Gordon equation

$$\left[c^2\left(-i\hbaroldsymbol{
abla}-rac{e}{c}{f A}
ight)^2+m^2c^4
ight]\phi(x,y,z)=E^2\phi(x,y,z)\,.$$

By reducing this equation to the Schrödinger equation for the harmonic oscillator, show that the energy levels of the particle satisfy

$$E_{n,p_z}^2 = m^2 c^4 + 2mc^2 \left[\frac{p_z^2}{2m} + \mu B(2n+1) \right], \qquad n = 0, 1, 2, \dots$$
 [5]

Based on these results, can you guess a formula for the energy levels of a relativistic particle of spin s in a constant magnetic field? Discuss the instability occurring for a spin 1 particle in the field $eB > m^2 c^4/\hbar c$ at $p_z = 0$.

[2]

4

[5]