Section S18 ADVANCED QUANTUM MECHANICS

1. A non-relativistic quantum particle of mass m is moving in the one-dimensional
potential

Ulz) = {—q5(az—a) for x>0,

oo for x<0,
where ¢ > 0. Show that the Green’s function of a Schrédinger operator for a free particle
with F < 0 obeying the equation

(ﬁ - E) G(z,2') = ——==G(z,2') — EG(z,2') = 6(z — o)
with the boundary conditions G(z,z") — 0 for x — 2’ — oo and G(0,2") = 0 is given by
m_ | k(z—z") _ —k(z+a’) /
e e , <z,
Gla,a’) = " | , J
Km? [1 _ e~ 2k } ef/-e(zfx ) ’ > iL‘/,

where kK = /—2mE/h.

Using the Green’s function G(z, '), show that the Schrodinger equation

- + U(x)y(x) = Ev(z)

for the particle in the potential U(z) with £ < 0 and the wave function boundary
conditions ¥ (z) — 0 for x — oo and ¥(0) = 0, corresponding to the bound states in
the potential U(z), can be written as an integral equation.

Show that the bound state energies are determined by the equation G(a,a) = 1/q.

Now consider stationary states of the continuous spectrum with £ > 0 in the same
potential U(x). For a particle incident on the potential from the positive x direction
and described by the wave function

w(x):{A<eik”—e_ik$), 0<z<a,

e 4 Bethr x> q,
where k = v/2mE /h, show that the amplitude A is given by
Ao P
1 —e2k 4 i)k’

where k = ka, A = h?/mqa.

Find the equation determining the singularities of the amplitude A on the positive
imaginary axis of complex k and show that it coincides with the equation determining
the bound state energies in the potential U(z).

Show that for A < 1 the amplitude A has poles (singularities) at

ka—nr (14242 4 —i(m)2+
- 2" 2 ’

where n = 41,42, .... Sketch the corresponding transmission coefficient |A|? as a func-
tion of (real) ka and explain the main features of the sketch.
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2. A non-relativistic quantum particle of mass m is scattered by the three-dimensional
central potential U(r) = a/r?, a > 0. Show that the Schrédinger equation for the wave
function i (r, 0, ) = R(r)Yim (6, ¢),

110 oy B
2m | r20r " or r2

can be written as the Bessel equation

+U(r)y =Ey,

2%y (z) + zy'(z) + (1:2 — 1/2) y(z) =0

for y = r'/2R(r) and x = kr, where k = v2mE/h, E > 0, and find v as a function of [

and «.

A solution to the Bessel equation is written in the form y(z) = AJ,(z) + BY, (z),
where A and B are constants and the Bessel functions J,(x) and Y, (x) are known to
have the following behavior at small and large values of x: J, ~ 2", Y, ~ 27" at x — 0

andeq/ ~sin (z — X + ), Y,,N\/W%sin(x—%”—ﬂ)atw%oo

By conmdermg the boundary condition at the origin, argue that we must set
B =0.

Comparing the phase of the sine function in the solution at r — oo to the phase
of the free particle (U(r) = 0), show that the phase shift ¢; is given by

&= —g \/(z+1/2)2+2”§)‘ —(+1/2)

Show that for ma/h? < 1, & ~ —wma/(2] + 1)h?%, |§;] < 1, and the scattering
amplitude

1 oo
= %% Z (21 + 1) (e — 1) Py(cos b)
1=0

is approximately given by f(k,6) ~ —mma/2h%ksin (6/2). Compute the corresponding
differential cross-section do/dS2 as a function of energy E Hint: Expand ¥ and use

the Legendre polynomials formula (1 — 2xz + z2)~ /% = Z 2 P(z).

Show that the result f(k,0) ~ —mma/2h%ksin (6/2) coincides with the one ob-
tained in the first Born approximation for the potential U (r)

o0 ! o3 /
2m [ r'sinqgr

U(r')dr',
hzo q (r")dr

f(l)(kv 9) = -

where g = 2k sin (0/2). Discuss the validity condition of the Born approximation.
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3. A spinless relativistic particle of mass m and charge e > 0 in an external electro-
magnetic field A* = (®, A) obeys the Klein-Gordon equation

e \? 0 2
2 (f) — A) — (zh — e@) +m2ct| =0,
c ot

where p = —iAV.
Show that the current density
j,u =

—5 (WO = 0" 9) = - Ay,

where v is a solution of the Klein-Gordon equation, satisfies the continuity equation
ougt = 0.

For the time-independent electromagnetic field, consider solutions of the form
Y(t,r) = e P p(r). Show that the stationary Klein-Gordon equation obeyed by ¢(r)
is

2
2 <f) - iA) +m2c4] p=(e— e<I>)2gp.

Introducing E = & — mc?, show that in the non-relativistic limit |E| < mc?,

le®| < mc?, the stationary Klein-Gordon equation reduces to the Schrédinger equation

1 . e 2
< —A> +e®@| w9 = Epo,
2m c

where ¢ = g + @1, with ¢ denoting a relativistic correction to the solution ¢q of the
Schrodinger equation, |p1] < |@ol.

By writing the stationary Klein-Gordon equation in the form

2
[1 (A—€A> ted - F
2m c

and considering the right hand side as a small perturbation in the non-relativistic limit
with ¢ = ¢o+¢1, show that the Schrodinger equation with the first (~ 1/c?) relativistic

correction is
1 e 2 1 e 4
—(p—-A|] ———=(p—-A 0]
[2171 (p c ) 8m3c? (p c ) e

Show that the form of the relativistic correction coincides with the one obtained from
the classical Hamiltonian H = \/ (p- %A)2 +m2ct 4+ e® — mc? after the standard
quantum-mechanical substitutions. Do you expect this to happen for the relativistic
corrections of higher order in 1/¢2?

(E — e®)?

L 2mc?

LR

p=FEp.

2598/2599 18



