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N = 4 SYM contains a global U(1)-charge (a sub-group of the R-symmetry) with an
associated conserved U(1)-current Jµ. In the limit of large N and strong coupling, the
finite temperature equilibrium state of N = 4 with vanishing U(1)-charge is at low energies
described by the AdS5-black brane geometry:

ds25 = gmndxmdxn =
L2

z2

(
dz2

f
+
[
−fdt2 + dx2

])
, f(z) = 1−

(
z

zH

)4

.

Fluctuations of Jµ are captured by the dynamics of a dual Maxwell field Am on that bulk
background, with action

S = − 1

4g2B

∫
d5x
√
−gFmnFmn ,

and field strength

Fmn = ∂mAn − ∂nAm .

1 Holographic Expectation Value and Correlator

1.1 Equations of Motion

Question 1 Show that the bulk equations of motion are Maxwell’s equations
√
−g∇mFmn = ∂m

(√
−ggmpgnqFpq

)
= 0 .

We can use the symmetry of the system under U(1)-gauge transformations,

Am −→ Am − ∂mλ ,

to set the radial component of Am to zero, Az = 0. This leaves us with the residual
symmetry of z-independent λ(x), xµ = (t, x).

Question 2 Fourier-transforming along the field theory directions,

Aµ(z, x) =

∫
d4k

(2π)4
eik·xAµ(z, k) ,

with kµ = (−ω, q), k ·x = −ωt+q ·x, and choosing q along the 3-direction, kµ = −ω, 0, 0, q),
confirm that Maxwell’s equations take the following form:

A′3 +
ω

qf
A′t = 0 , (1)

A′′α +

[
f ′

f
− 1

z

]
A′α +

ω2 − q2f
f2

Aα = 0 , α = 1, 2 , (2)

A′′t −
1

z
A′t −

1

f

[
q2At + ωqA3

]
= 0 , (3)

A′′3 +

[
f ′

f
− 1

z

]
A′3 +

1

f2
[
ω2A3 + ωqAt

]
= 0 , (4)
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where dashes denote derivatives with respect to z.

The residual gauge symmetry means that these equations of motion do not uniquely
determine the evolution of the system: configurations that only differ by residual gauge
transformations are physically equivalent and cannot be distinguished. This problem is
most easily circumvented by switching to gauge-invariant variables such as the electric
field, with transverse components

Eα = iFtα = ωAα , α = 1, 2

and longitudinal component

EL = iFt3 = ωA3 + qAt .

Question 3 Show that Eα and EL satisfy the equations of motion

E′′α +

[
f ′

f
− 1

z

]
E′α +

ω2 − q2f
f2

Eα = 0 , (5)

E′′L +

[
f ′ω2

f (ω2 − q2f)
− 1

z

]
E′L +

ω2 − q2f
f2

EL = 0 . (6)

1.2 Near-Boundary Expansion

Question 4 Show that z = 0 is a regular singular point of the equations of motion (5)–(6)
and show that the corresponding exponents (the roots of the indicial polynomial) for both
equations are α+ = 2 and α− = 0. The near-boundary behaviour of the electric field is
therefore

Eα = Aα + · · ·+ Bαz2 + . . . ,

EL = AL + · · ·+ BLz2 + . . . .

More precisely, as α+ − α− ∈ N the near-boundary expansion is given by

Eα = Aα +A(1)
α z + Ã(2)

α z2 log(Λz) + Bαz2 +O(z3) ,

EL = AL +A(1)
L z + Ã(2)

L z2 log(Λz) + BLz2 +O(z3) ,

see e.g. [1] for details. Λ is an arbitrary energy scale introduced to make the argument of
the logarithm dimensionless. Its meaning will be discussed later.

Question 5 Show that the equations of motion require

A(1)
α = A(1)

L = 0 , Ã(2)
α =

k2

2
Aα , Ã(2)

L =
k2

2
AL ,

where k2 = −ω2 + q2.
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1.3 Holographic 1-Point Function

Variation of the On-Shell Action

Question 6 Consider a generic action

S =

zH∫
ε

dz L(Φ,Φ′) .

By looking at a general variation of S show that, when the equations of motion are satisfied,
the following identity holds:

δSon−shell

δΦ(ε)
= − ∂L

∂Φ′
(ε) .

Thus show that in our case

δSon−shell

δAµ(ε, x)
=

1

g2B

√
−ggzzgµνA′ν(z, x)

∣∣∣∣
z=ε

,

or in momentum space

(2π)4
δSon−shell

δAµ(ε,−k)
=

1

g2B

√
−ggzzgµνA′ν(z, k)

∣∣
z=ε

.

z = ε is the UV-cutoff near the boundary z = 0. Using the U(1)-constraint (1) verify that

1

q

δSon−shell

δAt(z,−k)
=

1

ω

δSon−shell

δAt(z,−k)
,

and conclude that Son−shell only depends on the gauge invariant combinations Eα = ωAα
and EL = ωA3 + qAt. Hence confirm that

(2π)4
δSon−shell

δEα(ε,−k)
=

1

ω2

L

g2B

f

z
E′α

∣∣∣∣
z=ε

=
1

ω2

L

g2B

[
2Bα + k2Aα

(
log(Λε) +

1

2

)]
+O(ε) , (7)

(2π)4
δSon−shell

δEL(ε,−k)
=

L

g2B

(
1

ω2 − q2f

)
f

z
E′L

∣∣∣∣
z=ε

= − 1

k2
L

g2B

[
2BL + k2AL

(
log(Λε) +

1

2

)]
+O(ε) . (8)

Note that we have to switch from Aµ to the gauge-invariant electric field in order to make
use of the latter’s near-boundary expansion, provided by the well-defined equations of motion
(5)–(6).
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Holographic Renormalisation

The AdS/CFT correspondence identifies the (renormalised) on-shell action Sren of the
Maxwell field Aµ = aµ + . . . in the AdS5-black brane geometry with the generating func-
tional W for the dual U(1) current Jµ in N = 4:

W =

〈∫
d4k

(2π)4
Jµ(k)aµ(−k)

〉
= Sren .

The expectation value of Jµ(k) in the presence of the external source aµ is given by

〈Jµ(k)〉a = (2π)4
δW

δaµ(−k)
= (2π)4 lim

ε→0

(
δSreg

δAµ(ε,−k)

)
.

As usual for QFTs this expression contains UV-divergencies, which in our example holo-
graphically manifest themselves in the log(Λε) terms in eqs. (7)–(8). To obtain a finite
result suitable counterterms Sct are added to the action, Sreg = Son−shell + Sct. The coun-
terterms Sct are defined on the UV-cutoff surface z = ε and need to respect the appropriate
symmetries. In our case, gauge-invariance together with the requirement that all divergen-
cies be removed determine Sct to be given by the four-dimensional Maxwell action [2, 3]:

Sct = − L

4g2B
log(Λε)

∫
z=ε

d4x
√
−γFµνFρσγµργνσ .

γµν is the metric induced on the near-boundary cutoff surface z = ε,

γµνdxµdxν =
1

ε2
[
−f(ε)dt2 + dx2

]
=

1

ε2
ηµν +O(ε4) ,

where ηµν is the flat Minkowski metric of the dual boundary theory.

Question 7 Confirm that the variation of Sct is given by

δSct =
L

g2B
log(Λε)

∫
z=ε

d4x
√
−γ δAµ∇(γ)

ν F νµ ,

where ∇(γ)
ν is the covariant derivative associated with the four-dimensional metric γµν .

Hence conclude that

(2π)4
δSct

δAµ(ε,−k)
= − L

g2B
log(Λε)ηµν

[
k2Aν − kν k ·A

]
+O(ε)

and verify that

(2π)4
δSct

δEα(ε,−k)
= − L

g2B
log(Λε)

k2

ω2
Eα +O(ε) ,

(2π)4
δSct

δEL(ε,−k)
=

1

q
(2π)4

δSct
δAt(ε,−k)

=
1

ω
(2π)4

δSct
δA3(ε,−k)

=
L

g2B
log(Λε)EL +O(ε) .
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Finally show that

lim
ε−→0

(
δ
(
Son−shell + Sct

)
δEα(ε,−k)

)
=

1

ω2

L

g2B

[
2Bα +

k2

2
Aα
]
, (9)

lim
ε−→0

(
δ
(
Son−shell + Sct

)
δEL(ε,−k)

)
= − 1

k2
L

g2B

[
2BL +

k2

2
AL
]
, (10)

and thus

〈Jα(k)〉 =
1

ω

L

g2B

[
2Bα +

k2

2
Aα
]
,

〈
J t(k)

〉
= − q

k2
L

g2B

[
2BL +

k2

2
AL
]
,

〈
J3(k)

〉
= − ω

k2
L

g2B

[
2BL +

k2

2
AL
]
.

[Optional] Question 8 Different choices of the arbitrary energy scale Λ in Sct correspond
to different renormalisation group (RG) schemes. Describe how the result for the holographic
1-point functions changes if we choose a different RG-scale Λ′ in Sct.

1.4 Retarded Correlators

Question 9 Show that the retarded current-current correlators are given by [7]

〈Jα(−k)Jα(k)〉retarded = ΠT (k) , (11)〈
J t(−k)J t(k)

〉
retarded

=
q2

ω2 − q2
ΠL(k) ,〈

J t(−k)Jz(k)
〉
retarded

=
〈
Jz(−k)J t(k)

〉
retarded

=
ωq

ω2 − q2
ΠL(k) ,

〈Jz(−k)Jz(k)〉retarded =
ω2

ω2 − q2
ΠL(k) ,

with [5]

ΠT (k) =
L

g2B

[
2
δBα
δAα

+
k2

2

]
, ΠL(k) =

L

g2B

[
2
δBL
δAL

+
k2

2

]
.

The result exhibits the general structure of retarded correlators in AdS/CFT:

GR = P (ω, q)

[
δB
δA

+ contact terms
]
,

where P (ω, q) is some simple function of the momentum kµ completely fixed by Lorentz
invariance, i.e. it contains only kinetic and no dynamical information. Contact terms are
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analytic functions of k2 corresponding to derivatives of delta-functions in position space
which again do not carry dynamical information. The dynamical information is entirely
encoded in the dependence of the sub-leading mode B(A) (the expectation value) on the
leading mode A (the source), furnished by imposing incoming-wave boundary conditions
at the horizon. Moreover, for fluctuations around thermal equilibrium obeying linearised
equations of motion this relation becomes linear:

GR ∼ B(A)

A
.

In order to find B(A) one must solve the connection problem which relates the modes
A, B of the local solution at the boundary to the incoming and outgoing wave-solutions
at the horizon. Only in very few cases can this be done analytically, two of which we will
consider in the remainder of this problem set.

For that purpose it is convenient to switch to a dimensionless radial coordinate

u =
z2

z2H
= (πTz)2 , f = 1− u2 ,

in terms of which eqs. (5)–(6) read

∂2uEα +
∂uf

f
∂uEα +

w2 − q2f

uf2
Eα = 0 , (12)

∂2uEL +
w2∂uf

f (w2 − q2f)
∂uEL +

w2 − q2f

uf2
EL = 0 , (13)

where

w =
ω

2πT
, q =

q

2πT
.

The near-boundary expansions become

Eα = Aα + · · ·+ Bα
(πT )2

u+ . . . , (14)

EL = Aα + · · ·+ BL
(πT )2

u+ . . . ,

working in a scheme with Λ = 1/zH .
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2 Quasinormal Modes: The Complex Eigenmodes of Black Holes

Perturbations of a black-hole (or black-brane) background that take the form of planar
waves ∼ e−iωt+iq·x are subject to special boundary conditions: At the boundary of space-
time they simply need to vanish (no external source), but at the horizon they must represent
incoming-waves to ensure that no information escapes the black hole. Consequently, per-
turbations are damped as they dissipate energy into the black-hole, and admit a discrete
spectrum complex frequencies ω(q) called quasinormal modes (as opposed to the real normal
modes of dissipationless systems).

In asymptotically AdS-spacetimes, quasinormal modes (QNMs) are thus non-trivial
plane-wave solutions to field fluctuations satisfying incoming boundary conditions at the
horizon, and Dirichlet boundary conditions at the boundary, A = 0, B(A) 6= 0. Hence,
QNMs of a field in asymptotically AdSd+1 correspond exactly to the poles of the retarded
correlator of the dual CFTd-operator.

Our system in the limit of vanishing spatial momentum q → 0 is one of the few cases in
which the QNM spectrum can be computed analytically. For q = 0, rotational invariance
is restored and EL = Eα ≡ E satisfy the same equation of motion

∂2uE +
∂uf

f
∂uE +

w2

uf2
E = 0 . (15)

Eq. (15) has three RSPs at a = −1, b = 0 (boundary), and c = 1 (horizon) with exponents

(α, α′) = (−w

2
,
w

2
) , (β, β′) = (1, 0) , (γ, γ′) = (− iw

2
,
iw

2
) ,

respectively.

2.1 Riemann’s Differential Equation

Question 10 Show that any ODE with exactly three RSPs (a; b; c) with corresponding
exponents (α, α′;β, β′; γ, γ′) takes the form of Riemann’s differential equation:

0 =
d2E

du2
+

{
1− α− α′

u− a
+

1− β − β′

u− b
+

1− γ − γ′

u− c

}
dE

du
(16)

+

{
αα′ (a− b) (a− c)

u− a
+
ββ′ (b− a) (b− a)

u− b
+
γγ′ (c− a) (c− b)

u− c

}
E

(u− a) (u− b) (u− c)
.

To that end confirm that a generic second-order ODE

d2E

du2
+ P (u)

dE

du
+Q(u)E = 0 , (17)

has three finite RSPs (a; b; c) if and only if

P =

∑
n≥0

pnu
n

(u− a) (u− b) (u− c)
, Q =

∑
n≥0

qnu
n

(u− a)2 (u− b)2 (u− c)2
. (18)

– 8 –



Switching the independent variable to t = 1/u,

∂u = −t2∂t , ∂2u = t4∂2t + 2t3∂t ,

show that u =∞⇔ t = 0 is a regular point of eq. (17) if and only if

p2 = 2 , pn≥3 = 0 , qn≥3 = 0 .

Conclude that P and Q can written as

P =
1− α− α′

u− a
+

1− β − β′

u− b
+

1− γ − γ′

u− c
,

Q =

[
αα′ (a− b) (a− c)

u− a
+
ββ′ (b− c) (b− a)

u− a
+
γγ′ (c− a) (c− b)

u− c

]
1

(u− a) (u− b) (u− c)
,

with α+ α′ + β + β′ + γ + γ′ = 0, Finally show that (α, α′), (β, β′), and (γ, γ′), are indeed
the exponents at the RSPs a, b, and c respectively.

By a change of dependent variable and a Möbius transformation of the independent
variable that moves the RSPs to (0, 1,∞), eq. (16) can be transformed into the hypergeo-
metric equation. If γ 6= γ′ then two independent solutions of eq. (16) are

E1 = (20)(
u− c
u− b

)γ (u− a
u− b

)α
2F1

(
γ + β + α, γ + β′ + α; 1 + γ − γ′; (a− b) (u− c)

(a− c) (u− b)

)
,

E2 = (21)(
u− c
u− b

)γ′ (u− a
u− b

)α
2F1

(
γ′ + β + α, γ′ + β′ + α; 1 + γ′ − γ;

(a− b) (u− c)
(a− c) (u− b)

)
,

Question 11 Show that the solution to eq. (15) representing an incoming-wave at the
horizon is [6]

E = C (1− u)−
iw
2 (1 + u)−

w
2 u( 1+i

2 )w
2F1

(
1−

(
1 + i

2

)
w,−

(
1 + i

2

)
w; 1− iw,−1− u

2u

)
.

2.2 Current-Current Correlator at q = 0

In the limit q → 0 the only non-trivial retarded current-current correlators from eq. (11)
are 〈

J i(−ω)J i(ω)
〉
retarded

= Π(ω)δij , i, j = 1, 2, 3 ,

with

Π(ω) =
L

g2B

[
2
B
A
− ω2

2

]
.
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Question 12 Using the known transformation rules for the hypergeometric function one
can show that close to the boundary

E = Cu( 1+i
2 )w Γ(1− iw)

Γ(1−
[
1+i
2

]
w)Γ(1 +

[
1−i
2

]
w)

(2u)−( 1+i
2 )w

{
1 + 2u

(
w2

2

)[
− log(2u) + ψ(2) + ψ(1)− ψ

(
1−

[
1 + i

2

]
w

)
− ψ

([
1− i

2

]
w

)]
+O

(
u2
)}

.

Γ(z) is the gamma function, and ψ(z) is its logarithmic derivative, ψ(z) = Γ′(z)/Γ(z). Both
functions have simple poles at −z ∈ N0. Show that the retarded correlator is [6]

Π(ω) = −2
L (πT )2

g2B
w2

[
ψ

(
−
[

1 + i

2

]
w

)
+ ψ

([
1− i

2

]
w

)]
+ contact terms

and that the QNM spectrum is given by

ω(q = 0) = n (±1− i) , n ∈ N .

Explain why the fact that all QNMs lie in the lower half of the complex plane is necessary
for the black-brane background to be stable.
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3 Linear Response and AC-Conductivity

3.1 QM Perturbation Theory and Kubo Formulae

Question 13 Consider adding a time-dependent perturbation δH(t) to a static Hamilto-
nian H0 at t→ −∞, H(t) = H0 + δH(t). Working in a the interaction picture,

|ψ(t)〉 = eiH0t |ψ(t)〉S ,

O(t) = eiH0tOS e
−iH0t ,

(the subscript S denotes the Schrödinger picture), show that the density matrix ρ(t) of the
system evolves as

ρ(t) = U(t)ρ0U
−1(t) , U(t) = T exp

−i t∫
−∞

dt′ δH(t′)

 ,

where T is the time-ordering operator. Hence confirm that to linear order in δH

〈O(t)〉 = 〈O(t)〉ρ0 + i

t∫
−∞

dt′
〈[
δH(t′), O(t)

]〉
ρ0

+O
(
δH2

)
.

Thus show that the linear response of an operator O to an external source ϕ(x),

δH(t) = −
∫

dxO(t, x)ϕ(t, x) ,

is captured by the general Kubo formula

δ 〈O(t, x)〉 = −
∫

dtdxGR(t− t′, x− x′)ϕ(t′, x′) , (22)

where

GR(t− t′, x− x′) = −iθ(t− t′)
〈
O(t, x), O(t′, x′)

〉
is the retarded correlator.

3.2 AC-Conductivity

Question 14 Ohm’s law is a simple application of linear response theory. Show that the
alternating-current (AC) conductivity σij(ω) for a spatially homogeneous electric field

Ftj(ω) = −iωAj(ω)

is given by

σij(ω) =

〈
J i(−ω)J j(ω)

〉
retarded

iω
.

This is a specific example of a Kubo formula expressing a macroscopic transport coeffi-
cient (σij) in terms of retarded correlators of microscopic currents. The R-charge AC-
conductivity of neutral N = 4 at strong coupling is hence

σij(ω) =
Π(ω)

iω
δij .
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4 Hydrodynamics and R-Charge Diffusion

Hydrodynamics is an effective description of field theories approaching thermal equilibrium.
It is based on two assumptions: Firstly, close to equilibrium, i.e. at late times, only
fluctuations of small frequencies and small wave-vectors are expected to have survived.
This means that all hydrodynamic fluctuations admit a series expansion in their momenta,
or equivalently in gradients in position space. Secondly, the dynamics of a hydrodynamic
system are assumed to be entirely captured by the conservation equations for the global
charges which will characterise the equilibrium state at t→∞.

For instance, if we restrict ourselves to hydro fluctuations of a global U(1)-charge
around a neutral equilibrium, their dynamics are governed by a single equation of motion,
namely the conservation of the associated U(1)-current Jµ = (n, J i), ∂µJµ = 0. In the
hydro regime the system must therefore be described by a single degree of freedom which
we can take to be the fluctuation of the charge density n. Following the assumptions of
hydrodynamics, it must be possible to write the spatial components of the current in terms
of n. To first order in momenta (or gradients), the only expression compatible with Lorentz
invariance is

J i(x) = −D∂in(x) +O
(
∂2
)
,

known as Fick’s law.

4.1 Diffusion

Question 15 Show that an initial hydro charge fluctuation n(t = 0, x) ≡ n0((x) is diffus-
ing over time t > 0,

n(t, x) =

∫
dq3

(2π)3
e−Dq

2tn0(q) , (23)

with diffusion constant D.

Question 16 As the solution (23) is defined for t > 0 only it cannot be Fourier-transformed
in time. Applying the Laplace-transform instead,

n(z, q) =

∞∫
0

dt eiztn(t, q) , Im(z) > 0 , (24)

show that

n(z, q) =
n0(q)

−iz +Dq2
.

We shall now compare the hydro result (24) with the result from the general Kubo
formula (22) to obtain the retarded correlator in the hydro regime.
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To that end let us prepare the system in the following way: we adiabiatically turn on
a source µ(t, q) at t→ −∞ resulting in a charge fluctuation n0(q) at t = 0, switch it off at
once at t = 0, and let it evolve hydrodynamically for t > 0:

µ(t, q) = θ(−t)eεtµ0(q) .

As the system is in thermal equilibrium for t ≤ 0, n0(q) and µ0(q) are simply related by
the static susceptibility χ,

n0(q) = χµ0(q) .

Question 17 Evaluating (22) at t = 0 show that the Laplace-transform of the retarded
correlator satisfies

GR(z = iε, q) = −χ .

Further show that

〈
n(t, q

〉
= −µ0(q)

∫
dω

2π
GR(ω, q)

e−iωt

ε+ iω
,

where

GR(t− t′, q) =

∫
dω

2π
GR(ω, q)e−iω(t−t

′) .

Recalling that GR(t− t′, q) = 0 for t < t′, argue that GR(ω, q) must be analytic in the upper-
half plane. This implies that Fourier- and Laplace transform are identical in the upper-half
plane. Thus show that

〈
n(z + iε, q)

〉
= −

GR(z + iε, q) + χ

iz
µ0(q) .

Hence conclude that in the hydro regime

GR(ω, q) = −
Dq2

Dq2 − iω
χ

with a diffusion pole at

ω = −iDq2 .

4.2 Holographic R-Charge Diffusion

The goal of the final part of this problem set is to compute the R-charge diffusion constant
D of large-N , strongly-coupledN = 4 by identifying the hydro diffusion pole in the retarded
current-current correlator.
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Question 18 Argue that in the hydro regime the solution to eqs. (12)–(13) can be written
as

Eα/L = Cα/Lf(u)−iw/2
1

w

[
w + F (0,1)

α/L q + F (2,0)
α/L w2 + F (1,1)

α/L wq + F (0,2)
α/L q2 +O

(
∂3
)]

,

where the F (n,m)
α/L are regular at the horizon and vanish at the boundary. Solving eqs. (12)–

(13) order by order in w, q subject to these boundary conditions yields [7]

F (0,1)
α = F (1,1)

α = F (0,2)
α = 0 ,

F (2,0)
α = i log

1 + u

2
,

F (0,1)
L = F (1,1)

L = 0 ,

F (2,0)
L = i log

1 + u

2
,

F (0,2)
L =

i

w
(1− u) .

Thus show that the transverse current-current correlator is analytic in the hydro regime,
while the longitudinal current-current correlator has a diffusion pole. Confirm that the
R-charge diffusion constant of strongly-coupled N = 4 at N →∞ is given by [8]

D =
1

2πT
.

– 14 –



References

[1] C. Bender and S. Orszag, Advanced Mathematical Methods for Scientists and Engineers I,
Springer-Verlag, New York (1999).

[2] M. Taylor, hep-th/0002125.

[3] M. H. Dehghani and A. Khoddam-Mohammadi, Phys. Rev. D 67 (2003) 084006
doi:10.1103/PhysRevD.67.084006 [hep-th/0212126].

[4] P. K. Kovtun and A. O. Starinets, Phys. Rev. D 72 (2005) 086009
doi:10.1103/PhysRevD.72.086009 [hep-th/0506184].

[5] G. T. Horowitz and M. M. Roberts, Phys. Rev. D 78 (2008) 126008
doi:10.1103/PhysRevD.78.126008 [arXiv:0810.1077 [hep-th]].

[6] R. C. Myers, A. O. Starinets and R. M. Thomson, JHEP 0711 (2007) 091
doi:10.1088/1126-6708/2007/11/091 [arXiv:0706.0162 [hep-th]].

[7] P. K. Kovtun and A. O. Starinets, Phys. Rev. D 72 (2005) 086009
doi:10.1103/PhysRevD.72.086009 [hep-th/0506184].

[8] G. Policastro, D. T. Son and A. O. Starinets, JHEP 0209 (2002) 043
doi:10.1088/1126-6708/2002/09/043 [hep-th/0205052].

[9] M. Ammon and J. Erdmenger, Gauge/Gravity Duality: Foundations and Applications,
Cambridge University Press, Cambridge (2015).

– 15 –


	Holographic Expectation Value and Correlator
	Equations of Motion
	Near-Boundary Expansion
	Holographic 1-Point Function
	Retarded Correlators

	Quasinormal Modes: The Complex Eigenmodes of Black Holes
	Riemann's Differential Equation
	Current-Current Correlator at q=0

	Linear Response and AC-Conductivity
	QM Perturbation Theory and Kubo Formulae
	AC-Conductivity

	Hydrodynamics and R-Charge Diffusion
	Diffusion
	Holographic R-Charge Diffusion


