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Consider a free scalar field Φ with mass m in the (2 + 1)-dimensional non-extremal
BTZ black-hole background. It is dual to a scalar operator in a strongly-coupled (1+1)-
dimensional CFT with large central charge.

BTZ Geometry

The non-extremal BTZ black hole is a solution to Einstein’s equations in (2+1)-dimensions
with negative cosmological constant Λ = −1/L2. The standard form of the metric is

ds2 =
1

F(ρ)
dρ2 −F(ρ)dτ2 + ρ2

(
dθ − ρ+ρ−

Lρ2
dτ

)2

,

where

F(ρ) =

(
ρ2 − ρ2

+

) (
ρ2 − ρ2

−
)

L2ρ2
,

with radial coordinate ρ ∈ R+, angle θ ∼ θ+2π, and time coordinate τ ∈ R. The metric has
an inner/outer horizon at ρ−/ρ+. For our purposes it is convenient to introduce coordinates
r ∈ (ρ+,∞), t ∈ R, x ∈ R, defined by

ρ2 =
(
ρ2

+ − ρ2
−
)( r

rH

)2

+ ρ2
− ,

t =
ρ+

rH
τ − ρ−

rH
Lθ ,

x = −ρ−
rH
τ +

ρ+

rH
Lθ ,

that cover the region outside the outer horizon ρ > ρH . In terms of (t, x, r) the BTZ metric
reads

ds2 =
dr2

F (r)
− F (r)dt2 +

r2

L2
dx2

with

F (r) =
r2

L2

(
1−

r2
H

r2

)
.

The outer horizon is at r = rH .
Close to the boundary r →∞ the metric reduces to AdS3 with AdS-radius L,

ds2 → L2 dr2

r2
+
r2

L2

[
−dt2 + dx2

]
,

where
[
−dt2 + dx2

]
is the flat metric of the dual (1 + 1)-dimensional CFT that lives on

the boundary of the (2 + 1)-dimensional BTZ bulk geometry.

Question 1 Confirm that the temperature of the BTZ black hole is given by

T =
1

2π

rH
L2

.

According to the AdS/CFT dictionary the BTZ bulk geometry is therefore dual to a (1+1)-
dimensional CFT in thermal equilibrium at the same temperature T .
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Question 2 In a CFT , i.e. a scale-invariant field theory, at fine temperature T , T is the
only energy scale of the system. Hence all field theory quantities can be expressed in units
of 2πT = rH/L

2. This is achieved by rescaling the bulk coordinates as

rH
L2
t→ t ,

rH
L2
x→ x ,

r

rH
→ 1

z
.

The new dimensionless radial coordinate z was introduced for convenience. Show that this
coordinate transformation brings the metric into the form

ds2 = gmndxmdxn =
L2

z2

(
dz2

f(z)
− f(z)dt2 + dx2

)
, (1)

with

f(z) = 1− z2 .

The Klein-Gordon Equation

Now consider a massive scalar φ in the fixed BTZ background with action

S = η

∫
d3x
√
−g
(
gmn∇mφ∇nφ+m2φ2

)
.

Question 3 Show that the Fourier transform

ϕ(z, k) =

∫
dtdxei(ωt−qx)φ(z, t, x)

with momentum kµ = (ω, q) satisfies the equation of motion

ϕ′′ − 1 + z2

zf
ϕ′ +

(
ω2

f2
− q2

f
− m2L2

z2f

)
ϕ = 0 , (2)

where dashes denote derivatives with respect to z.

From now on we shall set the AdS-radius to L = 1 (or equivalently let mL → m),
bearing in mind that all bulk couplings such as m are measured in units of L.

Near-Boundary and Near-Horizon Analysis

A second-order ordinary differential equation (ODE) for the dependent variable y and
independent variable x has a regular singular point (RSP) at x0 if it takes the form

d2y

dx2
+

p(x)

x− x0

dy

dx
+

q(x)

(x− x0)2
y = 0 , (3)

where p(x) and q(x) are both regular at x = x0, i.e. locally they admit a Taylor series
expansion around x0 :

p(x) =
∞∑
n=0

pn (x− x0)n , q(x) =
∞∑
n=0

qn (x− x0)n .
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Question 4 Show that boundary and horizon are RSPs of the scalar equation of motion
(2).

Question 5 Show that

y(x) = (x− x0)α
∞∑
n=0

cn (x− x0)n , c0 6= 0 ,

is a solution of (3) in the neighbourhood of x0 if the following two conditions are satisfied:

• α = α+ is given by the larger of the two roots {α+, α−}, Re(α+) ≥ Re(α−), of the
indicial polynomial P (α) := α2 + (p0 − 1)α+ q0.

• The coefficients bn≥1 are fixed in terms of b0 =: B by the recursive relation

cn(α) = − 1

P (α+ n)

n−1∑
k=0

[(α+ k) pn−k + qn−k] ck(α) ,

where α = α+.

If α+−α− /∈ N0 the same procedure yields a second independent solution with α = α−
(what goes wrong if α+ − α− ∈ N0?), so that the general solution in the neighbourhood of
x0 is

y = A (x− x0)α−

1 +
∑
n≥1

an (x− x0)n

+B (x− x0)α+

1 +
∑
n≥1

bn (x− x0)n


with

an =
cn(α−)

c0
, bn =

cn(α+)

c0
.

For completeness let us state the form of the general local solution in the case α+−α− ∈ N0

(see e.g. [2]). For α ≡ α+ = α− one obtains

y = A (x− x0)α log (x− x0)

1 +
∑
n≥1

an (x− x0)

+B (x− x0)α

1 +
∑
n≥1

bn (x− x0)


where the an≥1 are completely determined by A, and the bn≥1 are completely determined
by A and B. For α+ − α− ∈ N one obtains

y = A

(x− x0)α−

1 +
∑
n≥1

an (x− x0)n

+ (x− x0)α+ log (x− x0)
∑
n≥0

ãn (x− x0)n


+B (x− x0)α+

1 +
∑
n≥1

bn (x− x0)n


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where the an≥1 and ãn≥0 are completely determined by A, and the bn≥1 are completely
determined by A and B. In summary, as the local solution is completely determined by A
and B it is often written in the reduced form

y = A (x− x0)α− + · · ·+B (x− x0)α+ + . . . , α+ 6= α−

y = A (x− x0)α log (x− x0) +B (x− x0)α + . . . , α ≡ α+ = α− ,

only indicating the two independent modes with coefficients A and B respectively. The ra-
dius of convergence of such a local solution is given by the distance to the closest singularity
of p(x) or q(x) in the complex plane.

Question 6 Show that the local solution of (2) near the boundary is

ϕ = Azd−∆+ + · · ·+Bz∆+ + . . . ,

where ∆+ is the larger root of

∆ (∆− d) = m2

and where d = 2. Azd−∆+ is called the leading mode of ϕ and is interpreted as source of
the dual operator O.
Further show that the local solution of (2) near the horizon is

ϕ = Ain (1− z)−iω/2 + · · ·+Aout (1− z)iω/2 + . . .

By switching to a new radial coordinate ρ = −1
2 log (1− z), show that Ain/out (1− z)∓iω/2

describe incoming and outgoing waves at the horizon respectively, that is, waves that prop-
agate towards the inside and the outside of the horizon respectively.

Causal Correlators from AdS/CFT

We have sketched how to construct a local solution to a second-order ODE near a RSP,
but this does not tell us how to obtain the global solution which is valid everywhere in the
complex plane. Yet we can make the following observation: If the two circles of convergence
of two local solutions around two RSPs x0 and x′0 overlap, then the very existence of a
global solution implies that it must be possible to transform these local solutions into one
another. In particular, the solution to this so-called connection problem must provide a
unique relation between the parameter pairs (A,B) and (A′, B′) of the two local solutions
around x0 and x′0 that descend from the same global solution.

Let us now put this into the context of gauge-/gravity duality. In the appropriate limits
of AdS/CFT , the generating function W for a dimension-∆+ operator O with source A in
the flat CFTd is given by the on-shell action S of the dual gravity theory in asymptotically
AdSd+1 containing a scalar Φ = Azd−∆+ + . . . :

W =

〈∫
ddxO(x)A(x)

〉
=

〈∫
ddk

(2π)d
O(−k)A(k)

〉
= S .
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It turns out that the 1-point function (expectation value) of O in the presence of the source
A is given by Φ’s sub-leading mode B (see the optional question 9):

〈O(k)〉A = (2π)d
δW

δA(−k)
= −2η (2∆+ − d)B(A) . (3)

The sub-leading mode B is a function of the source A as causality forces one to impose a
certain boundary condition on Φ at the horizon: in order to obtain the retarded response
of 〈O〉 to turning on the source A in the field theory we must demand that the bulk field Φ

represent an incoming wave at the horizon, meaning that no information comes out of the
horizon.

The retarded correlator in the source-free vacuum A = 0 is then finally given by

〈O(k1)O(k2)〉retarded = (2π)2d δ2W

δA(k1)δA(k2)

∣∣∣∣
A=0

or, inferring translational invariance,

〈O(−k)O(k)〉retarded = (2π)d
δ2W

δA(−k)δA(k)

∣∣∣∣
A=0

= −2η (2∆+ − d)
δB(A)

δA(k)

∣∣∣∣
A=0

To compute correlators in AdS/CFT we must therefore solve the connection problem
relating the local solution near the boundary, Φ = Azd−∆+ + · · ·+Bz∆+ + . . . , to the local
solution near the horizon, Φ = Ain (1− z)−iω/d + · · · + Aout (1− z)iω/d + . . . , in order to
find Aout in terms of A and B. Setting Aout = 0 to zero then yields the desired relation
B(A). Usually, the solution to the connection problem can only be obtained numerically,
but the BTZ geometry is one of the very few cases in which it can be obtained analytically.

To that end note that changing the independent and dependent variables in (2) to u
and w defined by

u = z2 , ϕ = u(2−∆+)/2 (1− u)−iω/2w(u) ,

transforms (2) into the hypergeometric equation

u (1− u)
d2w

du2
+ [c− (a+ b+ 1)u]

dw

du
− a bw = 0 (4)

with

a =
2−∆+

2
− i

2
(ω + q) , b =

2−∆+

2
− i

2
(ω − q) , c = 2−∆+ .

Assuming that c /∈ N0, the most general solution to (4) is given by

w(u) = A 2F1(a, b; c;u) +B u1−c
2F1(a− c+ 1, b− c+ 1; 2− c;u) ,

where 2F1(a, b; c;u) is the Gaussian hypergeometric function. Near u = 0 it is represented
by the hypergeometric series whose first two terms are

2F1(a, b; c;u) = 1 +
a b

c
u+O(u2)

and whose radius of convergence is |u| = 1.
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Question 7 Assuming that
√

1 +m2 /∈ N0, confirm that A and B are the coefficients of
ϕ’s leading and sub-leading mode respectively.

Question 8 Use the transformation rule

2F1(a, b; c;u) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) 2F1(a, b; a+ b− c+ 1; 1− u)

+ (1− u)c−a−b
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
2F1(c− a, c− b; c− a− b+ 1; 1− u) ,

valid if c− a− b /∈ N0, to obtain the series expansion of ϕ near the horizon. In particular,
find Ain/out in terms of A, B.
Impose the incoming-wave boundary condition Aout = 0 to obtain B(A) and to determine
the retarded correlator 〈O(−k)O(k)〉retarded.

[Optional] Holographic 1-Point Function and Renormalisation

We shall now show how the formula (3) for the holographic 1-point function of a scalar
operator is obtained in the simplest example. Recall that the AdS/CFT correspondence
states that the on-shell action of a gravitational theory in asymptotically AdSd+1 with a
scalar field ϕ(z, k) = A(k)zd−∆+ + . . . equals the generating functional W of a dimension-
∆+ scalar operator O with source A in the dual CFTd "living on the boundary" z → 0.
For simplicity, let us restrict ourselves to a CFTd in flat space. The expectation value of
O in the presence of the source A is given by

〈O(−k)〉A = (2π)d
δW

δA(k)
= (2π)d lim

z0→0

(
δ
(
Son−shell(z0) + Sct

)
z

∆+−d
0 δϕ(z0, k)

)
.

Son−shell(z) denotes the on-shell action, Sct contains counterterms that remove the UV-
divergencies in the QFT correlators. Sct is a functional of the field ϕ(z0, k) on the near-
boundary cut-off z = z0 → 0 and is essentially determined by the requirement that it
remove all divergencies and be covariant. In the simplest case of a scalar satisfying

ν := ∆+ −
d

2
=

√(
d

2

)2

+m2 < 1 ,

the counterterms are simply

Sct = η (d−∆+)

∫
ddx z−d0 φ(z0, x)2

= η (d−∆+)

∫
ddk

(2π)d
z−d0 ϕ(z0,−k)ϕ(z0, k) .

The variation of Son−shell(z) with respect to ϕ(z0, k) is most easily evaluated by making
use of the following observation. Consider an action

S(z0) =

zH∫
z0

L(ϕ,ϕ′)
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with Lagrangian L. The variation of S is

δS(z0) =

zH∫
z0

(
∂L

∂ϕ
δϕ+

∂L

∂ϕ′
δϕ′
)

=

zH∫
z0

δϕ

(
∂L

∂ϕ
− d

dz

(
∂L

∂ϕ′

))
+ δϕ

∂L

∂ϕ′

∣∣∣∣zH
z0

.

The variation of the on-shell action with respect the field ϕ(z0, k) on the boundary cut-off
z0 is therefore simply given by the on-shell canonical momentum at z0:

δSon−shell(z0)

δϕ(z0)
= − ∂L

∂ϕ′
(z0) .

In our case, the action is simply

S = η

zH∫
z0

dz

∫
d2k

(2π)d
√
−g
(
gzz∂zϕ(−k)∂zϕ(k) +

[
gµνkµkν +m2

]
ϕ(−k)ϕ(k)

)
,

giving

(2π)d
δSon−shell

δϕ(z0, k)
= − (2π)d

∂L

∂ϕ′
= −2η

√
−ggzzϕ′(z0,−k) .

[Optional] Question 9 Show that for ν < 1 and d = 2 one indeed obtains

〈O(−k)〉A = −2η (2∆+ − 2)B(A) .
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