University of Oxford

Physics Department

GENERAL RELATIVITY AND COSMOLOGY

EXAM PAPER

2014

SOLUTION NOTES

by Andrei Starinets

andrei.starinets@physics.ox.ac.uk

NOT FOR DISTRIBUTION




2705

SECOND PUBLIC EXAMINATION

Honour School of Physics Part B: 3 and 4 Year Courses

Honour School of Physics and Philosophy Part B

B5: GENERAL RELATIVITY & COSMOLOGY

TRINITY TERM 2014
Saturday, 21 June, 9.30 am — 11,30 am

10 minutes reading time

Answer two gquestions.

Start the answer to each question in o fresh book.

A list of physical constants and eonversion factors accompanies this paper.
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1. Consider the space-time metric

ds? = —2d? + (7«2 — a2) dr? + R2d0? + (r? 4 o®) sin® 0 dg?,

where R? = r? - a®cos? 4 and a is a constant. Find the geodesic equation for ¢ and
show that there is an integral of motion given by

J
(r? + a?)sin? §’

¢ =

where derivatives are with respect to ¢.

Show that the geodesic equation for § can be solved by 8 = /2 and 0 = 0. For
that value of 8, show that the geodesic equation for r has the following integral form

2 2
T 9 J

: _ 2
fr’z+oz2r +r2+a2 =B

and that r = /D% 4+ (vt)?, where D and v are constants, is a solution, Find B and J
in terms of v, D and «.

Consider the coordinate transformation

r = 1?4+ a?sinfcose
= Vr?+o¢?sinfsing

= rcosf
while ¢ remains unchanged. Our original metric takes the form
ds® = —c2dt® + f2da’® + ¢? dy® + K2 d22

Find the functions f, g and A.

Given your solutions to the geodesic equations and what you have learnt from the
coordinate transformation, interpret your results.
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2. Consider the space-time metric
ds? = —¢? dt? 4 A%(1) da® 4+ B*(t) (dy2 + dzg)

Show that the non-vanishing Christoffel symbols are

AA . BB BB
i b —
I = o2 Iy = 2 I = 2
. Al B, B
I‘tmzzv Pytyzgﬁ Ptz:§1
where A" = dA/dt and B’ = dB/dt. 8]

Find the components of the Ricci tensor, given by
RV,B = 8MPMJBJ/ - aﬁr'u‘j.w -+ I‘#,LLEI‘EVB - F‘u'sﬁreu,u

for this space-time. Show that the Einstein fleld equations for this metric in the presence
of an energy-momentum tensor with Tpo = pe? and all other components vanishing are

2P

AB B

A B AR

2t BT as
B B 2

A’B’_I_(EY &G

Show that, if p 7 0, the functions B = Byt™ and A = Agt™+ 4,+" are solutions to
these equations, where m and n are constants. Show that m = 2/3 and find a possible
non-zero value for n. How does the density, p evolve as & function of time? Discuss the
evolution of this space-time for small and for large values of ¢ and compare to that of

the FRW metric. [6]

Is this metric a good description of our chservable Universe, and if not, why?
What observation might allow you to distinguish this metric from the FRW metric? 3]
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3. Write down the metric for & non-Euclidean, homogeneous and isotropic universe
with a scale factor a(t). Write down the FRW equations for such a metric in the presence
of a perfect fluid with an energy density, p, and a constant equation of state parameter,
wy. Write down an expression for the density parameter, Q. Using the FRW equation,
find an expression for £ as a function of the scale factor, a, and the Hubble parameter,
H,

Express {! purely as a function of ¢ in the regime where p; dominates and use
it to find the values of wy for which curvature becomes negligible at late time, i.e. for
which the universe becomes arbitrarily close to Euclidean for large a.

Assume that now, through some strange physical process, the universe was com-
pletely dominated by an exotic perfect fluid with density py and curvature was negligible.
What values must wy take for there not to have existed an initial singularity (i.e. no
“Big Bang” for a finite value of cosmic time, ¢)? Write down the solution to g as a
function of ¢ for w; < —1, and show that it has an event horizon.

Consider the particular case of a non-Euclidean, hyperspherical universe with dust
and p;. Find an expression for the deceleration parameter for such a universe in terms
of the values of Qps and Q; today. Find also an expression correct up to quadratic order
in the redshift z for the huminosity distance Dy, (z).
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4. A massive particle, ¢, with masg, ™y, has an occupation number f(E) for states
at energy E' satisfying the Fermi-Dirac distribution,

FB) = —

e®eT L1

where E is the energy of the particle and 7" is the temperature of the universe, set by
the thermal bath of photons. When is this an accurate description of the particle ¢ and
what conditions must be satisfied?

What is the equation of state for particle ¢ when mgc2 » KgT and when mgc2 &
KgT? If Ty is the temperature of the photons today, at what redshift, 2¢, do you expect
the transition between the two types of equation of state to occur? Consider a spatially
flat universe, with fractional energy density in matter, Qs and fractional energy density
in photons 2, = 1074 Assume that Q¢ < Qs to find a lower bound on my¢ such that
the transition between the two equations of state occurs hefore matter-radiation equality
comes about at redshift z,.

Assume ¢ can decay into a particle £ and that 0 < mg —mg < me. Using the fact
that a particle with mass A4 and chemical potential, u, in the non relativistic regime
has a number density given by

3
2mN 2 3 Mc—
eg _ [ 27 5 el A o
n (hg) (MkpT)% exp ( e )

and justifying all your assumptions, find an expression for n¢/ne as a function of tem-
perature, where ny is the number density of particle X — ¢, €. Discuss the consequences
of your result if the system remains in thermal equilibrium until today.

T'he reaction rate for the conversion between ¢ and £ is given by " = Do(T/T5)°
where T’y is a consfant. Use the Boltzman eguation

dinNg 1| (N ?
dlna ~ H N

to discuss the different regimes in the evolution of Ne = nea®, Explain why freeze-out,
may lead to a non-negligible n; today.

Assume that Qap == Q¢ + ¢ ~= 1, that Z¢ 3 2y, and e = 0 at freeze-out. Show

that
Mgcz : Mcap\ 2
Qe ~ 010 — lai
¢ =018, (kBTo) exp( heTy ) OF

where ap =~ 3.3(g/Ho)'/* and p, = %(k‘BTU)(kBTg/hc)‘?.
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