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Reminder:

Maxwell’s equations in 3d notations

∇ ·B = 0 ,

∇×E = −∂B
∂t

,

∇ ·E =
ρ

ε0
,

∇×B = µ0J + µ0ε0
∂E

∂t

can be written in covariant form as follows (in Minkowski signature (−+ ++)):

∂µF
µν = −µ0Jν , (1)

∂µF̃
µν = 0 , (2)

where Jν = (ρc, ρv), and Fµν = ∂µAν − ∂νAµ, with Aµ = (φ/c,A), i.e.

Fµν = F =


0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0

 .

Note that detF = (E ·B)2 /c2.

Also, F̃µν = 1
2εµνκλF

κλ, i.e.

F̃µν =


0 Bx By Bz

−Bx 0 Ez/c −Ey/c

−By −Ez/c 0 Ex/c

−Bz Ey/c −Ex/c 0 .

 .

Maxwell’s equations (with a given Jµ) are linear PDEs: their generic solution is thus known

(for example, it can be obtained via Fourier transform and Green’s functions method of solving

linear PDEs). One should keep in mind, however, that Jµ is produced by charged particles whose

equations of motion (containing Lorentz force) are coupled to electromagnetic fields, including the

ones generated by the particles. One simple consideratio is that an accelerated charge radiates

and therefore loses energy, so its law of motion is inevitably affected. The issue is not very

simple, although in most model situations it can be avoided by making suitable approximations.

A discussion of these issues can be found e.g. in Chapter 16 of [1] (expanded in the 3rd - 1998 - or

later editions).
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Problem 5

The electromagnetic field of a charge in an arbitrary state of motion is given by

E =
q

4πε0κ3

(
n̂− v̂/c
γ2r2

+
n̂ ∧ [(n̂− v̂/c) ∧ a]

c2r

)
,

where n̂ = r/r and κ = 1− vr/c = 1− n̂ · v/c, and

B = n̂ ∧E/c ,

where r is the vector from the source point to the field point, and v and a are the velocity and

acceleration of the charge at the source event. Without detailed derivation, outline briefly how this

result may be obtained. How is the source event identified?

A charged particle moves along the x axis with constant proper acceleration (“hyperbolic mo-

tion”), its worldline being given by

x2 − t2 = α2

in units where c = 1. Find the electric field at t = 0 at points in the plane x = α, as follows:

(i) Consider the field event (t, x, y, z) = (0, α, y, 0). Show that the source event is at

xs = α+
y2

2α
.

(ii) Show that the velocity and acceleration at the source event are

vs = −
√
x2s − α2

xs
,

as =
α2

x3s
.

(iii) Consider the case α = 1, and the field point y = 2. Write down the values of xs, vs, and

as. Draw on a diagram the field point, the source point, and the location of the charge at t = 0.

Mark at the field point on the diagram the directions of the vectors n̂, v, a, and n̂∧ (n̂∧a). Hence,

by applying the formula above, establish the direction of the electric field at (t, x, y, z) = (0, 1, 2, 0).

(iv) If two such particles travel abreast, undergoing the same motion, but fixed to a rod perpen-

dicular to the x axis such that their separation is constant, comment on the forces they exert on

one another.

Solution:

We shall change notations somewhat, to be consistent with those used in Problem 4:

E =
q

4πε0κ3

(
n̂− v̂0/c
γ2R2

+
n̂ ∧ [(n̂− v̂0/c) ∧ a0]

c2R

)
, (3)
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B = n̂ ∧E/c , (4)

where n̂ = R/R and κ = 1− vr/c = 1− n̂ · v0/c, R(τr) = r− r0(τR), R = |R|, and r0, v0, a0 are

all computed at time τR, as discussed in Problem 4. These expressions can be derived from the

Lienard-Wiechert potentials

φ(r, t) =
q

4πε0

1

R−Rv0/c
, (5)

A(r, t) =
µ0q

4π

v0

R−Rv0/c
(6)

using the standard formula

E = −∇φ− ∂tA

and remembering that τR = τR(t, r), so

∂

∂t
=
∂τR
∂t

∂

∂τR
.

Since

τR = t− |r− r0(τR)|
c

(7)

we have

∂τR
∂t

= 1 +
v0 · (r− r0)

c|(r− r0)|
∂τR
∂t

, (8)

i.e.

∂τR
∂t

=
1

1− v0·(r−r0)
c|(r−r0)|

. (9)

This somewhat messy calculation eventually gives the result for E and B.

The “source event” is identified by solving Eq. (7) for τR: this gives τR = τR(t, x, y, z), and then

r0(τR) gives the spatial coordinates for the source at τR for any point of observation P specified

by t, x, y, z.

We now consider hyperbolic motion x = x0(t) =
√
α2 + t2.

i) Consider the point of observation P = (t, x, y, z) = (0, α, y, 0) for any y. From Eq. (7) we get

for τR:

τR = −
√
α2 + y2 − 2αx0(τR) + τ2R + α2 . (10)
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Indeed, since t = 0, we have |r− r0(τR)|2 = (x− x0(τR))2 + y2 + z2, where x0(τR) = τ2R + α2. For

z = 0, Eq. (10) gives

x0(τR) = α+
y2

2α
.

Note that τR < 0: the particle is coming from x =∞ decelerating towards x = α, then goes back

to x =∞ for t > 0.

ii) Velocity is found from x2 − t2 = α2: we have 2xẋ− 2t = 0 and thus ẋ = t/x. In particular,

v0(τR) = τR/x0(τR) = −
√
x20(τR)− α2

x0(τR)
.

Acceleration can be computed by taking another derivative of 2xẋ−2t = 0 which gives ẋ2+xẍ−1 =

0. From this, we find

ẍ =
1− ẋ2

x
=
x2 − t2

x3
=
α2

x3
.

In summary:

v0(τR) = τR/x0(τR) = −
√
x20(τR)− α2

x0(τR)
(11)

a0(τR) =
α2

x30(τR)
. (12)

iii) Now consider α = 1, y = 2. Then

x0(τR) = α+
y2

2α
= 3 , (13)

v0(τR) = τR/x0(τR) = −
√
x20(τR)− α2

x0(τR)
= −2

√
2

3
, (14)

a0(τR) =
α2

x30(τR)
=

1

27
. (15)

We now compute the ingredients of the expression for E. First,

r− r0(τR) = (x− x0(τR), y, z) = (−2, 2, 0) .

The magnitude of this vector is |r− r0(τR)| = 2
√

2. Then

n =

(
− 1√

2
,

1√
2
, 0

)
.

Other ingredients are γ2 = 1/(1− v20) = 9, κ = 1− n · v0 = 1− 2/3 = 1/3. We also have

n− v0 =

(
−
√

2

2
+

2
√

2

3
,

1√
2
, 0

)
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and

n− v0

γ2R
=

1

18

(
1

6
,
1

2
, 0

)
.

Finally,

n× [(n− v0)× a] = (n− v0) (n · a)− a (1− nv0) = − 1

27 · 2
(1, 1, 0) .

Assembling all ingredients, we find the electric field:

E =
q

4πε0

27

2
√

2

(
− 1

108
,

1

108
, 0

)
=

q

4πε0

√
2

16
(−1, 1, 0) .

We conclude that the direction of E at the point (1, 2, 0) at t = 0 is along vector n.

iv) For a particle of the same charge, F = qE at point P (note that B = 0 at P , since E and

n are parallel, and B = n×E/c). There is an obvious repulsion along OY (balanced by the rod),

but there is also a negative x component of the force (in the direction opposite to the direction of

a) - a “radiative friction” of sorts.
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Problem 6

The far field due to an elementary wire segment dz carrying oscillating current I is given by

dE =
I sin θ

2ε0cr

dz

λ
cos (kr − ωt) .

Compare and contrast the case of a short antenna and the half-wave dipole antenna. Roughly

estimate E in the far field for each case by proposing a suitable model for the distribution of

current I(z) in the antenna. What happens (qualitatively) for still longer antennae?

Solution:

The details of the antenna story can be found, for example, in Section 8.2.5 of the Steane’s

book [2]. Essentially, we are considering a solution to Maxwell’s equations for an oscillating dipole.

This topic has numerous applications (see Fig. 1).

FIG. 1: Long-range submarine communication centre “Vilejka” of the USSR Navy. The height of antennas:

305 m. Radiated power: 1 MW. Distance: 10 000 km, water penetration depth: 60-70 m.
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FIG. 2:

We are considering distances much larger than the size of the antenna: r ≡ |r| � L (see Fig. 2).
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From Fig. 2, we can see that r′2 = z2 + r2 − 2z|r| cos θ. We can expand

r′(z) = r

√
1− 2z

r
cos θ +

z2

r2
≈ r

(
1− z

r
cos θ + · · ·

)
,

i.e. r′ ≈ r − z cos θ (in the far field). We need to compute

E(r) =
sin θ

2ε0λc

∫
I(z) cos (kr′(z)− ωt)

r′(z)
dz . (16)

We can use exp i(kr′(z)− ωt) and then take the real part. Consider the following two examples of

the current distribution I(z):

i) A short antenna: the current distribution model is

I(z) = I0

(
1− 2|z|

L

)
. (17)

Integrating (16) over z and using r′ ≈ r in the denominator of (16) but not in the phase

exp (kr′(z)− ωt), we find

E(r) =
sin θ

2ε0λc

ei(kr−ωt)

r

8I0 sin2(kL cos θ
4 )

k2L cos2 θ
. (18)

For kL� 1 (i.e. for L� λ, since k = 2π/λ), this simplifies to

E(r) =
I0L sin θ

4ε0λc

eikr−iωt

r
. (19)

The radiated power is P ∼ E2 ∼ I20L
2/λ2 for short antennas (for longer ones this model gives

non-trivial angular dependence as one can see from the formula above).

ii) The half-wave dipole antenna: a center-fed antenna of length L = λ/2. The current distri-

bution is modeled by I(z) = I0 cos kz. A calculation similar to the one in part i) (it is also done

explicitly in Section 8.2.5 of the Steane’s book [2]) gives

E(r) =
I0 cos (π2 cos θ)

2πε0c sin θ

ei(kr−ωt)

r
. (20)

The power is independent of L and λ, and proportional to I20 .
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Problem 7

Show that the space-space part of the energy-momentum tensor

Tµν = ε0c
2

(
−FµλF νλ −

1

4
gµν FκλF

κλ

)
is

σij =
1

2
ε0

(
EkEk + c2BkBk

)
δij − ε0

(
EiEj + c2BiBj

)
(Greek indices run over space and time, and Latin indices over space only.) Use the stress-energy

tensor Tµν to find the forces exerted by the magnetic field inside a long cylindrical solenoid of

radius 3 cm and field 1 Tesla. Mu-metal is an alloy of high magnetic permeability that can be

used to provide shielding against magnetic fields. If a piece of mu-metal is placed against the end

of a solenoid, it “confines” the magnetic field to the interior of the solenoid. By interpreting the

stress-energy tensor for the field on each side of the mu-metal sheet, discover whether the latter is

attracted or repelled by the solenoid, and find the net force.

Solution:

We use the notation ηµν rather than gµν for the Minkowski metric tensor.

The energy-momentum tensor of electromagnetic field is given by

Tµν = ε0c
2

(
−FµληλρF ρν −

1

2
ηµνD

)
,

where D = 1
2FµνF

µν = B2 −E2/c2 is one of the electromagnetic field invariants. Explicitly,

D =
1

2
FµνF

µν = −1

2
FµνF

νµ = −1

2
Tr(FµνFνκ) = −1

2
Tr(FµνηνρF

ρσησκ) .

In matrix form,

D = −1

2
Tr(FηFη) = B2 −E2/c2 .

In matrix form, the energy-momentum tensor is written as

T = ε0c
2

(
−FηF − 1

2
ηD

)
= ε0c

2

(
−FηF +

1

4
ηTr(FηFη)

)
.

Here η = diag(−1, 1, 1, 1) and

F =


0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0

 .
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The space-space part (in components: i, j = x, y, z) is

T ij = ε0c
2

(
−F iµηµνF νj −

1

2
δijD

)
= ε0c

2

(
−F 0iF 0j + F ikF jk − 1

2
δijD

)
.

Since F 0i = Ei/c and F ik = Fik = εikmBm, we have:

T ij = −ε0EiEj + ε0c
2
(
δijB2 −BiBj

)
− ε0c

2

2
δij
(
B2 −E2/c2

)
=
ε0c

2

2
δij
(
B2 −E2/c2

)
− ε0

(
EiEj +BiBjc

2
)

= σij = σij .

Recall that Tij is the force per unit area in the i-th direction, acting on the surface element

oriented in the j-th direction (with orientation fixed by the orientation of a unit normal vector).

For a solenoid oriented on the z direction we have B = (0, 0, B) and E = 0. We find by a direct

substitution

Tµν =
ε0 c

2B2

2


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 .

This means that there is an outward force acting in positive x and y directions but an inward force

in the z direction. This means that a piece of the mu-metal is attracted at the solenoid’s ends.

Note: For electromagnetic field, the trace of the energy-momentum tensor vanishes:

Tµµ = ηµρT
ρµ = tr(η T ) = 0 ,

as can be seen from the definition of Tµν .

Also, one can show that

Tµρ T
ρ
ν =

(
ε0c

2

2

)2

δµν ·K ,

where K =
(
B2 − E2

c2

)2
+ (2E ·B)2.
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Problem 8

Write down the stress-energy tensor and the 4-wave vector for an electromagnetic plane wave

propagating in the x direction.

Such a wave is observed in two frames in standard configuration. Show that the values of

radiation pressure P , momentum density g, energy density u, and frequency ν in the two frames

satisfy

P ′

P
=
g′

g
=
u′

u
=
ν ′2

ν2
.

(Optional: can you prove this for any relative motion of the frame? [Hint: write Tµν in terms of

kµ.]).

A confused student proposes that these quantities should transform like ν ′/ν rather than ν ′2/ν2,

on the grounds that energy-momentum Nµ = (uc,N) is a 4-vector and so should transform in the

same way as the wave vector. What is wrong with this argument?

Solution:

For electromagnetic wave propagating in the x direction, we have kµ = (ωc , kx, 0, 0), with

−ω2/c2 + k2x = 0, where λν = c, ω = 2πν and kx ≡ k. The field components are

Ex = 0 ,

Ey = E0 cos (kx− ωt) ,

Ez = 0 (21)

and

Bx = 0 ,

By = 0 ,

Bz =
E0

c
cos (kx− ωt) . (22)

Direct substitution gives the energy-momentum tensor

Tµν = ε0 c
2E2

0 cos2(kx− ωt)


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 . (23)

In another frame,

T ′µν = Λµρ T
ρσ Λ ν

σ .
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In matrix form, this is

T ′ = ΛTΛT ,

where, in the standard case when S’ is moving along the x-direction of S,

Λ =


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1

 .

We find

T ′µν = ε0 c
2E2

0 cos2(kx− ωt)γ2(1− β)2


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 , (24)

i.e.

T ′µν = γ2(1− β)2Tµν .

For the specific scenario we are considering (the wave is propagating along x direction, and S’

is moving along x direction), the 3 non-vanishing independent components of Tµν (the energy

density u = T 00, the momentum density component gx ≡ g = T 10 = T 01 and the radiation

pressure Px ≡ P = T xx transform as

u′

u
=
g′

g
=
P ′

P
= γ2(1− β)2 .

At the same time, the 4-vector kµ transforms as

k′0 = γ
(
k0 − βk1

)
,

leading to (since k2 = 0, we have |k| = ω/c):

ω′ = γ (ω − βω) ,

or (since ω = 2πν):

ν ′ = γ (1− β) ν .

This shows that indeed

ν ′2

ν2
=
u′

u
=
g′

g
=
P ′

P
= γ2(1− β)2 . (25)
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In the case of arbitrary direction of motion of S’ relative to S, one may proceed as follows. Eq. (23)

can be re-written as

Tµν = ε0 c
2E2

0 cos2(kx− ωt)


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 = ε0 c
4E2 k

µkν

ω2
. (26)

Note that the tensor product of two 4-vectors kµ and kν is a symmetric tensor of rank 2, and

there are no other tensorial object of the same type we can built with ingredients charactersising

the wave (one may think about ηµνk2 but this is zero since k2 = 0). So we have a correct tensor

structure and thus the prefactor must be a scalar (we can call it C), i.e. Tµν = Ckµkν . Then e.g.

T 00 = Ck0k0 and T ′00/T 00 = ω′2/ω2. Also, C ∼ |E′|2/ω′2 = |E|2/ω2. Thus, we find

u′

u
=
ω′2

ω2
=
ν ′2

ν2
=
|E′|2

|E|2
. (27)

This ratio will in general depend on the angle between the velocity of S’ and the wave-vector k. For

example, observing the wave in S’ (with the source, i.e. S, moving with velocity v′ = −v relative

to S’), and remembering Doppler shift formulas from Problem Set 2, we have

ω′

ω
=

√
1− β2

1 + β cos θ′
, (28)

where θ′ is the angle (in S’) between the direction of motion of S in S’ (i.e.v′) and the direction of

propagation of the wave in S’ (i.e. k′). Then

u′

u
=
ω′2

ω2
=
|E′|2

|E|2
=

1− β2

(1 + β cos θ′)2
. (29)

Similar formulas can be obtained for the components of the momentum density gi = T 0i and

pressure Px = T xx, Py = T yy, Pz = T zz, again, by comparing the relevant components of Tµν =

Ckµkν and T ′µν = Ck′µk′ν .

Finally, note that the energy-momentum tensor components are densities of energy and mo-

mentum of the field (energy and momentum are obtained by integrating them). They form a

second-rank tensor and transform as components of such a tensor. These components should not

be confused with components of a 4-vector. One can also show explicitly that the object Nµ is not

a 4-vector (it does not transform as one).
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