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Reminder:

Maxwell’s equations in 3d notations

∇ ·B = 0 ,

∇×E = −∂B
∂t

,

∇ ·E =
ρ

ε0
,

∇×B = µ0J + µ0ε0
∂E

∂t

can be written in covariant form as follows (in Minkowski signature (−+ ++)):

∂µF
µν = −µ0J

ν ,

∂µF̃
µν = 0 ,

where Jν = (ρc, ρv), and Fµν = ∂µAν − ∂νAµ, with Aµ = (φ/c,A), i.e.

Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0

 .

Also, F̃µν = 1
2εµνκλF

κλ, i.e.

F̃µν =


0 Bx By Bz

−Bx 0 Ez/c −Ey/c

−By −Ez/c 0 Ex/c

−Bz Ey/c −Ex/c 0 .

 .
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Problem 1

Obtain the electric field of a uniformly moving charge, as follows: place the charge at the origin of

the primed frame S’ and write down the field in that frame, then transform to S using the equations

for the transformation of the fields (not the force transformation method) and the coordinates. Be

sure to write your result in terms of coordinates in the appropriate frame. Sketch the field lines.

Prove (from the transformation equations, or otherwise) that the magnetic field of a uniformly

moving charge is related to its electric field by B = v ∧E/c2.

Solution:

In S′, the electric field due to a single charge Q′ is:

~E′ =
Q′

4πε0r′2
~r ′

r′
. (1)

In components, this is ~E′ = (f(r′)x′, f(r′)y′, f(r′)z′), where f(r′) = Q′

4πε0r′2
.

Recall the field transformations

E′|| = E|| , (2)

B′|| = B|| , (3)

E′⊥ = γ (E⊥ + v ∧B) , (4)

B′⊥ = γ
(
B⊥ − v ∧E/c2

)
. (5)

Transforming to S, we have: ~E‖ = ~E′‖ ⇒ Ex = E′x. The charge is invariant, Q′ = Q, but we

need to transform r′: 

x′ = γ (x− βct) = γ (x− vt)

ct′ = γ (ct− βx)

y′ = y

z′ = z.

(6)
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Therefore,

Ex(t, x, y, z) =
Qγ(x− vt)

4πε0 (γ2(x− vt)2 + y2 + z2)3/2
. (7)

Now,

~E⊥ = γ
(
~E′⊥ − ~v × ~B′

)
= γ ~E′⊥ , (8)

and hence

Ey(t, x, y, z) = γE′y =
Qγy

4πε0 (γ2(x− vt)2 + y2 + z2)3/2
,

Ez(t, x, y, z) = γE′z =
Qγz

4πε0 (γ2(x− vt)2 + y2 + z2)3/2
. (9)

In particular, at t = 0:

~E =
Qγ~r

4πε0 (γ2x2 + y2 + z2)3/2
. (10)

We now look at the magnetic field:

~B‖ = ~B′| ⇒ Bx = B′x = 0,

~B⊥ = γ
(
~B′⊥ + ~v × ~E′/c2

)
=

γ

c2
~v × ~E′ =

γ

c2
~v × ~E′⊥. (11)

Since

~E′⊥ =
1

γ
~E⊥ ⇒ ~B⊥ =

1

c2
~v × ~E⊥,

~B‖ = 0 =
1

c2
~v × ~E‖ ≡ 0, (12)

it follows that

~B = ~v × ~E/c2. (13)

Explicitly, we have

~B =
1

c2

∣∣∣∣∣∣∣∣∣
i j k

v 0 0

Ex Ey Ez

∣∣∣∣∣∣∣∣∣ =
(
0,−vEz/c2, vEy/c

2
)
, (14)

and therefore (taking also into account that ε0µ0 = 1/c2):

Bx = 0 , (15)

By = − µ0Qγvz

4π (γ2(x− vt)2 + y2 + z2)3/2
, (16)

Bz =
µ0Qγvy

4π (γ2(x− vt)2 + y2 + z2)3/2
. (17)
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Problem 2

A sphere of radius a in its rest frame is uniformly charged with charge density ρ = 3q/4πa3 where

q is the total charge. Find the fields due to a moving charged sphere by two methods, as follows.

[N.B. it will be useful to let the rest frame of the sphere be S’ (not S) and to let the frame in which

we want the fields be S. This will help to avoid a proliferation of primes in the equations you will

be writing down. Let S and S’ be in the standard configuration.]

(i) Field method: write down the electric field as a function of position in the rest frame of

the sphere, for the two regions r′ < a and r′ ≥ a, where r′ = (x′2 + y′2 + z′2)1/2. Use the field

transformation equations to find the electric and magnetic fields in frame S (re-using results from

previous questions where possible), making clear in what regions of space your formulae apply.

(ii) Potential method: in the rest frame of the sphere the 3-vector potential is zero, and the

scalar potential is

φ′ =
q

8πε0a

(
3− r′2/a2

)
for r′ < a, and

φ′ =
q

4πε0r′

for r′ ≥ a. Form the 4-vector potential, transform it, and thus show that both φ and A are time-

dependent in frame S. Hence derive the fields for a moving sphere. [Beware when taking gradients

that you do not muddle ∂/∂x, ∂/∂x′, etc.]

Solution:

Suppose that the sphere is at rest in S’. The electric field can be found by using the Gauss-

Ostrogradsky theorem. For r′ > a we have

E′ =
q

4πε0r′2
r′

r′
,

where q = q′ is the total charge and r′ = |r′|. For r′ < a we get

E′4πr′2 =
Q

ε0
=

ρ

ε0

4

3
πr′3 .

Therefore, the electric field in S’ is

r′ > a : E′ =
q

4πε0

r′

r′3
, (18)

r′ < a : E′ =
q

4πε0

r′

a3
. (19)
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In S’, the sphere is defined by the equation x′2 + y′2 + z′2 = a2, whereas in S, since x′ = γ(x−βct),

y′ = y, z′ = z, this becomes γ2(x − vt)2 + y2 + z2 = a2, so in S it looks like a pancake (this is of

practical importance for relativistic heavy ion collisions currently ongoing at RHIC and LHC).

Fields outside the region in S defined by the equation γ2(x − vt)2 + y2 + z2 = a2 are given by

(as found in the previous problem):

Ex(t, x, y, z) =
qγ(x− vt)

4πε0 (γ2(x− vt)2 + y2 + z2)3/2
, (20)

Ey(t, x, y, z) =
qγy

4πε0 (γ2(x− vt)2 + y2 + z2)3/2
, (21)

Ez(t, x, y, z) =
qγz

4πε0 (γ2(x− vt)2 + y2 + z2)3/2
. (22)

Bx(t, x, y, z) = 0 , (23)

By(t, x, y, z) = − µ0qγvz

4π (γ2(x− vt)2 + y2 + z2)3/2
, (24)

Bz(t, x, y, z) =
µ0qγvy

4π (γ2(x− vt)2 + y2 + z2)3/2
. (25)

The fields inside the region γ2(x − vt)2 + y2 + z2 = a2 can be found by transforming the electric

field E′ = (kx′, ky′, kz′), where k ≡ q/4πε0a3, according to

E|| = E′|| , (26)

B|| = B′|| , (27)

E⊥ = γ
(
E′⊥ − v ∧B′

)
, (28)

B⊥ = γ
(
B′⊥ + v ∧E′/c2

)
. (29)

We obtain for the electric field

Ex = E′x = kx′ = kγ(x− vt) , (30)

Ey = γE′y = kγy′ = kγy , (31)

Ez = γE′z = kγz′ = kγz , (32)

and, since

v ×E′ =

∣∣∣∣∣∣∣∣∣
i j k

v 0 0

E′x E′y E′z

∣∣∣∣∣∣∣∣∣ =
(
0,−vE′z, vE′y

)
, (33)
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for the magnetic field we have

Bx = B′x = 0 , (34)

By = −γvE′z/c2 = −kγvz/c2 , (35)

Bz = γvE′y/c
2 = kγvy/c2 . (36)

One can see that B = v ×E/c2:

B = v ×E/c2 =
1

c2

∣∣∣∣∣∣∣∣∣
i j k

v 0 0

Ex Ey Ez

∣∣∣∣∣∣∣∣∣ =
(
0,−vEz/c2, vEy/c

2
)

= (0,−γvkz/c2, γvky/c2) , (37)

as found earlier.

(ii) In frame S’, the 4-potential is given by A′µ = (φ′/c,A′), where A′ = 0 and

r′ < a : φ′ =
q

8πε0a

(
3− r′2/a2

)
, (38)

r′ ≥ a : φ′ =
q

4πε0r′
. (39)

In the region outside the sphere we have therefore

A′µ =

(
q

4πε0r′c
, 0, 0, 0

)
.

Applying Lorentz transformations to the 4-vector A′µ, we find

A0 = γ
(
A′0 + βA′1

)
=

γq

4πε0r′c

and

A1 = γ
(
A′1 + βA′0

)
=

γβq

4πε0r′c
.

Therefore,

Aµ =

(
γq

4πε0r′c
,
γβq

4πε0r′c
, 0, 0

)
,

where r′2 = γ2(x−vt)2 +y2 +z2. We now find components of electric field. Since E = −∇φ−∂tA,

we have Ex = −∂xφ− ∂tAx. Now,

φ =
γq

4πε0c

(
γ2(x− vt)2 + y2 + z2

)−1/2

and

∂xφ = − γq

4πε0r′c
γ2(x− vt)

(
γ2(x− vt)2 + y2 + z2

)−3/2
,
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∂tAx =
γβq

4πε0c
γ2v(x− vt)

(
γ2(x− vt)2 + y2 + z2

)−3/2
,

so

Ex =
γq(x− vt)

4πε0 [γ2(x− vt)2 + y2 + z2]3/2
.

Similarly, Ey = −∂yφ− ∂tAy,

Ey =
γqy

4πε0 [γ2(x− vt)2 + y2 + z2]3/2

and Ez = −∂zφ− ∂tAz,

Ez =
γqz

4πε0 [γ2(x− vt)2 + y2 + z2]3/2
.

The magnetic field is given by B = ∇×A, i.e.

B =

∣∣∣∣∣∣∣∣∣
i j k

∂x ∂y ∂z

Ax Ay Az

∣∣∣∣∣∣∣∣∣ =

(
0,

γβq

4πε0c
∂z

1

r′
, − γβq

4πε0c
∂z

1

r′

)
, (40)

thus,

Bx(t, x, y, z) = 0 , (41)

By(t, x, y, z) = − qγvz

4πε0c2 [γ2(x− vt)2 + y2 + z2]3/2
, (42)

Bz(t, x, y, z) =
qγvy

4πε0c2 [γ2(x− vt)2 + y2 + z2]3/2
. (43)

Using ε0µ0 = 1/c2, the expressions for the magnetic field components can be written as

Bx(t, x, y, z) = 0 , (44)

By(t, x, y, z) = − µ0qγvz

4π [γ2(x− vt)2 + y2 + z2]3/2
, (45)

Bz(t, x, y, z) =
µ0qγvy

4π [γ2(x− vt)2 + y2 + z2]3/2
. (46)

In the region inside the sphere,

A′µ =

(
q

8πε0ac

(
3− r′2

a2

)
, 0, 0, 0

)
,

where r′2 = γ2(x− vt)2 + y2 + z2. Making the Lorentz transformation, we find

A0 = γA′0 =
γq

8πε0ac

(
3− r′2

a2

)
, (47)

A1 = γβA′0 =
γβq

8πε0ac

(
3− r′2

a2

)
. (48)

8



With Ex = −∂xφ− ∂tAx, one finds

−∂xφ = ∂x

(
qγr′2

8πε0a3

)
=

γq

4πε0a3
γ2(x− vt) ,

−∂tAx =
γqβ

8πε0a3c
∂tr
′2 = −qγ

3(x− vt)β2

4πε0a3
,

and therefore

Ex =
qγ(x− vt)

4πε0a3
= kγ(x− vt) .

Similarly, Ey = −∂yφ− ∂tAy, Ez = −∂zφ− ∂tAz, so

Ey = −∂yφ =
qγ

8πε0a3
∂yr
′2 =

qγy

4πε0a3
,

Ez = −∂zφ =
qγz

4πε0a3
,

i.e.

E = (kγ(x− vt), kγy, kγz) ,

which coincides with Eqs. (30)—(32).

The magnetic field is computed as follows:

B = ∇×A =

∣∣∣∣∣∣∣∣∣
i j k

∂x ∂y ∂z

Ax 0 0

∣∣∣∣∣∣∣∣∣ , (49)

leading to

Bx = 0 , (50)

By = ∂zAx = − qγβ

8πε0a3c
∂zr
′2 = − qγvz

4πε0a3c2
, (51)

Bz = −∂yAx =
qγβ

8πε0a3c
∂yr
′2 =

qγvy

4πε0a3c2
, (52)

i.e.

B = (0,−γvkz/c2, γvky/c2) ,

which coincides with Eqs. (34)—(36).
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Problem 3

In a frame S a point charge first moves uniformly along the negative x-axis in the positive x-

direction, reaching the point (−d, 0, 0) at t = −∆t, and then it is slowed down until it comes

to rest at the origin at t = 0. Sketch the lines of electric field in S at t = 0, in the region

(x+ d)2 + y2 + z2 > (c∆t)2.

Solution: The motion of the charge in S is characterised by x(t) = −d+ v0(t+ ∆t) for t < −∆t.

We don’t know exactly how the charge was brought to rest (and this will not be essential) but for

the sake of illustration we can assume that it was done by applying some constant force. Then

x(t) = −dt2/(∆t)2 for −∆t < t < 0, and x(t) = 0 for t > 0. Velocity is given by

vx(t) =


v0 , for t < −∆t ,

− 2dt
(∆t)2

, for −∆t < t < 0 ,

0, for t > 0 ,

where v0 = 2d/∆t. Had the charge continued to move with constant velocity after t = −∆t, at

t = 0 it would be at x∗ = −d+v0∆t > 0 (in our illustration, x∗ = d). Clearly, x∗ is inside the sphere

(x+d)2 +y2 +z2 > (c∆t)2, since for x = x∗ (and y = 0, z = 0) we have (x+d)2 = (v0∆t)2 < (c∆t)2

as v0 < c.

Outside the light front sphere (x + d)2 = (v0∆t)2 = (c∆t)2 fields “don’t know yet” that the

charge started to decelerate, so they are fields of a charge moving uniformly according to the law

x(t) = −d+ v0(t+ ∆t).

In S’ (associated with the charge), the potential is

φ′(r′, t′) =
q

4πε0r′
.

Since

A0 = γ
(
A′0 + βA′1

)
= γA′0 , (53)

A1 = γ
(
A′1 + βA′0

)
= γβA′0 , (54)

and also x′ = γ(x + d − v0∆t − v0t), y
′ = y, z′ = z (note the need to shift the coordinate in the

Lorentz transformation to have x′ = 0 at t = −∆t, x = −d), we get

φ(r, t) =
γq

4πε0
√
γ2(x− v0t+ d− v0∆t)2 + y2 + z2

, (55)

A(r, t) =
(v0

c2
φ(r, t), 0, 0

)
. (56)
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The components of electric field are computed as

Ex = −∂tAx − ∂xφ = −v0

c2
∂tφ− ∂xφ , (57)

Ey = −∂yφ (58)

Ez = −∂zφ . (59)

Taking the derivatives, we find

Ex = − γq

4πε0

x− v0t+ d− v0∆t

[γ2(x− v0t+ d− v0∆t)2 + y2 + z2]3/2
, (60)

Ey = − γq

4πε0

y

[γ2(x− v0t+ d− v0∆t)2 + y2 + z2]3/2
, (61)

Ez = − γq

4πε0

z

[γ2(x− v0t+ d− v0∆t)2 + y2 + z2]3/2
. (62)

Consider for simplicity the x− y plane only . Note that

Ey(t = 0)

Ex(t = 0)
=

y

x− x0
,

where x0 = −d + v0∆t > 0. So for the components of E, tanϕ = y/(x − x0). Thus, the lines of

electric field outside the lightfront sphere are those of a point charge q located at x = x0. The field

is stronger in the direction closer to the y-axis, as the formulas suggest.
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Problem 4

Give a 4-vector argument to show that the 4-vector potential of a point charge q in an arbitrary

state of motion is given by

Aµ =
q

4πε0

Uµ/c

(−RνUν)
,

where Uµ and Rµ are suitably chosen 4-vectors which you should define in your answer.

Solution:

A charge q moving in an inertial reference frame S according to r0 = r0(t) is a source of

electromagnetic field determined at the point of observation r by a 4-vector potential

Aµ =
q

4πε0

Uµ/c

(−RνUν)
, (63)

where Uµ = dxµ/dτ = (γc, γv0), with v0 = dr0/dt. The 4-vector Rµ has components R = r− r0,

R0 = cT , where T = R/c, and R = |R|. First, we need to understand the ingredients. We have

−RνUν = cTγc− γRv0 ,

so, in components,

φ(r, t) = cA0 =
q

4πε0

1

R−Rv0/c
, (64)

A(r, t) =
µ0q

4π

v0

R−Rv0/c
. (65)

In these formulas, r0 and v0 are functions of τR determined by the equation

τR = t− |r− r0(τR)|
c

as a function of t and r. One may note also that here

A =
v0

c
A0 =

v0

c

φ

c
.

These expressions are known as Lienard-Wiechert potentials. In the rest frame of the particle,

v0 = 0, r0 = 0, and we have

φ(r, t) = cA0 =
q

4πε0|r|
, A = 0 . (66)

One can derive Eqs. (64)—(65) by solving Maxwell’s equations. Alternatively, one can write down

the covariant form (63) by noticing that the covariant objects describing the physics in this situation

are the 4-vectors Rµ and Uµ, and that their combination (necessarily unique, since Aµ is a tensor)

giving the correct expression in particle’s rest frame (66) is given by (63). One has to be careful

here, since in the case of arbitrary motion, other 4-vectors (e.g. acceleration Aµ) exist, and one

might want to include terms involving e.g. derivatives of Uµ: if such terms give zero in the rest

frame, there is a priori no reason not to include them.
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