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Problem 5
Show that two of Maxwell’s equations are guaranteed to be satisfied if the fields are expressed in

terms of potentials A and ¢ such that

B=VAA, (1)
e (%) o)

(i) Express the other two of Mazwell’s equations in terms of A and ¢.

(i) Introduce a gauge condition to simplify the equations, and hence express Mazwell’s equations
in terms of 4-vectors, 4-vector operators, and Lorentz scalars (a manifestly covariant form).
Solution:

We may start by recalling the Maxwell’s equations in 3d notations:

V-B=0, (3)
OB
E=_"— 4
V x 5 (4)
VE=', (5)
€0
OE
VXB:MOJ‘V‘MOEOE- (6)

There are 4 equations altogether (8 in terms of components), appearing in two groups (each con-
taining two equations), with a prominent asymmetry between the groups. The first group (Egs. ,
(4)) contains no sources (p and J). These equations must be satisfied automatically, regardless of
the distribution of charges and currents in space-time. Such equations are known as constraints.
They often imply the presence of a symmetry in the theory under consideration.

If E and B are written in terms of A and ¢ as in Egs. , , then the equations , are
automatically satisfied. Indeed, since B; = €;j;,0; Ay, we have V- B = 0;B; = €;j;,0;0; Ay, = 0, since
the contraction of ij in €, and ij in a symmetric object (9;0; = 0;0;) gives zero.

Note that all manipulations are done in 3d Euclidean space, where there is no need
to distinguish between lower and upper indices.

Explicitly, €;;,0;0; A, = €i,0;0;Aj, [we re-labeled ¢ — j and j — i] = €;,0;0; Ay, [since 0;0; =
0;0;] = —€j3,0;0; Ai,. We arrived at €j;,0;0; A, = —€;j5,0;0; Ay, which implies €;;1,0;0; A, = 0, since
X = —X implies X = 0.

Now consider (V X E); = €0k E) = —€i110k(0OtA] + 01¢) = —0kip 1Ok A1 — €331 Ok01p = — 0B,
since g;510:0;¢ = 0 for reasons discussed above. Thus, equations , are automatically satisfied.

(i) We now write the other two Maxwell’s equations in terms of A and ¢.



Since V- E = —0,0;A; — 0%¢, where 0? = 0,0; = 0 /02% + 0?/0y* + 0 /02 is the Laplacian in
3d, Eq. becomes

— DA — 8% = % . (7)

Computing the curl, we find (V xB); = €;,0;E = €4j1k0j€kimO1Am = €ijkEkim0jO1Am = 0;0m Am —

0?4;, where we used the identity Ekij€kim = 0i10jm — Oimd;1. Therefore, Eq. @ in components

becomes
0iOm Am — 0*Ai = poJ; — poeo (97 A; + 9;0.9) (8)
and can be re-written as (taking into account that egug = 1/c?)
LORA+ 0P A — 0,06 — DAy, =
20 At z'_?it¢_z’m m = —toJi. 9)

(ii) Introducing the 4-vector A* = (¢/c, A), we can write Egs. (7)), (9) in the form

_9%p — 00,4, = L, (10)
€0
—0;(0,A") + 0A; = —poJ; (11)
where
v 1 82 2

is the d’Alembertian in 4d Minkowski space and

[ X - = — v
oAt = — + P =2 t+d1A. (13)

The important fact is that the correspondence between A* and the fields E and B is not one to

one: there are (infinitely) many potentials A* corresponding to the same values of E and B. All

such equivalent A* are related by
AP — AP — OF f(x), (14)

where f is a smooth function (this, of course, can be shown explicitly, by using definitions of E and
B via ¢ and A%). One can say that the whole orbit of A parametrised by f corresponds to the
same values of E and B. This phenomenon is known as gauge invariance and the transformation

(14) as gauge transformation. Electromagnetism is the simplest example of a gauge theory.



We can choose a representative on the orbit of A* by fizing a gauge (or choosing a gauge
condition). One popular gauge condition is d,A* = 0, known as the Lorentz gauge. In the Lorentz

gauge, Maxwell’s equations , have a very simple form

O¢ = -2, (15)
€0

Of course, these equations should be supplemented by the appropriate boundary and/or initial

conditions. Note that the equations are linear PDEs.



Problem 6
How does a second rank tensor changes under a Lorentz transformation? By transforming the field

tensor and interpreting the result, prove that the electromagnetic field transforms as

E| =B, 17

19

(17)

BTIZBH’ (18)
=v(EL+VvAB), (19)
(20)

"=v(BL-VvAE/?). 20

[Hint: you may find the algebra easier if you treat E and B separately. Do you need to work out
all the matriz elements, or can you argue that you already know the symmetry?/

Find the magnetic field due to a long straight current by Lorentz transformation from the electric
field due to a line charge.
Solution:

The field strength tensor is given by

0 E,/c Ey/c E./c
—-E,/c 0 B -B
pur _ | 7B/ : v (21)
—-Ey/c —B; 0 B,
~E.Je B, -B, 0

(Note that the signs of matrix elements are sensitive to the choice of the Minkowski metric con-
vention - here we use (— + ++), but for (+ — ——) all entries change sign.)

Since F* is a tensor of rank (2,0), under general continuous coordinate transformation = —
x' = 2/ (x) it transforms as

oz'* oz'v
F/MV _

po
= 57 8xUF . (22)

Lorentz transformations are linear, z/* = A, x¥. For the motion of S’ along OX we have 2 =

7(1"0 - /8$1)’ 1:/1 = ’7(1'1 - ﬁzo)v Le.

Yy -8 0 0
— 0 0
A = Wwooa (23)
0 0 1 0
0 0 0 1
In matrix form, the transformation is
F' = AFAT. (24)



(This may require a bit of attention - note that is written for individual components of the
matrices; convince yourself, maybe using simple 2d examples, that is correct.)

The result of the matrix multiplication is F/ = A + B, where

0 E./c vEy/c ~E./c
—FE,./c 0 —bvE,/c —pBvE,/c
—vEy/c  ByE,/c 0 0
—vE./c  ByEy/c 0 0
and
0 0 —BB. BB,
0 0 B, —vB
B = K el (26)
ﬁ’YBz _’YBz 0 Ba:

Comparing this with the standard form of FM”, we see that E; = E,, E, = yE, — yBcB.,
E! = vE, + vyfcB,. Since the motion is along OX, E, = E), and Ey, E, = E,. Thus, we can

write the above formulas as

B =B, (27)

E  =v(EL+vAB). (28)
Similarly, B;, = By, B;, = vB, +vBE./c, B, = vB, — y8E,/c, which can be written in the form

B) =By, (29)

B, =y(B.-VvAE/?) . (30)

We now apply these formulas to a concrete problem: Find the magnetic field due to a long
straight current by Lorentz transformation from the electric field due to a line charge.

We use the field transformations (written here in slightly different notations)

giz’y(éL—ﬁxE"/g). (31)

In the frame S where the charge carriers are not moving, the magnetic field is zero and the electric
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FIG. 1: Problem 6: the line charge viewed in different reference frames.

field E can be found by using Gauss-Ostrogradsky’s theorem!:

E=-"# (32)

2meqr

where r = /22 + 2, |ii| = 1, E = (E,,0, E.).

We can now transform to S’ moving along OY with velocity ¢' (thus in S’ there is a current

flowing in the negative 3’ direction). In S”:
E_:‘/‘ = E” = 0, Ei = ’yEU_, (33)
B| =0, B| = -0 x E/c, (34)
Therefore, the magnitude of the magnetic field in S’ is

TP
2 2megr’

1B | = (35)
In Eq. , we need to express all quantities via the corresponding quantities in S’. Note that
r" = r (x, z do not transform), and p'dl’ = pdl (charge conservation), therefore p’ = ~yp (since
dl' = dl/v). Also, v/ = —¥. Thus

’U/p/ I/

B | = = 36
|51 2megr’'c?  2megr'c?’ (36)

where I’ = p'v’. Note that ¢ = 1/egpuo, hence

5 pol’
B |=5-—; (37)

)
277!

as anticipated.

! First established by Lagrange. This is a special case of the general Stokes’ formula for differential forms.



Problem 7
The electromagnetic field tensor F* (sometimes called the Faraday tensor) is defined such that

the 4-force on a charged particle is given by
f*=qF*U,. (38)
By comparing this to the Lorentz force equation
F=¢E+vAB)

which defines the electric and magnetic fields (keeping in mind the distinction between dp/dt and
dP*/dr ), show that the components of the field tensor are

0 E;/c Ey/Jc E./c
—E,Je 0 B. -B,
—-E,/c —B, 0 B,
—E,Je B, —-B, 0

FH =

Solution:
We can recall that the 4-velocity U* = (e, yv) and the components of the 4-force are

dp* u vydE
—_ = = _— f
dr / (c dt’ry) ’

where p# = (E/e¢,p), dr = dt/v and dp;/dt = fi (or dp'/dt = f%; note that f; = f?).

The 3d equation of motion involving Lorentz force is
P’ =qE" +q(v x B)". (39)
On the other hand, Eq. gives
V' = —qyeF" + gyF ™oy (40)

Comparing Eqs. and , we find F® = —E'/c = —E;/c.

Since U, f* = 0 for m = const (this can be seen by remembering that U, f#* is Lorentz-invariant
and computing it in particle’s rest frame, where U, f# = —c? = 0 for m = const), we have
FU,U, = 0 and hence F* = —F"!, since U,U, = U,U,. Thus, F*” is antisymmetric, and
FY% = _F0 = Fi/c = E;/c.

Comparing now the part with v*, we find €ijkvj By = Fjjvj (note that with 4,5,k = x,y,z we
have F;; = F). Therefore, F"/ = F;j = ¢;j;, By, i.e. F'?> =¢193B3 = B,, F'3 = £132By = — B, and

F23 = 523131 = BJ;.



Thus, with all diagonal components vanishing due to antisymmetry, we get

0 E;/c Ey/c E./c
—FE./c 0 B, —-B
FHv — / v (41)
-E,/c -B, 0 B,
~E.Je B, -B, 0



Problem 8

Show that the field equation Oy\F = —puopoUY is equivalent to
y@#—a{mﬁ):ﬂmﬂ

where J¥ = poU" (here po is the proper charge density, and JV is the 4-current density). Comment.
Solution:

Since FA = 9*AY — 0¥ A, we get
RO A" = 0 (9rAN) = —po (42)

where J” = poUY, with U¥ = (ye,vv), so that J = (ypoc,ypov). Note that py is the proper
charge density, i.e. the charge density in the rest frame of the charge. We can introduce p = vpo,
then J” = (pc, pv).

In the Lorentz gauge (0,A" = 0) Eq. becomes

HNONAY = OAY = —poJ” (43)
In components:
0A% = —uJ° = —pgpe, (44)
or, since A* = (¢/c, A),
Op=-2. (45)
€0

The remaining components in Eq. are
OA" = —poJ?. (46)

Eqgs. and are Maxwell’s equations in the Lorentz gauge.

One can also show (do this) that the other pair of Maxwell’s equations, V-B =0 and V x E =

—%—]?, i.e. the equations without sources, can be written as 0,F,\ + 0, F\, + O\Fj,, = 0, or,

equivalently, as G#F Y= ().

The Moral: Maxwell’s equations in covariant form are written as

P = o " (47)

O FM =0. (48)
Note that the sign in corresponds to signature (— + ++).
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Problem 9

Show that the following two scalar quantities are Lorentz invariant: D = B? — E?/c? and
a=B-E/c. [Hint: for the second, introduce the dual field tensor F, = Te ]

Show that if a« = 0 but D # 0 then either there is a frame in which the field is purely electric,
or there is a frame in which the field is purely magnetic. Give the condition required for each case,
and find an example of such a frame (by specifying its velocity relative to one in which the fields
are E, B). Suggest a type of field for which both a =0 and D = 0.

Solution:

First, we show that D = %F/WFW and a = iljﬂwFW. We have

0 E./c Ey/c E./c
P —E,;/c 0 B, —By (49)
—-Ey/c —B; 0 B,
—E./c B, —-B, 0
Lowering the indices with Minkowski tensor, we find F},,, = n,\ o F A7 Explicitly,
0 —-E,/c —Ey/c —E./c
E./c 0 B -B
F, = o/ : . (50)
E,/c —-B, 0 B,
E,/c B, —B, 0

Note that F,, F* = —F,, F'" = —trF,,F"?. So, to compute F},, F'*, one has to multiply the
matrices and and compute the trace (with the minus sign) of the resulting matrix. This

gives

F,,F" =2B? - 2E?/c* =2D. (51)

To get «, one uses the definition FW = %GW,H)\FH)‘. Note that F,W = —Fy,. Explicitly, one has
Fo1 = geonu F" = Je0123F? + Je0132F32 = Je0103F? — Jeou3F3? = §(F® — F32) = F® = B, |

and similarly for other components. The result is

0 B, B, B,
F . _B:C O EZ/C - Z//C (52)
pv
-B, -—E./c 0 E,/c

~B. E,Je —Ejc 0.

Again, computing FWF“V = —F’WF”“ = —trFWF”" = 4F. B = 4a.

- 4 o -
E,F*" ="F.B=4a. (53)

C

11



One can check that FWF MY gives the same as F),, F'*”, i.e. it is not a new invariant. Note also
that F,“, is a pseudotensor (and, correspondingly, « is a pseudoscalar), i.e. they change sign under
parity transformation P: x — —x.

If @ = 0, then E-B= 0, i.e. in a given frame S fields E and B are either perpendicular, or
one of them is zero. In the latter case, the problem is solved in S. In the former case, the outcome
depends on the sign of D # 0.

1) D < 0: This means that in S we have B? < E2/c?. Then one can find a frame S’ with B’ = 0.

Recall the field transformations

E| =E|, (54)
B =B, (55)
' =7(EL+VAB), (56)
=7 (B1L-VvAE/?). (57)

Choose S’ moving with v | B. Then B = 0 (and thus Bh = 0) and B, = B. Choose the
magnitude of v so that v x E/c?> = B, i.e. v = Bc?/FE, where E and B are the magnitudes of the
fields. Then is S’ we have BT | = 0 and B’, = 0, so there is only an electric field in S’. Note that,
since D < 0, we have 8 =wv/c = Bc¢/E < 1, so such a frame exists.

2) D > 0: This means that in S we have B? > E?/c?. We can find a frame S’ where the field
is purely magnetic. Choosing v L E, so that E;| =0 (and thus E"‘ = 0), and the magnitude of the
velocity so that vx B = —E |, i.e. v = E/B, we find that in S’ only the magnetic field is non-zero.
Such a frame exists, since v/c = E/Be < 1, since D > 0.

3) The important case of D = 0 and a = 0 corresponds to the solution of Maxwell’s equations

known as electromagnetic waves.
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