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Problem 5

Show that two of Maxwell’s equations are guaranteed to be satisfied if the fields are expressed in

terms of potentials A and φ such that

B = ∇∧A , (1)

E = −
(
∂A

∂t

)
−∇φ . (2)

(i) Express the other two of Maxwell’s equations in terms of A and φ.

(ii) Introduce a gauge condition to simplify the equations, and hence express Maxwell’s equations

in terms of 4-vectors, 4-vector operators, and Lorentz scalars (a manifestly covariant form).

Solution:

We may start by recalling the Maxwell’s equations in 3d notations:

∇ ·B = 0 , (3)

∇×E = −∂B
∂t

, (4)

∇ ·E =
ρ

ε0
, (5)

∇×B = µ0J + µ0ε0
∂E

∂t
. (6)

There are 4 equations altogether (8 in terms of components), appearing in two groups (each con-

taining two equations), with a prominent asymmetry between the groups. The first group (Eqs. (3),

(4)) contains no sources (ρ and J). These equations must be satisfied automatically, regardless of

the distribution of charges and currents in space-time. Such equations are known as constraints.

They often imply the presence of a symmetry in the theory under consideration.

If E and B are written in terms of A and φ as in Eqs. (1), (2), then the equations (3), (4) are

automatically satisfied. Indeed, since Bi = εijk∂jAk, we have ∇·B = ∂iBi = εijk∂i∂jAk = 0, since

the contraction of ij in εijk and ij in a symmetric object (∂i∂j = ∂j∂i) gives zero.

Note that all manipulations are done in 3d Euclidean space, where there is no need

to distinguish between lower and upper indices.

Explicitly, εijk∂i∂jAk = εjik∂j∂iAk [we re-labeled i → j and j → i] = εjik∂i∂jAk [since ∂i∂j =

∂j∂i] = −εijk∂i∂jAk. We arrived at εijk∂i∂jAk = −εijk∂i∂jAk, which implies εijk∂i∂jAk = 0, since

X = −X implies X = 0.

Now consider (∇ × E)i = εikl∂kEl = −εikl∂k(∂tAl + ∂lφ) = −∂tεikl∂kAl − εikl∂k∂lφ = −∂tBi,

since εikl∂k∂lφ ≡ 0 for reasons discussed above. Thus, equations (3), (4) are automatically satisfied.

(i) We now write the other two Maxwell’s equations in terms of A and φ.
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Since ∇ ·E = −∂t∂iAi − ∂2φ, where ∂2 = ∂i∂i = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian in

3d, Eq. (5) becomes

− ∂t∂iAi − ∂2φ =
ρ

ε0
. (7)

Computing the curl, we find (∇×B)i = εijk∂jEk = εijk∂jεklm∂lAm = εijkεklm∂j∂lAm = ∂i∂mAm−

∂2Ai, where we used the identity εkijεklm = δilδjm − δimδjl. Therefore, Eq. (6) in components

becomes

∂i∂mAm − ∂2Ai = µ0Ji − µ0ε0(∂2tAi + ∂i∂tφ) (8)

and can be re-written as (taking into account that ε0µ0 = 1/c2)

− 1

c2
∂2tAi + ∂2Ai −

1

c2
∂i∂tφ− ∂i∂mAm = −µ0Ji . (9)

(ii) Introducing the 4-vector Aµ = (φ/c,A), we can write Eqs. (7), (9) in the form

−∂2φ− ∂t∂iAi =
ρ

ε0
, (10)

−∂i(∂µAµ) + �Ai = −µ0Ji , (11)

where

� ≡ ηµν∂µ∂ν = − 1

c2
∂2

∂t2
+ ∂2 (12)

is the d’Alembertian in 4d Minkowski space and

∂µA
µ =

∂A0

∂x0
+
∂Ai

∂xi
=

1

c2
∂φ

∂t
+ divA . (13)

The important fact is that the correspondence between Aµ and the fields E and B is not one to

one: there are (infinitely) many potentials Aµ corresponding to the same values of E and B. All

such equivalent Aµ are related by

Aµ → Aµ − ∂µf(x) , (14)

where f is a smooth function (this, of course, can be shown explicitly, by using definitions of E and

B via φ and Ai). One can say that the whole orbit of Aµ parametrised by f corresponds to the

same values of E and B. This phenomenon is known as gauge invariance and the transformation

(14) as gauge transformation. Electromagnetism is the simplest example of a gauge theory.
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We can choose a representative on the orbit of Aµ by fixing a gauge (or choosing a gauge

condition). One popular gauge condition is ∂µA
µ = 0, known as the Lorentz gauge. In the Lorentz

gauge, Maxwell’s equations (10), (11) have a very simple form

�φ = − ρ
ε0
, (15)

�Ai = −µ0Ji . (16)

Of course, these equations should be supplemented by the appropriate boundary and/or initial

conditions. Note that the equations are linear PDEs.
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Problem 6

How does a second rank tensor changes under a Lorentz transformation? By transforming the field

tensor and interpreting the result, prove that the electromagnetic field transforms as

E′
|| = E|| , (17)

B′
|| = B|| , (18)

E′
⊥ = γ (E⊥ + v ∧B) , (19)

B′
⊥ = γ

(
B⊥ − v ∧E/c2

)
. (20)

[Hint: you may find the algebra easier if you treat E and B separately. Do you need to work out

all the matrix elements, or can you argue that you already know the symmetry?]

Find the magnetic field due to a long straight current by Lorentz transformation from the electric

field due to a line charge.

Solution:

The field strength tensor is given by

Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0

 (21)

(Note that the signs of matrix elements are sensitive to the choice of the Minkowski metric con-

vention - here we use (−+ ++), but for (+−−−) all entries change sign.)

Since Fµν is a tensor of rank (2, 0), under general continuous coordinate transformation x →

x′ = x′(x) it transforms as

F ′µν =
∂x′µ

∂xρ
∂x′ν

∂xσ
F ρσ . (22)

Lorentz transformations are linear, x′µ = Λµνxν . For the motion of S’ along OX we have x′0 =

γ(x0 − βx1), x′1 = γ(x1 − βx0), i.e.

Λµν =


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1

 (23)

In matrix form, the transformation (22) is

F ′ = ΛFΛT . (24)
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(This may require a bit of attention - note that (22) is written for individual components of the

matrices; convince yourself, maybe using simple 2d examples, that (24) is correct.)

The result of the matrix multiplication is F ′ = A+B, where

A =


0 Ex/c γEy/c γEz/c

−Ex/c 0 −βγEy/c −βγEz/c

−γEy/c βγEy/c 0 0

−γEz/c βγEy/c 0 0

 (25)

and

B =


0 0 −βγBz βγBy

0 0 γBz −γBy

βγBz −γBz 0 Bx

−βγBy γBy −Bx 0

 . (26)

Comparing this with the standard form of Fµν , we see that E′
x = Ex, E′

y = γEy − γβcBz,

E′
z = γEz + γβcBy. Since the motion is along OX, Ex = E||, and Ey, Ez = E⊥. Thus, we can

write the above formulas as

E′
|| = E|| , (27)

E′
⊥ = γ (E⊥ + v ∧B) . (28)

Similarly, B′
x = Bx, B′

y = γBy + γβEz/c, B
′
z = γBz − γβEy/c, which can be written in the form

B′
|| = B|| , (29)

B′
⊥ = γ

(
B⊥ − v ∧E/c2

)
. (30)

We now apply these formulas to a concrete problem: Find the magnetic field due to a long

straight current by Lorentz transformation from the electric field due to a line charge.

We use the field transformations (written here in slightly different notations)

~E′
‖ = ~E‖ ,

~E′
⊥ = γ

(
~E⊥ + ~v × ~B

)
,

~B′
‖ = ~B‖ ,

~B′
⊥ = γ

(
~B⊥ − ~v × ~E/c2

)
. (31)

In the frame S where the charge carriers are not moving, the magnetic field is zero and the electric
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FIG. 1: Problem 6: the line charge viewed in different reference frames.

field ~E can be found by using Gauss-Ostrogradsky’s theorem1:

~E =
ρ

2πε0r
~n, (32)

where r =
√
x2 + y2, |~n| = 1, ~E = (Ex, 0, Ez).

We can now transform to S’ moving along OY with velocity ~v (thus in S’ there is a current

flowing in the negative y′ direction). In S′:

~E′
‖ = ~E‖ = 0, ~E′

⊥ = γ ~E⊥, (33)

~B′
‖ = 0, ~B′

⊥ = −γ~v × ~E/c2, (34)

Therefore, the magnitude of the magnetic field in S’ is

| ~B′
⊥| =

γ

c2
v

ρ

2πε0r
. (35)

In Eq. (35), we need to express all quantities via the corresponding quantities in S’. Note that

r′ = r (x, z do not transform), and ρ′dl′ = ρdl (charge conservation), therefore ρ′ = γρ (since

dl′ = dl/γ). Also, ~v′ = −~v. Thus

| ~B′
⊥| =

v′ρ′

2πε0r′c2
=

I ′

2πε0r′c2
, (36)

where I ′ = ρ′v′. Note that c2 = 1/ε0µ0, hence

| ~B′
⊥| =

µ0I
′

2πr′
, (37)

as anticipated.

1 First established by Lagrange. This is a special case of the general Stokes’ formula for differential forms.
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Problem 7

The electromagnetic field tensor Fµν (sometimes called the Faraday tensor) is defined such that

the 4-force on a charged particle is given by

fµ = qFµνUν . (38)

By comparing this to the Lorentz force equation

F = q (E + v ∧B)

which defines the electric and magnetic fields (keeping in mind the distinction between dp/dt and

dPµ/dτ), show that the components of the field tensor are

Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ex/c By −Bx 0

 .

Solution:

We can recall that the 4-velocity Uµ = (γc, γv) and the components of the 4-force are

dpµ

dτ
= fµ =

(
γ

c

dE

dt
, γf

)
,

where pµ = (E/c,p), dτ = dt/γ and dpi/dt = fi (or dpi/dt = f i; note that fi = f i).

The 3d equation of motion involving Lorentz force is

ṗi = qEi + q(v ×B)i . (39)

On the other hand, Eq. (38) gives

γṗi = −qγcF i0 + qγF ikvk . (40)

Comparing Eqs. (39) and (40), we find F i0 = −Ei/c = −Ei/c.

Since Uµf
µ = 0 for m = const (this can be seen by remembering that Uµf

µ is Lorentz-invariant

and computing it in particle’s rest frame, where Uµf
µ = −c2ṁ = 0 for m = const), we have

FµνUµUν = 0 and hence Fµν = −F νµ, since UµUν = UνUµ. Thus, Fµν is antisymmetric, and

F 0i = −F i0 = Ei/c = Ei/c.

Comparing now the part with vi, we find εijkvjBk = Fijvj (note that with i, j, k = x, y, z we

have Fij = F ij). Therefore, F ij = Fij = εijkBk, i.e. F 12 = ε123B3 = Bz, F
13 = ε132B2 = −By and

F 23 = ε231B1 = Bx.
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Thus, with all diagonal components vanishing due to antisymmetry, we get

Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0

 . (41)
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Problem 8

Show that the field equation ∂λF
λν = −µ0ρ0Uν is equivalent to

∂λ∂λA
ν − ∂ν

(
∂λA

λ
)

= −µ0Jν ,

where Jν ≡ ρ0Uν (here ρ0 is the proper charge density, and Jν is the 4-current density). Comment.

Solution:

Since F λν = ∂λAν − ∂νAλ, we get

∂λ∂
λAν − ∂ν

(
∂λA

λ
)

= −µ0Jν , (42)

where Jν = ρ0U
ν , with Uν = (γc, γv), so that Jν = (γρ0c, γρ0v). Note that ρ0 is the proper

charge density, i.e. the charge density in the rest frame of the charge. We can introduce ρ = γρ0,

then Jν = (ρc, ρv).

In the Lorentz gauge (∂µA
µ = 0) Eq. (43) becomes

∂λ∂
λAν ≡ �Aν = −µ0Jν , (43)

In components:

�A0 = −µ0J0 = −µ0ρc , (44)

or, since Aµ = (φ/c,A),

�φ = − ρ
ε0
. (45)

The remaining components in Eq. (43) are

�Ai = −µ0J i . (46)

Eqs. (45) and (46) are Maxwell’s equations in the Lorentz gauge.

One can also show (do this) that the other pair of Maxwell’s equations, ∇ ·B = 0 and ∇×E =

−∂B
∂t , i.e. the equations without sources, can be written as ∂µFνλ + ∂νFλµ + ∂λFµν = 0, or,

equivalently, as ∂µF̃
µν = 0.

The Moral: Maxwell’s equations in covariant form are written as

∂µF
µν = −µ0Jν , (47)

∂µF̃
µν = 0 . (48)

Note that the sign in (47) corresponds to signature (−+ ++).
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Problem 9

Show that the following two scalar quantities are Lorentz invariant: D = B2 − E2/c2 and

α = B ·E/c. [Hint: for the second, introduce the dual field tensor F̃µν = 1
2εµνκλF

κλ.]

Show that if α = 0 but D 6= 0 then either there is a frame in which the field is purely electric,

or there is a frame in which the field is purely magnetic. Give the condition required for each case,

and find an example of such a frame (by specifying its velocity relative to one in which the fields

are E, B). Suggest a type of field for which both α = 0 and D = 0.

Solution:

First, we show that D = 1
2FµνF

µν and α = 1
4 F̃µνF

µν . We have

Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0

 . (49)

Lowering the indices with Minkowski tensor, we find Fµν = ηµλ ηνσ F
λσ. Explicitly,

Fµν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0

 . (50)

Note that FµνF
µν = −FµνF νµ = −trFµνF νσ. So, to compute FµνF

µν , one has to multiply the

matrices (49) and (50) and compute the trace (with the minus sign) of the resulting matrix. This

gives

FµνF
µν = 2B2 − 2E2/c2 = 2D . (51)

To get α, one uses the definition F̃µν = 1
2εµνκλF

κλ. Note that F̃µν = −F̃νµ. Explicitly, one has

F̃01 = 1
2ε01µνF

µν = 1
2ε0123F

23 + 1
2ε0132F

32 = 1
2ε0123F

23 − 1
2ε0123F

32 = 1
2(F 23 − F 32) = F 23 = Bx ,

and similarly for other components. The result is

F̃µν =


0 Bx By Bz

−Bx 0 Ez/c −Ey/c

−By −Ez/c 0 Ex/c

−Bz Ey/c −Ex/c 0 .

 . (52)

Again, computing F̃µνF
µν = −F̃µνF νµ = −trF̃µνF νσ = 4

c
~E · ~B = 4α.

F̃µνF
µν =

4

c
~E · ~B = 4α . (53)

11



One can check that F̃µνF̃
µν gives the same as FµνF

µν , i.e. it is not a new invariant. Note also

that F̃µν is a pseudotensor (and, correspondingly, α is a pseudoscalar), i.e. they change sign under

parity transformation P: x→ −x.

If α = 0, then ~E · ~B = 0, i.e. in a given frame S fields ~E and ~B are either perpendicular, or

one of them is zero. In the latter case, the problem is solved in S. In the former case, the outcome

depends on the sign of D 6= 0.

1) D < 0: This means that in S we have B2 < E2/c2. Then one can find a frame S’ with B′ = 0.

Recall the field transformations

E′
|| = E|| , (54)

B′
|| = B|| , (55)

E′
⊥ = γ (E⊥ + v ∧B) , (56)

B′
⊥ = γ

(
B⊥ − v ∧E/c2

)
. (57)

Choose S’ moving with v ⊥ B. Then B|| = 0 (and thus B′
|| = 0) and B⊥ = B. Choose the

magnitude of v so that v ×E/c2 = B, i.e. v = Bc2/E, where E and B are the magnitudes of the

fields. Then is S’ we have B′
|| = 0 and B′

⊥ = 0, so there is only an electric field in S’. Note that,

since D < 0, we have β = v/c = Bc/E < 1, so such a frame exists.

2) D > 0: This means that in S we have B2 > E2/c2. We can find a frame S’ where the field

is purely magnetic. Choosing v ⊥ E, so that E|| = 0 (and thus E′
|| = 0), and the magnitude of the

velocity so that v×B = −E⊥, i.e. v = E/B, we find that in S’ only the magnetic field is non-zero.

Such a frame exists, since v/c = E/Bc < 1, since D > 0.

3) The important case of D = 0 and α = 0 corresponds to the solution of Maxwell’s equations

known as electromagnetic waves.
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