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Problem 1

Obtain the transformation equations for 3-force, by starting from the Lorentz transformation of

energy-momentum, and then differentiating with respect to t′. [Hint: argue that the relative velocity

~V of the reference frame is constant, and use or derive an expression for dt/dt′.]

Solution:

In non-relativistic physics, the second Newton’s law is d~p/dt = ~f . In special relativity, this is

replaced by

dpµ

dτ
= Fµ , (1)

where pµ = (E/c, ~p) is a 4-vector and dτ = dt/γ is the proper time of the particle. By taking the

derivative on the left-hand-side of eq. (1) explicitly, we find

Fµ =

(
γ

c
Ė, γ

d~p

dt

)
=
(γ
c
Ė, γ ~f

)
, (2)

where Ė ≡ dE/dt and γ = γ(v), where ~v is the velocity of the particle in the original inertial

reference frame S.

We now consider a frame S′ moving with constant velocity ~V with respect to S. We are

interested in the components ~f ′ of the 3-force in that frame. In principle, we can find ~f ′ by

transforming the 4-vector (2) to S′. However, it is more convenient to work with the left-hand-side

of eq. (1). Indeed, considering for simplicity the motion of S′ along x in S, we have

p′x = γ(V )

(
px − βV

E

c

)
, (3)

p′y = py , (4)

p′z = pz , (5)
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where βV = |~V |/c and γ(V ) = 1/
√

1− β2V are the constant Lorentz factors associated with the

motion of S′. We have then

f ′x =
dp′x
dt′

= γ(V )

(
dpx
dt

dt

dt′
− βV

Ė

c

dt

dt′

)
= γ(V )

(
fx − βV

Ė

c

)
dt

dt′
, (6)

f ′y =
dp′y
dt′

=
dpy
dt

dt

dt′
= fy

dt

dt′
, (7)

f ′z =
dp′z
dt′

=
dpz
dt

dt

dt′
= fz

dt

dt′
. (8)

To find dt′/dt, we use the Lorentz transformation for t′:

ct′ = γ(V ) (ct− βV x) , (9)

which gives

dt′

dt
= γ(V ) (1− βV vx) = γ(V )

(
1−

~V · ~v
c2

)
, (10)

where vx = dx/dt. Finally, we obtain

f ′x =
fx − βV Ė

c(
1− ~V ·~v

c2

) =
fx − βV

~f ·~v
c(

1− ~V ·~v
c2

) , (11)

f ′y =
fy

γ(V )
(

1− ~V ·~v
c2

) , (12)

f ′z =
fz

γ(V )
(

1− ~V ·~v
c2

) . (13)
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Note that this transformation is similar to the transformation of the particle’s velocity components

v′x =
vx − V(
1− ~V ·~v

c2

) , (14)

v′y =
vy

γ(V )
(

1− ~V ·~v
c2

) , (15)

v′z =
vz

γ(V )
(

1− ~V ·~v
c2

) . (16)

If S′ is moving in an arbitrary direction w.r.t. S with constant velocity ~V , the force can be

decomposed into the parts parallel and perpendicular to the direction of ~V , ~f = ~f|| + ~f⊥, eqs. (6)

— (8) generalize to

~f ′|| =
~f|| − ~V

~f ·~v
c2(

1− ~V ·~v
c2

) , (17)

~f ′⊥ =
~f⊥

γ(V )
(

1− ~V ·~v
c2

) . (18)
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Problem 2

Consider motion under a constant force, for a non-zero initial velocity in an arbitrary direction,

as follows:

(i) Write down the solution for p as a function of time, taking as initial condition p(0) = p0.

(ii) Show that the Lorentz factor as a function of time is given by γ2 = 1 + α2, where α =

(p0 + f t)/mc.

(iii) You can now write down the solution for v as a function of time. Do so.

(iv) Now restrict attention to the case where p0 is perpendicular to f . Taking the x-direction

along f and the y-direction along p0, show that the trajectory is given by

x =
c

f

(
m2c2 + p20 + f2t2

)1/2
+ const ,

y =
cp0
f

log

(
ft+

√
m2c2 + p20 + f2t2

)
+ const , (19)

where you may quote that
∫

(a2 + t2)−1/2dt = log
[
t+
√
a2 + t2

]
.

(v) Explain (without carrying out the calculation) how the general case can then be treated by

a suitable Lorentz transformation. [N.B. The calculation as a function of proper time is best done

another way, see later problems.]

Solution:

(i) The equation of motion ~̇p = ~f = const is easily integrated to give ~p = ~f t+ ~p0.

(ii) For a particle of mass m, we have E = γmc2 and ~p = γm~v. This implies

~p 2

c2
= γ2m2~v

2

c2
= γ2m2β2 . (20)

Since 1− β2 = 1/γ2, we have γ2 = 1 + ~p 2

m2c2
, i.e.

γ2 = 1 +
(~f t+ ~p0)

2

m2c2
. (21)

(iii) Velocity can be found as

~v =
~p

γm
=

~f t+ ~p0
m

1√
1 + (~f t+~p0)2

m2c2

. (22)

(iv) With ~f = (f, 0, 0) and ~p0 = (0, p0, 0), we have the velocity components as

ẋ = vx =
ft

m

√
1 +

f2t2+p20
m2c2

,

ẏ = vy =
p0

m

√
1 +

f2t2+p20
m2c2

,

ż = vz = 0 . (23)
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Integrating this, we find

x(t) =
mc2

f

[√
1 +

f2t2 + p20
m2c2

−
√

1 +
p20
m2c2

]
+ x0 ,

y(t) =
cp0
f

log

[
ft+

√
m2c2 + p20 + f2t2√
m2c2 + p20

]
+ y0 ,

z(t) = z0 . (24)

(v) In the general case (when ~p0 is not orthogonal to ~f), we can choose the coordinate system

S in such a way that vectors ~p0 and ~f belong to the x − y plane, with the x-axis in the direction

of ~f . Then we can Lorentz-transform to S′ moving with velocity V = v0x = p0x/γ0m along the

x-direction of S. Note that the transformation of the force components (11)—(13) then ensures

that in S’ ~f ′ = (f, 0, 0). We also have ~p′0 = (0, p0y, 0), where p0y is the y-component of the initial

momentum in S. This reduces the problem to the previous one.

Comments:

• Problem 2 illustrates a rather typical situation in relativistic dynamics: given external forces,

you are supposed to find a trajectory of a particle. Of particular importance is the motion of

charged particles in external fields (electric and magnetic). Problem 2 can be considered as

dealing with the motion of a charged particle in a constant uniform electric field. You may

think of answering an additional question: what is the trajectory y = y(x) of the particle

in such field? More generally, considering the relevant situations (electric, magnetic fields

or both) is strongly recommended: see e.g. chapters 20-22 of [1] or a similar source. Note

in particular that part (v) of the present problem mimics the situation when both electric

and magnetic fields are present, since, as we shall learn later in the course, one can often

eliminate one of them by switching to a suitable reference frame S’.

• A note about the integrals involved: in this problem, we encountered the integral of the type

I =

∫
dx√

ax2 + bx+ c
. (25)

By completing the square and changing variables, we can write I as

I =
1√
a

∫
dz√

z2 − α2
=

1√
a

∫
dt√
t2 − 1

, (26)

where z = x+b/2a, α2 = (b2−4ac)/4a2 and t = z/α. We now recall that cosh2 ξ−sinh2 ξ = 1

and change variables: t = cosh ξ. Then

I =
1√
a

∫
dξ =

1√
a

arcosh t =
1√
a

log
[
t+
√
t2 − 1

]
. (27)
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The transition to the last expression, known as the “long logarithm”, is easily proven by

using definitions of the hyperbolic functions. Of course, it may happen that α2 < 0. Then

we have

I =
1√
a

∫
dt√

1− t2
(28)

and the appropriate change of variables is t = cos ξ. The integral of this type arises when

one computes the length of an arc of a unit circle: indeed, with y(x) =
√

1− x2,

l =

∫
ds =

∫ √
dx2 + dy2 =

∫
dx
√

1 + y′ 2 =

∫
dx√

1− x2
= arccosx . (29)

An interesting situation arises when one tries to generalise this to computing the arc length

of an ellipse. This leads to the integrals of the type

J =

∫
dx√

(1− a2x2)(1 + b2x2)
(30)

elliptic functions (doubly periodic generalisation of the trigonometric functions), Mordell

hypothesis, Fermat Last Theorem and other fascinating things (see e.g. Chapter 7 in the

popular book [2]).
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Problem 3

For motion under pure (rest mass preserving) inverse square law force f = −αr/r3, where α is a

constant, derive the energy equation γmc2 − α/r = constant.

Solution:

The expression for the 4-force is

Fµ =
dPµ

dτ
=

(
γ
Ė

c
, γ ~f

)
,

and the 4-velocity is uµ = (γc, γ~v). One can form an invariant

Fµu
µ = γ2

(
−Ė + ~f · ~v

)
.

In particle’s rest frame, Fµ0 = (ṁc, ~f0) and uµ = (c, 0), so Fµ0 uµ,0 = −ṁc2 = 0 (by assumption,

mass is constant - i.e. fuel of a space-ship is not leaking out etc). This implies Ė = ~f · ~v. For a

potential force, ~f = −∇U , and, since vi∂U/∂xi = dU/dt, we have

d

dt
(E + U) = 0

or E + U = const. Here, E = γmc2, U = −α/r, so

γmc2 − α/r = constant .
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Problem 4

Prove that the time rate of change of the angular momentum L = r∧p of a particle about an origin

O is equal to the couple r ∧ f of the applied force about O.

If Lµν is a particle’s 4-angular momentum, and we define the 4-couple Gµν ≡ XµF ν−XνFµ, prove

that (d/dτ)Lµν = Gµν , and that the space-space part of this equation corresponds to the previous

3-vector result.

Solution:

Taking the time derivative of L = r ∧ p, we find

d

dt
~L = ~̇r × ~p+ ~r × d~p

dt
= ~r × ~f ,

since ~̇r and ~p are collinear.

Then, for Lµν = XµP ν −XνPµ, we have

d

dτ
Lµν =

dXµ

dτ
P ν +XµdP

ν

dτ
− dXν

dτ
Pµ −Xν dP

µ

dτ
= UµP ν +XµdP

ν

dτ
− UνPµ −Xν dP

µ

dτ
.

Since Pµ = mUµ, this reduces to

d

dτ
Lµν = XµdP

ν

dτ
−Xν dP

µ

dτ
= XµF ν −XνFµ ≡ Gµν .

Also, Xµ = (ct, xi), and

Fµ =

(
1

c

dE

dτ
,
d~p

dτ

)
=

(
γ

c

dE

dt
, γ ~f

)
.

Thus,

γ
dLij

dt
= γ

(
xif j − xjf i

)
,

which is the desired result, with the identification Li = εijkL
jk.
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