
Problem Set 3. General Relativity, HT20

Birkhoff Theorem and Neutron Stars

Affine connection for diagonal gµν :

Γλµν =
1

2gλλ

(
∂gλµ
∂xν

+
∂gλν
∂xµ

− ∂gµν
∂xλ

)
NO SUM OVER λ

Ricci Tensor:

Rµκ =
1

2

∂2 ln |g|
∂xκ∂xµ

−
∂Γλµκ
∂xλ

+ ΓηµλΓ
λ
κη −

Γηµκ
2

∂ ln |g|
∂xη

FULL SUMMATION

N.B.: In this problem, we will set c = 1.

1a.) Birkhoff’s theorem states that outside of a spherical distribution of matter, the metric
tensor must be independent of time and equal to the Schwarzschild metric—even if the matter
distrbution is changing (keeping spherical symmetry) with time. A corollary is that within
the hollow of an external spherical distribution of matter, the metric tensor is Minkowski
spacetime. These are the precise relativistic analogues of the Newtonian results of a point
mass 1/r potential outside any spherical distribution of matter, and the vanishing of the
gravitational field inside a cavity with a spherical external distribution of matter. Birkhoff’s
theorem is critical to formulating cosmology.

To prove the theorem is straightforward but a bit painful, because we need to calculate
the Ricci tensor Rµκ, and that is always a nuisance. Both because Birkhoff’s theorem
is important, as well as to get practice working with the Ricci tensor, we will explicitly
evaluate the key Rtr component here, a critical step in the proof1 . The Rtr component
vanishes identically for the static Schwarzschild metric.

Consider the line element for a general time-dependent spherical system,

−dτ 2 = −B(r, t)dt2 + A(r, t)dr2 + r2dθ2 + r2 sin2 θdφ2 ≡ gµνdx
µdxν

The nonvanishing affine connection components Γabc from this metric tensor are the same
nonvanishing set we found for the Schwarzschild metric, plus three others that used to be
zero. In particular, show that

Γrrt =
Ȧ

2A
, Γtrr =

Ȧ

2B
Γttt =

Ḃ

2B

where we will use notation Ȧ for a time derivative and A′ for an r derivative. A warm
welcome to our new three new affine connection members.

1b.) We will now show that Rtr = −Ȧ/rA, which sure looks simple but in fact involves a large
cancellation. The point now is that since all the Rµκ terms must vanish in a vacuum, Ȧ = 0,
and A cannot depend on time. The other components of the Ricci tensor then all revert back
to their Schwarzschild forms. (We won’t show this explicitly, only because it is a long and dull
exercise, but it is not particularly difficult). A reduction to the Schwarzschild problem means

1See Weinberg for a complete proof.
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that any possible time dependence in B can appear only as an overall multiplicative factor
f(t), which can then be completely eliminated by a simple time coordinate transformation
dt′ = f dt. The static metric is then identical to Schwarzschild. This is Birkoff’s theorem.

Using the Ricci tensor above, show that the first two groupings

1

2

∂2 ln |g|
∂xκ∂xµ

−
∂Γλµκ
∂xλ

cancel one another out precisely. This is progress. (g is the determinant of gµν .)

1c.) Show next that for Rµκ = Rtr,

ΓηµλΓ
λ
κη −

Γηµκ
2

∂ ln |g|
∂xη

= − Ȧ

rA

(Use §6.1 from the notes for any Γ’s you need.) You will find that everything cancels once
again, except for one final term in the ln |g| derivative, shown on the right. With Ȧ = 0,
Birkhoff’s theorem follows relatively easily, as the remaining Rµκ = 0 equations reduce to
the Schwarzschild problem.

2.) In this problem we will show that the TOV equation must be obeyed if we demand that
the total energy (including the gravitational contribution) is minimised when we vary ρ(r)
throughout a star of uniform entropy per particle, subject to the constraint that the total
number of particles the same.

2a.) Use the method of Lagrange multipliers to show that the above statement translates
into the condition that variations of the quantity

M − λN ≡
∫ ∞
0

4πr2ρ dr − λ
∫ ∞
0

4πnr2A1/2 dr

must be zero. Of course ρ and n vanish outside the star, so the integration limits are formal.
Notation: ρ is the energy density (divided by c2), n the number density of baryons, and A
is grr from the interior stellar metric of §8.2 in the notes:

A = (1− 2GM(r)/rc2)−1, M(r) =

∫ r

0

4πρr′2ρdr′.

Finally, λ is the (constant) Lagrange multiplier.

2b.) Prove that the first order variation δ of this equation gives:

δM − λδN =

∫ ∞
0

4πr2
[
δρ− λA1/2δn− λGA

3/2

rc2
n δM

]
dr

2c.) For the constant entropy (adiabatic) perturbations, the first law of thermodynamics is
dE = −PdV where E is the energy within some volume V , P is the pressure and dV is
a small volume change. If particle number is conserved so that nV also remains constant,
show that δn and δρ are related by:

δn =
n δρ

ρ+ P/c2
.
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2d.) Put all these results together and show that

δM − λδN =

∫ ∞
0

4πr2δρ

[
1− λnA1/2

ρ+ P/c2
− λG

c2

∫ ∞
r

(4πr′nA3/2dr′)

]
dr = 0

Hint: In the expression for δM, you will need to invert the order of integration for r and r′.
Also, they are just dummy variables, so you are allowed to interchange their names at the
end!

2e.) If the result of 2d) is to hold for any δρ, show that 1/λ = F (r), where F is a function
of r, which you should determine. But remember that λ must be constant, so that in fact
dF/dr = 0! Show that this leads to the TOV equation,

dP

dr
= −GA

r2
(M+ 4πr3P/c2)(ρ+ P/c2).

(Hint: in a constant entropy star, the equation of part 2c) also holds with δn and δρ replaced
by dn/dr and dρ/dr. Why is that?)

We have thus shown that when the TOV is satisfied, the total energy is minimised for a star
of constant entropy. The TOV equation itself is valid independently of any thermodynamics:
it is a direct consequence of the field equations of gravity. But the constant entropy case
allows a variational formulation for it. Notice as well that we reach the Newtonian limit in
our final equation by setting A = 1 and letting c→∞. Could we set A = 1 at the start of
our derivation and reach the Newtonian limit?

3a.) Rotating, relativistic stars. Do the following Exercise from §4.6 in the notes. Starting
with the formal stress tensor conservation equation for an ideal fluid,

0 =
∂P

∂xν
+

1

|g|1/2
∂

∂xµ
[
|g|1/2(ρ+ P/c2)UµUν

]
− Γµνλ(ρ+ P/c2)UµU

λ

use the general expression for Γµνλ to show that this may be written (more simply) as:

0 =
∂P

∂xν
+

1

|g|1/2
∂

∂xµ
[
|g|1/2(ρ+ P/c2)UµUν

]
+ (ρ+ P/c2)Uµ

∂Uµ

∂xν

3b.) Next, consider the case of a rotating star. The uniform rotation rate Ω = dφ/dt is
assumed to be constant. On the surface (and in the interior) of the star, the 4-velocity
component Uφ = dφ/dτ = ΩU0, where as usual U0 = dt/dτ . There are no other 4-velocity
Uµ components, and no t or φ dependence of the stellar structure. Show that, under these
conditions, our equation becomes

0 =
∂P

∂xν
− (ρc2 + P )

∂ lnU0

∂xν

3c.) Work now with spatial coordinates, i, j, k for ν. Recall that if Ai is a covariant vector,
the curl operator ∇×A = ∂jAi − ∂iAj is also a vector, as the affine connection terms from
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the covariant derivatives cancel. Show that if surfaces of constant of ρ and constant P (or
any two functions at all) coincide, then (∂iP )(∂jρ) = (∂jP )(∂iρ).

3d.) Using 3c), show that for a rotating star, surfaces of constant ρ, P , and U0 all coincide.
Viewed by an observer at infinity, do surface clocks on a rotating neutron star run faster at
the equator or the poles? Does spherical symmetry matter?

4a.) Explicit degenerate ideal gas neutron star equations. Show that the differential equations
for a star neutron star with a fully degenerate ideal gas equation of state are (refer to and
use §8.5 of the notes for complete background and definitions):

dt

dy
= − 4m

y2(1− 2m/y)

(
sinh t− 2 sinh(t/2)

cosh t− 4 cosh(t/2) + 3

)(
1 +

πy3

8m
[sinh t− 8 sinh(t/2) + 3t]

)
dm

dy
=

3πy2

8
(sinh t− t)

The dimensionless variables m and y are defined in terms of radius r and M (mass within r) by:

ρchar = 8πm4
nc

3/3h3, r ≡ c(Gρchar)−1/2y, M≡ c3G−3/2ρ−1/2char m

Recall the equation of state parameterisation from the notes:

ρ(t) =
3ρchar

32
(sinh t− t), P (t) =

ρcharc
2

32
[sinh t− 8 sinh(t/2) + 3t]

A neutron star model consists of picking some t = t0 at y = 0 to fix the central density ρ0 =
(3/32)ρchar(sinh t0 − t0), setting m = π(sinh t0 − t0)y3/8 at small y (justify!), and integrating the
equations until t = 0 at some finite value of y. This defines the outer edge of the star. A value of
t0 ' 3 yields the maximum mass of 0.7M�.

4b.) Take the limit t→∞ and recover the extreme relativistic TOV equation :

dρ

dr
= −4GM(r)ρ

r2c2

(
1 +

4πρr3

3M(r)

)(
1− 2GM(r)

rc2

)−1
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