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Motivation

• Neutrino oscillations imply neutrino masses which aren’t
included in the standard model.

• The masses of the observed light neutrinos are far smaller
than those of the charged leptons and quarks.

• The minimal extension to the SM is simply to include
additional fermions. In particular, heavy neutrinos are not
experimentally excluded, especially if they have masses greater
than MZ .

• It is not yet known if neutrinos are Dirac or Majorana
particles, so consider both possibilities.



Motivation

• Neutrino oscillations imply neutrino masses which aren’t
included in the standard model.

• The masses of the observed light neutrinos are far smaller
than those of the charged leptons and quarks.

• The minimal extension to the SM is simply to include
additional fermions. In particular, heavy neutrinos are not
experimentally excluded, especially if they have masses greater
than MZ .

• It is not yet known if neutrinos are Dirac or Majorana
particles, so consider both possibilities.



Motivation

• Neutrino oscillations imply neutrino masses which aren’t
included in the standard model.

• The masses of the observed light neutrinos are far smaller
than those of the charged leptons and quarks.

• The minimal extension to the SM is simply to include
additional fermions. In particular, heavy neutrinos are not
experimentally excluded, especially if they have masses greater
than MZ .

• It is not yet known if neutrinos are Dirac or Majorana
particles, so consider both possibilities.



Motivation

• Neutrino oscillations imply neutrino masses which aren’t
included in the standard model.

• The masses of the observed light neutrinos are far smaller
than those of the charged leptons and quarks.

• The minimal extension to the SM is simply to include
additional fermions. In particular, heavy neutrinos are not
experimentally excluded, especially if they have masses greater
than MZ .

• It is not yet known if neutrinos are Dirac or Majorana
particles, so consider both possibilities.



Motivation

• Neutrino oscillations imply neutrino masses which aren’t
included in the standard model.

• The masses of the observed light neutrinos are far smaller
than those of the charged leptons and quarks.

• The minimal extension to the SM is simply to include
additional fermions. In particular, heavy neutrinos are not
experimentally excluded, especially if they have masses greater
than MZ .

• It is not yet known if neutrinos are Dirac or Majorana
particles, so consider both possibilities.



A model with Majorana neutrinos
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• Minimal model including neutrino masses.

• Can’t add a left-handed Majorana mass term without further
extensions to the standard model (e.g. a Higgs triplet).

• Expect mM � mD

• Three light, plus nR heavy, Majorana neutrinos.



A model with Dirac neutrinos
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[D. Wyler and L. Wolfenstein, Nucl. Phys. B218, 205 (1983); R. N. Mohapatra and J. W. F. Valle, Phys. Rev.

D34, 1642 (1986)]

• S0
L are singlets, i.e. they don’t couple to the weak gauge

bosons.

• B − L imposed as a global symmetry.

• After diagonalisation of the mass matrix, this contains three
massless neutrinos and nR heavy Dirac neutrinos.

• Can add Majorana masses for light neutrinos, but this has no
effect on collider observables.



Neutrino interactions

Weak states are a mix of mass eigenstates
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Expressing the Lagrangian in terms of the latter
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• B is a 3× (3 + nR) unitary matrix - the lepton equivalent of
the CKM matrix.

• Both light and heavy neutrinos also couple to Z and H, with
FCNC’s possible for neutrinos (but not the charged leptons)
at tree level.



Experimental constraints on couplings
B is unitary, so can define

Ωll ′ ≡ δll ′ −
3∑

i=1

Blνi
B∗

l ′νi
=

nR∑
i=1

BlNi
B∗

l ′Ni

From non-observation at LEP, for mN < MZ , |Ωll ′ | . 10−4 − 10−5.
Constraints on B from lepton universality and the Z width give

Ωll . 10−2

Further constraints come from FCNC limits

|Ωeµ| <∼ 0.0001 |Ωeτ | <∼ 0.02 |Ωµτ | <∼ 0.02

and the non-observation of neutrinoless double beta decay∣∣∣∣∣∑
i

B2
eNi

mNi

∣∣∣∣∣ . 5× 10−8 GeV−1



Production processes at the LHC
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• Cross section falls rapidly with heavy neutrino mass.

• Clearest signals from N → l±W∓, with the W boson
subsequently decaying hadronically.

• For Dirac neutrinos, look for Lepton Flavour Violation (LFV).

• For Majorana neutrinos, Lepton Number Violation (LNV) is
also possible.

• Dominant SM background comes from W±W±W∓, two of
which decay into charged leptons and undetected light
neutrinos.

[T. Han and B. Zhang hep-ph/0604064; F. del Aguila, J. A. Aguilar-Saavedra, R. Pittau hep-ph/0606198]



The “best case scenario”
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CP violation

Requires at least two heavy neutrinos.
Due to the interference of the tree-level graph with the absorptive
part of the one-loop corrections.
Using the terminology from the K 0K̄ 0 system, this can be
distinguished into two mechanisms:

• ε-type: That due to interference with the self-energy
correction.

• ε′-type: That due to interference with the vertex correction.
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Resonant CP violation

If two or more heavy neutrinos are nearly degenerate in mass, then
the ε-type mechanism can be resonantly enhanced. The formalism
used to describe this is based on a resummation approach for the
propagator.
[A. Pilaftsis, Nucl. Phys. B504, 61 (1997); A. Pilaftsis, Phys. Rev. D56, 5431 (1997)]

Ŝ(/p) =

[
/p −mN1 + iImΣ̂11(/p) iImΣ̂12(/p)

iImΣ̂21(/p) /p −mN2 + iImΣ̂22(/p)

]−1

where
Im Σ̂ij(/p) = Aij(p

2)/pPL+A∗ij(p
2)/pPR .

The neutrino widths are given by

ΓNi
= 2mNi

Aii (m
2
Ni

).



The heavy neutrino self-energy
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Theoretical constraints for Majorana neutrinos

For Majorana neutrinos, ignoring the light neutrino masses, their
couplings have to satisfy the constraint∑

i

mNi
BliBl ′i = 0.

For three heavy neutrinos, this translates to leaving four of the
couplings as free paramenters (for example Bl1 and Be2). The
others are then given by

Be3 = ±i

√
mN1B

2
e1 + mN2B

2
e2

mN3

, Bli =
Bl1Bei

Be1

Unfortunately, this rules out scenarios with observable levels of CP
violation.



CP-violating signals

• Due to the enhanced contribution from valence quarks, W +

bosons will be created more frequently than W−’s.

• True CP-violating observables can be formed either by taking
into account the theoretically calculable difference expected
due to the different PDF’s, or by considering ratios of
cross-sections such that this factor drops out.

For example,

ACP(LNV ) =
σ(pp → e+e+W−)− Kσ(pp → e−e−W +)

σ(pp → e+e+W−) + Kσ(pp → e−e−W +)

ACP(LFV ) =
σ(pp → e+µ−W +)− Kσ(pp → e−µ+W−)

σ(pp → e+µ−W +) + Kσ(pp → e−µ+W−)

ACP(LFNV ) =
σ(pp → e+µ+W−)− Kσ(pp → e−µ−W +)

σ(pp → e+µ+W−) + Kσ(pp → e−µ−W +)



CP-violating signals
Alternatively,

RCP(LNV ) =
R+

LNV − R−
LNV

R+
LNV + R−

LNV

, RCP(LFV ) =
R+

LFV − R−
LFV

R+
LFV + R−

LFV

with

R+
LNV =

σ(pp → e+e+W−)

σ(pp → e+µ+W−)
, R−

LNV =
σ(pp → e−e−W +)

σ(pp → e−µ−W +)
,

R+
LFV =

σ(pp → e+µ−W +)

σ(pp → e−µ+W +)
, R−

LFV =
σ(pp → e−µ+W−)

σ(pp → e+µ−W−)
.

• The RCP type of observable has the advantage of not relying
on the function K , which has to be calculated theoretically.

• They can also give larger signals as the CP violation from
different channels can combine constructively. However, this
makes it harder to distinguish which couplings are responsible.
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Figure: BlN = 0.05, No CP-violation. K =
σ(pp→(W +)∗→X )| /CP=0

σ(pp→(W−)∗→X̄ )| /CP=0

• Cross sections independent of mass splitting for ∆mN � mN .

• K is universal whichever signal process is considered. It is also
independent of the magnitudes of the neutrinos couplings,
being just a function of the PDF’s for producing (off-shell)
W + vs W−.
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Figure: Bµ2 = 0.05i and Bτ2 = −0.05. All other couplings equal 0.05.

• Large CP-asymmetries for both Dirac and Majorana neutrinos.

• Requires at least four heavy neutrinos in the Majorana case to
avoid constraints.

• Also requires couplings from other neutrinos (or other BSM
particles) to satisfy limit from µ → eγ.
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Figure: Bµ2 = 0.05i and Bτ2 = −0.05. All other couplings equal 0.05.
Large CP-asymmetries for both Dirac and Majorana neutrinos.
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Figure: Be2 = 0.05i , all other couplings equal 0.05. Only CP violation for
Majorana neutrinos.



Summary

• Models containing neutrinos masses generically contain heavy
neutrinos in addition to the observed three light ones.

• These can be either Dirac or Majorana particles and for
100 GeV . mN . 300 GeV, might be able to be seen at the
LHC.

• For Dirac neutrinos, the LHC signals are LFV, i.e.
pp → l+l ′−W±.

• For Majorana neutrinos, LNV signals are also possible, i.e.
pp → l±l ′±W∓.

• If two heavy neutrinos are separated by a mass splitting of
order their widths, then resonant CP violation can occure
which can be maximal.

• For Majorana neutrinos, this requires at least four heavy
neutrinos in the theory.
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