Seeing the edge of the Universe: From speculation to science

Constructing the Universe: Relativistic world models

The history of the Universe: Decoupling of the relic radiation and nucleosynthesis of the light elements

The content of the Universe: Dark matter & dark energy

Making sense of the Universe: Fundamental physics & cosmology

http://www-thphys.physics.ox.ac.uk/user/SubirSarkar/cernlectures.html
Lecture 3

The thermal history of the universe

Decoupling of the relic radiation and synthesis of the light elements
We can check *experimentally* that physical constants such as α have had \simthe same values far back in our past as they do now. So we are entitled to extrapolate back with confidence …

Webb *et al.* (1999)

So we are entitled to extrapolate back with confidence …
Knowing the **equation of state**, we can solve the Friedman equation ...

For matter:

\[\frac{d}{dt} (\rho a^3) = 0 \quad \Rightarrow \quad \rho = \frac{\rho_0}{a^3} = \rho_0 (1 + z)^3 \]

so we get

\[\left(\frac{\dot{a}}{a} \right)^2 = \frac{8\pi G \rho_0}{3a^3} \quad \text{i.e.} \quad a(t) = \left(\frac{t}{t_0} \right)^{2/3} \]

For radiation:

\[\frac{d}{dt} (\rho a^4) = 0 \quad \Rightarrow \quad \rho = \frac{\rho_0}{a^4} = \rho_0 (1 + z)^4 \]

So radiation will dominate over other components as we go to early times

\[a(t) = \left(\frac{t}{t_0} \right)^{1/2} \quad \Rightarrow \quad \rho_R \propto t^{-2} \quad \text{Radiation-dominated era} \]

But at \(a_{\text{eq}} = \frac{\rho_{R,0}}{\rho_{m,0}} \) the matter density will come to dominate ...

Note that \(\rho_m \propto t^{-2} \) as well during the **Matter-dominated era**
Evolution of different energy components during the evolution of the Universe

Very recently (at $z \sim 1$), the expansion seems to be accelerating under the influence of a cosmological constant $\Lambda \sim H^2$ of which more later …
(Very) Brief History

3 min 3x10^5 yrs

5x10^9 yrs

CMB γ

Nucleo-Synthesis

Last Scattering

Galaxy Formation

e
p
n
He
The Standard Model of the Early Universe

Thermodynamics of ultra-relativistic plasma:

Number density:
\[n = \frac{\xi(3)}{\pi^2} g'(T) T^3 \]

Energy density:
\[\rho = 3p = \frac{\pi^2}{30} g(T) T^4 \]

Entropy density:
\[s \equiv \frac{p + \rho}{T} = \frac{2\pi^2}{45} g(T) T^3 \]

Where, the number of relativistic degrees of freedom \textit{sum} over all bosons and fermions with appropriate weight:

\[g'(T) = g_b(T) + \frac{3}{4} g_f(T) \]
\[g(T) = g_b(T) + \frac{7}{8} g_f(T) \]
In the absence of dissipative processes (e.g. phase transitions which generate entropy) the \textbf{comoving entropy} is conserved:

\[
\frac{d}{dt}(sa^3) = 0 \quad \Rightarrow \quad s \propto \frac{1}{a^3} \quad \text{i.e.} \quad T \propto \frac{1}{a}
\]

At early times the curvature term becomes negligible (compared to radiation) so the Friedmann equation simplifies to:

\[
\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G \rho}{3}
\]

Integrating this yields the time-temperature relationship:

\[
t(s) = 2.42 \, g^{-1/2} \, (T/\text{MeV})^{-2}
\]

So we can work out when events of \textit{physical significance} occurred in our past (according to the \textbf{Standard Model} of particle physics)
To get this right we need to count all the bosons and fermions contributing to the relativistic degrees of freedom ... and take into account our uncertain knowledge of possible phase transitions.
The CMB spectrum

Such a perfect blackbody is testimony to our hot, dense past
Recombination

As the Universe expands and cools, protons and electrons combine to form hydrogen (the most abundant element). And helium nuclei combine with electrons to form helium atoms. This process is called recombination.
The ionisation fraction x_e drops rapidly at (re)combination so the Thomson scattering rate also decreases sharply below the Hubble expansion rate ... this defines a last scattering surface for the relic photons ... which we see today as the cosmic microwave background.
Interaction between photons and matter

Thomson scattering on electrons: \(\gamma + e \rightarrow \gamma + e \)

Interaction rate for photons:

\[
\Gamma_{\text{Thomson}} = n_e \left\langle \sigma_T \nu \right\rangle \propto x_e T^3 \sigma_T
\]

Expansion rate of the universe (MD era):

\(H \propto T^{3/2} \)

\(\Gamma_{\text{Thomson}} > H \) : Photons and matter in equilibrium

\(\Gamma_{\text{Thomson}} < H \) : Photons and matter stop interacting
Decoupling of photons and baryons

Recombination
(according to the Saha ionisation eq.)
Photons are redshifted as they move out of gravitational potential wells.

Dense regions have higher temperature, so photons have higher energy.

Photons emitted from a moving surface are red/blue-shifted.

Fortunately the effects do not quite cancel so the CMB carries a memory of the past.
We can only see the surface of the cloud where light was last scattered.

The cosmic microwave background Radiation’s “surface of last scatter” is analogous to the light coming through the clouds to our eye on a cloudy day.

PRESENT
13.7 Billion Years after the Big Bang
Synthesis of the light elements

THE EVOLUTION OF THE UNIVERSE

By Dr. G. GAMOW

George Washington University, Washington, D.C.

The discovery of the red shift in the spectra of distant stellar galaxies revealed the important fact that our universe is in the state of uniform expansion, and raised an interesting question as to whether the present features of the universe could be understood as the result of its evolutionary development, which must have started a few thousand million years ago from a homogeneous state of extremely high density and temperature. We conclude first of all that the relative abundances of various atomic species (which were found to be essentially the same all over the observed region of the universe) must represent the most ancient archaeological document pertaining to the history of the universe. These abundances must have been established during the earliest stages of expansion when the temperature of the primordial matter was still sufficiently high to permit nuclear transformations to run through the entire range of chemical elements. It is also interesting to notice that the observed relative amounts of natural radioactive elements suggest that their nuclei must have been formed (presumably along with all other stable nuclei) rather soon after the beginning of the universal
Where did all the elements come from?

Big Bang

Stars/Supernovae
as the Universe cools, protons and neutrons can fuse to form heavier atomic nuclei.
Primordial versus Stellar Nucleosynthesis

- **Timescale**
 - Stellar Nucleosynthesis (SN): billions of years
 - Primordial Nucleosynthesis (PN): minutes

- **Temperature evolution**
 - SN: slow increase over time
 - PN: rapid cooling

- **Density**
 - SN: 100 g/cm3
 - PN: 10$^{-5}$ g/cm3 (like air!)

- **Photon to baryon ratio**
 - SN: less than 1 photon per baryon
 - PN: billions of photons per baryon

The lack of stable elements with masses 5 and 8 make it hard for primordial nucleosynthesis to synthesise elements beyond Helium.
Conditions in the Early Universe:

\[T \gtrsim 1 \text{ MeV} \]

\[\rho = \frac{\pi^2}{30} (2 + \frac{7}{2} + \frac{7}{4} N_\nu) T^4 \]

\[\eta = n_B / n_\gamma \sim 10^{-10} \]

\(\beta\)-Equilibrium maintained by weak interactions

Freeze-out at \(\sim 1\) MeV determined by the competition of expansion rate \(H \sim T^2 / M_p\) and the weak interaction rate \(\Gamma \sim G_F^2 T^5\)

\[n + e^+ \leftrightarrow p + \bar{\nu}_e \]

\[n + \nu_e \leftrightarrow p + e^- \]

\[n \leftrightarrow p + e^- + \bar{\nu}_e \]

At freezeout \(n/p\) fixed modulo free neutron decay, \((n/p) \sim 1/6 \rightarrow 1/7\)
Nucleosynthesis Delayed
(Deuterium Bottleneck)

\[p + n \rightarrow D + \gamma \quad \Gamma_p \sim n_B \sigma \]

\[p + n \leftarrow D + \gamma \quad \Gamma_d \sim n_\gamma \sigma e^{-E_B/T} \]

Nucleosynthesis begins when \(\Gamma_p \sim \Gamma_d \)

\(\frac{n_\gamma}{n_B} e^{-E_B/T} \sim 1 \) \quad @ \(T \sim 0.1 \text{ MeV} \)

All neutrons \(\rightarrow ^4\text{He} \)

\[Y_p = \frac{2(n/p)}{1 + (n/p)} \sim 25\% \]

Remainder:

\(D, ^3\text{He} \sim 10^{-5} \) and \(^7\text{Li} \sim 10^{-10} \) by number
BBN predictions

line widths ⇒ theoretical uncertainties (neutron lifetime + nuclear cross sections)
Primordial nucleosynthesis

• **Time < 15 s, Temperature > 3 \times 10^9 \text{ K}**
 - universe is soup of protons, electrons and other particles … so hot that nuclei are blasted apart by high energy photons as soon as they form

• **Time = 15 s, Temperature = 3 \times 10^9 \text{ K}**
 - Still too hot for Deuterium to survive
 - Cool enough for Helium to survive, but too few building blocks

• **Time = 3 \text{ min}, Temperature = 10^9 \text{ K}**
 - Deuterium survives and is quickly fused into He
 - no stable nuclei with 5 or 8 nucleons, and this restricts formation of elements heavier than Helium
 - trace amounts of Lithium are formed

• **Time = 35 \text{ min}, Temperature = 3 \times 10^7 \text{ K}**
 - nucleosynthesis essentially complete
 - Still hot enough to fuse Helium, but density too low for appreciable fusion

Model makes precise predictions about the relative abundances of the light elements ^2H, ^3He, ^4He and ^7Li, as a function of the nucleon density
Nucleosynthesis *without* a computer

\[
\frac{dX}{dt} = J(t) - \Gamma(t)X \quad \Rightarrow \quad X^{\text{eq}} = \frac{J(t)}{\Gamma(t)}
\]

... but general solution is:

\[
X(t) = \exp \left(- \int_{t_i}^{t} dt' \Gamma(t') \right) \left[X(t_i) + \int_{t_i}^{t} dt' J(t') \exp \left(- \int_{t_i}^{t} dt'' \Gamma(t'') \right) \right]
\]

If \[\left| \frac{j}{J} - \frac{\dot{\Gamma}}{\Gamma} \right| \ll \Gamma\] ... then abundances approach equilibrium values

Freeze-out occurs when: \(\Gamma \approx H\) \(\Rightarrow X(t \to \infty) \approx X^{\text{eq}}(t_{fr}) = \frac{J(t_{fr})}{\Gamma(t_{fr})}\)
Observations of the light elements He and Li

- **Helium Abundance**
 - measured in extragalactic HII regions with lowest observed abundances of heavier elements like Oxygen and Nitrogen (i.e. smallest levels of contamination from stellar nucleosynthesis)

- **Lithium Abundance**
 - measured in Pop II stars in the Halo
 - Lithium is very easily destroyed hence observe the transition from low mass stars (lower surface temperature) whose core material is well mixed by convection to higher mass stars (higher surface temp) where mixing of core is not efficient
Observations of the light element Deuterium

» very easily destroyed in stars

» so look for deuterium in low density clouds of gas seen in absorption along the lines of sight to distant quasars

» differences between Hydrogen and Deuterium nucleus cause a small change in the energies of electron transitions, shifting their absorption lines apart

» this allows the Deuterium to Hydrogen ratio to be measured

» gas cloud absorbed the quasar light when the universe was only 10% its current age
Comparison with *inferred* primordial abundances

\(^4\)He observed in extragalactic HII regions:
abundance by mass = 25%

\(^7\)Li observed in the atmospheres of dwarf halo stars:
abundance by number = \(10^{-10}\)

D observed in quasar absorption systems (and locally):
abundance by number = \(3 \times 10^{-5}\)

\(^3\)He in solar wind, in meteorites, and in the ISM:
abundance by number = \(10^{-5}\)
Cosmic Concordance

- **Primordial nucleosynthesis**
 » explains observed light element abundances if the density of normal matter (baryons) in the universe lies around 3.5×10^{-31} g/cm3 or 0.21 hydrogen atoms per cubic meter.

- **Precise observational test**
 » independent measurements of abundances of four different light elements lead to consistent constraints on the density of normal matter.
 » provides confidence that Big Bang nucleosynthesis provides a correct explanation of the formation of the light elements.
The Cosmic Microwave Background as a \textit{baryometer}

ΔT_ℓ provide \textit{independent} measure of $\Omega_B h^2$

Acoustic oscillations in (coupled photon-baryon fluids) Imprint features at $< 1^\circ$ in angular power spectrum

Peak positions and heights sensitive to cosmological parameters e.g.
\textbf{Ratio of 2nd peak/1st peak} \Rightarrow \textbf{baryon density}

BBN vs CMB determinations of baryon density \rightarrow fundamental test of cosmology and thermal history at $z \sim 10^3 - 10^{10}$
WMAP best fit
(WMAPext + 2dFGRS + Lyman α + running sp. index)

\[\Omega_B h^2 = 0.0224 \pm 0.0009 \]

\[\eta_{10} = 6.14 \pm 0.25 \]
Agrees with

Confirms the case for (two kinds of) dark matter

Baryonic dark matter
(warm-hot intergalactic medium, Ly-α clouds…)

+ Non-baryonic dark matter
(neutralino? axion? …)

(Fields & Sarkar, PDG 2008)
Limits on Particle Properties

- **BBN Concordance** rests on balance between interaction rates and expansion rate.
- Allows one to set constraints on:
 - Particle Types
 - Particle Interactions
 - Particle Masses
 - Fundamental Parameters
Constraints from balance of weak rates vs Hubble rate

\[G_F^2 T^5 \sim \Gamma(T_f) \sim H(T_f) \sim \sqrt{G_N N T_f^2} \]

through He abundance

\[\frac{n}{p} \sim e^{-\Delta m/T} \quad \text{fixed at freezeout} \quad Y \sim \frac{2(n/p)}{1+(n/p)} \]

Sets constraints on \(G_F, G_N, N, \text{etc.} \)

Note \(n-p \) mass difference is sensitive to both em and strong interactions, hence \(^4\text{He}\) abundance is \textit{exponentially} sensitive to \textit{all} coupling strengths

Conversely obtain bound of < few % on \textit{any} additional contribution to energy density driving expansion (over the Standard Model value)
Light element abundances are sensitive to expansion history during BBN

\[H^2 \sim G \rho_{\text{rel}} \]

\(\Rightarrow \) observed values constrain relativistic energy density

\[\rho_{\text{rel}} \equiv \rho_{\text{EM}} + N_{\nu, \text{eff}} \rho_{\nu\bar{\nu}} \]

Pre-CMB:
4\(^{\text{He}}\) as probe, other elements give \(\eta \)

With \(\eta \) from CMB:
- All abundances can be used
- 4\(^{\text{He}}\) still sharpest probe
- D competitive if measured to 3%

“This constrains sterile neutrinos (and other hypothetical particles) which do not couple to the \(Z^0 \) … complementary to laboratory bounds e.g from LEP.”