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Comments About This draft

This is a set of course notes hoping to someday be a book.

Unfortunately, there is a huge difference between course notes and a
book. This is why I need everyone’s help. If there are parts that you
think are unclear – please let me know. If there are errors — please let
me know (even if they are small and subtle). If the figures are unclear
— please let me know. If there are mistakes in grammar — please let
me know.
If you don’t get the jokes... well, that is your problem. Seriously

though, I need help if this is eventually going to arrive at the Nirvana
that is bookdom. Give me feedback please. It will be good for your
Karma. ⌣̈





Some thoughts about this book

This book originated as part of a lecture course given at Oxford in the
fall of 2016 and then again in 2017, 2018, 2019, 2020, . . . and this kept
going until I finished the book, which seemed like forever.
The idea of this book is to give a general introduction to topological

quantum ideas. This includes topological quantum field theories, topo-
logical quantum memories, topological quantum computing, topological
matter and topological order — with emphasis given to the examples of
toric code, loop gases, string nets, and particularly quantum Hall effects.
The book is aimed at a physics audience (i.e., we avoid the language of
category theory like the plague!), although some mathematicians may
also find the perspectives presented here to be useful.

How to read this book

The book was originally written to be read roughly sequentially. How-
ever, you may be able to jump around quite a bit depending on your
interests. When the toric code is introduced, it is quite independent of
the prior chapters on the general structure of TQFTs. In the course I
teach, I am certainly not assigning all of the chapters — I’m not a sadist!
I should also mention that chapter 41 introduces some basic mathe-

matics that many people may know but I thought should be included
for completeness.
There are often small hitches and caveats that are swept under the

rug in the name of simplifying the discussion. I try to footnote these
caveats when they occur. Many technical details are pushed to chapter
appendices — often these can be skipped on a first reading.
In a margin note of my previous book (Simon [2013]), I said that

my next book (i.e., this one) would be about two dimensional electron
systems. This topic is covered in the section on fractional quantum Hall
effect1.

1I also suggested that I might write a
thriller about physicists defeating drug
smugglers. For those who are inter-
ested, I’m still working on it, but I dis-
covered that writing a novel is pretty
hard.

A list of useful references is given etc.
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Introduction: History of
Topology, Knots, Peter Tait and
Lord Kelvin 1

Very Easy Material

The field of quantum topology inhabits a beautiful nexus between math-
ematics, computer science, and physics. Within the field of physics, it
has been fundamental to a number of subfields. On the one hand, topol-
ogy and topological matter are key concepts of modern condensed matter
physics1. Similarly, in the field of quantum information and quantum 1The 2016 Nobel Prize was awarded

to Kosterlitz, Thouless, and Haldane
for the introduction of topological ideas
into condensed matter physics. The
topic of this book is a great-grand-
daughter of some of those ideas. In
chapters 36 and 35 we will discuss some
of the key works that this Nobel Prize
honored.

computation, topological ideas are extremely prominent2. At the same

2We will see this starting in chapter 24
below.

time much of our modern study of topological matter is rooted in ideas of
topological quantum field theories that developed from the high energy
physics, quantum gravity3, and string theory community starting in the

3See chapter 6.

1980s. These earlier works have even earlier precedents in physics and
mathematics. Indeed, the historical roots of topology in physics date all
the way back to the 1800s which is where we will begin our story.

Fig. 1.1 A smoke ring or vortex loop
is an invisible ring in space where the
fluid flows around the invisible ring as
shown by the arrows. The whole thing
moves out of the plane of the page at
you as the fluid circulates.

In 1867 Lord Kelvin4 and his close friend Peter Tait were interested
in a phenomenon of fluid flow known as a smoke ring5, configurations of

5Even in 1867, a talented smoker could
produce a smoke ring from their mouth.

fluid flow where lines of vorticity form closed loops as shown in Fig. 1.1.
Peter Tait built a machine that could produce smoke rings, and showed
it to Kelvin who had several simultaneous epiphanies. First, he realized
that there should be a theorem (now known as Kelvin’s circulation theo-
rem) stating that in a perfectly dissipationless fluid, lines of vorticity are
conserved quantities, and the vortex loop configurations should persist
for all time. Unfortunately, few dissipationless fluids exist — and the
ones we know of now, such as superfluid helium at very low tempera-
tures, were not discovered until the next century6. However, at the time,

6In fact Helium was not even discov-
ered yet in 1867!

scientists incorrectly believed that the entire universe was filled with a
perfect dissipationless fluid, known as Luminiferous Aether, and Kelvin
wondered whether one could have vortex loops in the Aether.
At the same time, one of the biggest mysteries in all of science was

the discreteness and immutability of the chemical elements. Inspired by
Tait’s smoke ring demonstration, Kelvin proposed that different atoms
corresponded to different knotting configurations of vortex lines in the
Aether. This theory of “vortex atoms” was appealing in that it gave a

4Actually, in 1867 he was just William Thomson, but he would later be elevated to
the peerage and take the name Lord Kelvin after the River Kelvin that flowed by his
laboratory.
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reason why atoms are discrete and immutable — on the one hand there
are only so many different knots that one can make. (See for example,
the list of the simplest few knots you can form from one piece of string
shown in Fig. 1.2.) On the other hand, by Kelvin’s circulation theorem,
the knotting of the vortices in a dissipationless fluid (the Aether) should
be conserved for all time. Thus, the particular knot could correspond to
a particular chemical element, and this element should never change to
another one. Hence the atoms should be discrete and immutable!

Fig. 1.2 The simplest few knots made
from one strand of string. The top
knot, a simple loop, is known as the
“unknot”, and corresponds to the sim-
ple smoke ring in Fig. 1.1. The second
knot from the top, known as the trefoil,
is not the same as its mirror image (see
exercise 2.1)

For several years the vortex theory of the atom was quite popular,
attracting the interest of other great scientists such as Maxwell, Kirch-
hoff, and J. J. Thomson (no relation). However after further research
and failed attempts to extract predictions from this theory, the idea of
the vortex atom lost popularity.
Although initially quite skeptical of the idea, Tait eventually came

to believe that by building a table of all possible knots (knotted con-
figuration of strands such that there are no loose ends) he would gain
some insight into the periodic table of the elements, and in a remarkable
series of papers he built a catalogue of all knots with up to 7 crossings
(the first few entries of the table being shown in Fig. 1.2). From his
studies of knots, Tait is viewed as the father of the mathematical theory
of knots, which has been quite a rich field of study since that time (and
particularly during the last fifty years).
During his attempt to build his “periodic table of knots”, Tait posed

what has become perhaps the fundamental question in mathematical
knot theory: how do you know if two pictures of knots are topologically
identical or topologically different. In other words, can two knots be
smoothly deformed into each other without cutting any of the strands.
Although this is still considered to be a difficult mathematical problem,
a powerful tool that helps answer this question is the idea of a “knot
invariant” which we will study in the next chapter. Shortly, it will
become clear how this idea is related to physics.
Although Tait invented a huge amount of mathematics of the theory

of knots7 and developed a very extensive table of knots, he got no closer
to understanding anything about the periodic table of the atoms. In
his later life he became quite frustrated with his lack of progress in this
direction and he began to realize that understanding atoms was probably
unrelated to understanding knots. Tait died8 in 1901 not realizing that
his work on the theory of knots would be important in physics, albeit
for entirely different reasons.

7Some of his conjectures were way ahead of their time — some being proven only in
the 1980s or later! See Stoimenow [2008] for a review of the Tait conjectures proven
after 1985.
8Peter Tait was also a huge fan of golf and wrote some beautiful papers on the
trajectory of golf balls. His son, Freddie Tait, was a champion amateur golfer, being
the top amateur finisher in the British Open six times and placing as high as third
overall twice. Freddie died very young, at age 30, in the Boer wars in 1900. This
tragedy sent Peter into a deep depression from which he never recovered.
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Further Reading

• Daniel S. Silver, “Knot Theory’s Odd Origins”, American Scien-
tist, Volume 94, 2006.





Kauffman Bracket Invariant and
Relation to Physics 2

Easy Material

The purpose of this chapter is to introduce you to a few of the key ideas
and get you interested in the subject!

2.1 The Idea of a Knot Invariant

Topological equivalence. We say two knots are topologically equiva-
lent if they can be deformed smoothly into each other without cutting1.
For example, the picture of a knot (or more properly, the picture of the
link of two strings) on the left of Fig. 2.1 is topologically equivalent to
the picture on the right of Fig. 2.1.

=

Fig. 2.1 Topological equivalence of
two knots. The knot on the left can be
deformed continuously into the knot on
the right without cutting any strands.

It may appear easy to determine whether two simple knots are topo-
logically equivalent and when they are not. However, for complicated
knots, it becomes extremely difficult to determine whether two knots are
equivalent or inequivalent. It is thus useful to introduce a mathematical
tool known as a knot invariant that can help us establish when two knots
are topologically inequivalent.
A Knot Invariant is a mapping from a knot (or a picture of a knot)

to an output via a set of rules which are cooked up in such a way that
two topologically equivalent knots must give the same output. (See
Fig. 2.2.) So if we put two knots into the set of rules and we get two
different outputs, we know immediately that the two knots cannot be
continuously deformed into each other without cutting. ❄

Rules

Such that
topologically
equivalent
knots give the
same output

Output

Knot

Fig. 2.2 Schematic description of a
knot invariant as a set of rules taking an
input knot to some mathematical out-
put such that topologically equivalent
knots give the same output.

To demonstrate how knot invariants work, we will use the example of
the Kauffman bracket invariant2,3 (See Kauffman [1987]). The Kauff-

3The term “bracket” is due to a com-
mon notation where one draws a pic-
ture of a knot inside brackets to indi-
cate that one is supposed to evaluate
this invariant. We will not draw these
brackets.

1A few pieces of fine print here. (1) I am not precise about knot versus link. Strictly
speaking a knot is a single strand, and a link is more generally made of multiple
strands. Physicists call them all knots. In either case no dangling ends are al-
lowed. A knot can be defined as a particular embedding of a circle (S1) into a
three dimensional reference manifold such as R3 (regular 3-dimensional space) with
no self-intersections. A link is an embedding of several circles into the three dimen-
sional manifold with no intersections. (2) When I say “topologically equivalent” here
I mean the concept of regular isotopy (See section 2.2.1 and 2.6.1). Two knots are
isotopic if there is a continuous smooth family of knots between the initial knot and
the final knot — however to be more precise, as we will see below in section 2.2.1,
we should think of the knots as being thickened to ribbons and we want a smooth
family of ribbons.
2Be warned: there are multiple things named after Kauffman. The particular nor-
malization of the bracket invariant that we use has been named the topological bracket
by Kauffman. The more common definition of the bracket is our definition divided
by d.
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man bracket invariant was essentially invented by Vaughan Jones who
won the Fields medal for his work on knot theory[Jones, 1985]. Kauff-
man’s important contribution to this story (among his many other con-
tributions in the field of knot theory) was to explain Jones’ work in very
simple terms.
To define the Kauffman Bracket Invariant, we start with a scalar

variable A. For now, leave it just a variable, although later we may
give it a value. There are then just two rules to the Kauffman bracket
invariant. First, a simple loop of string (with nothing going through it)
can be removed from the diagram and replaced with the number454We will eventually see that d stands

for “dimension”.
5There is a hidden assumption that an
empty diagram has value 1. This means
that the overall value of a diagram with
a single loop is d, the overall value of
a diagram of two unlinked loops is d2,
and so forth.

d = −A2 −A−2
. (2.1)

The second rule replaces a diagram that has a crossing of strings by a
sum of two diagrams where these strings don’t cross — where the two
possible uncrossings are weighted by A and A−1 respectively as shown
in Fig. 2.3. This type of replacement rule is known as a skein rule.66The word “skein” is an infrequently

used English word meaning loosely
coiled yarn, or sometimes meaning an
element that forms part of a compli-
cated whole (probably both of these are
implied for our mathematical usage).
“Skein” also means geese in flight, but
I suspect this is unrelated.

= −A2 − A−2 = d

= A + A−1

= A + A−1

Fig. 2.3 Rules for evaluating the Kauffman bracket invariant. The
third line is exactly the same as the middle line except that all the
diagrams are rotated by 90 degrees, so it is not an independent rule.
However, it is convenient to draw the rule twice to make it easier to
compare to other diagrams.

The general scheme is to use the second (and third) rule of Fig. 2.3
to remove all crossings of a diagram. In so doing, one generates a sum
of many diagrams with various coefficients. Then once all crossings are
removed, one is just left with simple loops, and each loop can just be
replaced by a factor of d.
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= A + A−1

= A





A + A−1





+ A−1





A + A−1





= A2d2 + d + d3 + A−2d2

−d3

= d

Fig. 2.4 Example of evaluation of the Kauffman bracket invariant for the simple twisted loop in the
upper left. The light dotted red circle is meant to draw attention to where we apply the Kauffman
crossing rule (the middle line in Fig. 2.3) to get the two diagrams on the right hand side. After
applying the Kauffman rules again (the final line in Fig. 2.3), we have removed all crossings and we
are left only with simple loops, which each get the value d. In the penultimate line we have used
the definition of d to replace A2 + A−2 = −d. The fact that we get d in the end of the calculation
is expected since we know that the original knot is just a simple loop (the so-called “unknot”) and
the Kauffman rules tell us that a loop gets a value d.
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To give an example of how these rules work we show evaluation of
the Kauffman bracket invariant for the simple knot in the upper left of
Fig. 2.4. The output of the calculation is that the Kauffman invariant
of this knot comes out to be d. This result is expected since we know
that the original knot (in the upper left of the figure) is just a simple
loop (the so-called “unknot”) and the Kauffman rules tell us that a loop
gets a value d. We could have folded over this knot many many times77To a mathematician the Kauffman in-

variant is an invariant of regular isotopy
— see Section 2.2.1 below.

and still the outcome of the Kauffman evaluation would be d.
The idea of a knot invariant seems like a great tool for distinguishing

knots from each other. If you have two complicated knots and you do
not know if they are topologically equivalent, you just plug them into
the Kauffman machinery and if they don’t give the same output then
you know immediately that they cannot be deformed into each other
without cutting8. However, a bit of thought indicates that things still

8The converse is not true. If two knots
give the same output, they are not nec-
essarily topologically equivalent. It is
an open question whether there are any
knots besides the simple unknot (a sim-
ple loop) which has Kauffman invariant
d. It is also an open challenge to find
out whether any combinatoric knot in-
variants similar to Kauffman can dis-
tinguish all topologically inequivalent
knots from each other.

get rapidly difficult for complicated knots. In the example of Fig. 2.4 we
have two crossings, and we ended up with 4 diagrams. If we had a knot
with N crossings we would have gotten 2N diagrams, which can be huge!
While it is very easy to draw a knot with 100 crossings, even the world’s
largest computer would not be able to evaluate the Kauffman bracket
invariant of this knot! So one might then think that this Kauffman
bracket invariant is actually not so useful for complicated knots. We
will return to this issue later in Section 2.4.

2.2 Relation to Physics

There is a fascinating relationship between knot invariants and quantum
physics. For certain types of so-called “topological quantum systems”
the amplitudes of space-time processes can be directly calculated via
knot invariants such as the Kauffman bracket invariant.
We should first comment that most of what we will discuss in this

book corresponds to 2 dimensional systems plus 1 dimension of time.
There are topological systems in 3+1 dimension (and higher dimensions
as well!) but more is known about 2+1 D and we will focus on that at
least for now.9

9There is also some discussion of “topo-
logical” systems in 1+1 D in chapter 12
for example.

Figure 2.5 shows a particular space-time process of particle world lines.
At the bottom of the figure is shown the shaded 2 dimensional system
(a disk). At some early time there is a pair creation event — a particle-
antiparticle appear from the vacuum, then another pair creation event;
then one particle walks around another, and the pairs come back to-
gether to try to reannihilate. At the end of the process, it is possible
that the particles do reannihilate to the vacuum (as shown in the di-
agram), but it is also possible that (with some probability amplitude)
the particle-antiparticle pairs form bound states that do not annihilate
back to the vacuum.

ti
m
e

Fig. 2.5 A space-time process show-
ing world lines of particles for a
2+1 dimensional system (shown as the
shaded disk at the bottom). The X’s
mark the points in space-time where
particles-anti-particle pairs are either
pair-created or pair-annihilated.

In a topological theory, the quantum amplitude for these processes
depends on the topology of the world lines, and not on the detailed
geometry (I.e., the probability that the particles reannihilate versus form
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bound states). In other words, as long as the topology of the world lines
looks like two linked rings, it will have the same quantum amplitude as
that shown in Fig. 2.5. It should surprise us that systems exist where
amplitudes depend only on topology, as we are used to the idea that
amplitudes depend on details of things, like details of the Hamiltonian,
how fast the particles move, and how close they come together. But in
a topological theory, none of these things matter. What matters is the
topology of the space-time paths.
What should be obvious here is that the quantum amplitude of a

process is a knot invariant. It is a mapping from a knot (made by the
world lines) to an output (the amplitude) which depends only on the
topology of the knot. This connection between quantum systems and
knot invariants was made famously by Ed Witten, one of the world’s
leading string theorists [Witten, 1989]. He won the Fields medal along
with Vaughan Jones for this work.
Such topological theories were first considered as an abstract possi-

bility, mainly coming from researchers in quantum gravity (see chapter
6). However, now several systems are known in condensed matter which
actually behave like this. While not all topological theories are related
to the Kauffman bracket invariant, many of them are (There are other
knot invariants that occur in physical systems as well — including the so-
called HOMFLY invariant[Freyd et al., 1985]. See exercise 30.) A brief
table of some of the physical systems that are believed to be related to
nontrivial knot invariants is given in Table 2.1.
In addition there are a host of complicated systems that could in

principle be engineered but are much too hard for current technology to
contemplate. There are many other quantum hall states that are also
topological, but have corresponding knot invariants are fairly trivial, as
we will later see in chapter ***.
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(1) SU(2)2 class. For these, the Kauffman bracket invariant
gives the quantum amplitude of a process by using the
value A = ie−iπ/(2(2+2)) = i3/4. This is also known as
“Ising” anyons10. Possibly physical realizations include

• ν = 5/2 Fractional Quantum Hall Effect (2D elec-
trons at low temperature in high magnetic field). See
chapters ***.

• 2D p-wave superconductors.

• 2D Films of 3HeA superfluid11.

• A host of “engineered” structures that are designed
to have these interesting topological properties. Typ-
ically these have a combination of spin-orbit coupling,
superconductivity, and magnetism of some sort. Re-
cent experiments have been quite promising. See
chapter ***?

(2) SU(2)3 class. For this, the Kauffman bracket invariant
gives the quantum amplitude of a process by using the
value A = ie−iπ/(2(2+3)) = i4/5. The only physical system
known in this class is the ν = 12/5 fractional quantum hall
effect.

(3) SU(2)4 class. For this, the Kauffman bracket invariant
gives the quantum amplitude of a process by using the
value A = ie−iπ/(2(2+4)) = i5/6. It is possible that ν =
2 + 2/3 Fractional quantum hall effect is in this class.

(4) SU(2)1 class Also known as semions. These are proposed
to be realized in rotating boson fractional quantum Hall
effect (See comments in chapter 39). This corresponds to
a fairly trivial knot invariant as we will see later in section
***.

(5) SU(3)2 class. This corresponds to a case of the HOMFLY
knot invariant rather than the Kauffman bracket invariant.
It is possible that the unpolarized ν = 4/7 fractional quan-
tum hall effect is in this class.

10The Ising conformal field theory, de-
scribes the critical point of the 2D
classical Ising model. We will dis-
cuss the relationship between confor-
mal field theory and topological theo-
ries in chapter 39.

11Two Nobel Prizes have been given for
work on Helium-3 superfluidity.

Table 2.1 Table of some interesting topological systems related to knot invariants.
Note that these are closely related to, but not precisely the same as SU(2)k Chern-
Simons theory (which we discuss in chapter 5). The slight differences are related to
extra phases that appear in braiding. See also chapter ****. See end of chapter for
references ***
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2.2.1 Twist and Spin-Statistics

Before moving on, let us do some more careful examination of the Kauff-
man bracket invariant. To this end, let us examine a small curl in a piece
of string (as shown in Fig. 2.6) and try to evaluate its Kauffman bracket
invariant.

+A−1= A

=

(
A [−A2 − A−2] + A−1

)
= −A3

Fig. 2.6 Evaluation of a curl in a string. The dotted lines going
off the top and bottom of the diagrams mean that the string will be
connected up with itself, but we are not concerned with any part
of the knot except for piece shown. The result of this calculation is
that removal of the curl incurs a factor of −A3.

We see from the calculation, that the curl in the string has value of
−A3 compared to a straight string. But this seems to contradict what we
said earlier! We claimed earlier that any two knots that can be deformed
into each other without cutting should have the same Kauffman bracket
invariant, but they don’t!
The issue here is that the curled string on the right and the curled

string on the left are, in fact, not topologically equivalent12. To see this

12In mathematics we say they are am-
bient isotopic but not regular isotopic!
(See section 2.6.1)

we should think of the string as not being infinitely thin, but instead
having some width, like a garden hose, or a “ribbon”13. If we imagine

13We should thus think of our knots as
not just being a simple embedding of a
circle S1 into a three manifold R3, but
rather an embedding of a ribbon. This
is equivalent to specifying an orthog-
onal vector at each point along knot
which gives the orientation of the rib-
bon cross section at each point. When
one draws a knot as a line, one must
have a convention as to what this means
for the orientation of the ribbon. See
comment on blackboard framing at the
end of this section.

straightening a thick string (not an infinitely thin string) we realize that
pulling it straight gives a twisted string (see fig 2.7) — anyone who has
tried to straighten a garden hose will realize this!14

14If you have not had this experience
with a garden hose, you are not paying
enough attention to your garden!

So the curled string is equivalent to a string with a self-twist, and this
is then related to a straight string by the factor of −A3. In fact, this is a
result we should expect in quantum theory. The string with a self-twist
represents a particle that stays in place but rotates around an axis. In
quantum theory, if a particle has a spin, it should accumulate a phase
when it does a 2π rotation, and indeed this factor of −A3 is precisely
such a phase in any well defined quantum theory.
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pull tight
= −A3

Fig. 2.7 Pulling straight a curl introduces a twist in the string.

This twist can be replaced with a factor of −A3.

In fact, Fig. 2.7 is a very slick proof of the famous spin statistics the-
orem. In the left picture with the curl, we have two identical particles
that change places. When we pull this straight, we have a single particle
that rotates around its own axis. In quantum theory, the phases accu-
mulated by these two processes must be identical. As we will see below
in chapter 3, in 2+1 D this phase can be arbitrary (not just +1, or -1),
but the exchange phase (statistical phase) and the twist phase (the spin
phase) must be the same15.

15In the most interesting case of non-
abelian statistics, there may be mul-
tiple possible exchange phases for two
particles, although this does not effect
the equivalence of diagrams stated here.
We will discuss this more in chapter 3.

As a side comment, one can easily construct a knot invariant that
treats the curled string on the left of Fig. 2.6 as being the same as
the straight piece of string. One just calculates the Kauffman bracket
invariant and removes a factor of −A3 for each self twist that occurs16.16To properly count the self twists,

one calculates the so-called “writhe”
of the knot (See section 2.6.2). Give
the string an orientation (a direction to
walk along the string) and count +1
for each positive crossing and -1 for
each negative crossing where a positive
crossing is when, traveling in the direc-
tion of the string that crosses over, one
would have to turn left to switch to the
string that crosses under. If we orient
the twisted string on the left of Fig. 2.6
as up-going it then has a negative cross-
ing by this definition.

This gives the famed Jones Polynomial knot invariant. See exercise 2.4.

2.2.2 Blackboard Framing

Since it is important to specify when a strand of string has a self-twist
(as in the middle of Fig. 2.7) it is a useful convention to use so-called
blackboard framing. With this convention we always imagine that the
string really represents a ribbon and the ribbon always lies in the plane
of the blackboard. An example of this is shown in Fig. 2.8. If we intend
a strand to have a self twist, we draw it as a curl as in the left of Fig. 2.7
or the left of Fig. 2.6.

⇒

Fig. 2.8 Blackboard framing. The knot drawn on the left represents the ribbon on
the right, where the ribbon always lies flat in the plane of the page (i.e., the plane of
the blackboard).
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2.3 Bras and Kets

For many topological theories (the so-called nonabelian theories) the
physical systems have an interesting, and very unusual property. Imag-
ine we start in a ground state (or vacuum) of some systems and create
two particle-hole pairs, and imagine we tell you everything that you
can locally measure about these particles (their positions, if their spin,
etc etc). For most gapped systems (insulators, superconductors, charge
density waves) once you know all of the locally measurable quantities,
you know the full wavefunction of the system. But this is not true for
topological systems.17 As an example, see Fig. 2.9. 17Particles in topological systems seem

to “remember” their space-time his-
tory. The reason for this, as we will
see in chapter 4 and thereafter, is that
this historical information becomes en-
coded in the properties of the vacuum;
i.e., the regions away from the particles.

|1〉 =|0〉 =

ti
m
e

Fig. 2.9 Two linearly independent quantum states that look iden-
tical locally but have different space-time history. The horizontal
plane is a space-time slice at fixed time, and the diagrams are all
oriented so time runs vertically.

〈1| =〈0| = ti
m
e

Fig. 2.10 Kets are turned into bras by reversing time.

To demonstrate that these two different space-time histories are lin-
early independent quantum states, we simply take inner products as
shown in Fig. 2.11 by gluing together a ket with a bra. Since 〈0|0〉 =
〈1|1〉 = d2 but 〈0|1〉 = d, we see that |0〉 and |1〉 must be linearly in-
dependent, at least for |d| 6= 1. (We also see that the kets here are
not properly normalized, we should multiply each bra and ket by 1/d in
order that we have normalized states.)
We can think of the |0〉 and |1〉 states as being particular operators

that produce particle-hole pairs from the vacuum, and (up to the issue
of having properly normalized states) the inner product produced by
graphical gluing a bra to a ket is precisely the inner product of these
two resulting states. So for example, the inner product 〈0|1〉 as shown in
the bottom of Fig. 2.11 can be reinterpreted as starting from the vacuum,
time evolving with the operator that gives |0〉 then time evolving with
the inverse of the operator that produces |1〉 to return us to the vacuum.
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〈0|0〉 = = = d2

〈1|1〉 = = = d2

〈0|1〉 = = = d

Fig. 2.11 Showing that the kets |0〉 and |1〉 are linearly indepen-
dent. For |d| 6= 1 the inner products show they must be linearly
independent quantities.

Suppose now we insert a braid between the bra and the ket as shown in
Fig. 2.12. The braid makes a unitary operation on the two dimensional
vector space spanned by |0〉 and |1〉. We can once again evaluate this
matrix element by calculating the Kauffman bracket invariant of the
resulting knot.

|0〉 =

〈0| =

= 〈0|Braid|0〉

Fig. 2.12 Inserting a braid between the bra and the ket. The braid
performs a unitary operation on the two dimensional vector space
spanned by |0〉 and |1〉
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2.4 Quantum Computation with Knots

Why do we care so much about topological systems and knot invariants?
A hint is from the fact that we wrote states above as |0〉 and |1〉. This
notation suggests the idea of qubits18, and indeed this is one very good 18One of my favorite quotes is “Any id-

iot with a two state system thinks they
have a quantum computer.” The objec-
tive here is to show that we are not
just any idiot — that quantum com-
puting this way is actually a good idea!
We will discuss quantum computation
more in chapter 11.

reason to be interested.
It turns out that many topological quantum systems can compute

quantities efficiently that classical computers cannot. To prove this,
suppose you wanted to calculate the Kauffman invariant of a very com-
plicated knot, say with 100 crossings. As mentioned above, a classical
computer would have to evaluate 2100 diagrams, which is so enormous,
that it could never be done. However, suppose you have a topological
system of Kauffman type in your laboratory. You could actually arrange
to physically measure the Kauffman bracket invariant19. The way we do
this is to start with a system in the vacuum state, arrange to “pull”
particle-hole (particle-antiparticle) pairs out of the vacuum, then drag
the particles around in order to form the desired knot, and bring them
back together to reannihilate. Some of the particles will reannihilate,
and others will refuse to go back to the vacuum (forming bound states
instead). The probability that they all reannihilate is (up to a normaliza-
tion20) given by the absolute square of the Kauffman bracket invariant

20If we pull a single particle-hole pair
from the vacuum and immediately
bring them back together, the proba-
bility that they reannihilate is 1. How-
ever, the spacetime diagram of this is a
single loop, and the Kauffman bracket
invariant is d. The proper normaliza-
tion is that each pair pulled from the
vacuum and then returned to the vac-
uum introduces a 1/

√
d factor in front

of the Kauffman bracket invariant.of the knot (since amplitudes are the Kauffman bracket invariant, the
square of the Kauffman bracket invariant is the probability). Even esti-
mation of the Kauffman bracket invariant of a large knot is essentially
impossible for a classical computer, for almost all values of A. However,
this is an easy task if you happen to have a topological quantum system
in your lab!21 Thus the topological quantum system has computational

21The details of this are a bit subtle
and are discussed by Aharonov et al.
[2009]; Aharonov and Arad [2011]; Ku-
perberg [2015].

ability beyond that of a classical computer.
It turns out that the ability to calculate Kauffman bracket invariant is

sufficient to be able to do any quantum computation22. One can use

22In fact the computational power of
being able to evaluate the Kauffman
bracket for fixed A is equivalent to
the computational power of a quantum
computer, with the exception of a few
special values of the Kauffman param-
eter A.

this so-called topological quantum computer to run algorithms such
as Shor’s famous factoring (i.e., code breaking) algorithm23. The idea

23See Nielsen and Chuang [2000], for
example, for more detail about quan-
tum computation in general.

of using topological systems for quantum computation is due to Michael
Freedman and Alexei Kitaev24.

24Freedman is another Fields medalist,
for his work on the Poincare conjecture
in 4D. Alexei Kitaev is one of the most
influential scientists alive, a MacArthur
winner, Milnor Prize winner, etc. Both
smart people. Freedman is also a cham-
pion rock climber.

So it turns out that these topological systems can do quantum com-
putation. Why is this a good way to do quantum computation?18. First
we must ask about why quantum computing is hard in the first place.
In the conventional picture of a quantum computer, we imagine a bunch
of two state systems, say spins, which act as our qubits. Now during
our computation, if some noise, say a photon, or a phonon, enters the

19Perhaps the first statements ever made about a quantum computer were made by the Russian mathematician Yuri Manin,
in 1980. He pointed out that doing any calculation about some complicated quantum system with 100 interacting particles
is virtually impossible for a classical computer. Say for 100 spins you would have to find the eigenvalues and eigenvectors of
a 2100 dimensional matrix. But if you had the physical system in your lab, you could just measure its dynamics and answer
certain questions. So in that sense the physical quantum system is able to compute certain quantities, i.e., its own equations
of motion, that a classical computer cannot. In the following year Feynman started thinking along the same lines and asked
the question of whether one quantum system can compute the dynamics of another quantum system — which starts getting
close to the ideas of modern quantum computation.
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system and interacts with a qubit, it can cause an error or decoherence,
which can then ruin your computation. And while it is possible to pro-
tect quantum systems from errors (we will see in section *** below how
you do this) it is very hard.
Now consider what happens when noise hits a topological quantum

computer. In this case, the noise may shake around a particle, as shown
in Fig. 2.13. However, as long as the noise does not change the topology
of the knot, then no error is introduced. Thus the topological quan-
tum computer is inherently protected from errors. (of course sufficiently
strong noise can change the topology of the knot and still cause errors.)

noise

⇒

Fig. 2.13 The effect of noise on a topological quantum computa-
tion. As long as the noise does not change the topology of the knot,
then no error is introduced.

2.5 Some Quick Comments about Fractional
Quantum Hall Effect

There will be chapters later about Fractional Quantum Hall Effect (FQHE).
But it is worth saying a few words about FQHE as a topological system
now.
FQHE occurs in two dimensional electronic systems25 in high mag-

25Electronic systems can be made two
dimensional in several ways. See com-
ments in chapter ??. netic field at low temperature (typically below 1K). There are many

FQHE states which are labeled by their so called filling fraction ν = p/q
with p and q small integers. The filling fraction can be changed in exper-
iment by, for example, varying the applied magnetic field (we will discuss
this later in chapter ??). The FQHE state emerges at low temperature
and is topological26.

26A comment in comparing this
paradigm to the common paradigm of
high energy physics: In high energy
there is generally the idea that there
is some grand unified theory (GUT)
at very high energy scale and it is
extremely symmetric, but then when
the universe cools to low temperature,
symmetry breaks (such as electro-weak
symmetry) and we obtain the physics
of the world around us. The paradigm
is opposite here. The electrons in
magnetic field at high temperature
have no special symmetry. However,
as we cool down to lower temperature,
a huge symmetry emerges. The topo-
logical theory is symmetric under all
diffeomorphisms (smooth distortions)
of space and time.

How do we know that the system is topological? There are not a
whole lot of experiments that are easy to do on quantum Hall systems,
since they are very low temperature and complicated experiments to do.
However, one type of experiment is fairly straightforward — a simple
electrical resistance measurement, as shown in Figs. 2.14 and 2.15. In ,
Fig. 2.14 the so-called longitudinal resistance is measured — where the
current runs roughly parallel to the voltage. In this case the measured
voltage is zero — like a superconductor. This shows that this state of
matter has no dissipation, no friction.
The measurement in the Fig. 2.15 is more interesting. In this case,

the Hall voltage is precisely quantized as V = (h/e2)(1/ν)I where I is
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V

I

2D electron sample

in B-field

V = 0

Dissipationless Flow

Fig. 2.14 Measurement of longitudinal resistance in FQHE experiment.

V

I

2D electron sample

in B-field

V = (h/e2)(1/ν)I

Quantized Resistance

Fig. 2.15 Measurement of Hall resistance in FQHE experiment.

the current, h is Plank’s constant, e the electron charge and ν = p/q is a
ratio of small integers. This quantization of V/I is extremely precise —
to within about a part in 1010. This is like measuring the distance from
London to Los Angeles to within a millimeter. What is most surprising is
that the measured voltage does not depend on details, such as the shape
of the sample, whether there is disorder in the sample, or where you put
the voltage leads or how you attach them as long as the current and
voltage leads are topologically crossed, as they are in the Fig. 2.15, but
not in Fig. 2.14. We should emphasize that this is extremely unusual. If
you were to measure the resistance of a bar of copper, the voltage would
depend entirely on how far apart you put the leads and the shape of the
sample. This extremely unusual independence of all details is a strong
hint that we have something robust and topological happening here.
Finally we can ask about what the particles are that we want to braid

around each other in the FQHE case. These so-called quasiparticles are
like the point-vortices of the FQHE superfluid. As we might expect for a
dissipationless fluid, the vortices are persistent — they will last forever
unless annihilated by antivortices.
So in fact, Kelvin was almost right (See chapter 1). He was thinking

about vortices knotting in the dissipationless aether. Here we are think-
ing about point vortices in the dissipationless FQHE fluid, but we move
the vortices around in time to form space-time knots!
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2.6 Appendix: More Knot Theory Basics

2.6.1 Isotopy and Reidermeister Moves

Two knots (or two pictures of knots) are ambient isotopic if one can
be deformed into each other other without cutting any of the strands.
In order for two pictures of knots to be ambient isotopic they must
be related to each other by a series of moves, known as Reidermeister
moves27, as shown in Fig. 2.16.

27This is a very old result, by Kurt
Reidemeister from 1927. Note that it
may take many many moves in order
to bring a knot into some particular
desired form. For example, if there
are c crossings in a diagram which is
equivalent to the simple unknot (an un-
knotted loop), the strongest theorem
yet proven is that it can be reduced to
the simple unknot with (236c)11 moves
[Lackenby, 2015].

↔ Type I

↔ Type II

↔ Type III

Fig. 2.16 The Three Reidermeis-
ter Moves. Any two knots that can
be deformed into each other without
cutting (they are “ambient isotopic”)
can be connected by a series of Rei-
dermeister moves. Strictly speaking
the Reidermeister moves includes the
moves drawn here as well as the front-
back mirror-reflections of each of these
moves (turn all over-crossings to under-
crossings).

In the context of quantum physics, and as elaborated in section 2.2.1,
we are usually concerned with regular isotopy which treats the strands as
ribbons. Two knots are regular isotopic if they can related to each other
using only type-II and type-III moves. A type-I move inserts a twist
in the ribbon (See Fig. 2.7) and results in a different ribbon diagram,
whereas type-II and III moves do not twist the ribbon28.

28For regular isotopy of link dia-
grams one should allow cancellation
of opposite ribbon curls which is
sometimes known as a type-I′ move.

↔ Type I′

.

2.6.2 Writhe and Linking

Let us put arrows on all strands of our knots and links (so now we have
directed lines). For each crossing we define a sign ǫ as shown in Fig. 2.17

= −1 = +1

Fig. 2.17 Defining a sign ǫ = ±1 for each crossing of oriented knots and links.

The writhe w of an oriented knot (here “knot” means made of a
single strand) is the sum of all of the ǫ values of the crossings

w(knot) =
∑

crossings

ǫ(crossing) (2.2)

Note that type II and III Reidermeister moves preserve the writhe of a
knot, whereas type I moves do not. Thus, the writhe is an invariant of
regular isotopy but not of ambient isotopy.
For a link made of two strands, the linking number lk between the

two strands is given by

lk(link) =
∑

crossings between
two different strands

ǫ(crossing) (2.3)
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Chapter Summary

• Knot invariants, such as the Kauffman bracket invariant, help dis-
tinguish knots from each other.

• The quantum dynamics of certain particles are determined by cer-
tain knot invariants.

• Computation of certain knot invariants is computationally “hard”
on a classical computer, but not hard using particles whose dy-
namics is given by knot invariants.

• Computation by braiding these particles is equivalent to any other
quantum computer.

• Physical systems which have these particles include fractional
quantum Hall effect.

Further Reading

• The book by Kauffman [2001] is a delightful introduction to knot
theory and connections to physics. This was the book that got
me interested in the subject back when I was in grad school and
changed the course of my life.

• I wrote another easy reading introduction, Simon [2010], connect-
ing knots to anyons.

• Some nice introductory books on knots include Adams [1994], and
Sossinsky [2002]. A beautiful set of course notes on knot theory is
given by Roberts [2015].

Exercises

Exercise 2.1 Trefoil Knot and the Kauffman Bracket
Using the Kauffman rules, calculate the Kauffman bracket invariant of the

right and left handed trefoil29 knots shown in Fig. 2.18. Conclude these two

29The word “trefoil” is from the plant
trifolium, or clover, which has com-
pound trifoliate leaves.

knots are topologically inequivalent. While this statement appears obvious
on sight, it was not proved mathematically until 1914 (by Max Dehn). It is
trivial using this technique!

Fig. 2.18 Left and Right Handed Tre-
foil Knots (on the left and right respec-
tively)

Exercise 2.2 Abelian Kauffman Anyons
Anyons described by the Kauffman bracket invariant with certain special

values of the constant A are abelian anyons – meaning that an exchange
introduces only a simple phase as shown in Fig. 2.19.
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(a) For A = ±eiπ/3 (and the complex conjugates of these values), show that
the anyons are bosons or fermions respectively (i.e., eiθ = ±1).

(b) For A = ±eiπ/6 (and the complex conjugates of these values) show the
anyons are semions (i.e., eiθ = ±i). In fact these are precisely the anyons that
arise for the ν = 1/2 fractional quantum Hall effect of bosons (We will discuss
this later in this book (See chapter 37). This particular phase of quantum
Hall matter has been produced experimentally(Clark et al. [2020]), but only
in very small puddles so far and it has not been possible to measure braiding
statistics as of yet.

= eiθ

Fig. 2.19 For abelian anyons, ex-
change gives a phase eiθ .

HINT: For (a) and (b) show first the identity shown in Fig. 2.20.

= ±

Fig. 2.20 For bosons or fermions the
sign in this figure is +, for semions the
sign is −.

If you can’t figure it out, try evaluating the Kauffman bracket invariant for
a few knots with these values of A and see how the result arises.

Exercise 2.3 Reidermeister moves and the Kauffman Bracket
Show that the Kauffman bracket invariant is unchanged under application of

Reidermeister move of type II and type III. Thus conclude that the Kauffman
invariant is an invariant of regular isotopy.

Exercise 2.4 Jones polynomial
Let us define the Jones polynomial of an oriented knot as

Jones(knot) = (−A3)w(knot) Kauffman(knot)

where w is the writhe (We must first orient the knot, meaning we arrows on the
strands, in order to define a writhe). Show that this quantity is an invariant of
ambient isotopy – that is, it is invariant under all three Reidermeister moves.

Exercise 2.5 HOMFLY Polynomial
The HOMFLY30 polynomial is a generalization of the Jones polynomial30HOMFLY is an acronym of the

names of the inventors of this poly-
nomial. Sometimes credit is even
more distributed and it is called HOM-
FLYPT.

which has two variables X and z rather than just one variable. To define
the HOMFLY polynomial we must first orient the strings in our knot or link
(meaning we put arrows on the lines). The HOMFLY polynomial (Freyd
et al. [1985]; Przytycki and Traczyk [1987]) of an oriented link is then defined
in terms of two variables X and z by the two rules

= (X+X−1)
z=

X +X−1 = z

(a) Given the definition of the Jones polynomial in Exercise 2.4, for what
value ofX and z does the HOMFLY polynomial become the Jones polynomial?

(b) Calculate the HOMFLY polynomial of the right and left handed trefoil
knots (shown in Fig. 2.18).
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Particle Quantum Statistics 3
Easy Material

In chapter 2 we discussed braiding particles around each other, or ex-
changing their positions. This is often what we call particle statistics
(or quantum statistics, or exchange statistics). What we mean by this
is “what happens to the many particle wavefunction when particles are
exchanged in a certain way.”
We are familiar with bosons and fermions1,2. If we exchange two 1Bose cooked up the current picture of

Bose statistics in 1924 in the context of
photons and communicated it to Ein-
stein who helped him get it published.
Einstein realized the same ideas could
be applied to non-photon particles as
well.
2Based on ideas by Pauli, Fermi-Dirac
statistics were actually invented by Jor-
dan in 1925. Jordan submitted a paper
to a journal, where Max Born was the
referee. Born stuck the manuscript in
his suitcase and forgot about it for over
a year. During that time both Fermi
and Dirac published their results. Jor-
dan could have won a Nobel Prize (po-
tentially with Born) for his contribu-
tions to quantum physics, but he be-
came a serious Nazi and no one really
liked him much after that. Born felt
terribly guilty about his mistake later
in life, stating “I hate Jordan’s poli-
tics, but I can never undo what I did
to him.”

bosons the wavefunction is unchanged, if we exchange two fermions the
wavefunction accumulates a minus sign. Various arguments have been
given as to why these are the only possibilities. The argument usually
given in introductory books is as follows3:

3The error in this argument is that
one has to be much more careful about
defining what one means about an “ex-
change”.

If you exchange a pair of particles then exchange them again, you
get back where you started. So the square of the exchange operator
should be the identity, or one. There are two square roots of one:
+1 and −1, so these are the only two possibilities for the exchange
operator.

In the modern era this argument is considered to be incorrect (or
at least not really sufficient). To really understand the possibilities in
exchange statistics, it is very useful to think about quantum physics
from the Feynman path integral point of view.4

4If you are familiar with path integrals
you can certainly skip down to section
3.2. If you are not familiar with path
integrals, please do not expect this to
be a thorough introduction! What is
given here is a minimal introduction to
give us what we need to know for our
purposes and nothing more! See the
Further Reading for this chapter for a
better introduction.

3.1 Single Particle Path Integral

Consider a space-time trajectory of a single non-relativistic particle. We
say that we have x moving in RD where D is the dimension of space, so
we can write x(t) where t is time.
Given that we start at position xi at the initial time ti we can define a

so-called propagator which gives the amplitude of ending up at position
xf at the final time tf . This can be written as

〈xf |Û(tf , ti)|xi〉

where Û is the (unitary) time evolution operator.
The propagator can be used to propagate forward in time some arbi-

trary wavefunction ψ(x) = 〈x|ψ〉 from ti to tf as follows

〈xf |ψ(tf )〉 =
∫
dxi 〈xf |Û(tf , ti)|xi〉 〈xi|ψ(ti)〉

If we are trying to figure out the propagator from some microscopic
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calculation, there are two very fundamental properties it must obey.
First, it must be unitary — meaning no amplitude is lost along the
way (normalized wavefunctions stay normalized). Secondly it must obey
composition: propagating from ti to tm and then from tm to tf must be
the same as propagating from ti to tf . We can express the composition
law as

〈xf |Û(tf , ti)|xi〉 =
∫
dxm 〈xf |Û(tf , tm)|xm〉 〈xm|Û(tm, ti)|xi〉

The integration over xm allows the particle to be at any position at
the intermediate time (and it must be at some position). Another way
of seeing this statement is to realize that the integral over xm is just
insertion of a complete set of states at some intermediate time

1 =

∫
dxm|xm〉〈xm|.

Feynman’s genius was to realize that you can subdivide time into
infinitesimally small pieces, and you end up doing lots of integrals over
all possible intermediate positions. In order to get the final result, you
must sum over all values of all possible intermediate positions, or all
possible functions x(t). Feynman’s final result is that the propagator
can be written as

〈xf |Û(tf , ti)|xi〉 = N
∑

paths x(t) from
(xi, ti) to (xf , tf )

eiS[x(t)]/~ (3.1)

where N is some normalization constant. Here S[x(t)] is the (classical!)
action of the path

S =

∫ tf

ti

dt L[x(t), ẋ(t), t]

with L the Lagrangian.
The sum over paths in Eq. 3.1 is often well defined as a limit of dividing

the path into discrete time steps and integrating over x at each time.
We often rewrite this sum over paths figuratively as a so-called path
integral

〈xf |Û(tf , ti)|xi〉 = N
∫ (xf ,tf )

(xi,ti)

Dx(t) eiS[x(t)]/~ (3.2)

Analogous to when we evaluate regular integrals of things that look
like

∫
dx eiS[x]/~, we can approximate the value of this integral in the

small ~, or classical, limit by saddle point approximation. We do this
by looking for a minimum of S with respect to its argument — this
is where the exponent oscillates least, and it becomes the term which
dominates the result of the integral. Similarly, with the path integral,
the piece that dominates in the small ~ limit is the piece where S[x(t)]
is extremized — the function x(t) which extremizes the action. This is
just the classical principle of least action!
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3.2 Two Identical Particles

We would now like to generalize the idea of a path integral to systems
with multiple identical particles, starting with the case of two particles.
If the particles are identical there is no meaning to saying that particle
one is at position x1 and particle two is at position x2. This would be the
same as saying that they are the other way around. Instead, we can only
say that there are particles at both positions x1 and x2. To avoid the
appearance of two different states expressed as |x1,x2〉 versus |x2,x1〉
(which are actually the same physical state!5), it is then useful to simply

5Often books define |x1,x2〉 =
−|x2,x1〉 for fermions. The two kets
describe the same state in the Hilbert
space only with a different phase
prefactor. We should contrast this to
the case of distinguishable particles
where |x1,x2〉 and |x2,x1〉 have no
overlap for x1 6= x2

agree on some convention for which coordinate we will always write first
— for example, maybe we always write the leftmost particle first6. For

6This ordering scheme works in one
dimension. In two dimensions we
would perhaps say, the particle with the
smaller x coordinate is written first, but
in case of two particles with the same
value of x, the particle with smaller y
coordinate is written first.

simplicity, we can assume that x1 6= x2, i.e., the particles have hard cores
and cannot overlap7. For these indistinguishable particles, the Hilbert

7It is sometimes even more convenient
to declare |x1 − x2| > ǫ.

space is then cut in half compared to the case of two distinguishable
particles where |x1,x2〉 and |x2,x1〉 mean physically different things.
We call the space of all states the configuration space C. To construct

a path integral, we want to think about all possible paths through this
configuration space. The key realization is that the space of all paths
through the configuration space C divides up into topologically inequiv-
alent pieces. I.e., certain paths cannot be deformed into other paths by
a series of small deformations.
What do these topologically disconnected pieces of our space of paths

look like? For example, we might consider the two paths as shown in
Fig. 3.1. Here we mean that time runs vertically. It is not possible
to continuously deform the path on the left into the path on the right
assuming the end points are fixed.

No Exchange Exchange

TYPE +1 TYPE −1

versus

Fig. 3.1 Two possible sets of paths
(paths in configuration space) from the
same two starting positions to the same
two ending positions (we are implying
that time runs vertically). We call the
non-exchange path TYPE +1, and the
exchange path TYPE −1. Here we
mean that time runs vertically. The
two sets of paths cannot be continu-
ously deformed into each other assum-
ing the end points are fixed. Note
that we may be able to further refine
our classification of paths — for exam-
ple, we may distinguish over and under-
crossings, but for now we will only be
concerned with exchanges (TYPE −1)
and non-exchanges (TYPE +1)

We will call the non-exchange path TYPE +1 (left in Fig. 3.1), and the
exchange path TYPE−1 (right in Fig. 3.1). The two sets of paths cannot
be continuously deformed into each other assuming the end points are
fixed. Note that we may be able to further refine our classification of
paths — for example, we may distinguish over- and under-crossings,
but for now we will only be concerned with exchanges (TYPE −1) and
non-exchanges (TYPE +1).
Paths can be composed with each other. In other words, we can follow

one path first, then follow the second. We can write a multiplication
table for such composition of paths (the path types form a group, see
Section 41.2)

TYPE +1 Followed by TYPE +1 = TYPE +1
TYPE +1 Followed by TYPE −1 = TYPE −1
TYPE −1 Followed by TYPE +1 = TYPE −1
TYPE −1 Followed by TYPE −1 = TYPE +1

(3.3)

So for example, an exchange path (which switches the two particles)
followed by another exchange path (which switches again) results in a
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net path that does not switch the two particles.
Now let us try to construct a path integral, or sum over all possible

paths. It is useful to think about breaking up the sum over paths into
separate sums over the two different classes of paths8.8If |x1ix2i〉 6= |x1fx2f 〉, i.e., if the ini-

tial and final endpoints of the path are
not the same, then we need a more gen-
eral definition of what we call TYPE
+1 versus TYPE −1. One simple pos-
sible definition is to count the num-
ber of times the space-time paths cross
given a particular fixed viewing angle.
For example, we can use the order-
ing rule of note 6 above and as time
evolves, we can count the number of
times the ordering changes (which cor-
responds to a crossing of the world lines
as in Fig. 3.1). An even number of such
crossings would correspond to a TYPE
+1 path, and an odd number of cross-
ings would correspond to a TYPE −1
path. Other consistent definitions are
also possible as long as the multiplica-
tion rule of Eq. 3.3 is maintained.

〈x1fx2f |Û(tf , ti)|x1ix2i〉 = N
∑

paths
i→f

eiS[path]/~ =

N




∑

TYPE +1 paths
i→f

eiS[path]/~ +
∑

TYPE −1 paths
i→f

eiS[path]/~




This second line is simply a rewriting of the first having broken the
sum into the two different classes of paths.
It turns out however, that it is completely consistent to try something

different. Let us instead write8

〈x1fx2f |Û(tf , ti)|x1ix2i〉 = (3.4)

N




∑

TYPE +1 paths
i→f

eiS[path]/~ −
∑

TYPE −1 paths
i→f

eiS[path]/~




Notice the change of sign for the TYPE −1 paths.
The reason this change is allowed is because it obeys the composition

law. To see this, let us check to see if the composition law is still obeyed.
Again, we break the time propagation at some intermediate time99The sum over intermediate states nec-

essarily requires us to include the case
discussed in note 8 above. 〈x1fx2f |Û(tf , ti)|x1ix2i〉 =

∫
dx1mdx2m 〈x1fx2f |Û(tf , tm)|x1mx2m〉 〈x1mx2m|Û(tm, ti)|x1ix2i〉

∼
∫
dx1mdx2m




∑

TYPE +1
m→f

−
∑

TYPE −1
m→f







∑

TYPE +1
i→m

−
∑

TYPE −1
i→m


 eiS[path]/~

where in the last line we have substituted in Eq. 3.4 for each of the two
propagators on the right, and we have used a bit of shorthand in writing
the result.
Now, when we compose together subpaths from i→ m with those from

m → f to get the overall path, the sub-path types multiply according
to our above multiplication table Eq. 3.3. For the full path, there are
two ways to obtain a TYPE +1 path: (1) both sub-paths are TYPE +1
or (2) both sub-paths are TYPE −1. In either case, note that the net
prefactor of the overall TYPE +1 path is +1. (In the case where both
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subpaths are of TYPE −1, the two prefactors of −1 cancel each other).
Similarly, we can consider full paths with overall TYPE −1. In this case,
exactly one of the two sub-paths must be of TYPE −1, in which case, the
overall sign ends up being −1. Thus, for the full path, we obtain exactly
the intended form written in Eq. 3.4. I.e., under composition of paths,
we preserve the rule that TYPE +1 paths get a +1 sign and TYPE −1
paths get a −1 sign. Thus this is consistent for quantum mechanics, and
indeed, this is exactly what happens in the case of fermions.

3.3 Many Identical Particles

Generalizing this idea, to figure out what is consistent in quantum me-
chanics, we must do two things:

(a) Characterize the space of paths through configuration space
(b) Insist on consistency under composition.

Let us first discuss our configuration space. If we had N distinguish-
able particles in D dimensions we would have a configuration space
(RD)N representing the coordinates {x1,x2,x3, . . . ,xN}. For simplic-
ity we usually assume all of these coordinates are different (We might
imagine that the particles are hard spheres of some very small diameter
ǫ). Thus we write the configuration space as [(RD)N −∆] where ∆ rep-
resents the so-called coincidences where two particles are at the same
position10. 10Mathematicians often write

(RD)N \∆ to represent removing
∆ from the set (RD)N .

In the case of identical particles we want to disregard the order in
which we write the coordinates. In other words, we have an equivalence
relationship ∼ between the N ! possible orderings of the coordinates

{x1,x2,x3, . . . ,xN} ∼ {x2,x3,x7, . . . ,x9} ∼ {x3,xN ,x2, . . . ,x1} ∼ . . .

Thus for indistinguishable particles the configuration space is

C = [(RD)N −∆] / ∼

where “/ ∼” means that we are “modding out” by the equivalence rela-
tionship ∼. This is just a fancy way to say that the order in which we list
the coordinates {x1,x2,x3, . . . ,xN} does not matter (or as described in
section 3.2, we choose some convention for the order, like always writ-
ing the left-most first). In the case of 2 identical particles above, this
reduced the Hilbert space by a factor of 2. With N identical particles
this will reduce the Hilbert space by a factor of N !. This is the same
indistinguishability factor which is familiar from the Gibbs paradox of
statistical mechanics.
We would now like to consider all possible paths through this con-

figuration space C. In other words we want to consider how these N
different points move in time. We can think of this as a set of coor-
dinates moving through time {x1(t), . . .xN (t)} but we must be careful
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that the particles are indistinguishable, so the order in which we write
the coordinates doesn’t matter. We can think of this as N directed
curves moving in ND + 1 dimensional space11. Since we want to add

11The curves are directed because we
do not allow them to double-back in
time as shown in Fig. 3.2, that would
represent particle-hole creation or anni-
hilation, which we do not yet consider. up all of these possible paths in a path integral it is useful to try to

understand the structure of this space of paths better.

ti
m
e

Fig. 3.2 A double-back in time is not
allowed in our considerations here (and
not allowed in the braid group) as it
corresponds to creation and annihila-
tion of particles at the turning around
points.

Again, the key realization is that the space of all paths through the
configuration space C divides up into topologically inequivalent pieces.
I.e., certain paths cannot be deformed into other paths by a series of
small deformations assuming the endpoints are fixed. The group of
paths through C is familiar to mathematicians and is known as the first
homotopy group Π1(C) or fundamental group12 (See section 41.3). The

12In fact what we really want is the
fundamental groupoid which allows for
the fact that the initial and final posi-
tions of particles may not be the same.
However, for illustration, the funda-
mental group will be sufficient.

reason this is a group is that it comes with a natural operation, or
multiplication of elements — which is the composition of paths: follow
one path, then follow another path.

3.3.1 Paths in 2+1 D, the Braid Group

A path through the configuration space of particles in 2 dimensions is
known as a braid. An example of a braid is shown in Fig.3.3.

ti
m
e

Fig. 3.3 A path through configuration
space for 3 Particles in 2 dimensions
(i.e, world lines in 2+1 D) is a braid
with three strands.

A few notes about braids:

(1) Fixing the endpoints, the braids can be deformed continuously,
and so long as we do not cut one string through another, it still
represents the same topological class, or the same element of the
braid group.

(2) We cannot allow the strings to double-back in time as in Fig. 3.2.
This would be pair creation or annihilation, which we will consider
later, but not now.

The set of braids have mathematical group structure (See section
41.2): multiplication of two braids is defined by stacking the two braids
on top of each other – first do one then do another. It is easy to see that
braids can be decomposed into elementary pieces which involve either
clockwise or counterclockwise exchange of one strand with its neighbor.
These elementary pieces involving single exchanges are known as gener-
ators.
The braid group on N strands is typically notated as BN . The gener-

ators of the braid group on 4 strands are shown in Fig. 3.4. Any braid
can be written as a product of the braid generators and their inverses13.

13The identity element 1 of the braid
group is everything that is topologically
equivalent to the non-braid, i.e., parti-
cles that do not change their position
in space at all. It is easy to see that
σiσ

−1
i = 1.

The “multiplication” of the generators is achieved simply by stacking
the generators on top of each other. An expression representing a braid,
such as σ1σ2σ

−1
3 σ1 is known as a “braid word.” Typically we read the

braid word from right to left (do the operation listed right-most first),
although sometimes people use the opposite convention! The important
thing is to fix a convention and stick with it!
Note that many different braid words can represent the same braid.

An example of this is shown for B4 in Fig. 3.5. Although a braid can
be written in many different ways14, it is possible to define invariants of
the braid which do not change under deformation of the braid — so long
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σ1 = σ2 = σ3 =

σ−1
1 = σ−1

2 = σ−1
3 =

Fig. 3.4 The three generating elements σ1, σ2, σ3 of the braid group on 4 strands,

B4, and their inverses σ−1
1 , σ−1

2 , σ−1
3 . Any braid on four strands (any element of

B4) can be written as a product of the braid generators and their inverses by simply
stacking these generators together (See Fig. 3.5 for examples).

σ−1
1 σ−1

2 σ1 =

third second first

= σ2 σ
−1
1 σ−1

2=

.

Fig. 3.5 Two braid words in B4 that represent the same braid. The figure on the
left can be continuously deformed to the one on the right, keeping endpoints fixed.
The braidwords are read from right to left indicating stacking the generators from
bottom to top.15

as the braid is topologically unchanged. One very useful braid invariant
is given by the so-called winding number

W = Winding Number

= (# of overcrossings) − (# of undercrossings)

where an overcrossing is a σ and an undercrossing is a σ−1. As can be
checked in Fig. 3.5, the winding number is independent of the particular
way we represent the braid. As long as we do not cut one strand through
another or move the endpoints (or double-back strands) the winding
number, a braid invariant, remains the same.

14

14All braid word equivalences can be
derived from the identity

σnσn+1σn = σn+1σnσn+1

For example, try deriving Fig. 3.5 from
this. See also exercise 3.1.

15The observant reader will see the
similarity here to Reidermeister moves
of type-III discussed in section 2.6.1.
Similarly σiσ

−1
i = 1 is a type-II move.

3.3.2 Paths in 3+1 D, the Permutation Group

In one dimension:

Two objects cannot cross

In two dimensions:

Two objects can go around each other

Fig. 3.6 Top: In one dimension,
two points cannot cross through each
other without hitting each other. Bot-

tom: However, if we allow the points
to move in two dimensions they can get
around each other without touching.
This is supposed to show you that one-
dimensional world-lines cannot form
knots in four-dimensional space.

We now turn to consider physics in 3+1 dimensions. A key fact is that it
is not possible to knot a one-dimensional world-line that lives in a four-
dimensional space. If this is not obvious consider the following lower
dimensional analogue,16 shown in Fig. 3.6. In one dimension, two points
cannot cross through each other without hitting each other. But if we
allow the points to move in 2D they can move around each other without
touching each other. Analogously we can consider strings forming knots
or braids in 3D space. When we try to push these strings through each

16It would be very convenient to be able to draw a diagram in four dimensions!
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other, they bump into each other and get entangled. However, if we allow
the strings to move into the fourth dimension, we can move one string
a bit off into the fourth dimension so that it can move past the other
string, and we discover that the strings can get by each other without
ever touching each other! Hence there are no knots of one dimensional
objects embedded in four dimensions.
Given that in 3+1 D world-lines cannot form knots, the only thing

that is important in determining the topological classes of paths is where
the strings start and where they end. In other words, we can draw things
that look a bit like braid-diagrams but now there is no meaning to an over
or under-crossing. If the world line lives in 3+1 dimensions, everything
can be unentangled without cutting any of the world lines until the
diagram looks like Fig. 3.7: indicating only where lines start and end.
This is precisely describing the permutation group, or symmetric group
SN (see section 41.2.1). Note that in the symmetric group an exchange

1 2 3 4

1 2 3 4

Fig. 3.7 Paths in 3+1 D are elements
of the permutation group (or symmet-
ric group) SN (See section 41.2.1).
Shown here is an element of S4.

squared does give the identity. However, in the braid group this is not
so — the braid σ2

i is not the identity since it creates a nontrivial braid!17
17One way to think about the relation-
ship between the symmetric group and
the braid group is to say that the sym-
metric group SN is a “truncation” of
the braid group BN , meaning that it
obeys the same group properties, ex-
cept that in SN , the element σ2i has
been identified with the identity.

3.3.3 Building a Path Integral

We now return to the issue of building a path integral. We will follow
the intuition we gained in the two particle case, but now we will include
the information we have discovered about the group of paths through
configuration space.
Using the notation {x} to denote all of the N particle coordinates, we

construct the path integral as

〈{x}f |Û(tf , ti)|{x}i〉 = N
∑

g ∈ G

ρ(g)
∑

paths ∈ g
i→f

eiS[path]/~ (3.5)

Here G is the group of paths (the fundamental group — or the set of
classes of topologically different paths). This is the symmetric group
SN for 3+1 dimensions and is the braid group BN for 2+1 dimensions.
Here we have split the sum over paths into the different classes — the
outer sum being a sum over the classes g and the inner sum being the
sum over all paths of type g, i.e., a set of paths that can be continuously
deformed into each other. We have also introduced18 a factor of ρ(g) out

18In the nonabelian case discussed in
section 3.5 below the ket |{x}〉 is given
an additional index to become |n, {x}〉
with n = 1 . . .M . This then implies
a basis choice for the M -dimensional
space, and this basis choice for one set
of positions {x} can be chosen indepen-
dently of the basis choice for a differ-
ent set of positions. When the initial
and final positions are not the same we
can make two independent basis choices
and changing these choices simply pre-
or post- multiplies the representation ρ
by the appropriate basis changing uni-
taries. This caution is related to notes
8 and 12 above.

front where ρ is a unitary representation of the group G. (See section
41.2.4 on group theory).
In the case where the initial set of position |{x}i〉 and the final set of

position |{x}f〉 are not the same (similar to the case mentioned in note
8 above) the definition 3.5 can still be used, although strictly speaking
these are not precisely what we would call braids or permutations (for
which initial and final positions are supposed to match). Nonetheless
we can associate an element g of the braid or permutation group to
each space-time path by viewing the motion from some fixed angle and
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smoothly deforming the paths such that start and endpoints are at some
reference positions without introducing any new crossings to the paths19. 19A crossing can be defined as a re-

ordering of coordinates as in note 6
above.

To show that Eq. 3.5 is allowed by the laws of quantum mechanics,
we need only check that it obeys the composition law – we should be
able to construct all paths from i to f in terms of all paths from i to m
and all paths from m to f .

〈{x}f |Û(tf , ti)|{x}i〉 =

=

∫
d{x}m 〈{x}f |Û(tf , tm)|{x}m〉 〈{x}m|Û(tm, ti)|{x}i〉

∼
∫
d{x}m



∑

g1 ∈ G

ρ(g1)
∑

paths ∈ g1
m→f






∑

g2 ∈ G

ρ(g2)
∑

paths ∈ g2
i→m


 eiS[path]/~

So we have constructed all possible paths from i to f and split them
into class g2 in the region i to m and then class g1 in the region m
to f . When we compose these paths we will get a path of type g1g2.
The prefactors of the paths ρ(g1) and ρ(g2) then multiply and we get
ρ(g1)ρ(g2) = ρ(g1g2) since ρ is a representation (the preservation of
multiplication is the definition of being a representation! See section
41.2.4). So the prefactor of a given path from i to f is correctly given
by ρ(g) where g is the topological class of the path. In other words, the
form shown in Eq. 3.5 is properly preserved under composition, which
is what is required in quantum mechanics!

3.4 Abelian Examples

Let us consider the case where the representation ρ of our group G of
paths through configuration space is one dimensional — in other words
it is a mapping from g to a complex phase.20 20We call these cases abelian since the

group G is commutative.This case seems to be most applicable in the quantum mechanics
we know, because this representation is acting on the wavefunction of
our system — and we are quite familiar with the idea of wavefunctions
accumulating a complex phase.

3.4.1 3+1 Dimensions

In 3+1 D, the group G of paths through configuration space is the sym-
metric group SN . It turns out that there are only two possible21 one- 21See exercise 3.2. This is a fairly short

proof!dimensional representations of SN :

• Trivial rep: In this case ρ(g) = 1 for all g. This corresponds to
bosons, The path integral is just a simple sum over all possible
paths with no factors inserted.

• Alternating (or sign) rep: In this case ρ(g) = +1 or −1 depend-
ing on whether g represents an even or odd number of exchanges.
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In this case the sum over all paths gets a positive sign for an even
number of exchanges and a negative sign for an odd number. This
is obviously fermions and is the generalization of the two particle
example we considered above in section 3.2 where the exchange
was assigned a −1.

3.4.2 2+1 Dimensions

In 2+1 D, the group G of paths through configuration space is the braid
groupBN . We can describe the possible one-dimensional representations
by a single parameter θ. We write the representation

ρ(g) = eiθW (g)

where W is the winding number of the braid g. In other words, a clock-
wise exchange accumulates a phase of eiθ whereas a counterclockwise
exchange accumulates a phase of e−iθ.

• For θ = 0 there is no phase, and we simply recover bosons.

• For θ = π we accumulate a phase of −1 for each exchange no
matter the direction of the exchange (since eiπ = e−iπ). This is
fermions.

• Any other value of θ is also allowed. This is known as Anyons, or
fractional statistics. They are also known as abelian anyons
in contrast with the nonabelian case which we will discuss in a
moment.

The fact that this fractional statistics is consistent in quantum me-
chanics was first point out by Leinaas and Myrheim [1977]22,23, and

22There is no reason why this should
not have been discovered in the 1930s,
but no one bothered to think about it.
It is a lucky coincidence that an exper-
imental system of anyons was discov-
ered so soon after the theoretical pro-
posal (fractional quantum Hall effect,
discovered by Tsui, Stormer, and Gos-
sard [1982], see chapter ***), since the
original theoretical work was entirely
abstract, and they were not thinking
about any particular experiment.

23The use of the braid group for de-
scribing statistics in two dimension
dates back to Goldin et al. [1983]. The
use of the symmetric group for under-
standing statistics in three dimensions
appears to go back further to Laidlaw
and DeWitt [1971].

popularized by Wilczek [1982]24. Soon thereafter, Halperin [1984] and

24Among other things, Wilczek coined
the term anyon. (He also won a Nobel
Prize for asymptotic freedom.)

then Arovas, Schrieffer, and Wilczek [1984] showed theoretically that
anyons really occur in fractional quantum Hall systems. We will exam-
ine these physical systems in detail starting in chapter ??.

3.5 Nonabelian Case

Can we do something more interesting and exotic by using a higher di-
mensional representation of the group G = BN of paths in configuration
space? Generally in quantum mechanics, higher dimensional represen-
tations correspond to degeneracies, and indeed this is what is necessary.
Suppose we have a system with N particles at a set of positions {x}.

Even once we fix the positions (as well as the values of any local quan-
tum numbers, like any “color” or “flavor” or ”spin” degree of freedom
associated with the particle), suppose there still remains an M -fold de-
generacy of the state of the system. We might describe the M states as
|n; {x}〉 for n = 1 . . .M . An arbitrary wavefunction of the system can
then be expressed as25

25If we want |ψ〉 normalized then there
is a normalization condition on the
An coefficients. For example, if the
|n; {x}〉’s are orthonormal then we need∑
n |An|2 = 1 in order that |ψ〉 is nor-

malized.
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|ψ{x}〉 =
M∑

n=1

An|n; {x}〉 (3.6)

with the An’s being some complex coefficients. Given the N positions
{x}, a general wavefunction should be thought of as a vector in M
dimensional complex space. Now that we have a vector, we can use an
M -dimensional representation of the braid group in our path integral!
We thus identify that ρ(g) in Eq. 3.5 is an M by M unitary matrix

ρ(g) → [U(g)]n,n′

which is a representation of G and must also be unitary so as to assure
that probability is conserved. The propagator in Eq. 3.5 should now be
thought of as a propagator between the initial ket |n′; {x}i〉 and the final
bra 〈n; {x}f |. The unitary matrix U(g) will act on the coefficients An
(which is a vector) in Eq. 3.6.

A
(i)
n

A
(f)
n

Fig. 3.8 An initial state is described

by a vector A
(i)
n multiplying the ba-

sis states |n; {x}i〉 as in Eq. 3.6. The
particles are braided around each other
in a braid g and brought back to the
same positions. The final state is again
described in terms of the same basis
vectors but now with coefficients A

(f)
n

which are obtained from the initial vec-
tor by application of the unitary matrix
U(g) as shown in Eq. 3.7. Here U(g) is
a representation of the braid group.

Let us now consider the process shown in Fig. 3.8. Here an initial
wavefunction is represented as shown in Eq. 3.6 as a vector A

(i)
n multi-

plying basis states |n; {x}〉 as in Eq. 3.6. We braid the particles around
each other in some braid g and bring them back to the same positions.
After braiding the wavefunction should still be composed of the same
basis states |n; {x}〉 since the particles are at the same positions and

thus can be written in the form of Eq. 3.6 with a vector A
(f)
n . The final

vector is obtained from the initial vector simply by multiplying by the
unitary operator which is the representation of our braid group element
g

A(f)
n = [U(g)]n,n′A

(i)
n′ (3.7)

A particle that obeys this type of braiding statistics is known as a non-
abelian anyon, or nonabelion.26 The word “nonabelian” means non- 26The idea of nonabelian anyons was

explored first in the 1980s and early 90s
by several authors in different contexts.
Bais [1980] in the context of gauge the-
ories; Goldin et al. [1985], Fröhlich and
Gabbiani [1990] and Fredenhagen et al.
[1989] in very abstract sense; Witten
[1989]; Chen et al. [1989] in the lan-
guage of topological quantum field the-
ories; and Moore and Read [1991] in the
context of quantum Hall effect.

commutative, and the term is used since generically matrices (in this
case the U matrices) don’t commute.
In general the Hilbert space dimension M will be exponentially large

in the number of particles N . We define a quantity d, known as the
quantum dimension such that

M ∼ d
N (3.8)

where the ∼ means that it scales this way in the limit of large N . We
will see a lot more of this quantity d later. It is not coincidence that
we used the symbol d previously in the context of Kauffman anyons!
(See Eq. 2.1) We will see in section 17.1 that (up to a possible sign) this
quantum dimension d is actually the value d of the unknot27.

27Because of the possible sign, we dis-
tinguish the two quantities by using a
different typeface.

Some Quick Comments on Quantum Computing:

Quantum Computing is nothing more than the controlled application of
unitary operations to a Hilbert space28. Unitary operations is exactly

28And initialization and measurement.

what we can do by braiding nonabelions around each other! I.e., we are
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multiplying a vector by a unitary matrix. Thus we see how braiding of
particles, as discussed in chapter 2 can implement quantum computa-
tion.29 In chapter 11 we will give some more explicit descriptions of how29The observant reader will notice that

for quantum computation we are no
longer summing over all possible braids,
but we are specifying a particular braid
that the particles should take in order
to implement a particular unitary op-
eration. To do this we must control
the paths of the particles, by say, hold-
ing them in traps that we move. In
principle all paths are still included in
the path integral, but only the ones we
specify contribute significantly.

one does quantum computation by braiding anyons.

3.5.1 Parastatistics in 3+1 Dimensions

Is it possible to have exotic nonabelian statistics in 3+1 dimensions?
Indeed, there do exist higher dimensional representations of the sym-
metric group, so one can think about particles that obey more com-
plicated statistics even in 3+1 dimensions — which is often known as
parastatistics. However, it turns out that, subject to some “additional
constraints”, it is essentially not possible to get anything fundamentally
new — all we get is bosons and fermions and possibly some internal
additional degrees of freedom. The proof of this statement is due to
Doplicher et al. [1971, 1974] and took some 200 pages when it was first
proven30.30A more concise derivation of the key

portion of this result was given using
modern category theory techniques by
Müger [2007]. While this shorter proof
is only 40 pages long, in order to under-
stand the 40 pages you need to read a
400 page book on category theory first!

However, we should realize that in making statements like this, the fine
print is important. As I mentioned in the previous paragraph we want
to add some “additional constraints” and these are what really limit us
to just bosons and fermions. What are these additional constraints?

(1) We want to be able to pair create and annihilate. This means we
are not just considering the braid group, but rather a more com-
plicated structure that allows not just braiding particles around
each other, but also creating and annihilating and even merging
particles by bringing them together. This structure is given by cat-
egory theory, some parts of which we will encounter (in simplified
language) starting in chapter 8.

(2) We also want some degree of locality. If we do an experiment on
Earth, while off on Jupiter someone creates a particle-antiparticle
pair, we would not want the particles on Jupiter to effect the result
of our experiment on earth at all.

These two restrictions are crucial to reducing the 3+1 D case to only
bosons and fermions. We will not go through the full details of how
this happens. However, once we see the full structure of anyons in 2+1
dimensions, it ends up being fairly clear why 3+1 dimensions will be so
restrictive. We return to this issue in section 20.3 where we will give
further discussion.
We should note that despite this important result, 3+1 D is certainly

not boring — but in order to get “interesting” examples, we have to
relax some of our constraints. For example, if we relax the condition
that “particles” are pointlike, but consider string-like objects instead,
then we can have exotic statistics that describe what happens when
one loop of string moves through another (or when a point-like particle
moves through a loop of string). We would then need to consider the
topology of the world-sheets describing loops moving through time.
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Chapter Summary

• The path integral formulation of quantum mechanics requires us
to add up all possible paths in space time.

• We can add all of these paths in any way that preserves the com-
position law and the different possibilities allow for different types
of particle statistics.

• The topologically different paths of N particles in space-time form
a group structure (the fundamental group of the configuration
space) which is the permutation group SN in 3+1 dimensions, but
is the braid group BN in 2+1 dimensions.

• Particle braiding statistics must be a representation of this group.

• In 3+1 dimensions we can only have bosons and fermions, but in
2+1 dimensions we can have nontrivial braiding statistics which
may be abelian (or “fractional”) or nonabelian.

• Quantum computation can be performed by braiding with certain
nonabelian representations.

Further Reading

• For more discussion of particle statistics, a nice albeit somewhat
dated book is Wilczek [1990].

• A good review discussing many aspects of exotic statistics is Nayak
et al. [2008].

For a basic primer on path integrals see

• R. MacKenzie, Path Integral Methods and Applications,
https://arxiv.org/abs/quant-ph/0004090

• The classic reference on the subject is Feynman and Hibbs [1965].

Exercises

Exercise 3.1 About the Braid Group
(a) Convince yourself geometrically that the defining relations of the braid

group on M particles BM are:

σi σi+1 σi = σi+1 σi σi+1 1 ≤ i ≤M − 2 (3.9)

σi σj = σj σi for |i− j| > 1, 1 ≤ i, j ≤M − 1 (3.10)

(b) Instead of thinking about particles on a plane, let us think about par-
ticles on the surface of a sphere. In this case, the braid group of M strands
on the sphere is written as BM (S2). To think about braids on a sphere, it
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is useful to think of time as being the radial direction of the sphere, so that
braids are drawn as in Fig. 3.9.

The braid generators on the sphere still obey Eqns. 3.9 and 3.10, but they
also obey one additional identity

σ1σ2 . . . σM−2σM−1σM−1σM−2 . . . σ2σ1 = I (3.11)

where I is the identity (or trivial) braid. What does this additional identity
mean geometrically?

Fig. 3.9 An element of the braid
group B3(S2). The braid shown here
is σ1σ

−1
2

[In fact, for understanding the properties of anyons on a sphere, Eq. 3.11
is not quite enough. We will try to figure out below why this is so by using
Ising Anyons as an example.]

Exercise 3.2 About the Symmetric Group
Show that Eqs. 3.9 and 3.10 also hold for the generators of the symmetric

group SM on M particles, where σi exchanges particle i and i + 1. In the
symmetric group we have the additional condition that σ2

i = 1. Prove the
statement used in section 3.4.1 that there are only two one-dimensional rep-
resentations of the symmetric group. Hint: The proof is just a few lines. Use
ρ(σi)ρ(σj) = ρ(σiσj) where ρ is a representation.

Exercise 3.3 Ising Anyons and Majorana Fermions
The most commonly discussed type of nonabelian anyon is the Ising anyon

(we will discuss this in more depth later). Ising anyons occurs in the Moore-
Read quantum Hall state (ν = 5/2), as well as in any chiral p-wave supercon-
ductor and in recently experimentally relevant so called “Majorana” systems.

The nonabelian statistics of these anyons may be described in terms of
Majorana fermions by attaching a Majorana operator to each anyon. The
Hamiltonian for these Majoranas is zero – they are completely noninteracting.

In case you haven’t seen them before, Majorana Fermions γj satisfy the
anticommutation relation

{γi, γj} ≡ γiγj + γjγi = 2δij (3.12)

as well as being self conjugate γ†
i = γi.

(a) Show that the ground state degeneracy of a system with 2N Majoranas
is 2N if the Hamiltonian is zero. Thus conclude that each pair of Ising anyons
is a two-state system. Hint: Construct a regular (Dirac) fermion operator
from two Majorana fermion operators. For example,

c† =
1

2
(γ1 + iγ2)

will then satisfy the usual fermion anti-commutation {c, c†} = cc† + c†c = 1.
(If you haven’t run into fermion creation operators yet, you might want to
read up on this first!) There is more discussion of this transformation in later
exercises 9.7 and 10.2.

(b) When anyon i is exchanged clockwise with anyon j, the unitary trans-
formation that occurs on the ground state is

Uij =
eiα√
2
[1 + γiγj ] i < j. (3.13)

for some real value of α. Show that these unitary operators form a represen-
tation of the braid group. (Refer back to the previous problem, “About the
Braid Group”). In other words we must show that replacing σi with Ui,i+1
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in Eqns. 3.9 and 3.10 yields equalities. This representation is 2N dimensional
since the ground state degeneracy is 2N .

(c) Consider the operator

γFIVE = (i)Nγ1γ2 . . . γ2N (3.14)

(the notation FIVE is in analogy with the γ5 of the Dirac gamma matrices).
Show that the eigenvalues of γFIVE are ±1. Further show that this eigenvalue
remains unchanged under any braid operation. Conclude that we actually have
two 2N−1 dimensional representations of the braid group. We will assume that
any particular system of Ising anyons is in one of these two representations.

(d) Thus, 4 Ising anyons on a sphere comprise a single 2-state system, or a
qubit. Show that by only braiding these four Ising anyons one cannot obtain
all possible unitary operation on this qubit. Indeed, braiding Ising anyons is
not sufficient to build a quantum computer. [Part (d) is not required to solve
parts (e) and (f)]

(e) [bit harder] Now consider 2N Ising anyons on a sphere (See above prob-
lem ”About the braid group” for information about the braid group on a
sphere). Show that in order for either one of the 2N−1 dimensional represen-
tations of the braid group to satisfy the sphere relation, Eqn. 3.11, one must
choose the right abelian phase α in Eq. 3.13. Determine this phase.

(f) [a bit harder] The value you just determined is not quite right. It should
look a bit unnatural as the abelian phase associated with a braid depends
on the number of anyons in the system. Go back to Eqn. 3.11 and insert
an additional abelian phase on the right hand side which will make the final
result of part (e) independent of the number of anyons in the system. In fact,
there should be such an additional factor — to figure out where it comes from,
go back and look again at the geometric “proof” of Eqn. 3.11. Note that the
proof involves a self-twist of one of the anyon world lines. The additional
phase you added is associated with one particle twisting around itself. The
relation between self-rotation of a single particle and exchange of two particles
is a generalized spin-statistics theorem.

Exercise 3.4 Small Numbers of Anyons on a Sphere
On the plane, the braid group of two particles is an infinite group (the group

of integers describing the number of twists!). However, this is not true on a
sphere

First review the problem “About the Braid Group” about braiding on a
sphere.

(a) Now consider the case of two particles on a sphere. Determine the full
structure of the braid group. Show it is a well known finite discrete group.
What group is it?

(b) [Harder] Now consider three particles on a sphere. Determine the full
structure of the braid group. Show that it is a finite discrete group. [Even
Harder] What group is it? It is “well known” only to people who know a lot
of group theory. But you can google to find information about it on the web
with some work. It may be useful to list all the subgroups of the group and
the multiplication table of the group elements.

(c) Suppose we have two (or three) anyons on a sphere. Suppose the ground
state is two-fold degenerate (or more generally N-fold degenerate for some
finite N). Since the braid group is discrete, conclude that no type of anyon
statistics can allow us to do arbitrary SU(2) (or SU(N)) rotations on this
degenerate ground state by braiding





Aharanov-Bohm Effect and
Charge-Flux Composites 4

Easy Material

This chapter introduces a simple model of how fractional statistics anyons
can arise. After reviewing Aharanov-Bohm effect, we describe these ex-
otic particles as charge-flux composites and explore some of their prop-
erties. Finally we see how this fits into the framework of abelian Chern-
Simons theory and briefly discuss its nonabelian generalization.
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Fig. 4.1 The Young two slit experi-
ment (not to scale).

4.1 Review of Aharanov-Bohm Effect
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Fig. 4.2 Adding a magnetic field in-
side the middle box in the Young two
slit experiment. Here the circular re-
gion includes a constant magnetic field.
No magnetic field leaks out of the box.
Nonetheless, if the particle being sent
into the interferometer is charged, the
interference pattern is changed com-
pared to the above figure.

Let us consider the two slit interference experiment shown in Fig. 4.1.
We all know the result of the two slit experiment but let us rewrite the
calculation in the language of a path integral. We can write

∑

paths

eiS/~ =
∑

paths, slit 1

eiS/~ +
∑

paths, slit 2

eiS/~

∼ eikL1 + eikL2

where L1 and L2 are the path lengths through the two respective slits
to whichever point is being measured on the output screen, and k is the
wavevector of the incoming wave. In other words, we get the usual two
slit calculation pioneered by Thomas Young in the early 1800s.
Now let us change the experiment to that shown in Fig. 4.2. Here

we assume the particle being sent into the interferometer is a charged
particle, such as an electron. In this case a magnetic field is added inside
the middle box between the two paths. No magnetic field is allowed to
leak out of the box, so the particle never experiences the magnetic field.
Further the magnetic field is kept constant so the particle does not feel
a Faraday effect either. The surprising result is that the presence of
the magnetic field nonetheless changes the interference pattern obtained
on the observation screen! This effect, named the Aharanov-Bohm ef-
fect, was predicted by Ehrenberg and Siday [1949], then re-predicted
independently by Aharonov and Bohm [1959]1.

1Possibly the reason it is named after the later authors is that they realized the
importance of the effect, whereas the earlier authors pointed it out, but did not
emphasize as much how strange it is! The first experimental observation of the effect
was by Chambers [1960], although many more careful experiments have been done
since.
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So why does this strange effect occur? There are several ways to
understand it, but for our purpose it will be best to stay with the idea
of path integrals and consider the Lagrangian description of particle
motion.
We must recall how a charged particle couples to an electromagnetic

field in the Lagrangian description of mechanics. We write the magnetic
field and electric field in terms of a vector potential

B = ∇×A

E = −∇A0 − dA/dt

where A0 is the electrostatic potential. We can then write the particle
Lagrangian as

L =
1

2m
ẋ2 + q(A(x) · ẋ−A0) (4.1)

where q is the particle charge. It is an easy exercise to check that the
Euler-Lagrange equations of motion that result from this Lagrangian
correctly gives motion under the Lorentz force as we should expect for
a charged particle in an electromagnetic field.22Here are the steps: Start with the

Euler-Lagrange equations

d

dt

∂L

∂ẋk
=

∂L

∂xk .

This gives us

d

dt
(mẋk + qAk)

= mẍk + q
d

dt
Ak + qẋj

∂

∂xj
Ak

= q(ẋj
∂

∂xk
Aj −

∂

∂xk
A0)

So that

mẍk = q(E+ ẋ×B)k .

We are interested in a situation where we add a static magnetic field
to the system. Thus, we need only include qA(x) · ẋ in the Lagrangian.
The action then gets changed by

S → S0 + q

∫
dt ẋ ·A = S0 + q

∫
dl ·A (4.2)

where S0 is the action in the absence of the magnetic field and the
integral on the far right is a line integral along the path taken by the
particle.
Returning now to the two slit experiment. The amplitude of the

process in the presence of the vector potential can be now rewritten as

∑

paths, slit 1

eiS0/~+iq/~
∫
dl·A +

∑

paths, slit 2

eiS0/~+iq/~
∫
dl·A

where S0 is again the action of the path in the absence of the vector
potential.
The physically important quantity is the difference in accumulated

phases between the two paths. This difference is given by

exp

[
iq

~

∫

slit 1
dl ·A− iq

~

∫

slit 2
dl ·A

]
= exp

[
iq

~

∮
dl ·A

]
(4.3)

where the integral on the right is around a loop that goes forward
through slit 1 and then backwards through slit 2.
Using Stokes’ theorem, we have

iq

~

∮
dl ·A =

iq

~

∫

enclosed

dS · (∇×A) =
iq

~
Φenclosed
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where Φenclosed is the flux enclosed in the loop. Thus there is a mea-
surable relative phase shift between the two paths given by iq

~
Φenclosed.

This results in a shift of the interference pattern measured on the obser-
vation screen. Note that although the original Lagrangian Eq. 4.1 did
not look particularly gauge invariant, the end result (once we integrate
around the full path) is indeed gauge independent.
A few notes about this effect:

(1) If Φ is an integer multiple of the elementary flux quantum

Φ0 = 2π~/q,

then the phase shift is an integer multiple of 2π and is hence equiv-
alent to no phase shift.

(2) We would get the same phase shift if we were to move flux around
a charge.3

3This fact is due to Aharonov and
Casher [1984]. To derive it we must
write a Lagrangian for a charge at po-
sition x and a flux at position X. The
charge-flux coupling term analogous to
the coupling term in Eq. 4.1 can be
shown to take the form

q(A(x −X) · (ẋ− Ẋ)

where A is the vector potential asso-
ciated with the flux (this is the only
form possible that will respect Galilean
and translational invariance). Using
this more general form we can derive
the stated result.

(3) More generally for particles moving in space-time one wants to
calculate the relativistically invariant quantity

iq

~

∮
dlµA

µ (4.4) Φ

q

Fig. 4.3 Abelian anyons represented
as charges bound to flux tubes through
the plane. The charge of each particle
is q, the flux of each tube is Φ. Drag-
ging one particle around another incurs
a phase both because charge is moving
around a flux, but also because flux is
moving around a charge.

4.2 Anyons as Charge-Flux Composites

We will now consider a simple model of abelian anyons as charge-flux
composites. Imagine we have a two dimensional system with charges q in
them, where each charge is bound to an infinitely thin flux tube through
the plane, with each tube having flux Φ as shown in Fig. 4.3. We will
notate this charge-flux composite object as a (q,Φ) particle. If we drag
one such particle around another, we then accumulate a phase due to the
Aharanov-Bohm effect. The phase from the charge of particle 1 going
around the flux of particle 2 is eiqΦ/~, whereas the phase for dragging
the flux of 1 around the charge of 2 is also eiqΦ/~, thus the total phase
for dragging 1 around 2 is given by

(Phase of charge-flux composite 1 encircling 2) = e2iqΦ/~

Thus we have (as shown in Fig. 4.4)

Φ

q

Fig. 4.4 An exchange. Two exchanges
is the same as dragging one particle all
the way around the other as shown in
Fig. 4.3.

(Phase for exchange of two charge-flux composites) = eiqΦ/~

and we correspondingly call these particles θ-anyons, with θ = qΦ/~.
Obviously θ = 0 is bosons, θ = π is fermions, but other values of θ are
also allowed, giving us abelian anyons as discussed in chapter 3.
Note that the same type of calculation would show us that taking

a composite particle with charge q1 and flux Φ1 all the way around a
composite particle with charge q2 and flux Φ2 would accumulate a phase
of eiϕ with ϕ = (q1Φ2 + q2Φ1)/~.
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Spin of an anyon

Let us see if we can determine the spin of these anyons. Spin refers to
properties of the rotation operator, so we need to physically rotate the
anyon on its axis. To do this we must think about how the flux is tied
to the charge — we must have some microscopic description of exactly
where the flux is and where the charge is. It is easiest to put the charge
and flux at very slightly different positions as shown in Fig. 4.54. In this

4Almost any prescription for attach-
ing flux to charge (for example, break
the flux into four pieces and attach one
piece on each of four side of the charge)
will give the same result. However, if
we try to put the flux and charge at ex-
actly the same position, we get infini-
ties that we don’t know how to handle!

case, when we rotate the anyon around its axis we move the charge and
flux around each other and we obtain a new phase of

eiqΦ/~ = eiθ

This fits very nicely with the spin statistics theorem — the phase ob-
tained by exchanging two identical particles should be the same as the
phase obtained by rotating one around its own axis. (See the discussion
of Fig. 2.7).

Φ

q

Fig. 4.5 Tying flux to charge. We put
the flux and the charge at slightly dif-
ferent positions. As a result, when we
rotate the particle around its own axis
a phase is accumulated as the charge
and flux go around each other.

4.2.1 Fusion of Anyons

We can consider pushing two anyons together to try to form a new par-
ticle. We expect that the fluxes will add and the charges will add. This
makes some sense as the total charge and total flux in a region should
be conserved (this is an important principle that we will encounter fre-
quently!). We sometimes will draw a “fusion diagram” as in Fig. 4.6 to
show that two anyons have come together to form a composite particle.
A simple example of this is pushing together two particles both having

the same charge and flux (q,Φ). In this case we will obtain a single
particle with charge and flux (2q, 2Φ). Note that the phase of exchanging
two such double particles is now θ = 4qΦ/~ (since the factor of 2 in
charge multiplies the factor of 2 in flux!).

(q1,Φ1) (q2,Φ2)

(q1 + q2,Φ1 + Φ2)

Fig. 4.6 Fusing two anyons to get an
anyon of a different type which has the
sum of fluxes and the sum of charges.

(q,Φ) (−q,−Φ)

I = (0, 0)

=

(q,Φ)

Fig. 4.7 Fusing an anyon and an an-
tianyon to get the vacuum (I) drawn
as dotted line. Note that the antianyon
moving forward in time is drawn as a
downpointing arrow — which looks like
an anyon moving backwards in time.

4.2.2 Anti-Anyons and the Vacuum Particle

We now introduce the concept of an anti-anyon. This is a charge-flux
composite which instead of having charge and flux (q,Φ) has charge
and flux (−q,−Φ). Fusing an anyon with its anti-anyon results in pair
annihilation — the two particles come together to form the vacuum
(which we sometimes5 refer to as the identity I) which has zero total

5The vacuum or identity particle can
be denoted e, or I or 0 or 1 depend-
ing on the context. This nomenclatural
problem stems from a similar problem
in group theory, see section 41.2.

charge and zero total flux, as shown in Fig. 4.7. It may seem a bit odd
to call the absence of any charge or any flux a “particle”. However, this
is often convenient since it allows us to think of pair annihilation (as in
the left of Fig. 4.7) in the language of fusion.
In the right of Fig. 4.7 we show that it is sometimes convenient not

to indicate the vacuum particle. In this case, we have written the anti-
anyon moving forward in time as an anyon moving backwards in time.
If the phase of dragging an anyon clockwise around an anyon is 2θ,

then the phase of dragging an anti-anyon clockwise around an anti-anyon
is also 2θ. (The two minus signs on the two anyons cancel — negative
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flux multiplies negative charge!). However, the phase of dragging an
anyon clockwise around an anti-anyon is −2θ.

4.3 Anyon Vacuum on a Torus and Quantum
Memory

A rather remarkable feature of topological models is that the ground
state somehow “knows” what kind of anyons exist in the model (i.e,
those that could be created), even when they are not actually present.
To see this, consider the ground state of an anyon model on torus (the
surface of a doughnut6.

6See note 1 in chapter 41.

C1
C2

= C2

C1

Fig. 4.8 Drawing a torus as a rectangle
with opposite edges identified. The two
noncontractible cycles around the torus
can be considered to be the edges of the
square, labeled C1 and C2 here.

We can draw the torus as a square with opposite edges identified as
shown in Fig. 4.8. The two cycles around the torus are marked as C1

and C2.
Let us now construct operators that do the following complicated

operations:

T1 is the operator that creates a particle-antiparticle pair, moves
the two in opposite directions around the C1 cycle of the torus
until they meet on the opposite side of the torus and reannihilate.

T2 is the operator that creates a particle-antiparticle pair, moves
the two in opposite directions around the C2 cycle of the torus
until they meet on the opposite side of the torus and reannihilate.

Both of these operators are unitary because they can be implemented
(in principle) with some time-dependent Hamiltonian7. However, the 7For example, we could insert charges

+Q and -Q near to each other which
are strong enough to pull a particle-
antiparticle pair out of the vacuum, the
-Q trapping the +(q,Φ) and the +Q
trapping the (−q,−Φ). Then we can
drag the ± Q charges around a non-
trivial cycle of the torus, dragging the
anyons with them.

two operators do not commute. To see this let us consider the operator
T−1
2 T−1

1 T2T1 where we read time from right to left. This can be inter-
preted as as two particles being created, braiding around each other,
and then reannihilating. This procedure is shown in Fig. 4.9.
So what we have now is two operators T1 and T2 which do not commute

with each other. Indeed, we have8

8At least this relation should be true
acting on the ground state space. If
some particles are already present, then
we have to consider the braiding of the
the particles we create with those al-
ready present, which will be more com-
plicated.

T2T1 = e−2iθT1T2

But both T1 and T2 commute with the Hamiltonian (since they start
and end with states of exactly the same energy9). Whenever you have

9Strictly speaking this means they
commute with the Hamiltonian within
the ground state space, or equivalently
the commutators [T1,H] and [T2, H]
both annihilate the ground state space.

two operators that don’t commute with each other but do commute with
the Hamiltonian, it means you have degenerate eigenstates. Let us see
how this happens.
Since T1 is unitary, its eigenvalues must have unit modulus (i.e., they

are just a complex phase). Considering the space of possible ground
states, let us write a ground state eigenstate of T1 as

T1|α〉 = eiα|α〉.

Note that we are labeling the ket |α〉 by its eigenvalue under the ap-
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ti
m
e

= = e−2iθ

Fig. 4.9 The torus is drawn as a horizontal rectangle with opposite ends identified. Time runs vertically. First create a
particle-antiparticle pair at the center of the rectangle and move them in opposite directions, right and left, until they meet at
the edges of the rectangle to reannhiliate. Note that a particle moving to the right or an antiparticle moving to the left are
both drawn as a rightpointed arrow. Next create a particle-antiparticle pair in the center of the torus and move them to the
front and back walls (which are the same point) to reannihilate. Then the two processes are reversed to give T−1

2 T−1
1 T2T1.

This procedure can be reduced to one particle wrapping around another which gives a phase of e−2iθ. Note that to make the
figure on the left look like the linked rings, we should not quite annihilate the particles at the end of the first and second step
(turning the dotted lines into solid lines). This is allowed since bringing a particle-anti-particle pair close together looks like
they have fused together to the vacuum if we view it from far away (This is true for abelian anyons as it is a special case of
the identity in Fig. 12.19.)

plication of T1. Now we will generate a new eigenstate with a different
eigenvalue of T1. Consider the state T2|α〉. This must also be in the
ground state space since T2 commutes with the Hamiltonian. But now

T1(T2|α〉) = e2iθT2T1|α〉 = e2iθeiα(T2|α〉)

This new ground state T2|α〉 has eigenvalue eiα+2iθ under application
of T1. We thus call this new ground state |α + 2θ〉 = T2|α〉. We have
now generated a new ground state and we can continue the procedure
to generate more!
Let us suppose we have a system where the anyons have statistical

phase angle
θ = πp/m

where p and m are relatively prime integers (i.e., p/m is an irreducible
fraction). Starting with the ground state |α〉 we can generate a series of
ground states by successive application of T2,

|α〉, |α+2πp/m〉, |α+4πp/m〉, . . . , |α+2π(m−1)/m〉

When we try to generate yet another state, we get the phase α+2π which
is equivalent to α since it is describing a complex phase, so we are back
to the original state. So we now have m independent ground states.10

10There could be even more degeneracy
which would be non-generic. What we
have proven is there must be a degen-
eracy which is m times some integer,
where one generally expects that inte-
ger to be 1 but there could be additional
accidental degeneracy.

Note in particular that the ground state degeneracy of the system with
no anyons in it is related to the statistical angle θ of the anyons if they
were to be created.
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4.3.1 Quantum Memory and Higher Genus

The degenerate ground state on the torus can be thought of as a quan-
tum memory. If there are m different ground states, the most general
wavefunction we can have is some linear superposition of the multiple
ground states

|Ψ〉 =
m−1∑

n=0

An|α+ 2πnp/m〉

where the coefficients An form an arbitrary (but normalized) complex
vector. We can initialize the system in some particular superposition
(i.e, some vector An) and we can expect that the system remains in this
superposition. The only way that this superposition can change is if a
T1 or T2 operation is performed, or some combination thereof — i.e, if a
pair of anyons appears from the vacuum moves around a nontrivial cycle
of the torus and then reannihilates. Such a process can be extremely
unlikely when the energy gap for creating excitations is large11. Hence

11Strictly speaking, at any finite tem-
perature for any size system there is a
finite time for this process to occur, al-
though it might be very long.

the quantum superposition is “topologically protected”.
In fact, one does not even need to have a system on a torus in order to

have a degenerate ground state. It is often sufficient to have an annulus
geometry (a disk with a big hole in the middle as shown in Fig. 4.10).
In this case, T1 could correspond to moving an anyon around the loop
of the annulus and T2 could correspond to moving an anyon from the
inside to the outside edge.12

12In this case it is often not precisely
true that the ground states are entirely
degenerate (since there is a non-zero
net result of having moved a particle
from inside to outside, and therefore
one is not necessarily in the precise
ground state) but under certain condi-
tions it can be extremely close to degen-
erate nonetheless. A classic example of
this is discussed by Gefen and Thouless
[1993].

Fig. 4.10 An annulus.One can consider more complicated geometries, such as a torus with
multiple handles, or a disk with multiple holes cut in the middle. For a
theory of abelian anyons (fractional statistics) the ground state degen-
eracy for a surface with genus g (meaning g handles, or g holes) is mg

(See exercise 4.1). Thus by using high genus one can obtain very very
large Hilbert spaces in which to store quantum information.

4.3.2 Number of Species of Anyons

Having established multiple vacuum states on a torus, let us now return
to study the anyons that we could create in such a system. Again let us
consider anyons of statistical angle θ = πp/m with p and m relatively
prime. We can describe such anyons13 with a charge-flux composite

13By this time I’m sick of writing ~ and
I’m going to set it equal to 1.

(q,Φ) = (πp/m, 1). Fusion of n of these elementary anyons will have
charge and flux given by14 14It is only a slight abuse of notation to

write the ket |“n′′〉 to mean a cluster of
n elementary anyons.Fusion of n elementary anyons = |“n”〉 = (nq, nΦ)

= (nπp/m, n)

Something special happens when we have a cluster of m of these ele-
mentary anyons:

|“m”〉 = (πp,m)

If we braid an arbitrary cluster |“n”〉 = (nπp/m, n) around one of these
|“m”〉 = (πp,m) clusters, we obtain a net phase15 of 2nπp which is

15As mentioned at the beginning of sec-
tion 4.2 the total phase is given by
q1Φ2 + q2Φ1 = (nπp/m)m + (πp)n.
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equivalent to no phase at all! Thus we conclude that the cluster of m
elementary anyons is equivalent to the vacuum in the sense that all parti-
cles get trivial phase if they braid all the way around |“m”〉. Sometimes
one says that |“m”〉 is a transparent particle.
We might be tempted to conclude that there are exactly m differ-

ent anyon species in the system. Indeed, this conclusion is often true.
However, there is an exception. If both p and m are odd, one ob-
tains a nontrivial sign for exchanging (half braiding, as in Fig. 4.4) a
|“m”〉 = (πp,m) particle with another |“m”〉 = (πp,m) particle. To
see this note that exchange gives a phase πpm since it is half of the
2πpm phase for wrapping one particle all the way around the other (as
in Fig. 4.3). This means the |“m”〉 particle is a fermion. In fact, this
case of p and m both odd is a bit of an anomalous case and is a bit more
difficult to handle16.16Whenever we have a particle that

braids trivially with all other particles
(i.e., is transparent), the theory is more
complicated. Later on we will call this
kind of theory “non-modular.” See sec-
tion 17.3.1.

Neglecting this more complicated case with transparent particles, we
are correct to conclude that we have exactlym different species of anyons
– and also m different ground states on the torus as calculated above.
This connection will occur in any well behaved topological theory — the
number of ground states on the torus will match the number of different
species of particles.

Chapter Summary

• The Charge-Flux composite model describes abelian anyons —
with the braiding phase coming from Aharonov-Bohm effect.

• We introduced idea of fusion, antiparticles, and spin

• The vacuum for a system of anyons is nontrivial and can be a
quantum memory.

Further Reading

A good reference for the charge-flux composite model is John Preskill’s
lecture notes (Preskill [2004]).

Exercises

Exercise 4.1 Abelian Anyon Vacuum on a Two-Handle Torus
Using similar technique as in section 4.3, show that the ground state vac-

uum degeneracy on a two handle torus is m2 for a system of abelian anyons
with statistical angle θ = πp/m for integers p and m relatively prime. Hint:
Consider what the independent nontrivial cycles are on a two-handled torus
and determine the commutation relations for operators Ti that take anyon-
antianyon pairs around these cycles.
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Medium Material

5.1 Abelian Chern-Simons Theory

It is useful to see how charge-flux binding occurs in a microscopic field
theory description of a physical system. The type of field theory we will
study, so-called “Chern-Simons” field theory1, is the main paradigm for 1S. S. Chern was one of the most im-

portant mathematicians of the 20th
century. Jim Simons was a promi-
nent mathematician who wrote the key
first paper on what became known as
Chern-Simons theory in 1974. Simons
was the head of the math department
at Stonybrook university at the time.
In 1982, he decided to change careers
and start a hedge fund. His fund, Re-
naissance Technologies, became one of
the most successful hedge funds in the
world. Simons’ wealth is now estimated
at over 20 billion dollars (as of 2018).
More recently he has become a promi-
nent philanthropist, and has donated
huge amounts of money to physics and
mathematics — now being one of the
major sources of funds for the best sci-
entists in the world.

topological quantum field theories.
In the current section we will consider the simplest type of Chern-

Simons theory which is the abelian type (i.e., it generates abelian anyons,
or simple fractional statistics particles). We start by imagining a gauge
field aα, known as the Chern-Simons vector potential, analogous to the
vector potential Aα we know from regular electromagnetism. Here we
should realize that aα is not the real electromagnetic vector potential
because it lives only in our 2-dimensional plane. We should think of it in-
stead as some emergent effective quantity for whatever two dimensional
system we are working with.
Let us write the Lagrangian of our system

L = L0 +

∫
d2x L

Here we have written L0 to be the Lagrangian of our particles without
considering the coupling to the (Chern-Simons) vector potential. This
might be nothing more than the Lagrangian for free particles — although
we could put other things into this part too, such as inter-particle inter-
action, if we like.
The second term is the integral of a Lagrangian density — and this

will be the term that is relevant for the flux-binding and the exchange
statistics of the particles. The form of the Lagrangian density is

L =
µ

2
ǫαβγaα∂βaγ − jαaα (5.1)

where jα is the particle current, µ is some coupling constant, and ǫ is
the antisymmetric tensor2. The indices α, β, γ take values 0, 1, 2 where 2The antisymmetric tensor is given by

ǫ012 = ǫ120 = ǫ201 = 1 and ǫ210 =
ǫ102 = ǫ021 = −1.

0 indicates the time direction and 1, 2 are the space directions (and j0

is the particle density).
The first term in Eq. 5.1 is the Lagrangian density of the Chern-

Simons vector potential itself. (It is sometimes known as the “Chern-
Simons term”). The second term in Eq. 5.1 couples the Chern-Simons
vector potential to the particles in the system. Its form, jαaα, may look
unfamiliar but it is actually just the expected coupling of the charged
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particles to a vector potential analogous to what we used when we dis-
cussed Aharonov-Bohm effect in section 4.1. To see this, let us carefully
define the particle current jα. If we have N particles then the current is

j0(x) =

N∑

n=1

qnδ(x− xn)

j(x) =

N∑

n=1

qnẋn δ(x− xn)

The j0 component, the charge density3, is just a delta function peak at3Again not the real electromagnetic
charge, but rather the charge that cou-
ples to the Chern-Simons vector poten-
tial aα. Later in this chapter we will set
q = 1 along with ~ = 1 for simplicity of
notation.

the position of each particle with value given by the particle charge q.
The 1 and 2 component, j is a delta function at the position of each
particle with prefactor given by the velocity of the particle times its
charge. Now when −jαaα is integrated over all of space we get

N∑

n=1

qn [a(xn) · ẋn − a0(xn)] (5.2)

exactly as in Eq. 4.1. So this is nothing more than the regular coupling
of a system of charged particles to a vector potential.
As is usual for a gauge theory, the coupling of the particles to the

gauge field is gauge invariant once one integrates the particle motion
over some closed path (one measures only the flux enclosed, as with
the Aharonov-Bohm effect). The Chern-Simons term (the first term in
Eq. 5.1) is also gauge invariant, at least on a closed manifold4 if we can4We use the term closed manifold fre-

quently. This means a manifold with-
out boundary containing all its limit
point. More detailed discussions and
examples are given in section 41.1.

integrate by parts. To see this, make an arbitrary gauge transformation

aµ → aµ + ∂µχ (5.3)

for any function χ. Then integrating the Chern-Simons term (by parts
if necessary) all terms can be brought to the form ǫαβγχ∂α∂βaγ which
vanishes by antisymmetry. Note that this gauge invariance holds for any
closed manifold, although for a manifold with boundaries, we have to be
careful when we integrate by parts as we can get a physically important
boundary term. (We will discuss these later in section *** but for now,
let us just think about closed space-time manifolds).
To determine what the Chern-Simons term does we need to look at

the Euler-Lagrange equations of motion. We have

∂L
∂aα

= ∂β

(
∂L

∂(∂βaα)

)
(5.4)

which generates the equations of motion5

5It may look like the right result would
have µ/2 on the right hand side, given
that it is µ/2 in Eq. 5.1. However, note
that when we differentiate with respect
to aα on the left hand side of Eq. 5.4,
we also generate an identical factor of
µ/2 and these two add up.

jα = µǫαβγ∂βaγ (5.5)

This equation of motion demonstrates flux binding. To see this, let us
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look at the 0th component of this equation. We have

j0 =
N∑

n=1

qnδ(x − xn) = µ(∇× a) = µb (5.6)

where we have defined a “Chern-Simons” magnetic field b to be the curl
of the the Chern-Simons vector potential. In other words this equation
attaches a delta function (infinitely thin) flux tube with flux qn/µ at the
position of each charge qn. So we have achieved charge-flux binding!
For simplicity, let us now assume all particles are identical with the

same charge qn = q. We might expect that the phase obtained by
exchanging two such identical charges would be given by the charge
times the flux or θ = q2/µ analogous to section 4.2. Actually, this is not
right! The correct answer is that the statistical phase is

θ = q2/(2µ).

To see why this is the right answer, we can multiply our equation of
motion Eq. 5.5 by aα and then plug it back into6 the Lagrangian 5.1.

6One might worry about whether we
are actually allowed to plug the equa-
tions of motion back into the La-
grangian when we do a full path inte-
gral, as in Eq. 5.8, where we are sup-
posed to integrate over all field configu-
rations, not just those that satisfy equa-
tions of motion. While generally in field
theory one should not plug equations
of motion back into the Lagrangian, it
is actually allowed in this case because
the Lagrangian is linear in each aµ. For
example, classically we can think of a0
as being a Lagrange multiplier which
enforces Eq. 5.6. Similarly in the func-
tional integral when we integrate out
a0 it enforces that equation of motion
as a strict constraint. Once a0 is inte-
grated out, it is no longer a variable of
the problem and we can think of this
as choosing a a0 = 0 gauge thereafter.
We could have chosen a different gauge
and integrated out a different variable
or combination thereof. For this rea-
son we still write the subsequent equa-
tion Eq. 5.7 in gauge invariant form, al-
though strictly speaking we should real-
ize that once we have enforced the con-
straint there are fewer degrees of free-
dom.

We then end up with

L = −1

2
jαaα (5.7)

In other words, the Lagrangian of the Chern-Simons vector potential
itself cancels exactly half of the Lagrangian density, and hence will cancel
half of the accumulated phase when we exchange two particles with each
other!
If we are interested in calculating a propagator for our particles we

can write ∑

paths {x(t)}

∑

all aµ(x,t)

ei(S0+SCS+Scoupling)/~ (5.8)

Here the first sum is the usual sum over particle paths that we have
discussed before. The second sum is the sum over all possible configu-
rations of the field aµ(x, t). Note that this means we should sum over
all configurations in space and time so it is effectively a path integral
for a field. (This is potentially everything you ever need to know about
field theory!). Often the sum over field configurations is written as a
functional integral ∑

all aµ(x,t)

→
∫

Daµ(x)

Formally when we write a functional integral we mean7 that we should
7Making strict mathematical sense of
this type of integral is not always so
easy!divide space and time into little boxes and within each box integrate

over all possible values of aµ. Fortunately, we will not need to do this
procedure explicitly.
At least formally we can thus rewrite Eq. 5.8 as8

8The line integral in the exponential
should be interpreted as a sum of line
integrals of all the space-time trajecto-
ries of all the particles. This is anal-
ogous to the Aharonov-Bohm phase in
Eq. 4.4 added up for all the particles.

∑

paths {x(t)}
eiS0/~

∫
Daµ(x) eiSCS/~ ei(q/~)

∫
dlαaα (5.9)
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where S0 is the action of the particles following the path but not in-
teracting with the gauge field, SCS is the action of the Chern-Simons
gauge field alone (from the first term in Eq. 5.1). The final exponential
in Eq. 5.9 represents the coupling (from the second term of Eq. 5.1) of
the gauge field to the path of the particles — it is an integral that fol-
lows the path of the particles and integrates the vector potential along
the path (see also Eq. 5.2). This is precisely the phase accumulated
by a particle in the vector potential. It is an example of a Wilson-line
operator, which we will see again shortly in section 5.2.
Once the integration over the Chern-Simons field is done, we obtain

∑

paths {x(t)}
eiS0/~+iθW (path)

whereW is the winding number of the path and θ is the anyon statistical
angle. In other words, integrating out the Chern-Simons gauge field
implements fractional statistics for the particles in the system, inserting
a phase e±iθ for each exchange!

Vacuum Abelian Chern-Simons Theory

Something we have pointed out above in section 4.3 is that the vacuum
of an anyon theory knows about the statistics of the particles, even
when the particles are not present (i.e., the ground state degeneracy on
a torus matches the number of particle species). Thus, in the absence
of particles, we will be interested in

Z(M) =

∫

M
Daµ(x) eiSCS/~

where M is the space-time manifold we are considering9.

9Some space time manifolds we might
consider, such as any 2D manifold Σ
cross time (such that M = Σ × R),
seem very natural. However, as we
will see in much detail in chapter 7,
we will want to be much more gen-
eral about the types of manifolds we
consider. We should even allow three
dimensional manifolds where the two-
dimensional topology of a fixed time
slice changes as time evolves! See also
the discussion in chapter 6 and Fig. 6.1.

If we are consider a three dimensional manifold of the form M =
Σ × S1 for a 2D manifold Σ and S1 represents time (compactified10)

10Compactification of time from R to

S1 is something that might be famil-
iar from statistical physics where this
procedure is used for representing finite
temperatures.

this integral gives exactly the ground state degeneracy of the system.
As we might expect, this quantity will be a topological invariant of
the space-time manifold. That is, smooth deformations of M do not
change its value. (See chapter appendix, particularly section 5.3.2). This
quantity Z(M), often known as the partition function of the theory for
the manifold M, will be of crucial importance as we learn more about
topological theories in general in Chapter 7 below.

5.2 Nonabelian Chern-Simons theory: The
paradigm of TQFT

Among 2+1 dimensional topological quantum systems, pretty much ev-
erything of interest is somehow related to Chern-Simon theory — how-
ever, we don’t generally have the luxury of working with abelian theory
as we have been doing so far.
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We can generalize abelian Chern-Simons theory by promoting the
gauge field aα to be not just a vector of numbers, but rather a vector
of matrices.11 More precisely, to construct a nonabelian Chern-Simons

11If you have studied Yang-Mills the-
ory, you already know about non-
abelian vector potentials.

theory, we consider a vector potential that takes values in a Lie alge-
bra12. For example, if we choose to work with the Lie algebra of SU(2) 12See the introduction to Lie groups

and Lie algebras in section 41.2.3. In
brief: A Lie group is a group which
is also a continuous manifold. A Lie
algebra is the algebra of infinitesimal
changes in this group. A prime exam-
ple is the Lie group SU(2) with alge-
bra generated by iσj with σj ’s being
the Pauli operators. We write group el-
ements as exponentials of the algebra
g = eiσ·n.

in the fundamental representation we can write a general element of this
algebra as a sum of the three generators (proportional to σx, σy, σz) so
that our Lie algebra valued gauge field is then13

13For general Lie algebras, we want to
write aµ = aaµTa where Ta are the anti-
Hermitian generators of the Lie alge-
bra with Ta = −T †

a . This means that
[Ta, Tb] = fabcTc with f the so-called
structure constants of the Lie group,
and Tr[TaTb] ≡ − 1

2
δab. In case of

SU(2) in the fundamental representa-
tion we have Ta = −iσa/2 with fabc =
ǫabc. Be warned that other normaliza-
tion conventions do exist, and changing
conventions will insert seemingly ran-
dom factors of 2 or i or worse.

aµ(x) = aaµ(x)
(σa
2i

)
(5.10)

where σa are the Pauli matrices. Now that aµ is matrix valued it becomes
noncommutative and we have to be very careful about the order in which
we write factors of aµ.
The fundamental quantity that we need to think about is the Wilson

loop operators14

14These are named for Ken Wilson,
who won a Nobel Prize for his work
on the renormalization group and crit-
ical phenomena. There is a legend that
Wilson had very very few publications
when he came up for tenure as a profes-
sor at Cornell. Only due to the strong
recommendation of his senior colleague
Hans Bethe (already a Nobel Laureate
at the time) did he manage to keep
his job. Bethe knew what Wilson had
been working on, and vouched that it
would be extremely important. His
ground-breaking work on renormaliza-
tion group was published the next year.
Everything worked out for him in the
end, but the strategy of not publish-
ing is not recommended for young aca-
demics trying to get tenure.

WL = Tr

[
P exp

(∮

L

dlµaµ

)]
(5.11)

where here the integral follows some closed path L. This object, being
the exponential of an integral of a vector potential, is essentially the
nonabelian analogue15 of the Aharonov-Bohm phase of Eq. 4.3). In

15The factor of i we usually have in
the exponential of the Aharonov-Bohm
phase (Eq. 4.3) is missing because it has
been absorbed into aµ in Eq. 5.10 (See
comment in note 13). The factors of q
and ~ are missing because we have set
them to one as every theorist should do.

Eq. 5.11, the P symbol indicates path ordering — analogous to the usual
time ordering of quantum mechanics. The complication here is that
aµ(x) is a matrix, so when we try to do the integral and exponentiate,
we have a problem that aµ(x) and aµ(x

′) do not commute. The proper
interpretation of the path ordered integral is then to divide the path into
tiny pieces of length dl. We then have

P exp(

∫

L

dlµaµ) = (5.12)

. . . [1 + aµ(x3)dl
µ(x3)] [1 + aµ(x2)dl

µ(x2)] [1 + aµ(x1)dl
µ(x1)] . . .

where x1, x2, x3, . . . are the small steps along the path L (it does not
matter if they are equally spaced or not). If it is a closed path as in
Eq. 5.11 the trace (which is invariant under cyclic permutation) will
give the same answer independent of where on the closed path we start.
The proper gauge transformation in the case of a nonabelian gauge

field is given by
aµ → U−1aµU + U−1∂µU (5.13)

Where U(x) is a matrix (which is a function of position and time) which
acts on the matrix part of aµ. Note that this is just the nonabelian
analogue16 of the gauge transformation in Eq. 5.3. To see that this

16Here take U = eiχ and note that a
factor of i is absorbed into the vector
potential as mentioned in note 15.

gauge transformation leaves the Wilson loop operators invariant (and
hence is the right way to define a gauge transformation!) see section
5.3.1.
With aµ a matrix valued quantity, we can write a more general form
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for the nonabelian Chern-Simons action as

SCS =
k

4π

∫

M
d3x ǫαβγ Tr

[
aα∂βaγ +

2

3
aαaβaγ

]
(5.14)

Note that the second term in the brackets would be zero if the aα were
commutative. (In the abelian case above, we have no such term! See
Eq. 5.1). We have not derived Eq. 5.14, but we will explain in a mo-
ment why it is the only expression we could have written down for the
nonabelian generalization of the Chern-Simons action.
The Chern-Simons action is metric independent, which we show ex-

plicitly in the chapter appendix section 5.3.2. This means that space
and time can be deformed continuously and the value of the action does
not change. While this may not be obvious from looking at the form of
the action, a large hint is that the action is written without any reference
to the usual space-time metric gµν .
Since Chern-Simons theory is also a gauge theory, we would like the

action to be gauge invariant. It turns out that the action is almost gauge
invariant, as we will discuss momentarily. At any rate it is close enough
to gauge invariant to be of use for us!
It turns out that the Chern-Simons action is actually unique in being

both metric independent and also (at least almost) gauge invariant. In
2+1 dimensions, no other action can be written down which involves
only one gauge field and has these two properties: topological invariance
and gauge invariance. This is what makes Chern-Simons theory such a
crucial paradigm for topological theories in 2+1 dimensions.
Let us now return to this issue of how the Chern-Simons action is only

almost gauge invariant. First of all, if the manifold has a boundary, we
will run into non-gauge invariant terms as mentioned below Eq. 5.3. For
now, let us just assume that our manifold has no boundaries.
More crucially there is another issue with gauge invariance. Under

gauge transformation (at least on a closed manifold) as in Eq. 5.13 the
Chern-Simons action transforms to (See exercise 5.2)

SCS → SCS + 2πνk (5.15)

where

ν =
1

24π2

∫

M
d3x ǫαβγ Tr

[
(U−1∂αU)(U−1∂βU)(U−1∂γU)

]
(5.16)

Surprisingly the complicated expression in Eq. 5.16 (sometimes known
as the Pontryagin index) is always an integer (See section 5.3.3 for more
detail). The integer ν gives the winding number of the map U(x) from
the manifold into the gauge group17.

17In the case of the gauge group being
SU(2), as mentioned in section 41.2.3,
the gauge group is isomorphic to the
manifold S3. So if the manifold hap-
pens to be S3 then we are looking
at mappings from x ∈ S3 (space) to
U(x) ∈ S3 (group). A mathematician
would say that Π3(S3) = Z, meaning
one can wrap S3 around S3 any inte-
ger number of times. The case of zero
winding number is anything that can be
continuously deformed to U = 1 every-
where. However, we also can consider
the identity mapping that S3 (space)
maps into S3 (group) in the obvious
way (every point goes to itself) which
gives an n = 1 mapping (a 1-to-1 map-
ping). One can also construct 2-to-1
mappings which have winding n = 2
etc. (See exercise 5.3)

It may now look problematic that our Chern-Simons action is not a
true gauge invariant (Eq. 5.15), but we note that the only thing enter-
ing our functional integral is eiSCS , not the Chern-Simons action itself.
Thus, so long as we choose k, the so-called “level”, as an integer (and
since the winding number ν is also an integer), then we have a well
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defined functional integral of the form

Z(M) =

∫

M
Daµ(x) eiSCS (5.17)

where the result Z(M) turns out to be a manifold invariant (see chapter
appendix, section 5.3.2), meaning that smooth deformations of space and
time do not change its value. M3

L1

L2

Fig. 5.1 A cartoon of a 3 manifold
with a link made of two strands em-
bedded in it.

The insertion of the Wilson loop operator into the path integral gives
a knot invariant of the link L that the Wilson loop follows. The fact that
the result should be a topological invariant should not be surprising given
the fact that the Chern-Simons action itself is metric independent and
therefore independent under deformations of space and time18. Often

18The observant reader will note that
we have not specified the “framing” of
the knot — i.e, if we are to think of
the world-line as being a ribbon not a
line, we have not specified how the rib-
bon twists around itself. (See section
2.6.1.) In field theory language this
enters the calculation by how a point-
splitting regularization is implemented.

we will think about our link as being embedded in a simple manifold like
the three sphere, which we denote as S3 (see section 41.1.1 for definition
of S3).
So for example, to find the link invariant corresponding to the two

linked strings in Fig. 5.1, we have

Knot Invariant =
Z(S3, L1, L2)

Z(S3)
=

∫
S3 Daµ(x) WL1WL2 eiSCS∫

S3 Daµ(x) eiSCS
(5.18)

with WL being the Wilson loop operators as in Eq. 5.11. Indeed, if we
choose to work with the gauge group SU(2) at level k (working with the
spin 1/2 representation of the group, i.e, with Pauli matrices) we obtain
the Kauffman invariant of the knot with A = −(−i)(k+1)/(k+2).
If we keep the same gauge group, but work with a different represen-

tation (for example, spin 1, rather than spin 1/2 in Eq. 5.10), we will
obtain different “particle types” of the theory.
One can also choose to work with different gauge groups. Using

SU(N) and choosing a level k one obtains the two parameter HOMFLY
knot polynomial (the two parameters here being N and k). Similarly,
using SO(N) at level k gives a two parameter Kauffman polynomial (not
to be confused with the Kauffman bracket). Typically a Chern-Simons
theory with gauge group G at level k is notated as Gk (For example,
using SU(2) at level 2 we write the theory as SU(2)2). Changing the
sign of k corresponds to taking the “mirror image” of the theory (the
partition function is complex conjugated).

5.3 Appendix: Odds and Ends about Chern

Simons Theory

5.3.1 Gauge Transforms with Nonabelian Gauge
Fields

Let us define a Wilson-line operator, similar to the Wilson loop but not
forming a closed loop, i.e., going along a curve C from space-time point
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y to space-time point x, and we do not take the trace here

W̃C(x, y) = P exp

(∫

C

dlµaµ

)

Under a gauge transformation function U(x) we intend that the Wilson
line operator transform as

W̃C(x, y) → U(x)−1 W̃C(x, y) U(y) (5.19)

Clearly this obeys composition of paths, and will correctly give a gauge
invariant result for a closed Wilson loop. Now let us see what is required
for the gauge field aµ such that Eq. 5.19 holds. We consider

W̃C(x, x + dx) = 1 + aµdx
µ (5.20)

and its transformation should be

W̃C(x, x+ dx) → U(x)−1W̃C(x, x+ dx)U(x + dx)

= U(x)−1[1 + aµdx
µ]U(x+ dx)

= U(x)−1[1 + aµdx
µ][U(x) + dxµ∂µU(x)]

= 1 + [U−1aµU + U−1∂µU ]dxµ (5.21)

By comparing Eq. 5.20 and Eq. 5.21 we see that the gauge transform
rule Eq. 5.13 correctly gives a gauge invariant Wilson loop operator.

5.3.2 Chern Simons Action is Metric Independent

You will often see books state that Eq. 5.14 must be metric independent
because you don’t see the metric gµν written anywhere. But that kind
of misses the point!
A differential geometer would see that one can write the Chern-Simons

action in differential form notation

SCS =
k

4π

∫
(a ∧ da+ 2

3
a ∧ a ∧ a)

which then makes it “obvious” that this is metric independent being the
integral of a 3-form.
In more detail however, we must first declare how the gauge field

transforms under changes of metric. It is a “1-form” meaning it is meant
to be integrated along a line to give a reparameterization invariant result,
such as in the Wilson loops. In other words, we are allowed to bend and
stretch the space-time manifold, but the flux through a loop should stay
constant. Under reparametrization of coordinates we have

∫
da =

∫
dxµaµ(x) =

∫
dx′µ

∂xν

∂x′µ
aν(x

′)
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This means that under reparameterization x′(x) we have

aµ(x) =
∂xν

∂x′µ
aν(x

′)

such that the line integral remains invariant under a reparameterization
of the space.
Now, if we make this change on all of the a’s in the the Chern-Simons

action we obtain

ǫαβγ Tr

[
aα∂βaγ −

2i

3
aαaβaγ

]
→

ǫα
′β′γ′ ∂xα

∂x′α′
∂xβ

∂x′β′
∂xγ

∂x′γ′ Tr

[
aα∂βaγ −

2i

3
aαaβaγ

]

But notice that the prefactor, including the ǫ, is precisely the Jacobian
determinant and can be rewritten as

ǫα
′β′γ′

det[∂x/∂x′]

Thus the three-dimensional Chern-Simons action integral can be changed
to the dx′ variables and the form of the integral is completely unchanged
and thus depends only on the topological properties of the manifold.
In fact, this feature of the Chern-Simons Lagrangian is fairly unique.

Given that we have a single gauge field aµ(x) this is the only (3-form)
gauge invariant Lagrangian density we can write down which will give a
topological invariant!

5.3.3 Winding Number: The Pontryagin Index

We would like to show that the integral in Eq. 5.16 is indeed always
an integer. While doing this rigorously is difficult, it is not too hard to
see roughly how it must be done. First, we note that, like the Chern-
Simons action, it is the integral of a three form so it does not care
about the metric on the manifold (this is not surprising being that this
winding number arose from the Chern-Simons action). One can then
reparameterize the manifold in terms of coordinates within the group,
and convert the integral over space into an integral over the group. The
only thing that is left unclear is then in the mapping U(x) : M → G
how many times the group is covered in this mapping. We then have
immediately that the given definition of the winding number must be an
integer times some constant. By construction of a few examples, one can
see that the constant is indeed unity (See exercise 5.4). A more detailed
discussion of this issue is given in Vandoren and van Nieuwenhuizen
[2008] and Rajaraman [1982].
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5.3.4 Framing of the Manifold — or Doubling the
Theory

There is a bit of a glitch in Chern-Simons theory. We want the Chern-
Simons functional Z(M) to be a function of the topology of M only.
This is almost true — it is true up to a phase. In order to get the
phase, you need to specify one more piece of information which can be
provided in several ways (often called a 2-framing19). This additional19A detailed discussion of 2-framing

is given by Atiyah [1990b]; Kirby and
Melvin [1999]. This is fairly mathemat-
ical stuff!

piece of information is most easily described by saying that you need
to specify a bit of information about the topology of the 4-manifold
N that M bounds M = ∂N . It is a fact that all orientable closed
3-manifolds are the boundary of some 4-manifold — in fact, of many
possible 4-manifolds. The phase of Z(M) is sensitive only to the so-
called “signature” of the 4-manifold N . (Consult a book on 4 manifold
topology if you are interested!)
The fact that the Chern-Simons theory should depend on some infor-

mation about the 4-manifold that M bounds may sound a bit strange.
It is in fact a sign that the Chern-Simons theory is “anomalous”. That
is, it is not really well defined in 3-dimensions. If you try to make sense
of the functional integral

∫
Daµ, you discover that there is no well de-

fined limit by which you can break up space-time into little boxes and
integrate over aµ in each of these boxes. However, if you extend the
theory into 4-dimensions, then the theory becomes well behaved. This
is not unusual. We are familiar with lots of cases of this sort. Perhaps
the most famous example is the fermion doubling problem. You cannot
write down a time reversal invariant theory for a single chirality fermion
in D dimensions without somehow getting the other chirality. However,
you can think of a system extended into D + 1 dimensions where one
chirality ends up on one of the D-dimensional boundaries and the other
chirality ends up on the other D dimensional boundary20. So to make20This is precisely what happens on the

surface of materials known as “Topo-
logical Insulators” (or TIs) in three di-
mensions. The bulk of the system is a
gapped insulator, but the surface of the
system has a single Dirac fermion (or an
odd number of Dirac fermions) and this
is impossible to have in a purely two-
dimensional system. See chapter ***.

Chern-Simons theory well-defined, you must either extend into 4D, or
you can “cancel” the anomaly in 3D by, for example, considering two, op-
posite chirality Chern-Simons theories coupled together (so-called “dou-
bled” Chern-Simons theory). The corresponding manifold invariant of
a doubled theory gets Z(M) from the righthanded theory and its com-
plex conjugate from the left handed theory, thus giving an end result of
|Z(M)|2 which obviously won’t care about the phase anyway!

5.3.5 Chern Simons Theory as Boundary of a Four
Dimensional Topological Theory

With the considerations of the previous section 5.3.4, it is interesting to
express Chern-Simons theory as the boundary theory of a 4D topological
theory. To do this let us define the field strength tensor

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]
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This definition matches the expression for the electromagnetic field strength
in the case where the fields are abelian such that the commutator van-
ishes. However, more generally for nonabelian gauge theories (including
Yang-Mills theory) the additional commutator term must be added.
In 4D we can define the dual field strength

∗Fµν =
1

2
ǫµνλρFλρ

where ǫ is the antisymmetric tensor. We now consider the following
topological action on a 4D manifold N

S =
θ

16π2

∫

N
d4x Tr [Fµν

∗Fµν ]

This 4D action is well defined and non-anomalous, meaning it can be
regularized and/or treated properly on a lattice.
With a bit of algebra the action can be rewritten as

S =
θ

8π2

∫

N
d4x ∂µGµ

where

Gµ = 2ǫµνλρTr

[
Aν∂λAρ +

2

3
AνAλAρ

]
(5.22)

Since the action can be written as the integral of a total derivative, it
should give zero when integrated over a closed manifold N . However
when the manifold has a boundary one obtains

S =
θ

8π2

∫

∂N

d3x Gµv
µ

where vµ is the unit vector normal to the boundary. Examining the
form of Eq. 5.22 we realize that the action is precisely the Chern-Simons
action on the 3D boundary manifold ∂N .

5.3.6 Chern Simons Canonical Quantization for the
Abelian Case

One can consider the Chern-Simons theory as a quantum mechanical
theory with wavefunctions and operators (i.e., not in path integral lan-
guage). To do this, we need to find the commutation relations. Working
in the gauge a0 = 0, in the Chern-Simons Lagrangian terms like ∂0ay
multiply ax and vice versa21. This means that ay(x) is the momen- 21Note that for nonabelian Chern-

Simons theories working in the a0 = 0
gauge makes the a3 term of the action
vanish!

tum conjugate to ax(x) and vice versa. We thus have the commutation
relations

[ax(~x), ay(~x
′)] =

i~

µ
δ(~x− ~x′)
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The arguments ~x here live in 2 dimensions. Consider now the Wilson
loop operators around two different nontrivial cycles of a torus

Wj = exp

(
i(q/~)

∮

Lj

~dl · ~a
)

where here j indicates we have a loop around either cycle 1 (L1) or cycle
2 (L2) of our torus. The two paths must intersect at one point and
therefore, due to the above commutations, do not commute with each
other. We can use the identity that

eAeB = eBeAe[A,B]

which holds when [A,B] is a number not an operator. This then gives
us

W1W2 = eiq
2/µ~W2W1 = eiθW2W1

where θ is the statistical angle of the theory. Thus the Wilson loop
operators act just like operators T1 and T2 in section 4.3 which cre-
ated particle-hole pairs and moved them around a nontrivial cycle then
reannihilated. So even without discussing particles, the ground state
wavefunction of the Chern-Simons theory is degenerate!

Chapter Summary

• The Charge-Flux model can be realized in an abelian Chern-
Simons theory.

• We introduced some ideas of general nonabelian Chern-Simons the-
ory, including manifold invariants and turning Wilson loop opera-
tors into knot invariants.

A good reference for abelian Chern-Simons theory is

• F. Wilczek, ed. Fractional Statistics and Anyon Superconductivity,
World Scientific, (1990).

Some good references on nonabelian Chern-Simons theory are

• E.Witten, Quantum Field Theory and the Jones PolynomialComm.
Math. Phys. Volume 121, Number 3 (1989), 351-399; available on-
line here https://projecteuclid.org/euclid.cmp/1104178138. This
is the paper that won a Fields’ medal!

• Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman,
Sankar Das Sarma, Non-Abelian Anyons and Topological Quan-

tum Computation, Rev. Mod. Phys. 80, 1083 (2008). Also avail-
able online at https://arxiv.org/abs/0707.1889. This has a short
discussion of Chern-Simons theory meant to be easily digested.

• Louis Kauffman, Knots and Physics, World Scientific, (2001), 3ed.
The section on Chern-Simons theory is heuristic, but very useful.
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• Current Algebras and Anomalies, by S. Treiman, R. Jackiw, B. Zu-
mino, and E. Witten (World Scientific) 1985. See particularly the
chapters by R. Jackiw.

• G. Dunne, Aspects of Chern-Simons Theory in Topological as-
pects of low dimensional systems. Les Houches - Ecole d’Ete de
Physique Theorique, vol 69. Springer, Berlin, Heidelberg, eds A.
Cometet, T, Jolicoeur and S. Ouvry. Also available as arXiv:hep-
th/9902115.

Exercises

Exercise 5.1 Polyakov Representation of the Linking Number
Consider a link made of two strands, L1 and L2. Consider the double line

integral

Φ(L1, L2) =
ǫijk
4π

∮

L1

dxi
∮

dxj
xk − yk

|x− y|3
(a) Show that Φ is equal to the phase accumulated by letting a unit of flux

run along one strand, and moving a unit charged particle along the path of
the other strand.

(b) Show that the resulting phase is the topological invariant known as the
linking number — the number of times one strand wraps around the other,
see section 2.6.2.

This integral representation of linking was known to Gauss.

Exercise 5.2 Gauge Transforming the Chern-Simons Action
Make the gauge transform Eq. 5.13 on the Chern-Simons action 5.9 and

show that it results in the change 5.15. Note that there will be an additional
term that shows up which it a total derivative and will therefore vanish when
integrated over the whole manifold M.

Exercise 5.3 Winding Numbers of Groups in Manifolds
Consider the mapping of U(x) ∈ SU(2) → S3. Construct an example of a

map with winding number n for arbitrary n. I.e., find a representative of each
group element of Π3(SU(2)) (See note 17).

Exercise 5.4 Quantization of Winding Number
Let us consider the manifold S3 which we consider as R3 plus a point at

infinity. Consider the gauge transform function defined

U(x) = exp

(

iπNx · σ
√

|x|2 +R2

)

where x is a point in R3, and σ represents the Pauli matrices with R an
arbitrary length scale. Show the winding number Eq. 5.16 gives the integer
N . Why does N need to be an integer here?





Short Digression on Quantum
Gravity1 6

Medium Material

6.0.1 Why This Is Hard
1This chapter aims to give context
about why people first started studying
topological theories. It can be skipped
on a first reading (but do come back
later to enjoy it!).

Little is known about quantum gravity with any certainty at all. What
we do know for sure is the value of some of the fundamental constants
that must come into play: the gravitational constantG, the speed of light
c and of course Planck’s constant ~. From these we can put together an
energy scale, known as the Planck Scale

EPlanck =

√
~c5

G
≈ 1028 eV.

The temperature of the world around us is about 0.03 eV. Chemistry,
visible light, and biology occur on the scale of 1 eV. The LHC accelera-
tor probes physics on the scale of roughly 1013 eV. This means trying to
guess anything about the Planck scale is trying to guess physics on an
energy scale 15 orders of magnitude beyond what any accelerator2 exper- 2Cosmic ray observations have been

made at several orders of magnitude
higher still — but very little can be de-
duced from these extremely rare and
uncontrolled events. A famous event
known as the “Oh my God particle”
was apparently 1020 eV, still 8 orders of
magnitude away from the Planck scale.

iment has ever probed. We must surely accept the possibility that any
physical principle we hold dear from all of our experiments on low energy
scales could no longer hold true at the Planck scale! The only thing that
is really required is that the effective low energy theory matches that
which we can see at the low energies in the world around us.

6.0.2 Which Approach?

There are several approaches to quantum gravity. While I will not make
any statement about which approaches are promising, and which ap-
proaches are crazy and overpublicized3, I am comfortable stating that 3For some basic information on the

wars between some of the different ap-
proaches to quantum gravity, see the
books “The Trouble With Physics” by
Lee Smolin or “Not Even Wrong” by
Peter Woit. Or see responses to these,
such as the article by J. Polchinski in
the American Scientist, or (with appro-
priate warning that it a bit of a rant)
the online response by Lubos Motl.
Also enlightening are the online letters
between Smolin and Lenny Susskind.

many of these investigations have led to incredibly interesting and im-
portant things being discovered. While in some cases (maybe in most
cases) the discoveries may be more about math than about physics, they
are nonetheless worthwhile investigations that I am enthusiastic about.

6.1 Some General Principles?

We have to choose general principles that we believe will always hold,
despite the fact that we are considering scales of energy and length
15 orders of magnitude away from anything we have ever observed or
measured. Much of the community feels that the most fundamental
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thing to hold onto is the Feynman picture of quantum mechanics —
that all space-time histories must be allowed. We might write a quantum
partition function of the form

Z =
∑

All universes

eiS/~ (6.1)

where the sum is now over everything that could happen in all pos-
sible histories of the universe — it is the ultimate sum over histories!
Obviously such a thing is hard to even contemplate. Several key simpli-
fications will make contemplation easier:

(1) Let us ignore matter. Let us (at least to begin with) try to model
only universes which are completely devoid of substance and only
contain vacuum.

Thus the universe contains only the space-time metric. Doing this, the
Einstein-Hilbert action4 for gravity takes the form4Written down first by Hilbert in 1915.

SEinstein ∼
∫

M
dx R

√
−det(g)

where the integration is over the entire space-time manifold M, where
here g is the space-time metric tensor and R is the Ricci scalar5. One5If you are rusty with your general rel-

ativity, recall that the metric tensor g
defines the relativistically invariant line
element via ds2 = gµνdxµdxν , and the
Ricci scalar R, which is a complicated
function of g, is a measure of the curva-
ture of a manifold which compares the
volume a small ball to the volume it
would have in flat Euclidean space. In
particular for a D dimensional manifold
M we would consider a D-dimensional
ball BD of radius ǫ and we have

V (BD) ⊂ M
V (BD) ⊂ RD

= 1− ǫ2R

6(D + 2)
+ . . . .

might imagine that we could construct a theory of quantum gravity
by plugging the Einstein-Hilbert action into the path integral form of
Eq. 6.1. We obtain

Z =

∫
Dg(x) eiSEinstein[g(x)]/~ , (6.2)

thus summing (or integrating) over all possible space-time metrics. Even
without matter in the universe, the model is very nontrivial because the
space-time metric can fluctuate — these fluctuations are just gravity
waves6. Even in this limit no one has fully made sense of this type of

6Observation of gravity waves by the
LIGO experiment won the 2017 Nobel
Prize. Long before this we had very
strong indirect observation of gravity
waves from observation of the Hulse-
Taylor binary pulsar which earned a
Nobel Prize in 1993.

path integral without many additional assumptions.

(2) Let us simplify even more by considering a 2+1 dimensional uni-
verse.

We are used to the idea that many things simplify when we go to lower
dimension. Indeed, that is what happens here. In 2+1 dimension, there
is an enormous simplification that there are no gravity waves! Why
not? In short, there are just not enough degrees of freedom in a 2+1
dimensional metric to allow for gravity waves. (For more information
about this fact see the appendix to this chapter, section 6.2.) As a result,
the only classical solution of the Einstein equations in the vacuum is
that R = 0 and that is all! I.e., the universe is flat and there are no
fluctuations. (One can also have a cosmological constant Λ in which case
R = 2Λg is the solution).
One might think that this means that gravity in 2+1D is completely

trivial. However, it is not. The space-time manifold, although every-
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where curvature free, still has the possibility of having a nontrivial topol-
ogy. Thus what we are interested in is actually the different topologies
that our space-time manifold might have!
We thus rewrite Eq. 6.1 as

Z =
∑

manifoldsM

∫

M
Dg(x) eiS[g(x)]/~

=
∑

manifoldsM
Z(M)

where S[g(x)] is the Einstein-Hilbert action for a flat universe with met-
ric g, the sum is over all different topologies of manifolds the universe
might have, and the integration Dg is an integration over all metrics
subject to the condition that the manifold’s topology is fixed to be M.
Why would we be interested in such a quantity? In short, suppose

we know what the topology is of our (d-dimensional universe) at a fixed
time t. We want to know the amplitudes that the topology changes as
t develops. I.e., is the space-time manifold of our universe of the form
M = Σ× time or does the space-time manifold split analogous to that
shown in Fig. 6.1.

ti
m
e

Fig. 6.1 An example of a manifold
where the topology of a space-like slice
(slice at fixed time) changes as time
progresses. At the bottom the space-
like slice is a single circle, whereas at
the top a space-like slice is two circles.

Here is the surprise: the function Z(M) is precisely the Chern-Simons
partition function discussed above in section 5.2 for an appropriately
chosen gauge group!7 This connection is very roughly sketched in the

7 This was first noted by Achúcarro
and Townsend [1986] and then was de-
veloped further by Witten [1988] and
many others.

chapter appendix section 6.3.

6.1.1 Further Comments on Connections to
Quantum Gravity

In the “this is not string-theory” school of thought for quantum gravity,
evaluation of Eq. 6.2 is the main goal. Crucially one needs some vari-
ables to describe the metric of the universe. Several different approaches
to this seem to converge on some similar structures. One interesting ap-
proach, known as loop quantum gravity, uses Wilson loop operators as
the elementary variables of the theory (once one has reformulated grav-
ity to look like a gauge theory). Another approach discretizes space-time
and sums over the different possible discretizations8. With certain as-

8Indeed at length scales as small as the

Planck length lPlanck =
√

~G/c3 =
~c/EPlanck ≈ 1.6× 10−35m, there is no
reason to believe space-time resembles
our macroscopic idea of a smooth man-
ifold. The ratio of the radius of the sun
to the radius of an atom is roughly the
same as the ratio of the radius of an
atom to the Planck length!

sumptions these approaches appear to be very closely related! In section
21.3 we will return to the issue of discretizing space-time and how this
can result in topological gravity.
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6.2 Appendix: No Gravity Waves in 2+1 D

Why are there no gravity waves in 2+1 dimension? The short argument
for this is as follows (taken from Carlip [2005])

In n dimensions, the phase space of general relativity is
parametrized by a spatial metric at constant time, which has
n(n− 1)/2 components, and its conjugate momentum, which adds
another n(n− 1)/2 components. But n of the Einstein field equa-
tions are constraints rather than dynamical equations, and n more
degrees of freedom can be eliminated by coordinate choices. We
are thus left with n(n − 1) − 2n = n(n − 3) physical degrees of
freedom per spacetime point. In four dimensions, this gives the
usual four phase space degrees of freedom, two gravitational wave
polarizations and their conjugate momenta. If n = 3, there are no
local degrees of freedom.

Let us put a bit more detail on this argument. If we write the flat
metric as ηµ,ν = diag[−1, 1, 1, . . .] in any dimension, and we consider
small deviations from a flat universe g = η + h, we can construct the
trace-reversed

h̄µν = hµν −
1

2
ηµνη

ρσhρσ .

In any dimension, gravitational waves in vacuum take the form

h̄µν ,ν = 0

and
�h̄µν = 0

where the comma notation indicates derivatives, and indices are raised
and lowered with η.
In any dimension we will have the gravitational wave of the form

h̄µν = ǫµνe
ikρxρ

where the polarization ǫµν is orthogonal to the lightlike propagation
wavevector, kµkµ = 0, meaning

ǫµνk
ν = 0. (6.3)

However, one must also worry about gauge freedoms. We can redefine
our coordinates and change the form of the metric without changing any
of the spatial curvatures. In particular, making a coordinate transform
x→ x− ξ, we have

h̄µν → h̄µν − ξν,µ − ξµ,ν + ηµ,νξ
α
,α

Now here is the key: In 2+1 D for any matrix ǫ you choose, you can
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always find a
ξµ = Aµe

ikρxρ

such that
h̄µν = ǫµνe

ikρxρ = ξν,µ + ξµ,ν − ηµ,νξ
α
,α

This means that the wave is pure gauge, and the system remains per-
fectly flat! I.e., if you calculate the curvature with this form of h̄, you
will find zero curvature.
To be more precise, we find

ǫµ,ν = Aµkν −Aνkµ + ηµνA
σkσ

and any ǫ that satisfies Eq. 6.3 can be represented with some vector A.
It is easy to check this by counting degrees of freedom. ǫ has 6 degrees
of freedom in 2+1 D, but Eq. 6.3 is 3 constraints, and A has three
parameters, so we should always be able to solve the equation for A
given ǫ.

6.3 Appendix: Relation of 2+1D GR to

Chern-Simons Theory (In Brief)

Let us start with a Chern-Simons Lagrangian for SU(2)k ⊗ SU(2)−k.
Here we will use a very shorthand notation

L =
k

4π

∫

M

(A+dA+ +
2

3
A3

+) +
−k
4π

∫

M

(A−dA− +
2

3
A3

−)

Making the transformation

ω=
1

2
(A+ +A−) e =

k

8π
(A+ −A−)

one obtains the Lagrangian (using differential form notation)

L =

∫
(e ∧R+

λ

3
e ∧ e ∧ e) (6.4)

Here e is interpreted as the dreibein of general relativity which is related
to the metric by (returning appropriate indices to vectors)

gµν = eaµe
a
νηab

with ηab the flat metric in 2+1 D, and ω is a spin connection which has
an equation of motion that dictates it is torsion free, and the remaining
Lagrangian Eq. 6.4 is precisely the 2+1D Einstein-Hilbert Lagrangian
in the so-called Palitini form. In that equation

λ = (4π/k)2
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is the cosmological constant. The calculation here has been given for a
Euclidean form of gravity. For Lorenzian gravity one needs to work with
SO(2, 1) Chern-Simons theory which is a bit more complicated.
More details of the relationship between 2+1D general relativity and

Chern-Simons theory are provided in the further reading, listed below.

Further Reading

• For a huge amount of information on 2+1 dimensional quantum
gravity, see Carlip [2005].

• The relationship of 2+1 D gravity to Chern-Simons theory was first
developed by Ana Achúcarro and Paul Townsend ([Achúcarro and
Townsend, 1986])

• The relationship was further developed by EdwardWitten (Witten
[1988])

• Years later, the question was revisited by Witten [2007], where
doubt is raised as to whether Chern-Simons theory is sufficient to
fully describe gravity in 2+1 dimensions.

• A (potentially biased) history of various approaches to quantum
gravity is given by Rovelli [2000].

• Reviews of loop quantum gravity are given by Rovelli [2008] and
Nicolai et al. [2005].

• Discussions of discretization approaches to quantum gravity are
given by Regge and Williams [2000] and Lorente [2006].

• The article by Nicolai and Peeters [2007] covers the connections
between the loop and discretization approach fairly clearly.

Note that none of these references are particularly easy to digest!



Defining Topological Quantum
Field Theory1 7

Medium Hard Material

1Many students find this chapter
frighteningly abstract. While this chap-
ter sets the stage for a number of ideas
that come later, it can also be skipped
to a large extent if it seems too difficult.
While it may seem a bit cruel to include
such a chapter early in the book, I’ve in-
cluded it here because it gives the best
definition of what a TQFT actually is
— which, in one form or another, is
what we are studying for the remain-
der of the book.

We already have a rough picture of a Topological Quantum Field Theory
(TQFT) as a quantum theory that depends on topological properties as
opposed to depending on geometric properties. For example, it matters
that particle 1 traveled around particle 2, but it doesn’t matter how far
apart they are.
We can formalize these ideas by saying that the theory should be

independent of small deformations of the space-time metric. We might
say that

δ

δgµν
〈any correlator〉 = 0.

This is a completely valid way to define a TQFT, but is often not very
useful.
Another way to define a (2+1 dimensional) TQFT is that it is a set of

rules that takes an input of a labeled link embedded in a three-manifold2 2Particularly condensed matter physi-
cists might start to wonder why we need
to start talking about arbitrary, and po-
tentially bizarre sounding, three dimen-
sional manifolds — what could they
possibly have to do with real physical
systems? However (besides just being
a beautiful digression) pursuing this di-
rection allows us to understand some
of the strong constraints on topological
models and their mathematical struc-
ture, and this turns out to be impor-
tant for the analysis of even fairly sim-
ple physical systems.

and gives an output of a complex number in a way that is invariant under
smooth deformations. This definition is quite analogous to our definition
of a knot invariant, with two key differences. First, we allow for the lines
to be labeled with a “particle type” (and our rules for evaluating the end
result will depend on the particular particle type labels). Secondly, the
link can be embedded in some arbitrarily complicated three-manifold3.

3We may also allow world lines of
anyons to fuse into other species as dis-
cussed in section 4.2.

This type of mapping (see Fig. 7.1) is precisely the sort of thing that one
gets as an output of Chern-Simons theory which we called Z(M, links) as
we discussed in section 5.2. The advantage of thinking in this language
is that strictly speaking, the functional integrals of Chern-Simons theory

M
a

b −→ Z(M, a, b)

Fig. 7.1 A (2+1) dimensional TQFT takes an input of a labeled link in a manifold
and produces an output of a complex number in a manner which is topologically
invariant.
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are often not well defined mathematically. Instead, here we bypass the
Chern-Simons field theory altogether and define a TQFT simply as a
mapping from a manifold with a link to an output.
A closely related but more formal definition of TQFTs is given by a

set of Axioms by Atiyah [1988]4 which are in some sense much more4Sir Michael Atiyah, a Fields medal-
ist, who went to primary school in Su-
dan, was one of the foremost mathe-
maticians of the 20th century. He spe-
cialized in geometry and topology —
particularly at the interface between
mathematics and physics. You can
find videos of him talking about life,
physics, and mathematics at webofsto-
ries.com.

informative.

7.1 Paraphrasing of Atiyah’s Axioms

Here I’m going to give a rough interpretation of Aityah’s axioms of
TQFT, suitable for physicists. To begin with, we will consider space-
time manifolds with no particles in them. As we have found above,
TQFTs are nontrivial even in the absence of any particles. Later on in
section 7.2 we will discuss adding particles and moving them around in
space-time too.
We will consider a D+ 1 dimensional space-time manifold5 which we5While it is possible to define certain

TQFTs on non-orientable manifolds it
is much easier to assume that all man-
ifolds will be orientable — excluding
things like Möbius strips and Klein bot-
tles. See section 41.1.

call M, and D dimensional oriented slice Σ — we can often think of this
slice as being the D-dimensional space at a fixed time. Almost always
we will be thinking of D = 2, although the axioms are quite general and
can be applied to any D.

AXIOM 1: A D-dimensional space Σ is associated with a Hilbert
space V (Σ) which depends only on the topology6 of Σ.6The phrases “depends only on the

topology...” is something that physi-
cists would say, but mathematicians
would not. To a mathematician, topol-
ogy describes things like whether sets
contain their limit points, whether
points are infinitely dense and so forth.
Perhaps it would be better to just say
that V (Σ) does not change under con-
tinuous deformation of Σ. This is
something mathematicians and physi-
cists would both agree on, and this is
what we actually mean here!

We call the space V , which stands for vector space, although some-
times people call it H for Hilbert space.
As an example of what we mean, we have seen that if Σ is a torus, there

is a nontrivial Hilbert space coming from the ground state degeneracy.
This degenerate space is the space V (Σ). The space V (Σ) will depend
on the particular anyon theory we are considering. For example in the
case of abelian anyons in section 4.3 we found a degeneracy of m for a
system on a torus with statistical angle θ = πp/m.
Note that when we add particles to the system (we will do this in

section 7.2), if the particles are nonabelian, then there will also be a
Hilbert space associated with the additional degeneracy that comes with
such nonabelian particles.

AXIOM 2: the disjoint union of two D-dimensional spaces Σ1 and
Σ2 will be associated with a Hilbert space which is the tensor product
of the Hilbert spaces associated with each space7. I.e.,7This may sound a bit abstract, but

it is exactly how the Hilbert spaces
of any two systems must combine to-
gether. For example, in the case of two
spins, the Hilbert space of the union of
the two spins is the tensor product of
the two Hilbert spaces.

V (Σ1 ∪ Σ2) = V (Σ1)⊗ V (Σ2)

In particular this means that the vector space associated with the null
or empty space ∅ must be just the complex numbers. Let us state this
mathematically.

Axiom 2 Implies:
V (∅) = C
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The reason this must be true is because ∅ ∪ Σ = Σ and C⊗ V (Σ) =
V (Σ) so the result follows8. 8If this sounds confusing, remember the

space C is just the space of length 1
complex vectors, and tensoring a length
n vector with a length m vector gives
a size n by m matrix, so tensoring a
vector of length n with a length 1 vector
gives back a vector of length n.

AXIOM 3: IfM is a (D+1)-dimensional manifold withD-dimensional
boundary9 Σ = ∂M , then we associate a particular element of the vector

9We use the ∂ to denote boundary. See
section 41.1.4. Note that if Σ = ∂M
then ∂Σ = ∅

space V (Σ) with this manifold. We write

Z(M) ∈ V (∂M)

where the association (i.e., which particular state in the vector space is
chosen) again depends only on the topology of M.

Here we might think of ∂M as being the space-like slice of the system
at a fixed time, and V (∂M) as being the possible Hilbert space of ground
states. The rest of M (the interior, not the boundary) is the space-time
history of the system, and Z(M) is the particular wavefunction that is
picked out by this given space-time history (See Fig. 7.2).

ti
m
e M

∂M

or M

∂M

Fig. 7.2 Two depictions of a space-time manifold M with boundary ∂M. The left
depiction is problematic because the only boundary of the manifold is supposed to
be the red top surface ∂M (the black outline of M really should not be there, but
we can’t draw a closed three manifold!). The right depiction is more accurate in this
sense, although it depicts a 2D M and 1D ∂M.

The point of this axiom is to state that the particular wavefunction of a
system Z(M) which is chosen from the available vector space depends on
the space-time history of the system. We have seen this principle before
several times. For example, we know that if a particle-antiparticle pair
is taken around a nontrivial cycle, this changes which wavefunction we
are looking at — this process would be part of the space-time history.
Axiom 3 Implies: For M closed, we have ∂M = ∅, the empty

space, so
Z(M) ∈ C

i.e., the TQFT must assign a manifold a topological invariant which is
a complex number. This is exactly what we found from Chern-Simons
theory.
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∂M = Σ

M

∂M′ = Σ∗

M′

Z(M′) = 〈ψ′| ∈ V (Σ∗)

Z(M) = |ψ〉 ∈ V (Σ)

ti
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Fig. 7.3 In this picture M and M′ are meant to fit together since they have a
common boundary but with opposite orientation Σ = ∂M = ∂M′∗. Here 〈ψ′| =
Z(M′) ∈ V (Σ∗) lives in the dual space of |ψ〉 = Z(M) ∈ V (Σ). Note that the
normals are oppositely directed

AXIOM 4: Reversing Orientation

V (Σ∗) = V ∗(Σ)

where by Σ∗ we mean the same surface with reversed orientation, whereas
by V ∗ we mean the dual space — i.e., we turn kets into bras. It is a
useful convention to keep in mind that the orientation of the normal of
∂M should be pointing out of M. See Fig. 7.3.
GLUING: If we have two manifolds M and M′ which have a com-

mon boundary ∂M = (∂M′)∗ we can glue these two manifolds together
by taking inner products of the corresponding states as shown in Fig. 7.4.
Here we have Σ = ∂M = (∂M′)∗ so we can glue together the two man-
ifolds along their common boundary to give10,11

10The notation M ∪Σ M′ means the
union of M and M′ glued together
along the common boundary Σ.

11Note that M′ ∪Σ M and M ∪Σ M′

are the same manifold but with the
opposite orientations. The expressions
may look like they should give the same
result, but they are not symmetric since
we have defined Σ = ∂M rather than
Σ = ∂M′. From this relationship
we can conclude a further result that
Z(M∗) = Z(M)†.

Z(M∪Σ M′) = 〈Z(M′)|Z(M)〉 (7.1)

COBORDISM: Two manifolds Σ1 and Σ2 are called “cobordant” if
their disjoint union is the boundary of a manifold M.

∂M = Σ1 ∪Σ2

We say that M is a cobordism between Σ1 and Σ2. See Fig. 7.5 for



7.1 Paraphrasing of Atiyah’s Axioms 71

M

M′

Σ∗

Σ ⇒
M

M′

Z(M∪Σ M′) = 〈Z(M′)|Z(M)〉 = 〈ψ′|ψ〉
Fig. 7.4 Gluing two manifolds together by taking the inner product of the wave-
functions on their common, but oppositely oriented, boundaries.

an example. The mathematical structure of cobordisms provides a very
powerful abstract method of defining topological quantum field theories,
which we describe very briefly in appendix ??.
We thus have Z(M) ∈ V (Σ∗

1)⊗ V (Σ2), so that we can write

Z(M) =
∑

αβ

Uαβ |ψΣ2,α〉 ⊗ 〈ψΣ1,β |

where |ψΣ2,α〉 is the basis of states for V (Σ2) and 〈ψΣ1,β| is the basis of
states for V (Σ∗

1). We can thus think of the cobordism M as being an
evolution12 similar to that shown in Fig. 7.5. 12This evolution may or may not be

unitary — indeed, the dimensions of
V (Σ1) and V (Σ2) may not even match
if Σ1 6= Σ2.

M

Σ1

Σ2

∂M = Σ∗
1 ∪ Σ2

Fig. 7.5 M is the cobordism between Σ∗
1 and Σ2. I.e., ∂M = Σ∗

1 ∪ Σ2. Note that
we have reversed orientation of Σ1 here.
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IDENTITY COBORDISM: If we have M = Σ× I where I is the
one dimensional interval (We could call it the 1-disk, D1 also) then the
boundaries are Σ and Σ∗ (See Fig. 7.6), and the cobordism implements
a map between V (Σ) and V (Σ). Since the interval can be topologically
contracted to nothing (or infinitesimal thickness”), we can take this map
to be the identity:

Z(Σ× I) =
∑

α

|ψΣ,α〉 ⊗ 〈ψΣ,α| = identity.

where the sum is over the entire basis of states of V (Σ).
Σ

Σ

M

M = Σ× I

∂M = Σ ∪ Σ∗

Fig. 7.6 A cobordism that can be
topologically contracted to nothing acts
as the identity on the Hilbert space
V (Σ).

Σ

M

M = Σ× S1

Fig. 7.7 Gluing the top of Σ × I to
the bottom we obtain M = Σ × S1.
An important fact is that Z(Σ× S1) is
just the ground state degeneracy of the
2-manifold Σ

We can now consider taking the top of the interval I and gluing it
to the bottom to construct a closed manifold M = Σ × S1, where S1

means the circle (or 1-sphere), as shown in Fig. 7.7. We then have

Z(Σ× S1) = Tr [Z(Σ× I)] = Dim[V (Σ)]. (7.2)

where Tr means trace. Thus we obtain the dimension of the Hilbert
space V (Σ), or in other words, the ground state degeneracy of the 2-
manifold Σ.
As we have discussed above in section 4.3, for the torus T 2 we have

Dim V (T 2) = number of particle species (7.3)

which we argued (at least for modular abelian anyon models) based on
non-commutativity of taking anyons around the nontrivial cycles of the
torus, and we will justify for nonabelian anyons as well in section 7.2.1.
Similarly, for a 2-sphere S2, we have

DimV (S2) = 1 (7.4)

since there are no noncontractible loops, and this will also hold for both
abelian and nonabelian theories. See section 4.3.1 for discussion of the
ground state degeneracy of abelian theories on higher genus surfaces.

7.2 Adding Particles

We now consider extending the ideas of TQFT to space-time manifolds
with particle world-lines in them.13

13For dimension D > 2+1 dimensional
TQFTs we could have world-sheets of
moving strings and other higher dimen-
sional objects as well.

Σ
b̄

ā

a

b

Fig. 7.8 A 2-manifold with particles
in it, which are marked and labeled
points. We now call the combination
(the manifold and the marked points)
Σ for brevity.

Let us imagine that there are different anyon types which we can
label as a, b, c, and so forth. The corresponding antianyons are labeled
with overbar ā, b̄ and so forth as in section 4.2.2. We now imagine a
2-manifold with some marked and labeled points as shown in Fig. 7.8.
We call the combination of the 2-manifold with the marked points Σ for
brevity. As with the case without particles (AXIOM 1, in section 7.1), Σ
is associated with a Hilbert space V (Σ). The dimension of this Hilbert
space depends on the number and type of particles in the manifold (We
expect for nonabelian particles, the dimension will grow exponentially
with the number of particles). We can span the space V (Σ) with some
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a

c

b M

Σ = ∂Mb̄

ā

a

b

a

c

b M

Σ = ∂M

M′

Σ′ = ∂(M∪M′)b̄

ā

a
b

Fig. 7.9 Left: 3-manifold M with particles in it, which are marked and labeled lines
(the lines should be directed unless the particle is its own antiparticle). These world
lines may end on the boundary Σ = ∂M. The wavefunction on the boundary ∂M is
determined by the spacetime history given by M. Right: M′ evolves the positions
of the particles in time. Note that by M′ we mean not just the manifold, but the
manifold along with the world-lines in it. In this particular picture Σ = Σ′ being the
same surface with the same types of particles at the same positions.

basis states |ψα〉 which will get rotated into each other if we move the
marked points around within the manifold (i.e., if we braid the particles
around each other).
Similarly a 3-manifold M is now supplemented with labeled links

indicating the world lines of the particles. The world-lines should be
directed unless the particles are their own antiparticles. The world lines
are allowed to end on the boundary of the manifold ∂M. See left of
Fig. 7.9. Analogously we may sometimes call the combination of the
manifold with its world lines M, although sometimes we will write this
as M;L where L indicates the “link” (or knot) of the world lines.
As in the above discussion of axiom 3, the spacetime history specifies

exactly which wavefunction

|ψ〉 = Z(M) ∈ V (∂M)

is realized on the boundary Σ = ∂M. If a basis of V (∂M) is given by
wavefunctions |ψa〉 then we can generally write the particular wavefunc-
tion |ψ〉 in this basis

|ψ〉 =
∑

α

cα|ψα〉.
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We can now think about how we would braid particles around each
other. To do this we glue another manifold M′ to ∂M to continue the
time evolution, as shown in the right of Fig. 7.9. The final wavefunction
is written as

|ψ′〉 = Z(M∪M′) ∈ V (Σ′)

If we put the positions of the particles in Σ′ at the same positions as the
particles in Σ, then the Hilbert spaces, V (Σ′) is the same as V (Σ), and
we can write |ψ′〉 in the same basis as |ψ〉

|ψ′〉 =
∑

α

c′α|ψα〉.

We can then think of Z(M′) as giving us a unitary transformation on
this Hilbert space — which is exactly what we think of as nonabelian
statistics. We can write explicitly the unitary transformation

Z(M′) =
∑

αβ

Uαβ |ψΣ′,α〉 ⊗ 〈ψΣ,β |

or equivalently
c′α =

∑

β

Uαβcβ.

Note that if the particles stay fixed in their positions (or move in
topologically trivial ways) then M′ can be contracted to infinitesimal
thickness and we can think of the unitary transformation as being the
identity. As with the identity cobordism discussed in section 7.1, we can
take such an identity transformation, glue the top to the bottom and
obtain

Z(Σ× S1) = Dim[V (Σ)] (7.5)

I.e., the partition function Z is just the dimension of the Hilbert space
of the wavefunction. This holds true even when Σ has marked points,
or particles, in it.

7.2.1 Particles or No-Particles

In the same way that the ground state of a topological system “knows”
about the types of anyons that can exist in the system, it is also the
case that the TQFT in the absence of particles actually carries the same
information as in the presence of particles14. To see this consider a14Up to here our discussion has been

applicable to TQFTs in any dimension.
From here on we specialize to the most
interesting case of D = 2, that is 2+1
dimensions.

manifold M with labeled and directed world-lines Li in them, as shown
in Fig. 7.10. Now consider removing the world lines along with a hollow
tubular neighborhood surrounding the paths that the world-lines follow
as shown in the figure. We now have a manifold with a solid torus
removed for each world-line loop. (Think of a worm having eaten a path
out of the manifold.) In this configuration, the boundary ∂M of the
manifold M now contains the surface of these empty tubes — i.e, the
surface of a torus T 2 for each world-line loop. Note that the empty tube
is topologically a solid torus D2 × S1 even if the world-line forms some
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M

⇒L1

L2
M

Fig. 7.10 Removing the world-lines on the left along with a thickened tube. Imagine
a worm burrowing along the path of the world lines and leaving a hollow hole (colored
red).

knot15. The statement that it forms a nontrivial knot is a statement

15D2 is the usual notation for a two

dimensional disk and S1 again is the
circle.about the embedding of the S1 loop in the manifold.

Note that the Hilbert space of the torus surface T 2 is in one-to-one
correspondence with the particle types that can be put around the han-
dle of the torus. Indeed, each possible state |ψa〉 of the torus surface
corresponds to a picture like that of Fig. 7.11, where a particle of type
a goes around the handle. We can think of this solid torus manifold
as being a space-time history where t = −∞ is the central core of the
solid torus (the circle that traces the central line of the jelly filling of the
donut) and the torus surface is the present time. Somewhere between
t = −∞ and the time on the surface of the torus, a particle of type
a has been dragged around the handle. Obviously, gluing such a solid
torus containing a particle world line (Fig. 7.11) back into the empty
solid-torus-shaped tube (right of Fig. 7.10) recovers the original picture
of labeled world lines following these paths (left of Fig. 7.10).

a

Fig. 7.11 The possible wavefunctions |ψa〉 that we can have on the
surface of the torus can be realized by having a world-line of a parti-
cle of type a going around the handle of the torus. We can call these
Z(solid torus with a running around handle) = |ψa〉

The partition function of the manifold with the tori excised from it
(the right of Fig. 7.10) contains all of the information necessary to de-
termine the partition function for the left of Fig. 7.10 for any particle
types that we choose to follow the given world lines. For the manifold
on the right there are two surfaces (the two surfaces on the inside of the
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holes left where we excised the two tori), so we have

Z(M) =
∑

i,j

Z(M; i, j) 〈ψL1,i| ⊗ 〈ψL2,j |

where Z(M; i, j) is the partition function for the torus with two particle
types i, j following the two world line loops L1 and L2, and the two
wavefunctions are the corresponding boundary condition. Thus, if we
want to extract Z(M; a, b), where the particle lines are labeled with a, b
we simply glue in the wavefunction |ψL1,a〉 ⊗ |ψL2,b〉 representing the
boundary condition on the two surfaces.

7.3 Building Simple 3-Manifolds

7.3.1 S3 and the Modular S-matrix

We will now consider building up 3-manifolds from pieces by gluing
objects together using the gluing axiom from section 7.1. The simplest
3-manifold to assemble is the three sphere S3. Remember that S3 can be
thought of as R3 compactified with a single point at infinity (the same
way that S2 is a plane, closed up at infinity — think of stereographic
projection. See the discussion in section 41.1). Recall also that a solid
torus should be thought of as a disk crossed with a circle D2 × S1. I
claim that we can assemble S3 from two solid tori16

16If you are rusty on these elementary
topology manipulations, see the review
in section 41.1

S3 = (S1 ×D2) ∪T 2 (D2 × S1)

The notation here is that the two pieces S1×D2 and D2×S1 are joined
together on their common boundary which is T 2 (the torus surface).
There is a very elegant proof of this decomposition. Consider the

4-ball B4. Topologically we have17

17Topologically it is easiest to think
about the n-dimensional ball, Bn, as
being the interval I = B1 raised to the
nth power. The disk (or 2-ball), is topo-
logically a filled-in square D2 = B2 =
I×I. The usual 3-ball is topologically a
cube B3 = I×I×I. The 4-ball is topo-
logically a 4-cube B4 = I × I × I × I =
D2 ×D2.

B4 = D2 ×D2

Now applying the boundary operator ∂ and using the fact that the
boundary operator obeys the Leibniz rule (i.e., it distributes like a
derivative), we have

S3 = ∂B4 = ∂(D2 ×D2) = (∂D2 ×D2) ∪ (D2 × ∂D2)

= (S1 ×D2) ∪T 2 (D2 × S1)

where we have used the fact that the boundary of a disk is a circle,
∂D2 = S1. Note that the two solid tori differ in that they have the
oppositeD2 filled in. Note that the two solid tori here are glued together
along a common T 2 = S1 × S1 boundary. To see this note that

∂(S1 ×D2) = S1 × S1 = ∂(D2 × S1).

The two tori are glued together meridian-to-longitude and longitude-to-
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meridian. (I.e., the contractible direction of one torus is glued to the
non-contractible direction of the other, and vice versa.) A sketch of how
the two solid tori are assembled together to make S3 is given in Fig. 7.12. a

Fig. 7.12 Assembling two solid tori to
make S3. The obviously drawn torus
D2 × S1 can be thought of as the red
disk D2 crossed with the blue circle
S1. The remainder of space outside of
this torus, including the point at infin-
ity is the other solid torus S1 × D2.
For this “outside” solid torus, the S1

can be thought of as the vertical green
line. This line becomes S1 by connect-
ing up with itself at the point at infin-
ity. The upper shaded disk is an exam-
ple of a contractible D2 which is con-
tained entirely within the outside solid
torus. Note that the entire outside solid
torus is S1×D2, the vertical green line
crossed with disks topologically equiv-
alent to this one. The green loop off to
the side (also contained within the out-
side torus), like the vertical green S1

loop is not contractible within the out-
side solid torus, but can be deformed
continuously to the vertical green loop.

Let us think about the partition function of these two solid tori which
are glued together on their boundaries to make up S3. We write the
partition function as the overlap between wavefunctions on the outside
and inside tori:

Z(S3) = 〈Z(S1 ×D2)|Z(D2 × S1)〉 = 〈ψoutside|ψinside〉

where the ψ’s are the wavefunctions on the surface of the torus.
We can further consider including world lines around the noncon-

tractible loops of the solid torus, as in Fig. 7.11. There is a different
state on the surface of the torus for each particle type we have run-
ning around the handle. We then assemble S3 with these new solid tori
and get an S3 with two particle world lines linked together as shown in
Fig. 7.13. Gluing the two tori together we get18

18Be warned that there is some dis-
agreement in the literature as to which
way the arrows on a and b are ori-
ented in the definition of Sab. Some
references will have Sab equal to what
we have defined as Sab̄ for example.
Our convention matches that of Kitaev
[2006], but disagrees with Bonderson
[2007] for example.

Z(S3; a loop linking b loop) = 〈Z(S1 ×D2; b)|Z(D2 × S1; a)〉 ≡ Sab
(7.6)

This quantity Sab is known as the modular S-matrix, and it is a very
important quantity in topological theories as we shall see in chapter 17
below.19

19Some comments on the S-matrix: (1)
since a linking b is topologically the
same as b linking a we should have
Sab = Sba. (2) While this is not obvi-
ous at the moment, it is also true that
Sāb = [Sab]

∗ where ā is the antiparticle
of a. See exercise 17.3.

a

b

〈Z(S1 ×D2; b) | Z(D2 × S1; a)〉 =

a

b

=

Embedded in S3

= Z(S3, a link b) = Sab

Fig. 7.13 Here we assemble a partition function for S3 with world lines of a linking

b embedded in the S3. To do this we glue together two solid tori each with a world
line running around the handle. The green line marked b runs around the handle of
the “outside” torus. The end result is known as the modular S-matrix, and it gives a
basis transform converting between the two bases which both span the Hilbert space
of the torus surface where the two solid tori are glued together.

Note that the S-matrix is unitary20, since it is simply a basis transfor-

20Here we are assuming the theory is
modular meaning there are no transpar-
ent particles. This assumption will be
discussed in more depth in section 17.3.

mation between the two sets of wavefunction which both span the vector
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space V (T 2) of the torus surface T 2 where the two solid tori are glued
together. Note also that the element S00, corresponding to the element
of the S-matrix where the vacuum particle (no particle at all!) is put
around both handles. (Here we are using 0 to mean the vacuum.) This
tells us that

Z(S3) = S00 ≤ 1 (7.7)

and in fact, should be strictly less than one unless there are no nontrivial
particle types and S is a one-by-one dimensional matrix.
Another way of viewing the S matrix is as a simple link between two

strands, as shown in Fig. 7.13. As with the Kauffman bracket invariant,
we can construct a set of diagrammatic rules to give a value to knots.
Soon, in chapters 8-16 we will construct diagrammatic rules to help us
“evaluate” knots like this. These rules will be somewhat similar to the
rules for the Kauffman bracket invariant, only now we need to keep track
of labels on world lines as well.

7.3.2 S2 × S1

a b

Sew these disks together along their boundaries to make S2

Fig. 7.14 Assembling two solid tori to make S2 × S1. Here the two contractible

disks D2 are sewed together along their boundaries to make S2.

There is another way we can put two solid tori together to make
a closed manifold21. Instead of attaching longitude-to-meridian and

21In fact there are an infinite number
of ways two tori can be sewed together
to form a closed manifold. These are
discussed in detail in the appendix to
this chapter, section 7.4.

meridian-to-longitude, we instead attach meridian-to-meridian and long-
itude-to-longitude. (This is perhaps a simpler way to put together two
solid tori!) See Figure 7.14. Here we claim that22

22One should be warned that S2 × S1

cannot be embedded in usual three di-
mensional space, so visualizing it is very
hard!

S2 × S1 = (D2 × S1) ∪T 2 (D2 × S1)

The sewing together is again done along the common boundary T 2 =
S1×S1. The S1 factors in both solid tori are the same, and both of the
D2 have the same S1 boundary. Thus we are sewing together two disks
D2 along their S1 boundaries to make a 2-sphere S2 (imagine cutting
a sphere in half along its equator and getting two disks which are the
north and south hemispheres).
As in the previous case, we can put world lines through the handles

of the solid tori if we want. If we do so we have23

23It is worth considering how the world
lines, in the case where a = b, are posi-
tioned in the S2 × S1. The world line
around the handle of one torus enters
each S2 sphere through one hemisphere
and the world line around the handle
of the other torus exits each S2 sphere
through the other hemisphere. This fits
with the principle that a nonzero am-
plitude of two particles on the surface
of a sphere can only occur if the two
particles are a particle-antiparticle pair.
This is discussed in section 8.4.

〈
Z(D2 × S1; b) |Z(D2 × S1; a)

〉
= δab
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The reason it is a delta function is that both the bra and ket are really
the same wavefunctions (we have not switched longitude to meridian).
So except for the conjugation we should expect that we are getting the
same basis of states for both tori.
In particular, we have the case where we put no particle (the vacuum)

around both handles, we have (i.e., a = b = I = 0)

〈Z(D2 × S1)|Z(D2 × S1)〉 = δab = 1

So we have the result
Z(S2 × S1) = 1 (7.8)

Note that this agrees with two of our prior statements. On the one hand
Eq. 7.5 says that Z for any two dimensional manifold crossed with S1

should be the dimension of the Hilbert space for that manifold; and on
the other hand Eq. 7.4 states that the dimension of the Hilbert space on
a sphere is 1.

7.3.3 Connected Sums

An important notion in topology is the idea of a connected sum of two
manifolds M and M′, denoted by M#M′ which is equal to M′#M.
To form the connected sum of two (D+1)-dimensional closed manifolds,
one deletes a small (D + 1)-dimensional ball B(D+1) from each of the
constituent manifolds, and sews the resulting pieces together along their
D-dimensional sphere boundaries24. Note that a (D + 1)-dimensional 24For example, the connected sum of

two two-dimensional torus surfaces is a
two-handled torus surface:

T 2 #T 2 = two handle torus

sphere acts as the identity for the connected sum

M#SD+1 = M (7.9)

The reason for Eq. 7.9 is that SD+1 can be assembled from two balls
BD+1 attached along their SD surfaces25. So the connected sum in 25For example, the usual two-

dimensional sphere S2 sphere can be
assembled from two B2 discs (also
known as D2 disks) sewed together
along their S1 circle boundaries.

Eq. 7.9 is just deleting BD+1 from the manifold M and replacing it
with the BD+1 that results from deleting BD+1 from SD+1.
Here will specialize to the case where the manifolds are three dimen-

sional26 and we will derive a simple formula for Z(M#M′). 26In three dimensions there is a notion
of a prime decomposition of a mani-
fold. A three-dimensional manifold M
is prime if M = N#P implies either
N = S3 or P = S3. Any orientable
compact three-manifold has a decom-
position into primes

M = P1#P2# . . . PN

which is unique up to reordering the
terms and connected sums with S3 (See
Milnor [1962]). In D = 4 such decom-
positions are not unique. In D = 2
decompositions of orientable manifolds
are unique and the only prime manifold
is the torus.

First, let us define M\B to be the manifold M with a small ball B
removed. Similarly let M\B′ be the manifold M′ with a small ball B′

removed. Gluing together M\B with M′\B′ results in

M#M′ = (M\B) ∪∂(M\B) (M′\B′)

Invoking Eq. 7.1 thus gives us

Z(M#M′) = 〈Z(M\B) |Z(M′\B′)〉 (7.10)

Now we can reconstruct Z for each manifold by gluing the pieces back
together

Z(M) = 〈Z(M\B) | Z(B) 〉 (7.11)
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Z(M′) = 〈 Z(B′) |Z(M′\B′)〉 (7.12)

Now It is crucial that the boundaries of these two manifolds M\B and
M′\B′ are spheres S2 and the Hilbert space on this sphere is one di-
mensional, as pointed out in Eq. 7.4. For states |a〉, |b〉, |c〉, |d〉 in a one
dimensional Hilbert space we have the relationship2727Witten [1989] refers to this relation-

ship as a “wonderful fact”.

〈a|b〉〈c|d〉 = 〈a|d〉〈c|b〉

So we have

〈Z(M\B) |Z(M′\B′)〉〈Z(B′)|Z(B)〉 (7.13)

= 〈Z(M\B) | Z(B) 〉〈 Z(B′) |Z(M′\B′)〉

Finally we realize that when we sew together two three-dimensional
balls B and B′ along their S2 surfaces we obtain the manifold S3 (see
comment below Eq. 7.9), so that

〈Z(B′)|Z(B)〉 = Z(S3) (7.14)

Using Eqs. 7.10, 7.11, 7.12, and 7.14 in Eq. 7.13 we obtain our final
result

Z(M#M′) =
Z(M)Z(M′)

Z(S3)
(7.15)

We can check that this equation is compatible with Eq. 7.9 by setting
M′ = S3 for example.

7.4 Appendix: Sewing Two Solid Tori
Together

While this discussion is a bit outside the main train of thought (being
the development of TQFTs) it is interesting to think about the different
ways two solid tori may be sewed together to obtain a closed manifold.

Fig. 7.15 A line that wraps both the
longitude and meridian of the torus.

A solid torus is written as D2 × S1. We define the meridian m to
be the S1 boundary of any D2. I.e., the meridian is a loop on the
surface around the contractible direction of the solid torus. We define
the longitude l as being any loop around the surface of the solid torus
which intersects a meridian at one point. This definition unfortunately
has some (necessary) ambiguity. A line that loops around the meridian
n times as it goes around the noncontractible direction of the torus, is
just as good a definition of a longitude (an example of this is Fig. 7.15
which is n = 1). We call this line l + nm where n is the number of
times it goes around the meridian and l was the original definition of
the longitude that did not loop around the meridian. Redefining the
longitude this way is known as a “Dehn Twist”.
Let us choose a meridian m1 on the surface of one solid torus and

choose to sew it to the line −qm2 + pl2 of the second solid torus (that
is, the line that goes p times around the longitude and −q times around
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meridian, we make −q negative so that the two tori surfaces are oppo-
site oriented for attaching them together. Once the two lines are glued
together this uniquely defines how the rest of the two torus surfaces
are glued together. The resulting object is known as the “Lens space”
L(q, p). In section 7.3.1 we showed that L(0, 1) = S3 and in section 7.3.2
we showed that L(1, 0) = S2 × S1. Note that due to the ambiguity of
definition of the longitude of the torus −qm2+pl2, under redefinition of
the longitude goes to (−q − np)m2 + pl2. Thus L(q + np, p) = L(q, p),
and in particular, L(1, 1) = S3 also.

7.5 Appendix: Cobordisms and Category

Theory

While I have promised not to resort to the use of category theory, I will
briefly break this promise in order to describe how many mathematicians
view topological quantum field theories. The reason I think this is worth
mentioning here is so the interested reader has some minimal exposure
to a few of the key notions.
First, we should mention roughly what a category is: A category is a

mathematical structure which has objects and morphisms. A morphism
is a maps (or arrow) between objects. Two categories that we need are
(1) the category known as Vect whose objects are vector spaces and
whose morphisms are linear maps between vector spaces. (2) the cate-
gory known asCob(D+1) whose objects are closedD dimensional man-
ifolds (what we called Σ) and whose morphisms are (D+1-dimensional)
cobordisms between these manifolds.
A functor is a mapping (or morphism) between two categories that

preserves certain structures. In particular it should map objects to ob-
jects and morphisms to morphisms.
Mathematicians often define a topological quantum field theory to be

a functor
F : Cob(D + 1) → Vect

Each manifold (object in Cob) is mapped to a vector space (object in
Vect). Disjoint unions of manifolds become tensor products of vector
spaces. Cobordisms between manifolds are mapped to linear maps be-
tween vector spaces.

Chapter Summary

• The Atiyah Axioms formalize the idea of a topological quantum
field theory.



82 Defining Topological Quantum Field Theory

Further Reading

For discussion on the Atiyah Axioms see Atiyah [1988, 1997]

A discussion of gluing together manifolds (as in sections 7.3-7.4) is given
by Rolfson [1976] or Saveliev [2012]. The book Farb and Margalit [2012]
may also be useful. We will discuss this type of sewing further in chapter
22 below.

For further reading on category theory, a classic reference the classic
reference is MacLane [1971], which was written long before the idea of
topological quantum field theory was around. A beautiful masters thesis
by Bartlett [2005] discusses TQFTs from the category perspective.
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Fusion and Structure of Hilbert
Space 8

Easy Material

As discussed in section 7.1, each two-dimensional surface (a slice of a
three-dimensional space-time manifold) has an associated Hilbert space.
In the case where there are particles in this surface, the dimension of
the Hilbert space will reflect the nature of the particles. We now seek to
understand the structure of this Hilbert space and how it depends on the
particles. At the same time we will building up a diagrammatic algebra
with the goal of constructing a mapping from world-lines of particles to
complex numbers (a definitions of a TQFT as given in Fig. 7.1). We
briefly introduced graphical notation in section 4.2.1 and we will con-
tinue that development here. For those who prefer more mathematical
detail, in section 8.6 (as well as in chapter 12) we will introduce tensor
description of diagrams and the associated Hilbert spaces.

8.1 Basics of Particles and Fusion — The
Abelian Case

Particle types:

There should be a finite set of labels which we call particle types. For
now, let us call them a, b, c, etc.

Fusion

World lines can merge which we call fusion, or do the reverse, which
we call splitting. If an a particle merges with b to give c, we write
a× b = b × a = c. Fusion and splitting are shown diagrammatically in
Fig. 8.1. Sometimes colloquially we call both diagrams “fusion”.

c

c

a b

a b
Fig. 8.1 Fusion (left) and splitting
(right) diagrams can be thought of as
part of a space-time history of the parti-
cles. If we are describing two separated
particles a and b whose overall quantum
number is c (sometimes we say “overall
fusion channel is c), we would describe
the ket for this state using the right
hand picture — which we can think of
as a space-time description of how the
current situation (a on the left b on the
right) came about (with time going up).
Details of the formal meaning of these
diagrams in terms of as bras and kets
is given in sections 8.6 and chapter 12.

It should be noted that we can think of two particles as fusing together
even if they are not close together. We need only draw a circle around
both particles and think about the “total” particle type inside the circle.
For example, we sometimes draw pictures like shown in Fig. 8.2.

a b

c

Fig. 8.2 Another notation to describe
the fusion of two particle types to make
a third a×b = c. The two particles need
not be close to each other. This figure
is equivalent to the right of Fig. 8.1.

In our abelian anyon model of charges and fluxes (see section 4.2), if
the statistical angle is θ = πp/m (p and m relatively prime and not both
odd) then we have m species a = (aq, aΦ) for a = 0 . . .m − 1, where
qΦ = πp/m. The fusion rules are simply addition modulo m. That is
a× b = (a+ b)modm.
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Identity

Exactly one of the particles should be called the identity or vacuum. We
write this1 as 1 or 0 or I or e. The identity fuses trivially

1It is annoying that we have so many
different ways to express the identity,
but in different contexts different no-
tations seem natural. For example, if
our set of particles is fusing by addi-
tion (as we discussed in the charge-flux
model) the identity should be 0. But if
our group fuses by multiplication, iden-
tity is more naturally 1. See note 5 in
chapter 41.

a× I = a

for any particle type a. In the charge-flux model (section 4.2) we should
think of the identity as being no charge and no flux. Fusion with the
identity is depicted schematically in Fig. 8.3. Often we do not draw the
identity particle at all, being that it is equivalent to the absence of any
(nontrivial) particle.

a

I a

=

a

a

= a =

a

a

I

Fig. 8.3 Fusion of a particle with the identity a× I = a. The dotted line indicates
the identity. In some of these pictures the a particle appears to move slightly to the
left. However, this is not important for topological properties since the path can be
deformed continuously to a particle that does not move.

Antiparticles

Each particle a should have a unique antiparticle which we denote as
ā. The antiparticle is defined by a× ā = I. (There should only be one
particle which fuses with any a to give the identity!). A particle going
forward in time should be equivalent to an antiparticle going backwards
in time as shown in Fig. 8.4. Fusion to the identity can be thought of

a ā
=

Fig. 8.4 A particle going forward
should be equivalent to an antiparticle
going backwards.

as a particle turning around in space-time as shown in Fig. 8.5.I

a ā

=

a a
Fig. 8.5 Fusion of an anyon with its
anti-anyon to form the identity can be
thought of as a particle turning around
in space-time. On the right, we have
reversed one arrow and changed ā to
a, and we have not drawn the identity
line.

A particle may be its own antiparticle, in which case we do not need
to draw arrows on its world lines. An example of this in our charge-flux
model from section 4.2 would be the “2” particle (fusion of 2 elementary
anyons, see section 4.3) in the case of θ = π/4. Also, the identity particle
I is always its own antiparticle.

8.2 Multiple Fusion Channels - the

Nonabelian Case

For the nonabelian theories as we have discussed above (for example in
Section 3.5), the dimension of the Hilbert space must increase with the
number of particles present. How does this occur? In nonabelian models
we have multiple possible orthogonal fusion channels

a× b = c+ d+ . . . (8.1)

meaning that a and b can come together to form either c or d or . . .,

a b

c or d or . . .

Fig. 8.6 Multiple possible fusion chan-
nels. Here we show that a and b can
fuse together to give either c or d or
other possible results.

as shown in Fig. 8.6. A theory is nonabelian if any two particles fuse in
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such a way that there are multiple possible fusion channels (i.e., there
is more than one particle listed on the right hand side of Eq. 8.1).
If there are s possible fusion channels for a× b, then the two particles

a and b have an s dimensional Hilbert space (part of what we called
V (Σ)).
What is this Hilbert space associated with multiple fusion channels?

A slightly imperfect analogy is that of angular momentum addition. We
know the rule for adding spin 1/2,

1

2
⊗ 1

2
= 0⊕ 1,

which tells us that two spin 1/2’s can fuse to form a singlet or a triplet.
As with the case of spins, we can think about the two particles being
in a wavefunction such that they fuse in one particular fusion channel
or the other — even if the two particles are not close together. The
singlet or J = 0 state of angular momentum is the identity here: it has
no spin at all. The analogy with spins is not exact though — unlike the
case of spins, the individual particles have no internal degrees of freedom
(analogous to the 2-states of the spin 1/2), nor do any results of fusion
have an mz degree of freedom (like a triplet would).

Locality

The principle of locality is an predominant theme of anyon physics (if
not of physics altogether).
The quantum number (or “charge”) of a particle is locally conserved

in space. Consider, for example, Fig. 8.7. On the left, a particle a
propagates along and suddenly something complicated happens locally.
If only a single particle comes out of this region it must also be a particle
of type a. (If two particles come out of this region, we could have a split
into two other species as in the right of Fig. 8.1). We sometimes call
this the no transmutation principle. It allows us to conclude that
the complicated picture on the left of Fig. 8.7 must be equal to some
constant times the simple propagation of an a particle as shown on the
right.

a

s
r

d
c

a

b a∝

Fig. 8.7 If a particle a goes into
a spacetime region, then a net par-
ticle charge a must come out. This
is also sometimes called the “no-
transmutation” principle. From far
away, one can ignore any local processes
(up to an overall constant).

If two particles (maybe far away from each other) fuse together to
some overall particle type (in a case where multiple fusion channels are
available) it is not possible to determine this fusion channel by measuring
only one of the initial particles. In order to determine the fusion channel
of the two particles, you have to do an experiment that involves both
of the initial particles. For example, one can perform an interference
measurement that surrounds both of these particles. The fusion channel
is local to the pair.

c b
d

f

a

Fig. 8.8 In this picture b and c fuse to
d. Then this d fuses with a to give an
overall fusion channel of f . No amount
of braiding b around c will change the
fact that the two of them fuse to d.
However, if we braid a with b and c,
this can change the fusion of b with c
subject to the constraint that the fusion
of all three particles will give f .

Similarly, if we have some particles, b and c and they fuse to d (see
Fig. 8.8), no amount of braiding b around c will change this overall fusion
channel d. The fusion channel is local to the pair. If these two then fuse
with a to give an overall fusion channel f , no amount of braiding a,
b and c will change the overall fusion channel f . However, if a braids
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with b and c, then the fusion of b and c might change, subject to the
constraint that the overall channel of all three particles remains f .
Locality gives another important way in which of anyons differs from

the fusion of spins. With spins, if you can measure two spins individually
you can (at least sometimes) determine the fusion channel of the spins.
For anyons you must be able to measure a loop that surrounds both
anyons in order to determine their collective fu sion channel —measuring
each anyon individually does not tell you the fusion of the two!

Antiparticles in the Case of Multiple Fusion Channels

When we have multiple fusion channels (i.e., for nonabelian theories)
we define antiparticles via the principle that a particle can fuse with its
antiparticle to give the identity, although other fusion channels may be
possible.

a× ā = I + other fusion channels

As in the abelian case we use the overbar notation to indicate an an-
tiparticle. It should be the case that for each particle a there is a unique
particle that can fuse with it to give the identity, and we call this par-
ticle ā. As in the abelian case, a particle may be its own antiparticle if
a× a = I +other fusion channels, in which case we do not put an arrow
on the line corresponding to the particle.

8.2.1 Example: Fibonacci Anyons

Perhaps the simplest nonabelian example is the anyon system known as
Fibonacci2 anyons. Something very close to this is thought to occur in

2Fibonacci, also known as Leonardo
of Pisa, was born around 1175 AD.
Perhaps his most important contribu-
tion to mathematics is that he brought
Arabic numerals (or Hindu-Arabic nu-
merals) to the western world. The
Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, . . .
is named after him, although it was
known in India hundreds of years ear-
lier!

the so-called ν = 12/5 quantum Hall state which we will study in more
depth in section 39. Fibonacci anyons are closely related to the SU(2)3
Chern-Simons theory3.

3Fibonacci anyons can be described ex-
actly by the G2 level 1 Chern-Simons
theory. This involves a messy Lie al-
gebra called G2. The SU(2)3 Chern-
Simons theory contains some additional
particles besides the Fibonacci parti-
cles, but ignoring these, it is the same
as Fibonacci.

In this example the particle set includes only two particles, the identity
I and a nontrivial particle which is often called τ .

Particle types = {I, τ}

The fusion rules are

I × I = I

I × τ = τ

τ × τ = I + τ

The first two of these rules hardly need to be written down (they are
implied by the required properties of the identity). It is the final rule that
is nontrivial. This final rule also implies that τ is its own antiparticle
τ = τ̄ which means we do not need to put arrows on world lines.

τ

I

τ

=
τ τ

I

τ

τ

τ

=
τ τ

τ

Fig. 8.9 Two different notations for
the two different fusion channels of two
Fibonacci anyons

With two Fibonacci anyons the Hilbert space is two dimensional, since
the two particles can fuse to I or τ , as shown in Fig. 8.9.
With three Fibonacci anyons the Hilbert space is 3 dimensional, as
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shown in Fig. 8.10. The key thing to notice is that if the first two
particles fuse to τ , then this combination acts as being a single particle
of overall charge τ — it can fuse with the third τ in two ways.
There is a single state in the Hilbert space of three anyons with overall

fusion channel I. This state is labeled as4 |N〉. As mentioned above 4Here |N〉 stands for “noncomputa-
tional”, since it is not used in many
quantum computing protocols that use
Fibonacci anyons.

by Fig. 8.7, due to locality, no amount of braiding amongst the three
particles will change this overall fusion channel (although braiding may
introduce an overall phase).
There are two states in the Hilbert space of three anyons with overall

fusion channel τ . These are labeled |1〉 and |0〉 in Fig. 8.10. Again,
as mentioned above by Fig. 8.7, due to locality, no amount of braiding
amongst the three particles will change this overall fusion channel. Fur-
ther, since in these two basis states the first two particles furthest left
are in an eigenstate (either I in state |0〉 or τ in state |1〉) no amount
of braiding of the first two particles will change that eigenstate from |0〉
to |1〉 or from |1〉 to |0〉. However, as we will see below in section 10.1,
if we braid the second particle with the third, we can then change the
quantum number of the first two particles and rotate between |0〉 and
|1〉.

τ τ τ

τ

I

=
τ τ τ

τ I = |N〉

τ τ τ

I

τ

=
τ τ τ

I τ = |0〉

τ τ τ

τ

τ

=
τ τ τ

τ τ = |1〉
Fig. 8.10 Notations for the three different orthogonal fusion channels of three
Fibonacci anyons. The notation |N〉, |1〉 and |0〉 are common notations for those
interested in topological quantum computing with Fibonacci anyons!

For our Fibonacci system, with 2 particles the Hilbert space is 2 di-
mensional. With 3 particles the Hilbert space is 3 dimensional. It is easy
to see that with 4 particles the Hilbert space is 5 dimensional (fusing a
fourth anyon with |0〉 or |1〉 in figure 8.10 can give either I or τ , whereas
fusing a fourth anyon with |N〉 can only give τ , thus giving a space of
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dimension 2+2+1). With five particles the space is 8 dimensional and
so forth. This pattern continues following the Fibonacci sequence (Try
to show this!), hence the name.
Since the N th element of the Fibonacci sequence for large N is ap-

proximately

Dim of N Anyons = FibN ∼
(
1 +

√
5

2

)N

.

(8.2)

We say that the quantum dimension of this particle is d = (1 +
√
5)/2,

the golden mean (See Eq. 3.8).

8.2.2 Example: Ising Anyons

The Ising5 anyon system is extremely closely related to SU(2)2 Chern-5The name Ising is used here due to the
relationship with the Ising conformal
field theory which describes the Ising
model in 2D at its critical point.

Simons theory6, and this general class of anyon is believed to be realized

6The fusion rules of Ising and SU(2)2
are the same, but there are some
spin factors which differ, as well as a
Frobenius-Schur indicator — see sec-
tions 14.2 and 18.3.

in the ν = 5/2 quantum Hall state (see section 39), topological super-
conductors, and other so-called Majorana systems (see section ***).
The Ising theory has three particle types7:

7Another common notation is to use
ǫ instead of ψ in the Ising theory. In
SU(2)2 the particles I, σ, ψ may be
called 0, 1/2, 1 or 0, 1, 2.

Particle types = {I, σ, ψ}

The nontrivial fusion rules are

ψ × ψ = I

ψ × σ = σ

σ × σ = I + ψ

where we have not written the outcome of any fusion with the identity,
since the outcome is obvious. Again, each particle is its own antiparticle
ψ = ψ̄ and σ = σ̄ so we need not put arrows on any world-lines.
Fusion of anything with the ψ particle always gives a unique result on

the right hand side. We thus call ψ an abelian particle (despite the fact
that the full theory is nonabelian), or we say that ψ is a simple current
(see margin note 8 below). Fusion of many ψ particles is therefore fairly
trivial, since each pair fuses to the identity in only one way.
Fusion of many σ particles, however, is nontrivial. The first two σ’s

can either fuse to I or ψ, but then when the third is included the overall
fusion channel must be σ (since fusing σ with either ψ or I gives σ).
Then adding a fourth σ to this cluster whose overall quantum number
is σ again gives two possible outcomes. Such a fusion tree is shown in
Fig 8.11. By counting possible trees, we find that the total number

σ σ σ σ σ σ σ

σI
or
ψ

σI
or
ψ

σI
or
ψ

Fig. 8.11 The fusion tree for many σ
particles in the Ising anyon theory.

of different fusion channels for N particles of type σ is 2N/2 (rounding
down if N/2 is not an integer). To see this in another way, we can group
σ particles together in pairs where each pair gives either ψ or I, so two
σ particles comprises a two state system, or a qubit. Then the I’s and
ψ’s fuse together in a unique way. Since the Hilbert space dimension is
(
√
2)N the quantum dimension of the σ particle is d =

√
2 (See Eq. 3.8).
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8.3 Fusion and the N matrices

We are well on our way to fully defining an anyon theory. A theory
must have a finite set of particles, including a unique identity I, with
each particle having a unique antiparticle.
The general fusion rules can be written as

a× b =
∑

c

N c
ab c (8.3)

where the N c
ab are nonnegative integers known as the fusion multiplic-

ities. N c
ab is zero if a and b cannot fuse to c. N c

ab is one if we have
a× b = . . .+ c+ . . ., and c only occurs once on the right hand side. If c
occurs more than once on the right hand side, then N c

ab simply counts
the number of times it occurs8 .

8A particle a is a simple current if∑
cN

c
ab = 1 for each particle b.

What does it mean that a particle type can occur more than once in
the list of fusion outcomes? It simply means that the fusion result can
occur in multiple orthogonal ways9 in which case a diagram with a vertex

9While this does not occur for angu-
lar momentum addition of SU(2) (and
also will not occur in Chern-Simons
theory SU(2)k correspondingly) it is
well known among high energy theo-
rists who consider the fusion of repre-
sentations of SU(3). Recall that

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 1̄0⊕ 27

and the 8 occurs twice on the right.
showing a and b fusing to c should also contain an index (µ ∈ 1 . . .N c

ab)
at the vertex indicating which of the possible c fusion channels occurs,
as shown in Fig. 8.12. For most simple anyon theories N c

ab is either
0 or 1, and we will not usually consider the more complicated case in
examples for simplicity, but they are discussed in the chapter appendices
for completeness (See section 9.5.3. See also section ***). It is good to
keep in mind that such more complicated cases exist.

c

a b

µ

Fig. 8.12 Multiple fusion channels. In
nonabelian theory fusion of a and b to c
can occur in multiple orthogonal ways
when Nc

ab > 1. To specify which way
they fuse, we add an additional index
µ ∈ 1 . . . Nc

ab at the vertex as shown.

Elementary properties of the fusion multiplicity matrices

• Commutativity of fusion a× b = b× a.

N c
ab = N c

ba (8.4)

• Time reversal
N c
ab = N c̄

āb̄ (8.5)

• Trivial fusion with the identity

N b
aI = δab (8.6)

• Uniqueness of inverse
N I
ab = δbā (8.7)

c

a b a c̄b

Fig. 8.13 An equivalence of Nc
ab with

Nabc̄. Both types of vertices have the
equivalent fusion multiplicity. Note
that the left half of the right picture
is exactly equivalent to the right — c
is entering the vertex from below (then
this c turns over to become a c̄ going
up on the far right).

It is sometimes convenient to define

Nabc̄ = N c
ab (8.8)

which is the number of different ways that a, b, and c̄ can fuse to the iden-
tity. An example of this equivalence is shown graphically in Fig. 8.13.
The advantage of this representation is that Nabc is fully symmetric in
all of its indices. For example, using this notation Eq. 8.6 and Eq. 8.7
are actually the same. Further, using Eq. 8.8 along with the symmetry
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of Nabc we can derive identities such as

N c
ab = N b̄

ac̄ = N c
āb. (8.9)

where in the last step we used Eq. 8.5.
A set of particle types with a unique identity and a set of N c

ab’s sat-
isfying the axioms listed here is known as a commutative fusion ring10.10In section 20.1.3 we will briefly dis-

cuss using a noncommutative group as
the fusion ring, which violates the com-
mutativity axiom. Such rings can be
used to define planar diagram algebras
but not full anyon theories, or 2+1
dimensional TQFTs. However these
planar diagram algebras can then be
used to construct full TQFTs in several
ways. We will see the noncommutative
case discussed in section ?? applied this
way in section 21.4 and chapter 29)

All TQFTs are described by commutative fusion rings. However, com-
mutative fusion rings exist that are not consistent with any TQFT.

Fusing Multiple Anyons

If we are to fuse, say, five anyons of type a together into a final result of
e, we can do so via a tree as shown in Fig. 8.14.
To find the dimension of the Hilbert space, we write

Dim of fusing five a anyons to final result e =
∑

bcd

N b
aaN

c
baN

d
caN

e
da

=
∑

bcd

N b
aaN

c
abN

d
acN

e
ad

and we identify each factor of N as being one of the vertices in the figure.

a a a a a

b

c

d

e

Fig. 8.14 Fusing five a type anyons
together into a final result e.

It is convenient to think of the tensor N c
ab as a matrix Na with indices

b and c, i.e, we write [Na]
c
b, such that we have

Dim of fusing five a anyons to final result e = [(Na)
4]ea

Similarly were we to have a larger number p of anyons of type a we would
need to calculate [Na]

p−1. We recall (See Eq. 3.8) that the quantum
dimension da of the anyon a is defined via the fact that the Hilbert space
dimension should scale as dNa where N is the number of a particles fused
together. We thus have that11

11To prove this we need to show that el-
ements of the matrix [Na]p are approx-
imately proportional to (λ1)p for large
p where λ1 is the largest eigenvalue of
Na. An easy way to see this is to write
Na in diagonalized form (See Eq. 8.13)

Na = UΛU−1

where Λ is a diagonal matrix of the
eigenvalues. Then we have

[Na]
p = UΛpU−1.

For large p, the largest eigenvalue λ1 to
the pth power is much much larger than
any other eigenvalue to the pth power,
so we can approximate all the other
eigenvalues as zero, and Λp becomes ap-
proximately proportional to (λ1)p.

da = largest eigenvalue of [Na] (8.10)

Note that this implies da = dā given the symmetries of N .

Example of Fibonacci Anyons

The fusion matrix for the τ particle in the Fibonacci theory is

I τ

Nτ =

(
0 1
1 1

)
I
τ

where, as indicated here, the first row and first column represent the
identity and the second row and second column represent τ . The first
row of this matrix says that fusing τ with the identity gives back τ and
the second row says that fusing τ with τ gives I and τ . It is an easy
exercise to check that the largest eigenvalue of this matrix is indeed
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dτ = (1 +
√
5)/2, in agreement with Eq. 8.2.

Example of Ising Anyons

The fusion matrix for the σ particle in the Fibonacci theory is

I σ ψ

Nσ =




0 1 0
1 0 1
0 1 0



I
σ
ψ

where the first row and column represent the identity, the second row
and column represent σ and the third row and column represent ψ. So,
for example, the second row here indicates that σ × σ = I + ψ. Again,
it is an easy exercise to check that the largest eigenvalue of this matrix
is dσ =

√
2 as described in section 8.2.2.

8.3.1 Associativity

It should be noted that the fusion multiplicity matrices N are very spe-
cial matrices since the outcome of a fusion should not depend on the
order of fusion. I.e., (a× b)× c = a× (b× c). a b c

d

e

a b c

f

e

Fig. 8.15 Fusing (a× b)× c should be
equivalent to a × (b × c). On the left
a and b fuse to d first then this com-
posite fuses with c to give e. On the
right b and c fuse to f first, then this
composite fuses with a to give e. Both
diagrams represent the same physical
Hilbert space. Fixing a, b, c, e the figure
on the left spans the Hilbert space with
different values of d whereas the figure
on the right spans the same space with
different values of f .

For example, let us try to calculate how many ways a× b× c can give
an outcome of e. We can either try fusing a × b first as on the left of
Fig. 8.15 or we can try fusing b and c first as on the right. Whichever
we choose, we are describing the same Hilbert space and we should find
the same overall dimension either way. In other words, we should have
the same total number of fusion channels. Thus, corresponding to these
two possibilities we have the equality

∑

d

Nd
abN

e
cd =

∑

f

Nf
cbN

e
af (8.11)

Again, thinking of N c
ab as a matrix labeled Na with indices b and c, this

tells us that
[Na, Nc] = 0 (8.12)

Therefore all of the N matrices commute with each other. In addition
the N ’s are normal matrices, meaning that they commute with their
own transpose (Since [Na, Nā] = 0 and Na = NT

ā by Eq. 8.9). A set of
normal matrices that all commute can be simultaneously diagonalized,
thus

[U †NaU ]xy = δxyλ
(a)
x (8.13)

and all Na’s get diagonalized with the same unitary matrix U . Surpris-
ingly (as we will see below in section 17.3.1) for well behaved (so-called
“modular”12 anyon theories) the matrix U is precisely the modular S-

12For nonmodular theories, or even
fusion rings which don’t even corre-
spond to anyon theories of any type, we
can still diagonalize N in the form of
Eq. 8.13, and the resulting unitary ma-
trix U is sometimes known as the mock

S-matrix.

matrix we discussed above in Eq. 7.6 !
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8.4 Application of Fusion: Dimension of

Hilbert Space on 2-Manifolds

The structure of fusion rules can be used to calculate the ground state
degeneracy of wavefunctions on 2-dimensional manifolds13. Here we will13We are again assuming manifolds are

always orientable – so this excludes ob-
jects like the Klein bottle or the Möbius
strip. Only a subset of TQFTs are well
defined in the non-orientable case.

again be examining the Hilbert space V (Σ) where Σ is our 2-manifold
which may or may not have particles in it.
Let us start by considering the sphere S2, and assume that there

are no anyons on the surface of the sphere. As mentioned previously in
Eq. 7.5, there is a unique ground state in this situation because there are
no non-contractible loops (See sections 7.1 and 4.3.1). The dimension of
the Hilbert space is just 1,

Dim V (S2) = 1.

This will be the starting point for our understanding. All other config-
urations (change of topology, adding particles etc) will be related back
to this reference configuration.
Now let us consider the possibility of having a single (nontrivial14)14By nontrivial we mean this particle

is not the vacuum particle. anyon on the sphere. In fact such a thing is not possible because you
can only create particles in a way that conserves that overall quantum
number. If we start with no particles on the sphere, the total anyon
charge must be conserved — i.e., everything on the sphere must fuse
together to total quantum number of the identity. Thus, we have

Dim V (S2 with one (nontrivial) anyon) = 0 (8.14)

Another way to explain this is to realize that, since particle-antiparticles
are made in pairs, there is no space-time history that could prepare the
state with just a single (non-vacuum) particle on the sphere.15

15For higher genus surfaces with non-
abelian theories it is possible to have a
single anyon alone on the surface. An
example of this is when a × ā = I + c.
In this case a pair a and ā may be cre-
ated, one particle can move all the way
around a nontrivial cycle to fuse with
its partner, but it may leave behind
a single anyon c since some quantum
numbers can be changed by the action
of moving the anyon around the cycle.
If we try this on the sphere (without the
handle) we would always find that the
pair reannihilates to the vacuum. See
further discussion near Eq. 8.15.

We can however consider the possibility of two anyons on a sphere. We
can create an a particle with an ā particle, and since these two particles
must fuse back to the identity in a unique way we have16

16It is implied that we are counting
states here with the particles a and ā
at some given fixed position (all posi-
tions being topologically equivalent). If
we were to count different positions as
different states in the Hilbert space we
would have to include this nontopolog-
ical degeneracy in our counting as well.

Dim V (S2 with one a and one ā) = 1

The two particles must be antiparticles of each other, otherwise no state
is allowed and the dimension of the Hilbert space is zero. This is a
general principle: the fusion of all the particles on the sphere must be
the vacuum, since these particles must have (at some point in history)
been pulled from the vacuum.
Now we could also imagine puncturing the sphere to make a hole

where the particles were. In the spirit of what we did in section 7.2.1
we could re-fill the hole with any particle type17 . However, if we refill

17Since there is a time direction S1
time

as well, removing a disk with a particle
in it from a spatial manifold Σ is pre-
cisely the same as removing a tubular
neighborhood with a particle world line
in it from the space-time manifold.

one hole with a particular particle type a, then the other hole can only
get filled in with the anti-particle type ā. Nonetheless, we can conclude
that

Dim V (S2 with two unlabeled punctures) = Number of particle types
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⇒ ⇒ ⇒aā

ā a

Fig. 8.16 Surgering the twice punctured sphere into a torus. This is the gluing
axiom in action. Note that we are implicitly assuming the system is trivial in the
“time” direction, which we assume to form a circle S1

time.

Now consider the procedure shown in Fig. 8.16. We start with the twice
punctured sphere. The two punctures can be labeled with any particle-
antiparticle pair labels. We can then deform the sphere to sew the two
punctures together in a procedure that is sometimes called surgery (We
will discuss surgery in more detail in chapter 22). The result of this
surgery is the torus surface T 2 and we conclude that

Dim V (T 2) = Number of particle types

as we have already discussed. The general rule of surgery is that two
punctures can be sewed together when they have opposing particle types
(i.e., a particle and its antiparticle). This is exactly the gluing prop-
erty of the TQFT. Although we are gluing together pieces along a 1-
dimensional boundary (the edge of the punctures), we should realize
that there is also a time direction, which we have implicitly assumed is
compactified into S1

time. Thus we are actually sewing together the 2-
surface (S1

puncture × S1
time) with another 2-surface (S1

puncture × S1
time),

and the inner product between the two wavefunctions on these two-
surfaces ensures that the quantum number on these two punctures are
conjugate to each other18.

18In Eq. 7.3 we had a torus surface
which we crossed with an interval of
time and we closed up the interval to
form a circle, thus giving Tr[Z(T 2 ×
Itime)] = Z(T 2×S1

time) = DimV (T 2).
In contrast, in Fig. 8.16 we have a cylin-
der S1 × I (topologically the same as
a sphere with two holes) crossed with
S1
time and we close the cylinder to get

Tr[Z((S1 × I) × S1
time)] = Z(T 2 ×

S1
time).

We can continue on to consider a sphere with three particles. Similarly
we should expect that the three particle should fuse to the identity as
shown in Fig. 8.17. We can then think of the sphere with three particles a b c

c̄

Fig. 8.17 Three particles that fuse to
the identity. There are Nabc = N c̄

ab dif-
ferent fusion channels.

as being a sphere with three labeled punctures which is known as a “pair
of pants”, for reasons that are obvious in Figure. 8.18. It turns out that
any orientable 2-dimensional manifold (except S2 or T 2 which we have
already considered) can be constructed by sewing together the punctures
of pants — this is known as a “pants decomposition”. For example, in
Fig. 8.19 we sew together two pair of pants to obtain a two handled
torus.

=

a b c a

b c

Fig. 8.18 A three-times punctured sphere is known as a “pair of pants”.
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To find the ground state degeneracy of the two handled torus,

Dim V (Two handled torus) = Z(Two handled torus× S1),

we assemble the manifold using two pair of pants as shown in Fig. 8.19
and then we simply need to figure out the number of possible fusion
channels where we could satisfy a × b × c → I (for the bottom pair of
pants) and ā × b̄ × c̄ → I (for the top pair of pants). This number of
possible fusion channels is given in terms of the fusion multiplicities Nabc
as shown in Fig. 8.17. Essentially we are just looking at the number of
ways we can assign labels to the punctures when we glue the objects
together. Thus we have

Dim V (Two handled torus) =
∑

abc

NabcNāb̄c̄

a b c

−→ā b̄ c̄

Fig. 8.19 Sewing together two pair of pants to form a two-handled torus.

Another interesting use of the pants diagram is to determine the de-
generacy of a torus T 2 with a single anyon on it labelled a. Unlike
the sphere, where one cannot have a single anyon on the surface (See
Eq. 8.14) one can have a single anyon on a torus (See note 15 of this
chapter). To see how this is possible, take a pants diagram with the
holes labelled b, b̄, and a. Connect up the b to the b̄ to give a torus with
a single puncture remaining labeled a. Thus we conclude that

Dim V (T 2 with one a) =
∑

b

Nbb̄a ≡ La (8.15)

where we have defined this quantity to be called La.
One final example is to determine the ground state degeneracy of a

three handled torus. There are many ways we might cut a three handled
torus into pieces, but a convenient decomposition is the one shown in
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Fig. 8.20. Here there are three tori each with a puncture in it (marked as
a red collar), and a single pants in the middle connecting the three. Each
torus with a puncture has a Hilbert space dimension La where a is the
quantum number assigned to the puncture. Thus the total dimension of
the Hilbert space is conveniently written as

Dim V (Three handled torus) =
∑

abc

LaLbLcNāb̄c̄ (8.16)

Fig. 8.20 Decomposing a three han-
dled torus into three copies of a torus
with puncture (the puncture is the red
collar), and a single pants in the mid-
dle. I have resisted the urge to draw a
three handled object as being covered
with moss.

Example: Fibonacci Anyons

With the Fibonacci fusion rules, there are five ways we can fuse three
particles and get the identity.

NIII = 1

NττI = NτIτ = NIττ = 1

Nτττ = 1

and all other Nabc = 0. Thus there are five possible labelings of the
punctures in a pants diagram that allow overall fusion to the identity.
If we match these together on both top and bottom of the diagram on
the left of Fig. 8.19, we conclude that in the Fibonacci theory we have

Z(Two handled torus× S1) = Dim V (Two handled torus) = 5.

Similarly, we can consider the degeneracy of states for a torus with a
single τ particle on its surface

Dim V (T 2 with one τ particle on it) = 1

coming from the allowed fusion Nτττ = 1. Thus we have LI = 2 and
Lτ = 1. It is then easy to plug into Eq. 8.16 to obtain

Dim V (Three handled torus) = 15.

8.5 Product Theories

A very common construction is to consider the product of two anyon
theories. Given two anyon theories (let us call them T and t) with
particle types

a, b, c, . . . ∈ t

A,B,C, . . . ∈ T

we consider the product theory T × t. The Hilbert space of the product
theory is just the product of the Hilbert spaces of the constituent the-
ories. So any arbitrary particle α in the product theory is composed of
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one particle from each of the constituent theories

α ∈ T × t =⇒ α = (Y, x) with Y ∈ T and x ∈ t

Roughly we can think of this as putting both theories in the same place
at the same time — particles from T can exist (combined with I from
t) and particles from t can exist (combined with I from T ) and any
combination of particles from both theories can also exist.
For example, in the theory (Ising × Fibonacci), there are 6 particle

types which we can label as

(I, I) (I, τ) (σ, I) (σ, τ) (ψ, I) (ψ, τ)

The fusion multiplicity matrices N for the product theories are just
the product of the N matrices for the constituent theories

N
(C,c)
(A,a),(B,b) = NC

A,BN
c
a,b

8.6 Appendix: Tensor Description of Fusion
and Splitting Spaces

Let us now try to give a bit more precise mathematical meaning to idea
of fusion as well as to some of the diagrams we have been drawing19. For19Those who feel they have a good

understanding of the physics without
needing the mathematics may be able
to skip this section.

each fusionN c
ab we define a space V

c
ab known as a fusion space and a space

V abc known as a splitting space. Both of these spaces have dimension
N c
ab

dimV cab = dimV abc = N c
ab

Each of these spaces can be given an orthonormal basis, which we label
with an index µ. We can write states in this space as kets which we
draw as diagrams. For example

µ

c

a b

= |a, b; c, µ〉 ∈ V abc (8.17)

describes the splitting space. The Hermitian conjugate, the correspond-
ing bras, are drawn as fusion diagrams

µ

c

a b

= 〈a, b; c, µ| ∈ V cab (8.18)

which describes the fusion space. In the most commonly considered case,
N c
ab = 1 in which case there is a unique state and we do not need to

specify µ since it has only one possible value. Cases where N c
ab = 0

are non-allowed fusions meaning that the space V cab and V abc are zero
dimensional.
In Eq. 8.17 we have described states in the space associated with
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a single anyon splitting into two, and in Eq. 8.18 we have described
states in the space associated with two anyons fusing into one. It is
possible to also describe the splitting or fusion space for a single anyon
splitting or fusing into more pieces. For example, when splitting/fusing
into three pieces the relevant spaces are often denoted20 as V abce or the 20We do not mean e to necessarily be

the identity here. See note 1 of this
chapter. We use this notation to match
that of the next chapter.

Hermitian conjugate V eabc. A basis of states in this space can be written
diagrammatically with the above described splitting vertices as21

21The insertion of the parenthesis (a, b)
in Eq. 8.19, and similarly the parenthe-
sis (b, c) in Eq. 8.22 are crucial to in-
dicate which splitting is closest to the
leaves of the tree (furthest from the
root). Without the parenthesis one can
have ambiguous notation, such as in the
Fibonacci theory, where |ττ ; τ〉⊗|ττ ; τ〉
could mean either the state in Eq. 8.19
or Eq. 8.22. The notation is telling us
something important: that the kets in
Eq. 8.19 and Eq. 8.22 are living in dif-
ferent, albeit isomorphic, spaces.

= |(a, b); d, µ〉 ⊗ |d, c; e, ν〉 ∈ V abd ⊗ V dce ∈ V abce

µ

ν

a b c

d

e

(8.19)

The full splitting space V abce can thus be described as

V abce
∼=
⊕

d

V abd ⊗ V dce (8.20)

with a corresponding dimension of this space

dim V abce =
∑

d

Nab
d N

dc
e . (8.21)

On the other hand, we could just as well have described a state in this
space as

= |a, f ; e, λ〉 ⊗ |(b, c); f, η〉 ∈ V afe ⊗ V bcf ∈ V abce
λ

η

a b c

f

e

(8.22)

In this language the full splitting space V abce can be described as

V abce
∼=
⊕

f

V afe ⊗ V bcf (8.23)

with a corresponding dimension of this space

dim V abce =
∑

d

Naf
e N bc

f . (8.24)

We thus have

V abce
∼=
⊕

d

V abd ⊗ V dce
∼=
⊕

f

V afe ⊗ V bcf (8.25)

where “∼=” means “isomorphic to”. In other words, these are two iso-
morphic descriptions of the same space. Equating the two different
expressions (Eq. 8.21 and 8.24) for the dimension of this space recovers
the equality Eq. 8.11. The isomorphism between these two descriptions
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of the same space will be explored in detail in the next chapter.
One can describe more complicated splitting and fusion spaces in an

analogous way. For example, the space V aaaaae can be described as

V aaaaae
∼=
⊕

b,c,d

V aab ⊗ V bac ⊗ V cad ⊗ V dae

where each term in the direct sum (i.e., each term with fixed b, c, d) is
drawn diagrammatically as in Fig. 8.14.

Chapter Summary

• This is

Further Reading

This is some reading.

Exercises

Exercise 8.1 Quantum Dimension
Let Nc

ab be the fusion multiplicity matrices of a TQFT

a× b =
∑

c

Nc
ab c

meaning that Nc
ab is the number of distinct ways that a and b can fuse to c.

(In many, or even most, theories of interest all N ’s are either 0 or 1).
The quantum dimension da of a particle a is defined as the largest eigenvalue

of the matrix [Na]
c
b where this is now thought of as a two dimensional matrix

with a fixed and b, c the indices.
Show that

dadb =
∑

c

Nc
ab dc

We will prove this formula algebraically in Chapter 17. However there is a
simple and much more physical way to get to the the result: Imagine fusing
together M anyons of type a and M anyons of type b where M gets very
large and determine the dimension of space that results. Then imagine fusing
together a× b and do this M times and then fuse together all the results.

Exercise 8.2 Fusion and Ground State Degeneracy
To determine the ground state degeneracy of a 2-manifold in a 2+1 dimen-

sional TQFT one can cut the manifold into pieces and sew back together. One
can think of the open “edges” or connecting tube-ends as each having a label
given by one of the particle types (i.e., one of the anyons) of the theory. Re-
ally we are labeling each edge with a basis element of a possible Hilbert space.
The labels on two tubes that have been connected together must match (label
a on one tube fits into label ā on another tube.) To calculate the ground
state degeneracy we must keep track of all possible ways that these assembled
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tubes could have been labeled. For example, when we assemble a torus as
in Fig. 8.16, we must match the quantum number on one open end to the
(opposite) quantum number on the opposite open end. The ground state de-
generacy is then just the number of different possible labels, or equivalently
the number of different particle types.

For more complicated 2-d manifolds, we can decompose the manifold into
so-called pants diagrams that look like Fig. 8.18. When we sew together pants
diagrams, we should include a factor of the fusions multiplicity Nc

ab for each
pants which has its three tube edges labeled with a, b and c̄.

(a) Write a general formula for the ground state degeneracy of anM -handled
torus in terms of the N matrices.

(b) For the Fibonacci anyon model, find the ground state degeneracy of a
4-handled torus.

(c) Show that in the limit of large number of handles M the ground state
degeneracy scales as ∼ D2M where D2 =

∑

a d
2
a.

Exercise 8.3 Consistency of Fusion Rules
Show by using commutativity and associativity of fusion along with identity

8.5, that no anyon theory can have a particle a such that a × a = a meaning
a fuses to a to form only a and nothing else.





Change of Basis and
F -Matrices1 9

Medium Easy Material

1This chapter is crucial for the under-
standing of topological quantum sys-
tems. If there is one chapter to really
study closely, this one is it! Don’t worry
too much about the section on gauge
transforms or the appendices.

Let us consider the case of three anyons a, b and c that fuse together to
form an anyon e. As mentioned several times previously (See Fig. 8.15
or Eqs. 8.19 and 8.22) one can describe the state of these three particles
in two different ways. We can describe the space by describing how a
fuses with b (the value of d on the left of Fig. 9.1), or by how b fuses
with c (the value of f on the right of Fig. 9.1). Either of these two
descriptions should be able to describe any state of the three anyons a, b
and c fusing to e. However, in the two different cases these states are
described in different bases. We define the change of basis as a set of
unitary matrices2,3,4 called F , as shown in Fig. 9.1. 2For simplicity we are assuming no

fusion multiplicities Nc
ab greater than

1. In cases where Nc
ab > 1 (as in

Fig. 8.12), each vertex gets an addi-
tional index which ranges from 1 to its
multiplicity so that the F -matrix gets
additional indices as well. This case is
discussed in section 9.5.3.
3The conventions for writing F -
matrices used in this chapter match
that of Refs. Kitaev [2006] and
Bonderson [2007].

a b c

d

e

=
∑

f

[
F abce

]
df

a b c

f

e
Fig. 9.1 The F -matrix makes a change of basis between the two different ways of
describing the space spanned by the fusion of three anyon charges a, b, and c when
they all fuse to a total quantum number of e. For fixed a, b, c and e, the matrix F
is unitary in its subscripts d, f . Here F is defined to be zero if the fusion diagram is
not allowed, i.e, if any of the fusion multiplicities Nd

ab, N
e
dc, N

f
bc, N

e
af are zero.

Several brief comments are in order. First, as noted in the caption of
Fig. 9.1 the F -matrix is considered to be zero if any of the vertices on
either side of the diagram are not allowed vertices of the fusion algebra.
Secondly F moves involving the identity particle (i.e, with a, b or c
being the identity in the figure) are chosen to have value of unity5. In 5This involves a gauge choice, see sec-

tion 9.4.particular this means

[F Ibce ]be = [F aIce ]ac = [F abIe ]eb = 1 (9.1)

4In the notation of section 8.6 the F -matrix describes the isomorphism V abd ⊗V dce
∼=

V afe ⊗ V bcf . We can write the basis change more algebraically as

|(a, b); d〉 ⊗ |d, c; e〉 =
∑

f

[F abce ]df |a, f ; e〉 ⊗ |(b, c); f〉

which represents Fig. 9.1 (where we have again suppressed indices µ, . . . at the vertices
for simplicity).
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)

x y

a

b w vz

cd

e

t

=
∑

f

[
F abce

]
df

x y

a

b w vz

c

f

e

t

Fig. 9.2 The F -matrix can be applied inside of more complicated diagrams. Outside
of the red circle both diagrams are the same. Inside the circle there is exactly the
same transformation as is shown in Fig. 9.1.

Finally, being a change of basis, the F -matrix (for fixed a, b, c, e) is
unitary viewed as a matrix with indices d and f .
This idea of change of basis is familiar from angular momentum addi-

tion where the F -matrix is known as a 6j symbol (note it has 6 indices).
One can combine three objects with L2 angular momenta values a, b and
c in order to get L2 angular momentum e, and quite similarly you can
describe this space in terms of a combined with b to get d (as in the left
of Fig. 9.1) or in terms of b combined with c to get f (as in the right of
Fig. 9.1). In fact, even when studying TQFTs, sometimes people refer
to F -matrices as 6j symbols.
It is important to emphasize that an F -matrix can act on a portion

of a diagram, as shown in Fig. 9.2. This allows us to convert any tree
structure in a fusion diagram to any other tree structure.

9.1 Example: Fibonacci Anyons

Again we turn to the example of Fibonacci anyons for clarification. We
imagine fusing together three τ particles. As shown in Fig. 8.10, there is
a single state |N〉 in which the three fuse to the identity I. It should not
matter if we choose to fuse the leftmost two anyons first, or the rightmost
two. In either case there is only one possible state for the outcome. We
can thus draw the simple identity shown in Fig. 9.3. Mathematically
we would write that F τττI = 1. (And as noted in Eq. 9.1, if any of the
three upper indices are the identity, we also have F = 1). The more

τ τ τ

τ

I

=

τ τ τ

τ

I
Fig. 9.3 There is only one state in the
Hilbert space of three Fibonacci anyons
fusing to the identity (we previously
called this |N〉. Thus it does not mat-
ter if you fuse the left two first or the
right two first, you are describing the
same state.

interesting situation is the case where the three Fibonacci anyons fuse
to τ . In this case, there is a two dimensional space of states, and this
two dimensional space can be described in two ways. We can fuse the
left two particles first to get either I (yielding overall state |0〉) or to
get τ (yielding overall state |1〉). See the top of Fig. 9.4. On the other
hand, we could fuse the right two particles first to get either I (yielding
overall state |0′〉) or to get τ (yielding overall state |1′〉). See the bottom
of Fig. 9.4.
The space of states spanned by the three anyons is the same in either
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τ τ τ

I

τ

=
τ τ τ

I τ = |0〉

τ τ τ

τ

τ

=
τ τ τ

τ τ = |1〉

Fusing the two particles on the left first

τ τ τ

I

τ

=
τ τ τ

I τ = |0′〉

τ τ τ

τ

τ

=
τ τ τ

τ τ = |1′〉

Fusing the two particles on the right first

Fig. 9.4 Two ways to describe the same two dimensional space in the case of
Fibonacci anyons. The basis {|0〉, |1〉} fuses the left two particles first, whereas the
basis {|0′〉, |1′〉} fuses the right two particles first.

description. Thus, there must be a unitary basis transform given by
(

|0〉
|1〉

)
=

(
F00′ F01′

F10′ F11′

)(
|0′〉
|1′〉

)
(9.2)

Here F is a two by two matrix, and in the notation of the F -matrix
defined in Fig. 9.1, this two by two matrix is [F ττττ ]ab and the indices
a, b should take the values I and τ instead of 0 and 1, but we have used
abbreviated notation here for more clarity.
For the Fibonacci theory the F -matrix is given explicitly by6 6We can redefine kets with different

gauge choices (see section 9.4) and this
will insert some phases into the off-
diagonal of this matrix, but the sim-
plest gauge choice gives the matrix as
shown.

F ττττ = F =

(
φ−1 φ−1/2

φ−1/2 −φ−1

)
(9.3)

where φ−1 = (
√
5− 1)/2, so φ is the golden mean. As one should expect

for a change of basis, this matrix is unitary. In Section 9.3 we will discuss
how this matrix is derived (See also section 18.2).
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9.2 Example: Ising Anyons

σ σ σ

I

σ

=
σ σ σ

I σ = |0〉

σ σ σ

ψ

σ

=
σ σ σ

ψ σ = |1〉

σ σ σ

I

σ

=
σ σ σ

I σ = |0′〉

σ σ σ

ψ

σ

=
σ σ σ

ψ σ = |1′〉

Fig. 9.5 Fusing three σ particles in the
Ising theory. In |0〉 and |1〉 we fuse the
left two particles first, whereas in |0′〉
and |1′〉 we fuse the right two particles
first.

The situation with Ising anyons is quite similar, so we will be rather
brief. Let us fuse three σ particles to an overall fusion channel of σ.
There is no other choice, three σ particles can only fuse to σ (I.e., there
is no |N〉 state. See section 8.2.2). There are two possible states in
the Hilbert space which we can write in either of two bases as shown in
Fig. 9.5 — either fusing the left two particles first or fusing the right
two particles first. Analogous to the Fibonacci case we can write an F -
matrix which relates the two basis descriptions as in Eq. 9.2. However,
here the F -matrix is instead given by7

7It is interesting that Eq. 9.5 is a
gauge independent statement, whereas
Eq. 9.6 and Eq. 9.4 involves a gauge
choice. See section 9.4 and exercise 9.1.

F σσσσ = F =
1√
2

(
1 1
1 −1

)
(9.4)

which is sometimes known as a Hadamard matrix. Deriving this form of
the F -matrix will be described roughly in section 9.3 below, and is done
in detail in sections 18.3 and 19.4 below (See also exercise 9.7).
In the Ising theory we can also look at situations where we have both

σ and ψ particles. In this case we have7

[Fψσψσ ]σσ = −1 (9.5)

[F σψσψ ]σσ = −1 (9.6)

Eq. 9.5 is shown diagrammatically in Fig. 9.6. The other elements of
F in the Ising theory which we have not mentioned so far (i.e., those
not described by Eqs. 9.4-9.6) are either 1 if all the fusion vertices are
allowed, or are zero if any of the fusion vertices are not allowed (See
Fig. 9.1 caption).
The presence of the minus signs in Eq. 9.5 (for example) may seem a

bit puzzling being that the diagrams on the left and right of Fig. 9.6 are
describing the same state in the Hilbert space. However, we will see in
the next section why this sign is required in order to have a consistent
F -matrix (See exercise 9.3 for a more detailed calculation).

ψ σ ψ

σ

σ

= −1

ψ σ ψ

σ

σ

Fig. 9.6 Diagrammatic representation
of Eq. 9.5. Both diagrams describe the
same state in the Hilbert space, but
they differ in a −1 phase.

9.3 Pentagon

It is possible to describe the same Hilbert space in many ways. For
example, with three anyons, as in Fig. 8.15, one can describe the state
in terms of the fusion channel of the two anyons on the left, or in terms
of the two on the right. Ie., we can describe (a×b)×c or a× (b×c), and
as in Fig. 9.1, these two descriptions can be related via an F -matrix.
When there are four anyons, there are still more options of how we

group particles to describe the states of the Hilbert space, and these
can also be related to each other via F -matrices similarly (analogous to
that shown in Fig. 9.2). The fact that we can change the connectivity
of these tree diagrams then allows one to make multiple changes in the
trees as shown in Fig. 9.7. Indeed, in this figure one sees that one can
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e

a b c d

f
g

a b c d

f

e

l
a b c d

e

l
k

a b c d

g

h

e e

h

a b c d

k

F F

F

F

F

Fig. 9.7 Pentagon Diagram. Each step in the diagram is a new description of the
same basis of states via and F -matrix.

go from the far left to the far right of the diagram via two completely
different paths (the top and the bottom path) and the end result on the
far right should be the same either way. This diagram, known as the
pentagon diagram8, puts a very strong constraint on the F -matrices,

8An analogous relation holds for 6j
symbols of angular momentum ad-
dition, known often as the Elliot-
Biedenharn identity.

which written out algebraically would be

[F fcde ]gl[F
abl
e ]fk =

∑

h

[F abcg ]fh[F
ahd
e ]gk[F

bcd
k ]hl (9.7)

where the left hand side represents the top route of the figure and the
right hand side represents the bottom route.9 9It is very worth working through

this to make sure you understand how
this equation matches up with the fig-
ure! Note that in the equation the F -
matrices are written in an order such
that those furthest right in Fig. 9.7 are
furthest right in the equations.

For very simple theories, such as the Fibonacci anyon theory, the
fusion rules and the Pentagon diagram are sufficient to completely define
the F -matrices (up to some gauge convention choices as in section 9.4).
See exercise 9.4. Further, for any given set of fusion rules there are a
finite set of possible solutions of the pentagon equation10 — a property

10A finite set of gauge inequivalent so-
lutions. I.e., a gauge transform of a
given solution does not count as a new
solution.

that goes by the name “Ocneanu rigidity”11.

11Ocneanu did not manage to ever pub-
lish this important result. See for ex-
ample Etingof et al. [2005].

One might think that one could write down more complicated trees
and more complicated paths through the trees analogous to Fig. 9.7 and
somehow derive additional constraints on the F -matrices. A theorem
by MacLane [1971], known as the “coherence theorem”, guarantees that
no more complicated trees generate new identities beyond the pentagon
diagram.

9.4 Gauge Transforms

We have the freedom to make gauge transformations on our diagrams
and these will be reflected in the F -matrix. While this is a bit of a
technical point, we make frequent use gauge transformation in some
later chapters so it is worth discussing it briefly here.
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A gauge choice is a choice of a phase associated with the vertices in a
diagram. If we chance this gauge choice, diagrams are then multiplied
by phases.
In particular a gauge transformation multiplies the vertices in a dia-

gram by a phase as shown in Fig. 9.8. The tilde over the vertex on the
right notates that we have made a gauge transform to a tilde gauge1212This is much more easily expressed

using the notation of section 8.6 where
we can just write

|a, b; c〉 = uabc
˜|a, b; c〉

c

a b

= uabc
∼
c

a b

Fig. 9.8 We have the freedom to make a gauge transform of a vertex by multiplying

by a phase uabc . The tilde on the right notates that the vertex is in the tilde gauge.

Under such gauge transforms, the F -matrix must correspondingly
transform as

[̃F abce ]df =
uafe u

bc
f

uabd u
dc
e

[F abce ]df (9.8)

As we shall see in section 14.2, some gauge choices are much more nat-
ural than others, but we should always keep in mind that we have this
freedom.
Note that if one of the upper legs is the identity (a = I or b = I

in Fig. 9.8) we typically do not allow a gauge transform of this type of
vertex, since the presence of a vertex with the vacuum is the same as
the absence of a vertex with the vacuum (i.e, we can add or remove lines
labeled by I for free).1313There can be cases where we do

want to specify that a vacuum line has
branched off at one particular point and
we do allow choosing a nontrivial gauge
for such a vertex (See Lin and Levin
[2014] for further discussion of this pos-
sibility).

9.5 Appendix: F -matrix Odds and Ends

9.5.1 Product Theories

Given two anyon theories T and t, we can construct the product the-
ory T × t as in section 8.5. If the theory T has consistent F -matrices
[FABCE ]DF and the theory t has consistent F -matrices [F abce ]df (“con-
sistent” here means satisfying the pentagon relation), then the product
theory has consistent F -matrices

[F
(A,a)(B,b)(C,c)
(E,e) ](D,d),(F,f) = [FABCE ]DF [F abce ]df

The point here is that in a product theory, the two constituent theories
don’t “see” each other at all.
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9.5.2 Unitarity of F

The F -matrix relation we defined as

a b c

d

e

=
∑

f

[
F abce

]
df

a b c

f

e
The fact that F is unitary in its indices d and f means we can also

write

a b c

f

e

=
∑

d

[
F abce

]∗
fd

a b c

d

e

9.5.3 F -matrix with higher fusion multiplicities

In cases where there are fusion multiplicities N c
ab greater than 1, each

vertex gets an additional index as shown in Fig.8.12. The F -matrix must
also describe what happens to these indices under basis transform. We
thus have a more general basis-change equation given in Fig. 9.9.

a b c

d
µ

ν

e

=
∑

f,α,β

[
F abce

]
(dµν)(fαβ)

a b c

f

e

α

β

Fig. 9.9 The F -matrix equation with fusion multiplicities greater than one. Here the

vertex indices are µ ∈ 1 . . . Nd
ab and ν ∈ 1 . . . Ne

dc and α ∈ 1 . . . Nf
bc and β ∈ 1 . . . Ne

af .

The subscripts (dµν) and (fαβ) are “super-indices”, of the matrix F abce . I.e., d, µ
and ν are joined together to make a single index.

In the language of section 8.6 this F -transform is written as

|a, b; d, µ〉 ⊗ |d, c; e, ν〉 =
∑

f,α,β

[
F abce

]
(dµν)(fαβ)

|a, f ; e, β〉 ⊗ |b, c; f, α〉

Gauge Transforms with higher fusion multiplicities

With higher fusion multiplicities N c
ab > 1, our diagrams have indices at

the vertices. Gauge transforms are generally a unitary matrix within
this index space and then take the form shown in Fig. 9.1014

14Again, this is much more easily ex-
pressed using the notation of section 8.6
where we can just write

|a, b; c, µ〉 =
∑

µ′
[uabc ]µµ′ ˜|a, b; c, µ〉Under such gauge transforms, the F -matrix must correspondingly
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c

a b

µ =
∑

µ′

[uabc ]µ,µ′
∼
c

a b

µ′

Fig. 9.10 We have the freedom to make a gauge transform of a vertex by multiplying

by a unitary matrix [uabc ]µµ′ . The tilde on the right notates that the vertex is in the
tilde gauge.

transform as

[̃F abce ](dµ′ν′)(fα′β′) = (9.9)
∑

α,β,µ,ν

([uabd ]−1)µ′µ([u
dc
e ]−1)ν′ν [F

abc
e ](dµν)(fαβ)[u

af
e ]ββ′ [ubcf ]αα′

Chapter Summary

• This is the summary

Further Reading

Exercises

Exercise 9.1 F -gauge choice
(a) Explain why in the Fibonacci theory, [F ττττ ]ττ is gauge independent but

[F ττττ ]Iτ is gauge dependent.
(b) Explain why in the Ising theory is [Fψσψσ ]σσ is gauge independent, but

[F σψσψ ]σσ is gauge dependent.

Exercise 9.2 F ’s with the vacuum field I
Explain why [F aIce ]ac = [F abId ]db = [F Ibce ]be = 1.

Exercise 9.3 Ising Pentagon
Consider a system of Ising anyons. Given the fusion rules, F xyzw will be a

2 by 2 matrix in the case of x = y = z = w = σ (given by Eq. 9.4) and is a
simply a scalar otherwise. One might hope that these scalars can all be taken
to be unity. Unfortunately this is not the case. By examining the pentagon
equation, Eq. 9.7 in the case of a = b = c = σ and d = f = ψ show that taking
the scalar to always be unity is not consistent. Show further that choosing
[Fψσψσ ]σσ = −1 (and leaving the other scalars to be unity) allows a consistent
solution of the pentagon for a = b = c = σ and d = f = ψ.

Exercise 9.4 Fibonacci Pentagon
In the Fibonacci anyon model, there are two particle types which are usually

called I and τ . The only nontrivial fusion rule is τ × τ = I + τ . With
these fusion rules, the F -matrix is completely fixed up to a gauge freedom
(corresponding to adding a phase to some of the kets). If we choose all elements
of the F -matrix to be real, then the F -matrix is completely determined by
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the pentagon up to one sign (gauge) choice. Using the pentagon equation
determine the F -matrix. (To get you started, note that in Fig. 9.7 the variables
a, b, c, d, e, f, g, h can only take values I and τ . You only need to consider the
cases where a, b, c, d are all τ ).

If you are stuck as to how to start, part of the calculation is given in Nayak
et al. [2008].

Exercise 9.5 Pentagon and Fusion Multiplicities
Consider the case of Appendix 9.5.3 where there are fusion multiplicies

Nc
ab > 1. Write the generalization of the pentagon equation Eq. 9.7.

Exercise 9.6 Gauge Change
(a.i) Confirm that the F -matrix transforms under gauge change as indicated

in Eq. 9.8. (a.ii) Show that a solution of the pentagon equation remains a
solution under any gauge transformation.

[Harder] Now consider the case of Appendix 9.5.3 where there are fusion
multiplicies Nc

ab > 1
(b.i) Analogous to (a.i) Confirm Eq. 9.9. (b.ii) Analogous to (a.ii) show

that a solution of the pentagon equation remains a solution under any gauge
transformation. (You will need to solve problem 9.5 first!)

Exercise 9.7 Ising F-matrix
[Hard] As discussed in the earlier problem, “Ising Anyons and Majorana

Fermions” (Ex, 3.3), one can express Ising anyons in terms of Majorana
fermions which are operators γi with anticommutations {γi, γj} = 2δij . As
discussed there we can choose any two Majoranas and construct a fermion
operator

c†12 =
1

2
(γ1 + iγ2)

then the corresponding fermion orbital can be either filled or empty. We
might write this as |012〉 = c12|112〉 and |112〉 = c†12|012〉. The subscript 12
here meaning that we have made the orbital out of Majoranas number 1 and
2. Note however, that we have to be careful that |012〉 = eiφ|121〉 where φ is a
gauge choice which is arbitrary (think about this if it is not obvious already).

Let us consider a system of 4 Majoranas, γ1, γ2, γ3, γ4. Consider the basis
of states

|a〉 = |012034〉
|b〉 = |012134〉
|c〉 = |112034〉
|d〉 = |112134〉

rewrite these states in terms of basis of states

|a′〉 = |041023〉
|b′〉 = |041123〉
|c′〉 = |141023〉
|d′〉 = |141123〉

Hence determine the F -matrix for Ising anyons. Be cautious about fermionic
anticommutations: c†xc

†
y = −c†yc†x so if we define |1x1y〉 = c†xc

†
y |0x0y〉 with the

convention that |0x0y〉 = |0y0x〉 then we will have |1x1y〉 = −|1y1x〉. Note
also that you have to make a gauge choice of some phases (analogous to the
mentioned gauge choice above). You can choose F to be always real.
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Medium Easy Material

We would now like to determine what happens when two particles are
exchanged with each other. As one might expect for anyons, phases are
accumulated from such exchanges. However, one must be cautious be-
cause the phase accumulated will generally depend on the fusion channel
of the particles being exchanged.

10.1 Introducing the R-matrix

Let us begin with a simple case where two identical particles of type a
are braided around each other. Let us specify that the two particles fuse
together in an overall channel c. Let us call this quantum mechanical
state |state〉 as shown in two different notations in Fig. 10.1.

a a

c

=
a a

c = |state〉
Fig. 10.1 Two a particles fusing to a c particle.

We then (half)-braid the two particles around each other (counter-
clockwise observing from above1.). The final fusion channel of the two 1In the language of the braid group we

would call this exchange σ. See section
3.3.1.

a particles is still c (by the locality principle of section 8.2 ). However,
a phase will be accumulated in the process which call Raac as shown in
Fig. 10.2. The inverse phase would be accumulated for an exchange in
the opposite direction.

= = Raac |state〉
a a

c

a a

c

Fig. 10.2 The phase accumulated by exchanging two a particles that fuse to c is
called Raac .

This so-called R-matrix along with the corresponding F -matrices will
allow us to compute the result of braiding any number of a particles
around each other in arbitrary ways.
Let us consider the case of three anyons of type a. We can write a

basis for the possible states of three anyons as shown in Fig. 10.3.
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a a a

c

f

=
a a a

c f = |c; f〉
Fig. 10.3 A basis of states for three a type anyons fusing to an overall quantum
number f .

a a a

c

f

=

a a a

c f
σ̂1|c; f〉 = = Raac |c; f〉

Fig. 10.4 Exchanging the two left particles incurs a phase Raac .

We now consider exchanging the left two particles as shown in Fig. 10.4.
(We call the operator that performs this exchange σ̂1 in analogy with
the braid group discussed in section 3.3.1.) Since we know the fusion
channel of these two particles (c) we know that the phase accumulated
in this exchange is just Raac . This seems fairly simple as it is precisely
the type of exchange we defined in Fig. 10.2 above
As with all operators in quantum mechanics that can be implemented

as a time evolution, the exchange operator is linear, meaning that it acts
on superpositions by acting on each term individually:

σ̂1
∑

c

αc|c; f〉 =
∑

c

αcR
aa
c |c; f〉

Let us now instead consider exchanging the right two particles, an
operation we call σ̂2. Since the right two particles are not in a definite
fusion channel we cannot directly apply the R-matrix. However, we
can use the F -matrix to rewrite our state as a superposition of states
where the right two particles are in a definite fusion channel as shown
in Fig. 10.5.

a a a

c f =
∑

g

[F aaaf ]cg
a a a

g f

Fig. 10.5 Using an F -move to work in the basis with a known fusion channel of the
right two particles.

One we have transformed to this new basis, then we can exchange
the right two particles and apply the R-matrix directly to the right two
particles as shown in Fig. 10.6. Once we have established the effect of
the exchange we can (if desired) convert back into the original basis
which describes the fusion of the left two particles using F−1.
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σ̂2|c; f〉 =

a a a

c f =
∑

g

[F aaaf ]cg

a a a

g f

=
∑

g

Raag [F aaaf ]cg
a a a

g f

Fig. 10.6 In order to describe exchange of the right two particles, we first change
to a basis where the fusion channel of those two particles is explicit. We can then
apply the R-matrix directly.

The result of this procedure in terms of the original basis, is given by

σ̂2|c; f〉 =
∑

g,z

[F aaaf ]cg Raag [(F aaaf )−1]gz |z; f〉 (10.1)

The general principle is that to evaluate any exchange of identical
particles, we can always use F -matrices to convert to a basis where the
fusion channel of the two particles to be braided is known. Once we are
working in this basis, we can then we apply the R-matrix directly. At
the end we can transform back to the original basis if we so desire. This
scheme works for any set of identical particles given appropriate F - and
R-matrices.

10.1.1 Locality

An important principle which we will often use is that result of braiding
a group of particles with a given total quantum number c is the same as if
that entire group were replaced with just a single particle with quantum
number c. For example, in Fig. 10.7 when we braid a cluster of a, b with
overall quantum number c around a cluster x, y, z with overall quantum
number w, the phase accumulated should be the same as if we simply
braided c around w.

a bxy z

cw f

=

w c

f

Fig. 10.7 Braiding a cluster of particles with overall quantum number c around a
cluster of particles with overall quantum number w should have the same effect as
braiding a single c particle, around a single w particle. The result should just be a
phase dependent on the quantum numbers c, w and f . In chapter 13 we will refer to
this phase as Rwcf Rcwf . Note that a does not wrap around b. If it did that would
accumulate an additional phase.
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10.2 Some Examples

Since the idea of using the R-matrix is quite important, it is worth
working through a few examples explicitly.

10.2.1 Fibonacci Anyons

Recall the properties of Fibonacci anyons (see section 8.2.1): There is
only one nontrivial particle type which we call τ and the only nontrivial
fusion rule is τ × τ = I + τ . As we saw in section 8.2.1, the fusion rule
implies that there are two possible states of two Fibonacci anyons: The
state where they fuse together to form I and the state where they fuse
together to τ (See Fig. 10.8. See also Fig. 8.9 where we previously in-
troduced these two states). We call these states |I〉 and |τ〉 respectively.

τ τ

I

=
τ τ

I = |I〉

τ τ

τ

=
τ τ

τ = |τ〉

Fig. 10.8 The two possible states of
two Fibonacci anyons. Note that we do
not draw arrows on the particle lines in
the left diagrams since τ is self-dual.

Now consider the operator σ̂ that exchanges the two Fibonacci anyons
counterclockwise as viewed from above, as shown in Fig. 10.9. This
operator yields the phase RττI if the fusion channel of the two particles
is I or Rτττ if the fusion channel of the two particles is τ .

σ̂|I〉 = = = RττI |I〉
τ τ

I

τ τ

I

σ̂|τ〉 = = = Rτττ |τ〉
τ τ

τ

τ τ

τ

Fig. 10.9 Exchanging two anyons gives a phase dependent on their fusion channel.

In section 13.3 below (see also exercise 10.6) we will explain how we
actually compute the phases Rτττ and RττI . For now, it suffices to give
the answers that for right-handed Fibonacci anyons

Rτττ = e+3πi/5

RττI = e−4πi/5 (10.2)

There also exists a left-handed type of Fibonacci anyons for which the
phases are complex conjugate of these.
As with all operators in quantum mechanics we can act on superpo-

sitions by acting on each term individually:

σ̂
(
α|I〉+ β|τ〉

)
= αRττI |I〉+ βRτττ |τ〉 .

If we think of our two states |I〉 and |τ〉 as the two states of a qubit,
the σ̂ operator is what is known as a controlled phase gate in quantum
information processing — the phase accumulated depends on the state
of the qubit.

τ τ τ

τ

I

=
τ τ τ

τ I
= |N〉

τ τ τ

I

τ

=
τ τ τ

I τ = |0〉

τ τ τ

τ

τ

=
τ τ τ

τ τ = |1〉

Fig. 10.10 The three states in
the Hilbert space of three Fibonacci
anyons.

Next let us consider the possible states of three Fibonacci anyon. As
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described in section 8.2.1 the space of such states is three-dimensional,
and we can choose as a basis the two states shown in Fig. 10.10 (we
already introduced these states in Fig. 8.10 above). Now consider an
operator σ̂1 that braids the two leftmost particles around each other as
shown in Fig. 10.11. Here the phase accumulated depends on the fusion
channel of the leftmost two particles, entirely analogous to Fig. 10.9.

τ τ τ

τ

I

=

τ τ τ

τ I
σ̂1|N〉 = = Rτττ |N〉

τ τ τ

I

τ

=

τ τ τ

I τ
σ̂1|0〉 = = RττI |0〉

τ τ τ

τ

τ

=

τ τ τ

τ τ
σ̂1|1〉 = = Rτττ |1〉

Fig. 10.11 Exchanging the left two particle.

More interesting is the question of what happens if we exchange the
right two particles as shown in Fig. 10.12. As discussed in Section 10.1,
the trick here is to use the F -matrix to change the basis such that we
know the fusion channel of the right two particles, and then once we
know the fusion channel we can use the R-matrix. If we want, we can
then use the F -matrix to transform back to the original basis.

τ τ τ

I

τ

=

τ τ τ

I τ

σ̂2|0〉 =

Fig. 10.12 Exchanging the two particles on the right for the |0〉 state where these
two particles on the right are not in a definite fusion channel. Note that in the tree
diagram on the left the state below the dashed red line is exactly |0〉.

To see how this works, Recall that we can use the F -matrix to write
the |0〉 state in the basis of the |0′〉 and |1′〉 as in Eq. 9.2 which we
reproduce the relevant parts of here:

|0〉 = F00′ |0′〉+ F01′ |1′〉 (10.3)

where |0′〉 and |1′〉 are shown in Fig. 10.13. Note that here Fab is short-
hand for [F ττττ ]ab.

τ τ τ

I

τ

=
τ τ τ

I τ = |0′〉

τ τ τ

τ

τ

=
τ τ τ

τ τ = |1′〉

Fig. 10.13 In the prime basis the two
particles on the right are in a definite
fusion channel
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On the right hand side of Fig. 10.13 (i.e., in the prime basis) we know
the fusion channel of the rightmost two particles, so we can braid them
around each other and use the R-matrix to compute the corresponding
phase as shown in Fig. 10.14.

τ τ τ

I τ = F00′

τ τ τ

I τ +F01′

τ τ τ

τ τ

= F00′R
ττ
I

τ τ τ
I τ +F01′R

ττ
τ

τ τ τ
τ τ

= F00′R
ττ
I |0′〉+ F01′R

ττ
τ |1′〉 (10.4)

= F00′R
ττ
I

(
[F−1]0′0|0〉+ [F−1]0′1|1〉

)
(10.5)

+ F01′R
ττ
τ

(
[F−1]1′0|0〉+ [F−1]1′1|1〉

)

=
(
F00′R

ττ
I [F−1]0′0 + F01′R

ττ
τ [F−1]1′0

)
|0〉

+
(
F00′R

ττ
I [F−1]0′1 + F01′R

ττ
τ [F−1]1′1

)
|1〉

Fig. 10.14 To exchange the right two particles we first use an F -move so that we

know the fusion channel of these two particles, then we can apply R and then F−1

to transform back into the original basis.

Where between Eq. 10.4 and 10.5 we have used the inverse F transform
to put the result back in the original |0〉 and |1〉 basis.2. The final result,

2For this particular case (using Eq. 9.3
for the F -matrix) the matrix F and
F−1 happen to be the same matrix
(however we write out the inverse ex-
plicitly for clarity!) Eq. 10.6 is precisely the same as Eq. 10.1 just written out in all of its

detail33To fully harmonize the notation with
that of Eq. 10.1 we should make the
identification |0〉 → |I; τ〉 and |1〉 →
|τ ; τ〉. The indices 0 and 1 are replaced
by I and τ and as mentioned above the
Fab matrix is really [F ττττ ]ab.

We can summarize the results of the two possible braiding opera-
tions on the three dimensional Hilbert space. Assuming right-handed
Fibonacci anyons and using a basis |N〉, |0〉, |1〉 (also notated as |τ ; I〉,
|I; τ〉, |τ ; τ〉) we have

σ̂1 =




e3πi/5

e−4πi/5

e3πi/5


 (10.6)

σ̂2 =




e3πi/5

φ−1e4πi/5 φ−1/2e−3πi/5

φ−1/2e−3πi/5 −φ−1


 (10.7)

where φ = (
√
5 + 1)/2 is the golden mean.

10.2.2 Ising Anyons

σ σ σ

I

σ

=
σ σ σ

I σ = |0〉

σ σ σ

ψ

σ

=
σ σ σ

ψ σ = |1〉

Fig. 10.15 A simple basis for a qubit
made from three Ising anyons. (See
Fig. 9.5).

For Ising anyons the situation is perhaps even simpler since three σ par-
ticles have only two fusion channels (See section 8.2.2). The appropriate
F -matrices are given by Eq. 9.4 and the R-matrices for a right-handed



Exercises 119

Ising theory are given by

RσσI = e−iπ/8 (10.8)

Rσσψ = ei3π/8 = iRσσI (10.9)

with the R-matrices for a left-handed theory being the complex conju-
gates of these expressions. From the R-matrix, we immediately obtain
the form of the exchange operator σ̂1, that counterclockwise exchanges
the leftmost two Ising anyons

σ̂1 = e−iπ/8
(

1 0
0 i

)

.

(10.10)

Then using Eq. 10.1 we can evaluate the exchange operator σ̂2 which
counterclockwise exchanges the rightmost two anyons of the three, giving

σ̂2 =
eiπ/8√

2

(
1 −i
−i 1

)

.

(10.11)

This is some reading

Exercises

Exercise 10.1 Calculating Exchanges
(a) Use Eq. 10.1 to confirm Eq. 10.11
(b) Use Eq. 10.1 to confirm Eq. 10.7
(c) Confirm the braiding relation σ̂1σ̂2σ̂1 = σ̂2σ̂1σ̂2 in both cases. What

does this identity mean geometrically. See exercise 3.1.

Exercise 10.2 Ising Anyons Redux
In exercise 3.3 we introduced a representation for the exchange matrices for

Ising anyons which, for three anyons, would be of the form

σ̂1 =
eiα√
2
(1 + γ1γ2) (10.12)

σ̂2 =
eiα√
2
(1 + γ2γ3) (10.13)

where the γ’s are Majorana operators defined by

{γi, γj} ≡ γiγj + γjγi = 2δij

with γi = γ†
i .

Show that the exchange matrices in Eq. 10.11 are equivalent to this repre-
sentation. How does one represent the |0〉 and |1〉 state of the Hilbert space



120 Exercises

in this language? The answer may not be unique.

Exercise 10.3 Exchanging More Particles
(a) Consider a system of 4 identical Ising anyons. Use the F - and R-matrices

to calculate the braid matrices σ̂1, σ̂2, and σ̂3. (You should be able to check
your answer using the Majorana representation of exercise 3.3.)

(b) [Harder] Consider a system of 4 identical Fibonacci anyons. Use the F -
and R-matrices to calculate the braid matrices σ̂1, σ̂2, and σ̂3.

Exercise 10.4 Determinant and Trace of Braid Matrices
Consider a system of N-identical anyons with a total Hilbert space dimen-

sion D. The braid matrix σ̂1, σ̂2, . . . , σ̂N−1 are all D-dimensional. Show that
each of these matrices has the same determinant, and each of these matrices
has the same trace. Hint: This is easy if you think about it right!

Exercise 10.5 Checking the locality constraint
[Easy] Consider Fig. 10.16. The braid on the left can be written as b̂3 =

σ̂2σ̂
2
1σ̂2.

(a) For the Fibonacci theory with a = τ check that the matrix b̂3 gives just
a phase, which is dependent on the fusion channel c. I.e., show the matrix b̂3
is a diagonal matrix of complex phases. Show further that these phases are
the same as the phase that would be accumulated for taking a single τ particle
around the particle c.

(b) Consider the same braid for the Ising theory with a = σ. Show again
that the result is a c-dependent phase.

[Hard] Consider the braid shown on the left of Fig. 10.17. The braid can
be written as b̂4 = σ̂3σ̂2σ̂

2
1 σ̂2σ̂3.

(c) Consider Ising anyons where a = σ, Use the F and R-matrices to calcu-
late σ̂3 (See exercise 10.3.a). Since the fusion of three σ anyons always gives
c = σ, calculate b̂4, show this is a phase times the identity matrix, and show
that the phase matches the phase of taking a single σ all the way around
another σ.

(d) Consider Fibonacci anyons with a = τ , Use the F and R-matrices to
calculate σ̂3. (See exercise 10.3.b). Check that b̂4 is a diagonal matrix of
phases. Check the phases match the two possible phases accumulated by
wrapping a single τ all the way around a single particle c which can be I or τ .

aa a

c f

=

ac

f

Fig. 10.16 The locality constraint (see
similar figure 10.7).

aaa a

c f

=

ac

f

Fig. 10.17 The locality constraint
(See similar figure 10.7).

Exercise 10.6 Enforcing the locality constraint
The locality constraint shown in Fig. 10.16 turns out to be extremely pow-

erful. In this exercise we will use this constraint to (almost) derive the possible
values for the R-matrix for Fibonacci anyons given the known F -matrix.

Consider an anyon theory with Fibonacci fusion rules and Fibonacci F -
matrix as in Eq. 9.2.

(a) [Easy] Confirm the locality constraint shown in Fig. 10.16 (see also
Fig. 10.7) given the values of R given in Eq. 10.2. Make sure to confirm the
equality for all three cases f = I, c = τ and f = τ, c = I and f = τ, c = τ .

Note that on the left of Fig. 10.16 is the braiding operation Ô = σ̂2σ̂1σ̂1σ̂2.
whereas the operation on the right is σ2.

(b) Show that the locality constraint of Fig. 10.16 would also be satisfied
by

RττI → −RττI Rτττ → −Rτττ (10.14)

It will turn out (See *** below) that this additional solution is spurious, as
there are other consistency conditions it does not satisfy.
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(c) In addition to right and left handed Fibonacci anyons and the two
additional spurious solutions provided by Eq. 10.14, there are four additional
possible sets of R-matrices that are consistent with the F -matrices of the
Fibonacci theory given the locality constraint of Fig. 10.16. These additional
solutions are all fairly trivial. Can you guess any of them?

If we cannot guess the additional possible R-matrices, we can derive them
explicitly (and show that no others exist). Let us suppose that we do not
know the values of the R-matrix elements RττI and Rτττ .

(d) For the case of f = I and c = τ show that Fig. 10.16 implies

[Rτττ ]4 = [RττI ]2 (10.15)

(e) [Harder] For the case of f = τ we have a two-dimensional Hilbert space
spanned by the two values of c = I or c = τ . Any linear operator on this
Hilbert space should be a 2 by 2 matrix. Thus the locality constraint Eq. 10.16
is actually an equality of 2 by 2 matrices. Derive this equality.

(f) Use this result, in combination with Eq. 10.15 to find all possible R-
matrices that satisfy the localtiy constraint. You should find a total of eight
solutions. Six of these are spurious as we will see in section 13.3.

The calculation you have just done is equivalent to enforcing the so-called
hexagon condition which we will discuss in section 13.3 below.
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Medium Material

Having discussed the basics of anyon theories, we are now in a position
to discuss how one might perform quantum computations with braids.
In chapter 2 we briefly introduced some ideas of topological quantum

computation. In chapter 8 we discussed how we might define a qubit
in several simple anyon theories. In the current chapter we will briefly
discuss how anyons can be used to fulfill the requirements for quantum
computation1. 1For more of the basics of quan-

tum computation, a classic reference is
Nielsen and Chuang [2000]. We also
provide a bit more basic information in
section 24.1.11.1 Quantum Computing

To have a quantum computer, we must first have a Hilbert space, and we
usually think of this Hilbert space as being built from small pieces, such
as qubits or qutrits2. This Hilbert space will be the quantum memory 2Qubits are two state systems (such as

a spin- 1
2
), qutrits are three state sys-

tems etc. The general case is known as
a qudit. See the introduction to quan-
tum information in chapter 24.1.

that the computer acts on.
Once we have our Hilbert space, our model of a quantum computer

has three key steps for quantum computation3:

3There are variants on this theme. For
example, it might be sufficient to ini-
tialize into a state that is only partially
known, or it might be sufficient to have
a somewhat noisy measurement. Most
interesting is the issue of whether one
can tolerate some amount of imperfec-
tion in the system (noise in the system,
uncontrolled operations on the Hilbert
space, etc). We will discuss this issue
further in chapter 24.

(0) Find a Hilbert space to work with.

(1) Initialize the Hilbert space in some known state.

(2) Perform a controlled unitary operation on the Hilbert space.

(3) Measure some degree of freedom in the Hilbert space.

If the controlled unitary (step 2) is implemented as a series of unitary
operations each of which acts on only small parts of the Hilbert space
(such as acting on just a few qubits at a time), we call this scheme for
quantum computation the quantum circuit model.4

We will discuss each of the above steps (0)-(3) for our anyon systems
in section 11.2 below. First, however, we will introduce the idea of what
it means for a quantum computer to be “universal” in the quantum
circuit model.

4There are other models of quantum computation. We mention in particular the measurement schemes (See Raussendorf and
Briegel [2001]; Gross et al. [2007]), where no unitary is explicitly performed, but rather the computation is implemented as a
series of measurements on an initial highly entangled state. In the context of topological quantum computation an important
variant is a computation that is implemented by a combination of unitary operations and projective measurements. The earliest
proposal for quantum computing with anyons, by Kitaev in 1997, was of this type (See Kitaev [1997]). See also footnote 15
below.
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11.1.1 Universal Quantum Computing in the
Quantum Circuit Model

Let us suppose our Hilbert space consists of N qubits (each qubit being
a two state system). The Hilbert space dimension is then D = 2N . The
space of possible unitary5 operations6 on these qubits, is just the group

5Recall a matrix U is unitary if and

only if U†U = UU† = 1.

6Quantum mechanical time evolution
is always unitary. This is simply the
statement that a normalized ket re-
mains normalized. It is worth noting
that we are excluding the possibility
of making measurements (which are of-
ten considered to be nonunitary7) on
the system before the end of the com-
putation. This would be outside of the
quantum circuit model.

of D dimensional unitary matrices — a group known as U(D).

7All of quantum mechanics can be
viewed as unitary time evolution. Mea-
surements may look like they are non-
unitary, but one can always include
the measuring apparatus within the
system being considered and then the
full system (including the measuring
apparatus) then obeys unitary evolu-
tion. The idea of including measure-
ment within your system in order to
maintain unitarity is sometimes known
as “the church of the larger Hilbert
space”.

Let us now suppose our quantum computer can implement any one
of p different elementary operations (usually called “gates”) in a single
time step (each gates will act only on a small number of qubits). Each
gate corresponds to a particular unitary operation Un ∈ U(D) with
n ∈ 1, . . . , p that is applied to the Hilbert space. A sequence of such
gates constructs a particular unitary operation which is just the product
of the successive gates (the time order runs from right to left)

U = Uit . . . Ui2Ui1 (11.1)

where the number of gates t, can be thought of as the “run time” of the
computation.
Suppose there is some particular computation we would like to per-

form, and this computation corresponds to a unitary U which we hope
to construct via a series of gates as in Eq. 11.1. Note, however, that in
quantum computation we are never worried about the overall phase of
our result.8 As such if we want to construct some particular unitary U ,

8Recall that the last step of a quan-
tum computation, after applying a uni-
tary U (via some sequence of gates as
in Eq. 11.1) to our Hilbert space, we
obtain an output “answer” by measur-
ing whether some particular qubits are
in the |0〉 state or the |1〉 state. The
probabilities of theses outcomes is com-
pletely independent of the overall phase
of the U . I.e., if we changed U → eiφU
we would have the same probabilities of
outcomes.

for the purpose of quantum computation, it just as good to construct
eiφU for any value of φ.
Unfortunately, even with this freedom of phase most unitary opera-

tions (except for a set of measure zero) are actually impossible to con-
struct exactly from a finite set of elementary gates as in Eq. 11.1. Fortu-
nately, for computational purposes it is good enough to approximate the
desired unitary operation to some (potentially high) accuracy. Sets of
gates that can always make such an accurate approximation are called
universal. We will be more precise about the definition of this word in
a moment.
Since we will be discussing approximations of desired operations, it

is useful to define a distance between two unitary matrices so we can
measure the accuracy of our approximation. Given two D dimensional
unitary matrices U and V , we define a phase invariant distance measure
between them as99I believe this distance measure was in-

troduced by Fowler [2011]. Other defi-
nitions of distance can also be used. Re-
lationships between this distance mea-
sure and more conventional operator
norms are given by Field and Simula
[2018] and Amy [2013].

dist(U ;V ) =

√
1− |Tr[U †V ]|

D
(11.2)

Note that multiplying either matrix by an overall phase leaves dist un-
changed, and if U and V are the same up to a phase, then dist is zero.
We say that V is a good approximation of U up to a phase if dist(U ;V )
is small .
Having defined this distance measure, we can be more precise about

what we mean that a set of gates is universal. A gate set Un ∈ U(D)
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with n ∈ 1, . . . , p is universal if for any any desired target operation we
would like to perform Utarget ∈ U(D) we can find a sequence of gates
Uit . . . Ui2Ui1 such that the phase invariant distance to the target is less
than any desired error tolerance ǫ

dist(Utarget ; Uit . . . Ui2Ui1) < ǫ (11.3)

no matter how small an ǫ we choose. In other words, our gate set can
approximate any target unitary as precisely as we want.
We might wonder how long a run time (how many gates) will we

typically need to have? A beautiful theorem by Kitaev and Solovay10 10The Kitaev-Solovay theorem, often
viewed as one of the most fundamen-
tal results of quantum computation, is
discussed nicely in Dawson and Nielsen
[2006] and Harrow [2001].

assures us that the run time is not too long11. In particular,

11The usual proof of the Kitaev-
Solovay theorem assumes that the gate
set must contain inverses. In other
words, if Un is one of the elementary
gates, then U−1

n should also be one of
the elementary gates.

t ∼ O (log(1/ǫ) ) (11.4)

We are thus guaranteed that if we have a universal gate set, then the run
time of the computer gets at most logarithmically longer as we try to
increase the quality of our approximation of the target operation Utarget.
The essence of this theorem is as follows. If we consider a sequence of

t gates, (i.e., a run time of t), if there are p different elementary gates, we
can construct roughly pt different sequences of gates12. Thus as t gets 12We will not get exactly pt differ-

ent unitaries, since more than one se-
quences might generate the same uni-
tary operation.

larger, there are exponentially more possible unitaries we can construct
and these roughly cover the space U(D) evenly. With the number of
points we can construct in this space growing exponentially with t, the
distance ǫ of an arbitrary target unitary to the nearest unitary we can
construct must drop exponentially with t, hence justifying Eq. 11.4.
It is a nontrivial calculation to determine which set of elementary gates

is sufficient to have a quantum computer which is universal. However,
an important result is that if one can perform arbitrary rotations on
a single qubit and in addition if one can perform any entangling two-
qubit operation between any of these two bits (or even between just
neighboring bits), then one has a universal quantum computer13.

13This important theorem is sometimes
known as the Brylinski theorem after
its discoverers, Brylinski and Brylinski
[2002]. The authors are married. A
simpler version of the proof is given by
Bremner et al. [2002].

11.2 Topological Quantum Computing

11.2.1 Hilbert space

With a topological quantum computer, a qubit (or qutrit, etc.) can
be formed from multiple anyons which can be put into multiple fusion
channels (See chapter 8). For example, with Fibonacci anyons a qubit
might be formed from three Fibonacci anyons fusing to τ as shown in
Fig. 9.4. With the Ising theory, one might use a cluster of three Ising
anyons fusing to σ as as qubit as shown in Fig. 9.5. There are, of course,
many more options of how one encodes a qubit in any given theory. For
example, in the Ising theory it may be more convenient to work with
clusters of four Ising anyons fusing to I as shown in Fig. 11.1.

σ σ σ σ

x x
I
= |x〉

Fig. 11.1 A qubit made from four
Ising anyons in an overall fusion chan-
nel of I. The two states of the qubit
are x = ψ and x = I. Note that due
to the fusion rules of the Ising theory, if
the overall state of the four qubits is I,
then if the left two anyons are in state
x, the right two must also be in state
x. Using a qubit made of 4-anyons has
advantages for other topological theo-
ries such as SU(2)k with k > 4. See,
for example, Hormozi et al. [2009].
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11.2.2 Measurement (in brief) and initialization

A topological qubit could be measured in several ways, depending on the
particular physical system in question. The general principle of locality
which we introduced in section 8.2 (See in particular Fig. 8.8) gives a
good idea how such measurements can (or can’t) be done.
Let us suppose, for example, we have two anyons of type a and we

would like to measure their fusion channel. Given the principle of local-
ity, to measure this fusion channel we must perform an operation which
is local to both particles, i.e., a measurement that surrounds both.
One way to measure the fusion channel of two anyons is to bring them

together to the same point, or at least bring them physically close on a
microscopic scale. When two anyons are microscopically close to each
other, in essence their wavefunctions mix with each other and in this case
measurement of almost any nontrivial operator near that location will
suffice to distinguish between the different possible fusion channels. For
example, one could measure the energy of the two anyons, or the force
between them, which would generally distinguish the fusion channels.
Note, however, when the anyons are moved macroscopically far apart
no local operators should be able to distinguish the fusion channels.
(We will discuss precisely why this is the case in chapter *** below).
Another way to measure the fusion channel of two anyons would be

to leave the two anyons far apart from each other but implement a
measurement that surrounds them both — such as Aharanov-Bohm-
type interference as shown in Fig. 11.2. Here a test particle wave is
split into two partial waves which travel on opposite sides of the anyons
to be measured and then reinterfere with each other. This is entirely
analogous to the regular Aharanov-Bohm effect (See section 4.1 and
Fig. 4.2), where the partial waves travel on opposite sides of a flux and
then reinterfere. In the usual Aharonov-Bohm effect, the net phase we
measure is the phase of wrapping a single test particle all the way around
the central region (See Eq. 4.3). Analogously here we measure the phase
of wrapping the probe anyon all the way around the anyons in the central
region to measure their fusion channel as shown in Fig. 11.3. As we will
discuss in chapter ***, experiments of this sort have been attempted in
quantum Hall systems.

⇒
probe
particle

beam anyons
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Fig. 11.2 Using Aharanov-Bohm-like
interference to measure the fusion chan-
nel of two anyons (inside the circle) that
are far apart.
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Fig. 11.3 The interference experiment
in Fig. 11.2 is equivalent to measuring
the phase of wrapping the probe parti-
cle (right) around the two test particles.
The general expression for the result-
ing phase would be σ̂2σ̂21 σ̂2, which is
dependent on the fusion channel c. (In
chapter 13. we will refer to this phase
as Rcaf R

ac
f .)

Once we know how to measure the state of the anyons in our Hilbert
space (and assuming we know how to manipulate our qubits) it is then
fairly trivial to initialize the Hilbert space. We simply measure the state
of a qubit: If it is in the state we want, we are done. If it is in some
other state, we apply the appropriate unitary operation to put it into
the desired initial state. We will discuss unitary operations next.

11.2.3 Universal Braiding

The most interesting part of a topological quantum computation is the
idea that we can apply a controlled unitary operation on our Hilbert
space by braiding anyons around each other. The elementary gates of
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the system (or elementary unitary operations) are the (counterclockwise)
exchanges of two identical anyons, which, in braid group notation, we
call σ̂n, as well as the inverse (clockwise) exchanges σ̂−1

n , where n ∈
1, 2, . . . , (N − 1) for a system of N identical anyons. Each of these
braid operators corresponds to a unitary matrix operating on the Hilbert
space.
It turns out that for many types of nonabelian anyon theories, the

gate set made up of elementary braiding exchanges is universal in the
sense defined in section 11.1.114. For example, braiding is universal for

14This result was shown by Freedman
et al. [2002a, b]. These papers are not
particularly easy to read for physicists.

Fibonacci anyons. Similarly SU(2)k Chern-Simons theory is universal
for k = 3 and k > 4. In fact, among nonabelian anyon theories, theories
where braiding is not universal are somewhat of an exception. Ising
anyons and the closely related SU(2)2 Chern-Simons anyons are two of
these nonuniversal exceptions15

It turns out that any system of N identical anyons that is capable of
universal quantum computation by braiding, is also capable of universal
quantum computation by weaving16. Here, what we mean by “weave” is

16This is proven by Simon et al. [2006].
Publication of this work reduced my
Erdös number to its current value of 3.
See Batagelj and Mrvar [2000]

that we fix the positions of N − 1 of the anyons and only move the one
remaining anyon around all the other stationary anyons. An example of
a weave is shown in Fig. 11.4. The weaves are a very restricted subset
of the possible braids, but still the weaves form a universal set of gates
for these anyon systems. This result will be important below in section
11.4.1. (See also exercise 11.5).

Fig. 11.4 A weave is a braid where
only one particle moves and all the
other particles remain stationary. All
the particles in this figure are supposed
to be of the same type. The single par-
ticle that moves is colored red just for
clarity.

In fact, if one is able to measure fusion channels easily17, it is also

17Note that measurement schemes
of the Aharanov-Bohm type, as in
Fig. 11.2, involve braiding a test par-
ticle around other particles.

possible to implement universal quantum computation just by making
many measurements of fusion channels, without physically braiding any
particles around any others18.

18See Ref. Bonderson et al. [2008a].

11.3 Fibonacci Example

As an example, we will focus on the case of Fibonacci anyons, which is
potentially the simplest anyon system which is universal for quantum
computation.

11.3.1 A Single Fibonacci Qubit

Let us consider a single qubit made of three Fibonacci anyons. We have
discussed this several times before in sections 8.2.1, and 9.1 and 10.2.1.
To remind the reader, there are three possible states of three Fibonacci
anyons which we label |N〉, |0〉, |1〉 (See Fig. 8.10) — which represents
a qubit (the states |0〉 and |1〉) and one additional “noncomputational”
state |N〉 which we will not use for storing quantum information.

15SU(2)4 is an interesting case where braiding alone is not universal. However, if we are allowed to go outside of the quantum
circuit model and combine braiding with many projective measurements (i.e., not just making one measurement at the end
of the computation), then SU(2)4 anyons can implement universal quantum computation (See Refs. Levaillant et al. [2015];
Cui and Wang [2015]). In fact, the first proposal of a topological quantum computer, by Kitaev in 1997 (published as Kitaev
[1997]), described a computation scheme which involved both braiding and projective measurement. A simple discussion of
this scheme is given by Preskill [2004] with early extensions of the scheme given by Mochon [2003, 2004].
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We now think about braiding our three anyons. In the braid group
on three strand, B3 (See section 3.3.1), there are two generators, σ1,
exchanging the first two strands counterclockwise, and σ2, exchanging
the second two strands counterclockwise. Any braid of three particles
can be constructed as some product of σ1, σ2, σ

−1
1 , and σ−1

2 in some
order as shown, for example, in Fig. 11.5.
The action of these braid operations on the three-dimensional Hilbert

space is shown in Eqs. 10.6 and 10.7 which we calculated in section
10.2.1. By multiplying these matrices together, we can figure out how
any complicated braid acts on our Hilbert space. In fact for now we are
only interested in how the matrices act on the space of the qubit states
|0〉 and |1〉 and we will return to worry about the |N〉 state below in
section 11.4.1.

Example of X Gate

We are now interested in the following simple quantum computation
problem: Given a particular target unitary operation which we might
want to perform on our qubit, how should we move the anyons? I.e.,
what braid should we do to implement the target operation?

τa

Fig. 11.5 This is the braid written in
Eq. 11.6 which gives an approximation
of the X-gate on a single qubit made
from Fibonacci anyons. As usual, time
runs bottom to top. The distance to
the target is dist = 0.17

For example, suppose we want to design a braid that implements an
X-gate19 (just a Pauli σx)

19Note that a Z-gate can be imple-

mented exactly as σ̂51 . It is unusual and
non-generic that a target can be con-
structed exactly.

Utarget = X =

(
0 1
1 0

)
(11.5)

With a very short braid (Shown in Fig. 11.5), we can make a fairly poor
approximation to this gate (this braid is the best we can do with only
five braid operations) given by

Uapprox = σ̂−1
2 σ̂3

1 σ̂
−1
2 ≈ e−3πi/5

(
0.073− 0.225i 0.972

0.972 −0.073− 0.225i

)

(11.6)
For the approximation given in Eq. 11.6 the phase invariant distance
from the target is20

20Recall that in comparing Eq. 11.6 to
Eq. 11.5 we are not concerned with the
overall phase, so we ignore the prefactor
of e−3πi/5 in Eq. 11.6.

dist(Utarget ; Uapprox) ≈ 0.17

which is not a great approximation. However, with a longer braid having
nine braid operations, shown in Fig. 11.6, one can make a better approx-
imation with a trace distance dist ≈ 0.08. If we consider braids that are
longer and longer, we can get successively better approximations to the
desired target as would be expected from the Kitaev-Solovay theorem
discussed in section 11.1.1.

τa

Fig. 11.6 A longer braid gives a more
accurate approximation to the desired
target X-gate for Fibonacci anyons.
This braid has distance to the target,
dist ≈ 0.08.

As mentioned in section 11.2.3 it is possible to find braids that are
weaves, meaning that only a single anyon moves. For completeness,
we show a weave in Fig. 11.7 that implements an X-gate to precision
dist ≈ .18 . Note that due to the restricted weave form of this braid,
a slightly larger number of elementary exchanges are required to reach
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roughly the same precision as in Fig. 11.5. As with braids, at least in
principle, by using longer weaves one can get as close to the target as
we like.

11.3.2 Topological Quantum Compiling: Single
Qubit

Even if there exists a braid that performs a unitary operation that ap-
proximates some target operation within some small error distance ǫ,
it is a nontrivial task to figure out what that braid is. In other words,
how do you know what braid you should implement on your computer
in order to perform the desired operation?

τa

Fig. 11.7 A weave that approximately
implements an X-gate for Fibonacci
anyons. Here all three anyons are
meant to be identical. The anyon col-
ored red is mobile whereas the other
two are kept stationary. The distance
to the target is dist ≈ .18. Because we
have restricted the form of this braid
to be a weave, the braid is longer (has
more elementary exchanges) than the
one in Fig. 11.5 for roughly the same
accuracy.

The general task of determining which elementary gates should be per-
formed, and in what order, to implement some desired target unitary is
known as quantum compiling21. For a topological quantum computer,

21Quantum compiling is analogous to a
compiling for a conventional computer,
which is the task of starting with a high
level programming language and de-
termining which machine-level instruc-
tions to implement at the computer
chip level. See Harrow [2001] for a dis-
cussion of quantum compiling in gen-
eral.

the task of designing a braid is therefore known as topological quantum
compiling. Here we will discuss several approaches to topological quan-
tum compiling in order of their complexity, and their effectiveness.22.

22The field of topological quantum
compiling was started by Bonesteel
et al. [2005]. A very nice recent re-
view of the topic as well as discussion of
a number of other approaches towards
topological quantum compiling is given
by Field and Simula [2018].

We continue to focus only on compiling braids for a single Fibonacci
qubit. Multi-qubit braids will be discussed in section 11.4 below.

Brute Force Search

If we are willing to accept a fairly poor approximation of our target
unitary (a fairly large dist between our approximation and the target)
we will be able to use a fairly short sequence of our elementary gates
(i.e., a short braid). In this case we can consider some maximum gate
sequence length t (maximum run time) and search all possible gate se-
quences of length less than t, choosing the one that best approximates
our target. We should expect to achieve a distance to the target that
drops exponentially with t, as discussed near Eq. 11.4.
If we are considering a single qubit made of three Fibonacci anyons,

our elementary gates are the braid generators σ̂1, σ̂2, σ̂
−1
1 , σ̂−1

2 . This
means that if we want to search through all braids of length t we have
to search roughly 4t braids. While there are some tricks that allow
us to reduce this number somewhat23, the computational effort24 will

23For example, we might not want to

search any braids where σi and σ
−1
i oc-

cur in a row since then they would can-
cel.
24Here we mean the computational ef-
fort for the classical computer that we
use to design our quantum algorithm!

always grow exponentially with the length t. If one wants to make
highly accurate approximation of a target unitary with a very small
error distance, run times t can become large enough that brute force
searching becomes unfeasible.

Kitaev-Solovay Algorithm

Kitaev and Solovay25 provide us an explicit algorithm to construct very

25See again Dawson and Nielsen [2006];
Harrow [2001] for nice discussions of
Kitaev-Solovay.

accurate approximations of any desired unitary given a universal set of
elementary gates with reasonable (not exponentially growing!) compu-
tational effort24. The essence of this algorithm is as follows. Let us
suppose that by brute-force search we can approximate any unitary op-
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eration to within a distance dist ∼ ǫ0 with a sequence of elementary
gates (elementary braids in the topological case) of length t0. Let us say
that the classical computational time to achieve this is T0. Now given
a target unitary U

(0)
target that would like to approximate, we start with

this brute-force search, and construct our approximation U
(0)
approx which

is accurate to within dist ∼ ǫ0. This is our 0th level of approximation
of the target. We would next like to repair this approximation with
another series of gates to make it more accurate. We thus define

U
(1)
target ≡ [U (0)

approx]
−1 U

(0)
target .

If we could find a series of gates that would exactly give us U
(1)
target we

could exactly construct the original objective U
(0)
target as

U
(0)
target = U (0)

approx U
(1)
target .

However, it is not obvious that we have any better way to approximate
U

(1)
target than we had to approximate U

(0)
target, so why does this help? The

key here is that U
(1)
target is necessarily close (dist ∼ ǫ0) to the identity.

We then decompose

U
(1)
target = VWV −1W−1

with W and V being unitary operations close to the identity (dist ∼√
ǫ0). We then have an amazing result, that if we are able to approximate

V andW to an accuracy ǫ0 (which we can do here by brute-force search)

we will get U
(1)
target accurate to dist ∼ ǫ

3/2
0 . Thus we obtain

U
(0)
target = U (0)

approxVWV −1W−1 (11.7)

accurate to order ǫ
3/2
0 . The total sequence of gates is now of length 5t0

since each of other factors on the right hand side of Eq. 11.7 is of length
t0. The classical computational effort to achieve this is roughly 3T0 since
we must search for U

(0)
approx and V and W .

This scheme can then be iterated to make our approximation even
better. The only change it that the next level of approximation, instead
of using brute force search to make approximations good to dist ∼ ǫ0
we use the entire above described algorithm to make all of our approxi-
mations good to dist ∼ ǫ

3/2
0 . When U

(0)
approx and V andW are calculated

to order ǫ
3/2
0 our new approximation for U

(0)
target will be an accurate to

dist ∼ (ǫ
3/2
0 )3/2.

The entire scheme can be iterated recursively to any level of accuracy.
At the nth level of this approximation, we have a gate sequence of length
5nt0 and an accuracy dist ∼ ǫ

(3/2)n

0 and the computational effort24 to
achieve this scales as 3nT0.
Thus if we want to achieve some overall accuracy ǫ of our operation,
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the gate sequence will be of length

t ∼ O
(
[log(1/ǫ)](ln(5)/ ln(3/2))

)
= O

(
[log(1/ǫ)]3.969...

)
(11.8)

and this requires classical computation time

T ∼ O
(
[log(1/ǫ)](ln(3)/ ln(3/2))

)
= O

(
[log(1/ǫ)]2.710...

)
. (11.9)

While this algorithm produces gate sequences that are longer than one
obtains with brute force searching (which produces gate sequence lengths
as in Eq. 11.4) for the same desired accuracy ǫ, it has the advantage
that it is computationally feasible24 for much smaller values of ǫ and
can therefore produce more accurate results.

Galois Theory Optimal Compiling:

A rather remarkable scheme for quantum compiling was developed in
Kliuchnikov et al. [2014] based on ideas from Galois theory26 . While 26Évariste Galois was undoubtedly one

of the most interesting and brilliant
mathematicians of all time. Being po-
litically active in an era shortly after
the French revolution, he spent a de-
cent fraction of his short adult life in
prison. His mathematical works (some
written while in prison) opened up vast
new fields of research. He died at age
20 in a duel.

we cannot review Galois theory here, nor can we even do justice to the
details of the algorithm, we can nonetheless discuss some of structure of
the problem that makes this approach possible.
It turns out that any unitary that can be constructed by braiding

three Fibonacci anyons can be written (up to a phase) in the form

U(u, v, k) =

(
u v∗ωkφ−1/2

vφ−1/2 −u∗ωk
)

(11.10)

where φ = (1 +
√
5)/2 is the golden mean, k is an integer, ω = e2πi/10,

and
|u2|+ φ|v|2 = 1 (11.11)

where u and v come from the so-called ring of cyclotomic integers Z[ω],
which means that

u =

3∑

i=0

aiω
i v =

3∑

i=0

biω
i (11.12)

with coefficients ai and bi all being integers. The fact that the unitaries
that can be generated by braiding take a very restricted mathematical
form is, in fact, a generic property of all anyon theories27, although the 27This is due to the fact that the

F - and R-matrices of an anyon the-
ory live in a particular so-called Galois
extension of the rationals — meaning
that only certain irrational factors can
show up in any mathematical expres-
sion. This fact can be used to prove var-
ious statements about what type of op-
erations can or cannot be done exactly
by braiding. See for example Freedman
and Wang [2007].

particular form taken depends on the particular anyon theory.
Further, given values of u, v, and k a relatively simple algorithm is

provided that finds a braid28 that results exactly in this unitary, where

28Kliuchnikov et al. [2014] also pro-
vide a similar algorithm for generating
weaves. See section 11.2.3.

length of the braid is no longer than

t ∼ log

(
|

3∑

i=0

aiω
i|2 + |

3∑

i=0

aiω
3i|2
)

This procedure is known as exact synthesis as it constructs exactly the
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τ τ τ

a c

τ τ τ

b d f

Fig. 11.8 The braid shown here between two Fibonacci qubits entangles the two
qubits but also results in leakage error. When we use three Fibonacci anyons as a
qubit, we set the overall fusion channel of the three to be τ , so c = d = τ in this
figure. The quantum information is stored in the quantum numbers a and b. The
shown braid results in some amplitude ending up in the noncomputational space
where either c or d is I rather than τ .

desired U(u, v, k) as a series of elementary braid operations.
The remainder of the algorithm is to find values of u, v, k (with u and

v of the form in Eq. 11.12 with integer coefficients) so that Eq. 11.10
approximates any given target unitary. This task can exploit established
methods from algebraic number theory. The interested reader is referred
to Kliuchnikov et al. [2014].
The end result of this approach is an algorithm that, although it does

not find the absolute optimal braid29, it nonetheless is asymptotically29The “optimal braid” is the one that
would be found by brute force search
if one had the exponentially enormous
computational power necessary to find
it.

optimal in the sense that it produces braids of length

t ∼ O(log(1/ǫ))

as in Eq. 11.4. Further, the computational time24 to achieve this scales
only as T ∼ O(log(1/ǫ)2). Using this type of approach, it is easily
possible to generate braids with error distances of order 10−100 or even
better, and these braids are longer than the absolute optimal braid by
only a factor of order unity.

11.4 Two-Qubit Gates

Having studied single qubit operations, we now turn to a brief discussion
of two-qubit gates30. As mentioned in section 11.1.1, the Brylinski the-30Here we are constructing a two qubit

unitary operation, which we will call
a two-qubit gate, from our elementary
gates — the elementary braid opera-
tions.

orem tells us that to have a universal quantum computer, we need only
have single qubit rotations along with any entangling two qubit gate.
To construct such an entangling two qubit gate we will need to have a
braid that physically entangles the world lines of the anyons comprising
the two qubits such as the example shown in Fig. 11.8.
However there is a crucial complication with braiding anyons between

qubits. If we perform a braid such as that shown in Fig. 11.8, the
fusion channel of the anyons comprising each of the qubits (quantum
numbers c and d in the figure) are not preserved (see the discussion of
locality in section 8.6) and this means that amplitude can leak into the
noncomputational space.
To be more explicit for the Fibonacci case, recall that we encode our

qubits (|0〉 or |1〉) by using three Fibonacci anyons in overall fusion
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channel τ (See Fig. 8.10). The fusion channel of the three anyons to I is
termed non-computational |N〉 and is not used for computation. If some
of the amplitude of the wavefunction ends up in this noncomputational
space, it is called leakage error, and only very small quantities of such
leakage errors can be tolerated for any realistic computation. Braids like
the one shown in Fig. 11.8 always produce some amplitude of noncom-
putational states. The problem of leakage error in two-qubit gates is
not special to Fibonacci anyons, but is in fact a generic property of all
anyon theories that have universal braiding31.

31Ainsworth and Slingerland [2011]
show that it is not possible to design
completely leakage free gates for any
universal anyon theory, and leakage can
only be make approximately zero.While we cannot completely eliminate leakage, we can in principle

design entangling gates with arbitrarily small (albeit non-zero) leakage.
Such braids with low leakage error do exist, but finding them is highly
nontrivial. Inconveniently, the Hilbert space of six Fibonacci anyons,
as in Fig. 11.8 is 13 dimensional32. Searching such a large space for 32This space is subdivided into an 8 di-

mensional subspace with f = τ and a 5
dimensional subspace with f = I. No
braiding of these six anyons will change
the f quantum number. Note, however,
that gates must have low leakage inde-
pendent of the value of f .

particular unitaries with low leakage is numerically unfeasible. We thus
need a more clever way to design braids with low leakage.
In designing any computation, it is almost always advantageous to

simplify the desired task into smaller tasks that can be addressed one
at a time. This “divide and conquer” approach will allow us to tackle
the job of designing two-qubit gates. In the next section we will give an
example of how entangling gates with negligible leakage can be designed.

11.4.1 Controlled Gates

In quantum computation it is often very convenient to use entangling
gates which are so-called controlled U -gates, or C(U) where U is a 2-
dimensional unitary matrix. A controlled U -gate acts on two qubits such
that one qubit (the “target” qubit) is acted on with a 2-dimensional
unitary operator U if and only if the other qubit (the “control” qubit)
is in the |1〉 state, whereas the control qubit remains unchanged:

U

Input

Output

Fig. 11.9 Typical notation for a con-
trolled unitary gate C(U). The second
qubit controls the first.

C(U) :





|0〉 ⊗ |0〉 → |0〉 ⊗ |0〉
|1〉 ⊗ |0〉 → |1〉 ⊗ |0〉
|0〉 ⊗ |1〉 → (U |0〉)⊗ |1〉
|1〉 ⊗ |1〉 → (U |1〉)⊗ |1〉

(11.13)

Thus the first qubit here is being controlled by the second qubit33. A

33As always in quantum mechanics the
operation acts linearly on superposi-
tions

very commonly used example of a controlled gate is the case of U = X
(See Eq. 11.5) which we call a controlled-X, or more often a controlled-
NOT (or CNOT) gate.
The key to our construction of controlled gates34 is the locality prin-

34The constructions discussed here
were introduced in Bonesteel et al.
[2005].

ciple of section 10.1.1. If we are given a cluster of 2 anyons which are in
the τ fusion channel (for example, set c = τ in Fig. 10.7) and we braid
it around some other anyons, this will have the same effect as if we just
braided a single τ around the other anyons. However, if the cluster of 2
anyons is in the trivial (or I) fusion channel, then braiding this cluster
never does anything, as braiding the vacuum particle always is trivial.
Thus we can see that the effect of the braid is “controlled” by the fusion
channel of the two anyons.
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Controlled σ̂2
2 gate

Consider the construction shown in Fig. 11.10. On the far left of this
figure, we have shown a weave, meaning only a single anyon, the one
drawn in red, moves and the other two anyons remain stationary (see
the discussion by Fig. 11.4). This weave has been designed to have
approximately the same effect as if the two blue anyons are wrapped
around each other (exchanged twice counterclockwise), i.e, σ̂2

1 as shown
in the figure. For the particular weave shown, the distance to the target
σ̂2
1 is dist ≈ .12. We could make the approximation of σ̂2

1 more accurate
by using a longer weave using any of the compiling methods discussed
in section 11.3.2 above. Note that the equivalence between the weave
on the far left and σ2

1 is true as a 3 × 3 matrix acting on the full three
dimensional Hilbert space spanned by three Fibonacci anyons (i.e., on
the space spanned by |0〉, |1〉, |N〉, not just |0〉, |1〉).

≈ ⇒

τ τa b

≈

τa b

Fig. 11.10 Construction of a controlled gate using Fibonacci anyons. The weave on the far left is designed to have almost the
same effect on the Hilbert space as the braiding (two counterclockwise exchanges) of the two blue particles as shown. Using
a longer weave one can more closely approximate the braiding of the two blue particles. On the right, we have a system of 6
anyons representing two qubits. The right (red) we take the cluster of two red anyons, labeled b

Now consider the braid of six anyons on the right of Fig. 11.10 repre-
senting two qubits — the right (red) anyons are the control qubit and the
left (blue) anyons are the target qubits. We group the two red anyons
in fusion channel b and we move them around as a single unit to form
the same weave as shown on the far left (here using the two red anyons
and the right two anyons of the blue qubit). If these two red anyons
are in the vacuum fusion channel b = I, then this braiding has no effect
on the Hilbert space (braiding of the vacuum particle is always trivial).
On the other hand, if the two anyons are in fusion channel b = τ then
this braid is equivalent to moving a single τ particle through exactly the
same weave as on the far left, thus having the same effect as exchanging
the two right-most blue anyons twice counterclockwise. We have thus
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constructed a controlled operation, C(σ̂2
2) which is notated on the far

right of the figure in a manner analogous to Fig. 11.9: The operation
implemented on the blue qubit is (approximately) a full braiding of the
right two blue strands, if and only if the right qubit (b) is in the τ or |1〉
state.
A crucial feature of this construction is that, to the extent that the

weave we use accurately approximates σ̂2
1 , the resulting construction

leads to no leakage error. The right hand qubit (b) is completely un-
changed (hence not creating leakage of this qubit), and the effect on the
left hand qubit (a) is designed to be equivalent to just braiding two of
the blue anyons — which does not create leakage either.

Controlled U-gate

≈ Inj ≡ 13×3

Fig. 11.11 An approximate injection
weave is shown on the left. A perfect
injection has no effect on the Hilbert
space (it applies the identity matrix
to the Hilbert space) but moves the
red strand from the right to the left
of the three anyons. The distance to
the target for this particular weave is
dist = 0.09. With a longer weave one
can more accurately approximate a per-
fect injection.

With a bit more work, we can in fact make any controlled C(U) gate for
an arbitrary two dimensional unitary U , as in Fig. 11.9 (up to an overall
phase as discussed in section 11.1.1).
First let us discuss the so-called injection weave described in Fig. 11.11.

An ideal injection weave is meant to leave the Hilbert space unchanged
(it only applies an identity matrix). However, it has the nontrivial effect
of rearranging the three strands comprising a qubit. As shown in the
diagram, the injection weave moves the red strand from the far right
at the bottom to the far left at the top. As discussed in section 11.3.2
we can more precisely approximate the ideal injection by using a longer
weave.
We now construct the braid shown on the left of Fig. 11.12. As in

Fig. 11.10 we group together the two red anyons in fusion channel b and
we move them around as a group. These two anyons are first put through
an injection weave with the right most two blue anyons. This moves the
group of two anyons into the middle position of the right qubit. A weave
to implement an arbitrary unitary U is then implemented on the three
strands furthest left, treating the two red strands grouped together as a
single strand. Finally, this injection weave is inverted to bring the two
red particles back to their original position. The braid constructed in
this way will implement a controlled U gate C(U), as shown using the
notation of Fig. 11.9 on the right of Fig. 11.12: The left (blue) qubit (a)
has the unitary U applied to it, if and only if the right qubit (b) is in the
|1〉 or τ state. If we choose U to be an X gate, such that the necessary
weave in the middle step is a weave like that shown in Fig. 11.7, we
obtain a C(X) or controlled NOT gate (CNOT).
To understand this procedure we realize that the only two anyons that

are moved in this procedure are the two red anyons in state b, and these
two are moved as a group. As in Fig. 11.10 if these two anyons are in
fusion channel b = I (or |0〉) then the Hilbert space is left unchanged.
However, if b = τ (or |1〉) then there will be an effect on the blue qubit
— hence we have a controlled rotation. Let us now consider this case
when b = τ , so that we should think of the two red strands as being a
single τ strand. The injection weaves are designed to have no effect on
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τa b τ

Inj

U

Inj−1

≈ U

τa b

Fig. 11.12 Construction of a controlled U gate C(U) with Fibonacci anyons. The
two red anyons in state b are moved as a group and all other anyons are kept sta-
tionary. If b = I or |0〉, then the weave has no effect on the Hilbert space. If b = τ
or |1〉 then this weave implements a U rotation on the left (a) qubit.

the Hilbert space — their only effect is to move the red double strand
inside of the blue qubit. The unitary rotation U is thus only nontrivial
effect on the Hilbert space.

Chapter Summary

• Summary Item 1

• Summary Item 2 etc

Further Reading

Most of the same ideas can be generalized for other anyon systems.
Freedman et al. [2002a] Freedman et al. [2002b] for the initial work

showing SU(2)k is universal
Mochon [2003] Mochon [2004] for universal quantum computing with

topological superconductor. (This was slightly after freedman)
Bonderson et al. [2008b] for interferometry
Bonderson [2009] for splitting of topological degeneracy
Bonderson et al. [2008a] for measurement only tqc.
Field and Simula [2018] Simula review
Bonesteel et al. [2005] Original Compiling Fib anyons
Hormozi et al. [2007] Quant compiling PRB
Hormozi et al. [2009] Compiling RR states
Simon et al. [2006] One mobile particle
Nielsen and Chuang [2000] Nielson and Chuang
Harrow [2001] Harrow’s thesis.
Brylinski and Brylinski [2002] Brylinksi theorem
Kliuchnikov et al. [2014] Galois theory
Maybe cite original Solovay and Kitaev article.
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Levaillant et al. [2015] Cui and Wang [2015] For SU(2)4
.

Exercises

Exercise 11.1 Ising Nonuniversality
The braiding matrices for Ising anyons are given by Eqs. 10.10 and 10.11.

Demonstrate that any multiplication of these matrices, and there inverses will
only produce a finite number of possible results. Thus conclude that Ising
anyons are not universal for quantum compuation. Hint: write the braiding
matrices as eiαUi where Ui is unitary with unit determinant, i.e., is an element
of SU(2). Then note that any SU(2) matrix can be thought of as a rotation
exp(i n̂ · σ θ/2) where here θ is an angle of rotation n̂ is the axis of rotation
and σ is the vector of Pauli spin matrices.

Exercise 11.2 Brute Force Search
Given the braid matrices for Fibonacci anyons in Eq. 10.6 and 10.7, write

a computer program for brute-force searching braids up to length 10.
Ignoring the noncomputational state |N〉, and ignoring the overall phase as

usual, determine the closest approximation to the Hadamard gate

H =
1√
2

(

1 1
1 −1

)

Partial Answer: A braid of length 10 exists with phase-invariant distance to
target dist ≈ 0.084

Exercise 11.3 Scaling of Kitaev-Solovay Algorithm
Given the discussion just above Eq. 11.8, prove Eqs. 11.8 and 11.9.

Exercise 11.4 About the Injection Weave
One might wonder why we choose to work with an injection weave in

Fig. 11.11 which moves the red strand from the far right at the bottom all the
way to the far left on the top. Show that for three Fibonacci anyons, there
does not exist any injection weave that moves the (red) strand from the far
right on the bottom to the middle on the top, even up to an overall phase. I.e.,
show that no weave exists starting on the bottom far left ending in the middle
on the top whose effect on the three dimensional Hilbert space is eiφ13×3 for
any phase φ.

Exercise 11.5 Universal Weaving and the Injection Weave
Consider injection weaves as described in Fig. 11.11. Let us assume that

we can construct an injection weave of arbitrary precision. Given such an
(approximately) perfect injection weave show that for any number of anyons
N > 3, a weave can be constructed that performs the same unitary operation
on the Hilbert space as any given braid. A more general mathematical proof
of the universality of weaving is also given in Simon et al. [2006].
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Planar Diagrams1 12
Medium Hard Material

1This chapter through chapter 15 de-
velop the diagrammatic algebra in some
detail. Those who would like a brief
and easier (albeit not as general) in-
troduction to diagrammatic algebra
should go straight to chapter 16.

One of our objectives is to come up with some diagrammatic rules (some-
what analogous to those of the Kauffman bracket invariant) which will
allow us to evaluate any diagram of world-lines (i.e, a labeled link, pos-
sibly now including diagrams where particles come together and fuse,
or split apart) and get an output which is a complex number as desired
in Fig. 7.1. In chapters 8-10 we have been putting together some of
the necessary pieces for these diagrammatic rules. Here we will begin
to formalize our diagrammatic algebra a bit more precisely2. While we 2Formally, some of the mathematical

structure of planar diagrams was intro-
duced in section 8.6. The rules we are
defining in this chapter is known as a
unitary fusion category to mathemati-
cians. If various additional properties
are satisfied other names may be used
(spherical category, braided category,
modular category, etc.).

try to physically motivate all of our steps, in essence the rules of this
chapter can be taken to be axioms of the diagrammatic algebra.
In this chapter we will focus only on planar diagrams — i.e., we do

not allow lines to cross over and under each other forming braids. We
can roughly think of such planar diagrams as being particles moving
in 1+1 dimension. Since there are no over and under-crossings the only
nontrivial possibility is that particles come together to fuse, or they split
apart. An example of a planar fusion diagram is shown in Fig. 12.1.
It is convenient to draw diagrams so that no lines are drawn exactly
horizontally. The reader should be cautioned that there are several
different normalizations of diagrams — two in particular that we will
discuss. These two normalization conventions are useful in different
contexts. We will start with a more “physics” oriented normalization in
this chapter but we switch to a more topologically oriented normalization
in chapter 14 and in later chapters.

a
ā

b c
d
e

f

g q
n

x
x̄

ys

Fig. 12.1 A planar fusion diagram
starting and ending at the vacuum.

We start by briefly reviewing some of the notions introduced in chap-
ters 8-9: We assume a a set of particle types a, b, c, . . . which we will
draw as labeled lines with arrows in our diagrammatic algebra. This
set of particles includes a unique identity or vacuum particle I, which
may be drawn as a dotted line, or or may not be drawn at all since it
corresponds to the absence of any particles. Each particle type has a
unique antiparticle denoted with an overbar (ā for the antiparticle of a).
As we discussed in section 8.1, if we reverse the arrow on a line we turn
a particle into its antiparticle. If a particle is its own antiparticle we do
not draw an arrow on its line.
Fusion rules are given by the matrices N c

ab having the properties dis-
cussed in section 8.3. We will also assume a consistent3 set of F -matrices

3The word “consistent” here means
that the F -matrices satisfy the pen-
tagon Eq. 9.7.

as discussed in chapter 9.
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12.1 Diagrams as Operators

If, like Fig. 12.1, a diagram starts at the bottom from the vacuum and
ends at the top with the vacuum, we interpret that diagram to represent
a complex number, or an amplitude. However, we will also consider
diagrams that have “loose ends” (lines sticking off the top or bottom of
the page) meaning that they may not begin or end with the vacuum4.4Many of the diagrams we have drawn

(such as Fig. 8.1 or Fig. 9.1) have not
started at the bottom with the vacuum
or ended at the top with vacuum.

We can view these diagrams with loose ends as being a sub-diagram of a
larger diagram that begins and ends in the vacuum. However, it is also
useful to give such diagrams quantum mechanical meaning in their own
right.
Our convention is that when we draw a diagram with world-lines that

end pointing upwards we should view these particles as kets (indepen-
dent of the direction of any arrow drawn on the world-line). If world-lines
end pointing downwards, we mean them to be bras. Many diagrams will
have world-lines that point both up and down, in which case we mean
that the diagram has some particles that live in the vector space of kets
and some in the dual (bra) space. Such diagrams can be interpreted as
operators that take as input the lines coming in from the bottom and
give as output the lines going out the top. The lines coming in from the
bottom are thus in the bra part of the operator and the lines pointing
out the top are the ket part of the operator5. If we consider, for exam-5Analogous to some of the ideas of

chapter 7, the bras and kets are meant
to be contracted together with bras and
kets from other diagrams, pasting to-
gether such operators to assemble a pic-
ture with no loose ends like Fig. 12.1
which starts and ends in the vacuum.

ple, diagrams with Min incoming lines from the bottom and Mout lines
going out the top, we can write a general operator6 as

6The only constraint on this operator
is that it conserves the total quantum
number (or “charge”). One could imag-
ine operators that do not conserve to-
tal quantum number. Such operators
would be nonphysical and are also out-
side of what we can express with dia-
grams.

Operator =
∑

n,m,q

Cn,m,q |n,Mout; q〉〈m,Min; q| (12.1)

An example of such an operator is shown diagrammatically in Fig. 12.2
with two incoming and three outgoing lines. In Eq. 12.1 the states
|n,Mout; q〉 are an orthonormal complete set of states of Mout particles
where all the particles together fuse to the quantum number q; and
similarly the states |m,Min; q〉 are an orthonormal complete set of states
of Min particles where all the particles together fuse to the quantum
number q. The value of the coefficients Cn,m,q depend on the details of
the diagram being considered. The fact that the operator is necessarily
diagonal in the variable q means that the total quantum number of all of
the incoming particles must be the same as the total quantum number of
all the outgoing particles (i.e., they fuse to the same overall charge). This
conservation of overall quantum number is a reflection7 of the locality7We do not need an axiom for total

quantum number conservation, as this
will arise as a result of the other rules
we introduce in this chapter.

principle of section 8.2.
Generally in a diagram, lines will be labeled with particle types and (if

the particle is not self-dual) arrows. We have not labeled the incoming
and outgoing lines in Fig. 12.2 with the assumption that these labels and
arrows occur inside the hidden box. However, it is sometimes useful to
reinstate these labels as in Fig. 12.3. As we will discuss in more detail in
section 12.2.1 a label restricts the quantum number of the corresponding
line
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=
∑

n,m,q

C(1)
n,m,q |n, 3; q〉〈m, 2; q|diagram 1

Fig. 12.2 Diagram 1, representing an arbitrary diagram (or linear combination,
i.e., weighted sum, of diagrams), is understood as part of a larger diagram, and is
interpreted as an operator. Incoming lines from the bottom correspond to bras and
outgoing lines towards the top correspond to kets. The states |n, 3; q〉 are a complete
set of states for 3 particles where all the particles together fuse to the quantum
number q. Similarly, the states |m, 2; q〉 are a complete set of states for 2 particles
where all the particles together fuse to the quantum number q, The superscript on

C
(1)
n,m,q indicates that these constants correspond to the particular “diagram 1” in

the box. The total quantum number q of all the particles is conserved by the operator
due to the locality principle from section 8.2.

a b

c d e

=
∑

n,m,q

C(2)
n,m,q |n, 3; q〉〈m, 2; q|diagram 2

Fig. 12.3 In a figure with labeled incoming and outgoing lines, the quantum numbers
on these lines are fixed, as compared to Fig. 12.2 where the diagram may have a
superposition of quantum numbers on the external lines.

We now introduce an important diagrammatic principle:

Hermitian Conjugation: Reflecting a diagram around a horizon-
tal axis and then reversing the direction of all arrows implements
Hermitian conjugation8.

8 8We have already used this principle as
far back as chapter 2. For example, in
Figs. 2.9 and 2.10 we see that we flip
over the diagram to turn a ket |0〉 into
a bra 〈0|. In those figures we did not
put arrows on lines. However, it is clear
that the rule of reflecting then revers-
ing the arrows must be the correct rule
if we are to be able to bring the bra and
ket together to form an inner product
〈0|0〉 as in Fig. 2.11 where we connect
up lines with arrows going the same di-
rection.

For example, reflecting Fig. 12.3 and then reversing the arrows on all
lines results in the Hermitian conjugate diagram

a b

c d e

=
∑

n,m,q

[C(2)
n,m,q]

∗ |m, 2; q〉〈n, 3; q|diagram 2

Fig. 12.4 Flipping the diagram in Fig. 12.3 results in the Hermitian conjugate. The

coefficients C
(2)
n,m,q in Fig. 12.3 are complex conjugated to obtain [C

(2)
n,m,q]

∗ here.

It is crucial that when we turn a bra into a ket (reflecting the diagram
and then reversing the arrows), down-pointing arrows remain down-
pointing and up-pointing arrows remain up-pointing (Note, for example,
that the arrow on a is pointing up both in Fig. 12.3 and 12.4).
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Diagrams which start from the vacuum at the bottom are an impor-
tant special case. When there are no incoming lines at the bottom of a
diagram the expression become

|ket〉 =
∑

n,q

Cn,∅,q|n,Mout; q〉 (12.2)

which we can also interpret as an “operator” which accepts the vacuum
as an input at the bottom and gives a ket as an output at the top. The
symbol ∅ here means that the m index used in Fig. 12.2 and Eq. 12.1
is just the empty set (nothing summed over), or equivalently that the
diagram starts from the vacuum. An example of such a diagram is shown
in Fig. 12.5.

=
∑

n,q

C
(3)
n,∅,q |n, 3; q〉

diagram 3

Fig. 12.5 A diagram with no incoming lines at the bottom is interpreted as a ket.

Similarly we can consider diagrams which end in the vacuum at the
top. When there are no outgoing lines at the top of a diagram we have

〈bra| =
∑

m,q

C∅,m,q〈m,Min; q| (12.3)

which is an operator that accepts a ket as an input and gives a com-
plex number as an output. An example of such a diagram is shown in
Fig. 12.6.

=
∑

m,q

C
(4)
∅,m,q 〈m, 3; q|diagram 4

Fig. 12.6 A diagram with no outgoing lines at the top is interpreted as a bra.

If diagram 3 happens to be the reflection of diagram 4 around a hor-
izontal axis with all arrows reversed, then these two diagrams are her-
mitian conjugates of each other and C

(4)
n,∅,q = [C

(3)
∅,n,q]

∗.

12.1.1 Stacking operators

Stacking operators on top of each other contracts bras with kets in the
natural way9. For example, if we define the operator, diagram 5, as in9The observant reader will see sim-

ilarities between this stacking proce-
dure and the stacking of manifolds with
boundary discussed in chapter 7. These
similarities are not a coincidence!

Fig. 12.7, we can then stack diagram 5 (Fig. 12.7) on top of diagram 1
(Fig. 12.2) to obtain Fig. 12.8. The resultant operator, diagram 6, on
the right is given by
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=
∑

n,m,q

C(5)
n,m,q |n, 1; q〉〈m, 3; q|diagram 5

Fig. 12.7 Another example operator

=

diagram 5

diagram 1

diagram 6

Fig. 12.8 Stacking operators on top of each other to create new operators.

Operator =


 ∑

n,m′,q

C
(5)
n,m′,q |n, 1; q〉〈m′, 3; q|




 ∑

n′,m,q

C
(1)
n′,m,q |n′, 3; q〉〈m, 2; q|




=
∑

n,m,q

(
∑

n′

C
(5)
n,n′,qC

(1)
n′,m,q

)
|n, 1; q〉〈m, 2; q|

where we have used the orthonormality of the states |n′, 3; q〉 to generate
a Kronecker delta δm′,n′ . Thus diagram 6 can be written in the usual
form of Eq. 12.1 with constants

C(6)
n,m,q =

∑

n′

C
(5)
n,n′,qC

(1)
n′,m,q

A particularly important case is that of stacking a bra diagram on top
of a ket diagram which generates a scalar. For example, stacking the bra
diagram 4 on top of the ket diagram 3 generates the usual scalar inner
product as shown in Fig. 12.9. This fits with our claim at the beginning
of this chapter that a diagram that starts and ends in the vacuum should
correspond to a complex amplitude.

12.2 Basis of States

In our definition of an operator (Eq. 12.1) we invoked the existence of
a complete orthonormal basis of states |n,M ; q〉 for M particles having
total quantum number q. We now would like to specify some details of
this basis.



146 Planar Diagrams

=

(
∑

m,q

C
(4)
∅,m,q〈m, 3; q|

)(
∑

n,q

C
(3)
n,∅,q|n, 3; q〉

)

=
∑

m,q

C
(4)
∅,m,qC

(3)
m,∅,q

diagram 4

diagram 3

Fig. 12.9 Stacking a bra operator on top of a ket operator generates a scalar. We
have used orthonormality of the kets |n, 3; q〉 on the right hand side.

12.2.1 One Particle

We begin by considering a single particle at a time. For a single particle,
an orthogonal complete basis is given by the different particle types1010In keeping with the notation of

Fig. 12.2 the state |a〉 should be no-
tated |a, 1; a〉 to indicate a single line,
but here we use just |a〉 for simplicity.

|a〉 (including the vacuum |I〉). We denote a projector onto a particular
particle type as a simple labeled straight line as shown in Fig. 12.10.
The vacuum can be drawn as a dotted line, or may not be drawn at all.

= |a〉〈a|a

Fig. 12.10 A labeled straight line is just an projector onto the particle type.

Since the different particle types are assumed orthonormal 〈a|b〉 = δab,
applying two such projectors in a row diagrammatically gives the identity
shown in Fig. 12.11.

= |b〉〈b|a〉〈a| = δab|a〉〈a| = δab
a

b
a

Fig. 12.11 Orthogonality of projection operators.

This identity exemplifies the more general rule shown in Fig. 12.12 which
also agrees with the fact that the operators in Eq. 12.1 are diagonal in
the overall quantum number q. Again this is simply a reflection of the
locality, or no-transmutation, principle11 of section 8.2 (See in particular

11As mentioned in note 7 from earlier
in this chapter, this principle is not an
axiom of our diagrammatics, but rather
can be derived from the other rules we
introduce in this section. See exercise
12.2.

Fig. 8.7).

= 0 unless a = b

a

b

anything

Fig. 12.12 The locality, or no-transmutation, principle as in Fig. 8.7.

Since we assume the set of particle types is complete, the identity
operator is given by the sum over all particle types as in Fig. 12.13
where the sum includes the vacuum particle. We represent the identity
operator on the right in Fig. 12.13 as a straight unlabeled line. This
is convenient since it allows us to extend labeled lines by appending
unlabeled lines.
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∑

a

=
∑

a

|a〉〈a| = identity =a

Fig. 12.13 The completeness relation for single lines.

12.2.2 Two Particles

Let us now move on to the case of two particles. As discussed in chapter
8, to fully describe the state of two particles, we need to give the quantum
number (particle type) of each particle and the fusion channel between
the two particles. We thus draw the state of two anyons with a vertex
diagram12 as shown in Fig. 12.14.

12In cases where the fusion multiplic-
ity Nc

ab > 1 we must also add an in-
dex µ ∈ 1 . . . Nc

ab at the vertex as in
Eq. 8.17, and we would write the ket
as |a, b ; c, µ〉. We suppress this addi-
tional index here for simplicity. It is
reinstated in section 12.5.

c

a b

= |a, b; c〉

Fig. 12.14 Particles a and b have fusion channel c.

The notation of the ket13 |a, b; c〉 means that the total quantum num-

13In the notation of Fig. 12.2 the state
|a, b; c〉 might be notated |(a, b), 2; c〉 to
indicate there are two outgoing lines.
If we wanted to emphasize that there
is one incoming line and two outgoing
lines we might write |a, b; c〉〈c| instead.
Here we use abbreviated notation.

ber of particles a and b is c (or a and b fuse14 to c). If N c
ab = 0, i.e., if

14More properly for Fig. 12.14 we
should say that a and b split from c,
whereas in Fig. 12.15 we should say
that a and b fuse to c. Most of the
time people are careless in distinguish-
ing fusing and splitting.

the diagram is a disallowed fusion, then the value of the diagram is zero.
The set of states |a, b; c〉 for all possible a, b, c is assumed to form an or-
thonormal complete set of states for two anyons. Note in particular that
for a 6= b the ket |a, b; c〉 is orthogonal to |b, a; c〉 — i.e., in our planar
diagram algebra, it matters which particle is to the left and which is to
the right.
The Hermitian conjugate of the vertex ket Fig. 12.14, the correspond-

ing bra, is shown in Fig. 12.15.
c

a b

= 〈a, b; c|

Fig. 12.15 This is the bra which is the Hermitian conjugate of the ket in Fig. 12.14

The fact that the diagram for the bra looks like the ket upside-down
is in accordance with our general principle of Hermitian conjugation15

15In section 12.1 we treated the
statement that flipping the diagram
gives Hermitian conjugation as an ax-
iom. However, one could instead treat
Fig. 12.15 as the axiom and build up
the general principle from only this
statement.

introduced in section 12.1 (See the discussion near Fig. 12.4).
To take inner products between a bra (like Fig. 12.14) and a ket (like

Fig. 12.15) we simply stack the bra on top of the ket, in accordance with
section 12.1.1, to produce the diagram16,17 shown in Fig. 12.16.

16Again, if Nc
ab > 1 there are addi-

tional indices µ at the vertices and the
kets are orthonormal in these indices as
well. See note 12 above, and section
12.5.

17This inner product between bra and
ket does not give a scalar but rather
gives a scalar times a c particle line.
This is because the ket, Fig. 12.14 is
actually an operator that takes an in-
coming single line as input and gives
two lines as output. (And conversely
with the bra Fig. 12.15). See also the
comment on notation in the above note
13.

The fact that we obtain delta functions on the right is equivalent
to the statement that the kets |a, b; c〉 form an orthonormal set. The
normalization of Fig. 12.16 (i.e, that one gets Kronecker deltas on the
right and no numerical constants) is our physics normalization. This
normalization will be changed in chapter 14.
Note that the first two delta functions δaa′ and δbb′ in Fig. 12.16 can

be interpreted as a result of Fig. 12.11 (the lines are angled instead
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= δaa′δbb′δcc′ c

c

c′

ba

b′a′

Fig. 12.16 The inner product between the bra in Fig. 12.14 and a ket in Fig. 12.15.
This gives Kronecker deltas on the right given the physics normalization we are using
in this chapter. The normalization will be changed in chapter 14.

of vertical, but this does not change their meaning). As a result, the
diagram of Fig. 12.16 is often written in the simplified form shown in
Fig. 14.716

= δcc′ c

c

c′

ba

Fig. 12.17 A simplified version of the inner product in Fig. 12.16. This gives a
Kronecker delta on the right in the physics normalization we are using in this chapter.
As always if the vertex is disallowed by fusion (if a × b does not include c) then the
value of the diagram is zero. The normalization will be changed in chapter 14.

The fact that c must equal c′ in Figs. 12.16 and 12.17 is consistent
with the no-transmutation principle Fig. 12.12.
The principle of orthonormality of vertices implies the useful result

that a loop, as shown in Fig. 12.18, is given the value of unity (This is
just Fig. 12.17 where we have set c = c′ = I and not drawn the identity
line). At the risk of being repetitive we once again note that we will
change this normalization in chapter 14 below and in later chapters,
although it is correct for this section.

| 〉 = |ā, a; I〉 = |state〉
a

= 1=〈state|state〉 Physics
Normalization

a

Fig. 12.18 The orthonormality of trees implies a particle loop gets a value of 1 if
we are using physics normalization.

Since the vertex diagrams |a, b; c〉 from Fig. 12.14 form a complete set
of states for the two particles, we can construct an identity operator for
two strands as shown in Fig. 12.19.
We can derive a useful identity from Fig. 12.19 by applying projectors

|x〉〈x| and |y〉〈y| to left and right strings respectively to obtain Fig. 12.20.
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∑

a,b,c
c

a b

a b

=
∑

a,b,c

|a, b; c〉〈a, b; c| =

Fig. 12.19 Insertion of a complete set of states. This figure uses physics normalized
diagrams. The normalization will be changed in chapter 14.

∑

c

c

x y

x y

=
∑

c

|x, y; c〉〈x, y; c| = x y

Fig. 12.20 Insertion of a complete set of states, with fixed quantum numbers x and
y on both ends. This figure uses physics normalized diagrams. The normalization
will be changed in chapter 14.

An arbitrary operator with two incoming and two outgoing lines can
be written as in Fig. 12.21 where the coefficients C(x,y),(a,b),c are arbi-
trary (depending on what operator we want to define).

∑

a,b,x,y,c

C(x,y),(a,b),c c

a b

x y

=
∑

a,b,c,x,y

C(x,y),(a,b),c|x, y; c〉〈a, b; c|

Fig. 12.21 An arbitrary operator with two incoming and two outcoming lines. The
coefficients C are arbitrary.

12.2.3 Three Particles

We can continue on and consider states of three particles. All the same
principles apply here. As discussed in chapter 8, we can write an or-
thonormal complete set of states for three particles as a fusion tree18,19

18In cases where there are fusion mul-

tiplicities Nd
ab > 1 or Ne

dc > 1 then we
must place an additional index µ or λ
at the corresponding index. See for ex-
ample, section 9.5.3.

19As mentioned in the above note 13,
although we write this as a ket, it
is really an operator, and to empha-
size this we might write something like
|(a, b), c, d; e〉〈e| instead.

as in Fig. 12.22.

a b c

d

e

= |(a, b), c, d; e〉 = |(a, b); d〉 ⊗ |d, c; e〉

Fig. 12.22 An orthonormal set of states for three particles can be described as a
fusion tree. We have used two different notations on the right. The latter notation
matches that of section 8.6.

If either Nd
ab = 0 or Ne

dc = 0 then the corresponding fusion is disal-
lowed and the value of the diagram is zero20. The corresponding kets are 20This is already implied by looking

at the individual vertices and consid-
ering the rules of a single vertex as in
Fig. 12.14.

obtained using the Hermitian conjugation rule of flipping the diagram
and reversing arrows as shown in Fig. 12.23.
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a b c

d

e

= 〈(a, b), c, d; e| = 〈(a, b); d| ⊗ 〈d, c; e|

Fig. 12.23 The bras corresponding to the kets in Fig. 12.22.

The inner product of such states is given by stacking the bra on top
of the ket as in Fig. 12.24.

a b c

d

e

= δaa′δbb′δcc′δdd′δee′ e
a′ b′ c′

d′

e′

Fig. 12.24 The orthogonormality of tree states. This diagram uses physics normal-
ization.

Note that in Fig. 12.24, one can focus one’s attention on the left
branches (with d, a, b, a′, b′, d′), which look exactly like Fig. 12.16 thus
immediately obtaining δaa′δbb′δdd′ and replacing the small diamond on
the left branch with a single d-line. The remaining figure then looks
exactly like the figure 12.16 and gives us the delta functions δcc′δee′ as
well. Thus the orthonormality of these tree states is not a separate
assumption but can be derived from the orthonormality of two particle
states that we used in section 12.2.2.
The completeness of this set of states similarly can be expressed with

diagrams as shown in Fig. 12.25.

=
∑

a,b,c,d,e,a′,b′,c′,d′

a′ b′ c′

d′

e

a b c

d

Fig. 12.25 The completeness of tree states for three particles. This diagram uses
physics normalization.

Once again we can derive this completeness relation from what we
know about the two-particle case. We can start in the very center of
Fig. 12.25, considering the lines d, c, e, d′c′, and apply the completeness
relation Fig. 12.20. This splits off the c-line to the right which, summed
over its index gives a single unlabeled line on the right as in Fig. 12.13.
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The remaining diagram on the left (with lines a, b, d, a′, b′ is of the form
of Fig. 12.19 which summed over gives two unlabeled lines. Thus the
completeness relation for three particles is not an independent assump-
tion but follows from the completeness of the one and two particle cases.
One can use these basis states to build arbitrary operators with three

particle states. Just as an example, in Fig. 12.26 we show the most
general form of an operator that takes two particles as an input and
gives three particles as an output.

=
∑

a,c,e,x,y,z,w

Cx,y,z,wa,c;e |(x, y)z, w; e〉〈a, b; e|
∑

a,c,e,x,y,z,w

Cx,y,z,wa,c;e

x y z

w

e

a c

Fig. 12.26 An arbitrary operator with two incoming lines and three outgoing lines.
The coefficients C are arbitrary

12.2.4 F -Matrices Again

In defining our three particle states in Fig. 12.22 we have fused the two
particles a and b on the left first to form d and then fused d with c to
form e. (Our notation to indicate this is |(a, b)c, d; e〉). However, we
could have chosen to fuse the particles in a different order to form a
different tree as shown in Fig. 12.27. Here b and c fuse together to form
f and then a and f fuse together to form e. We notate this state as
|a, (b, c), f ; e〉.

a b c

f

e

= |a, (b, c), f ; e〉 = |a, f ; e〉 ⊗ |(b, c); f〉

Fig. 12.27 Another orthonormal set of states for three particles. Compare to
Fig. 12.22.

The set of states defined by the fusion trees in Fig. 12.27 also form a
perfectly good (but different) complete orthonormal basis of states for
three particles. For example, we have the orthogonality relation shown
in Fig. 12.28 (compare Fig. 12.24).
As described in detail in chapter 9, if we draw trees with different

branching structure, we are describing the same Hilbert space, but in
a different basis — the basis change being given by a unitary F -matrix
transform as shown in Fig. 12.29 (See also discussion of Fig. 9.1).
Similarly we have the relation between the Hermitian conjugate states

as shown in Fig. 12.30. Note that because the F -matrix is unitary in its



152 Planar Diagrams

b c

a

e

f

= δaa′δbb′δcc′δff ′δee′ e
b′ c′

a′

e′

f ′

Fig. 12.28 The orthogonality of tree states in a different basis. This diagram uses
physics normalization.

a b c

d

e

=
∑

f

[
F abce

]
df

a b c

f

e

Fig. 12.29 The F -matrix. See chapter 9.

two outside indices (d and f in Fig. 12.29) we have

[F abce ]∗df = ([F abce ]†)fd = ([F abce ]−1)fd

12.2.5 More Particles

The principles we have developed for one-, two-, and three-particle states
are easily extended to greater numbers of particles. Each shape of fusion
tree defines a different orthonormal complete set of states. For example,
with four particles, we might choose the tree shape shown in the left
of Fig. 12.31, or we might choose the tree shape shown in the right of
Fig. 12.31. Either one of these makes a perfectly good orthonormal basis
for four particles — and these two bases are related to each other by
F -matrices as discussed in chapter 9.
The left-hand tree structure in Fig. 12.31, with all of the particles on

top branching from a single line going from top left to bottom right, is
sometimes known as the “standard basis.”
One can use F -moves to evaluate more complicated diagrams. An

example of this is shown in Fig.12.32.
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a b c

d

e

=
∑

f

[
F abce

]∗
df

a b c

f

e

Fig. 12.30 F -matrix

a b c d

e

f

g

a b c d

hf

g

Fig. 12.31 Two (of five) possible bases for describing states of four particles. These
bases are related to each other by F -moves (See Fig. 9.7). The shape of tree on the
left is sometimes known as the “standard” basis.

b c a

ā

d

ef

ā

=
∑

x

[(F bdeā )−1]cx
b d e a
x

ā

f

ā

= (F bdeā )∗fc

Fig. 12.32 The diagram on the left is evaluated by applying an F -move to the lower
left part of the diagram. The resulting diagram is evaluated to a function δxf due
to the orthonormality of tree diagrams. Finally we use the unitarity of F in the last
step. Since this diagram starts and ends at the vacuum it evaluates to a scalar. This
diagram is evaluated with physics normalization.

12.3 Causal Isotopy

Keeping with the idea of diagrams that are planar (no over- and under-
crossings), we now consider how we may deform these diagrams. When
we discussed the Kauffman bracket invariant we were allowed to freely
deform any diagram as long as we did not cut any strands. This prop-
erty is known as isotopy invariance21. Analogously, if a planar diagram

21In that case we had regular isotopy

invariance meaning that we can deform
knots freely in 3D as long as we treated
the strands as ribbons. See sections
2.2.1 and 2.6.1.

retains the same value for any deformation that does not involve cut-
ting strands or crossing them over each other, we say the theory has full
planar isotopy invariance. Examples of this are shown in Fig. 12.33.
We need to ask how much topological invariance we should really ex-

pect from our physical theories. In the mathematical world of TQFTs
and knot invariants, it is fine to assume that all directions are equivalent,
and we can freely distort a line travelling in the x direction (horizontally)
on the page to a line travelling in the t direction (vertically). However,
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=

a
b c

d

e f

g

h

a

b

c

d

e

f

g

h

Fig. 12.33 For a theory with full planar isotopy invariance, these two diagrams
should evaluate to the same result. Full planar isotopy invariance allows us to distort
the diagram in any way as long as we do not cut any strands or cross lines through
each other.

in real physical systems, generically the time direction might need to
be treated differently from the space directions. In this section we will
discuss topologically theories that allow deformation in space, but with-
out allowing one to freely exchange the time and space directions. In
particular some amount of causality might be demanded.
In chapter 16 we will consider a subset of theories which have a much

higher level of topological invariance, known as regular isotopy invari-
ance22, which allows us to freely distort diagrams in either the space or

22The term “regular” implies that
strands are treated as ribbons, but
other than this caveat, all deformations
without scissors are allowed. See sec-
tion 2.6.1.

time direction and further allow us to interchange the two.
In this chapter through chapter 15 we do not assume regular isotopy

invariance (or full planar isotopy in the case of planar diagrams) but
rather assume only what we call causal isotopy23. Here we allow defor-23This is not standard nomenclature.

mation of space-time diagrams so long as we do not change the time-
direction orientation of any lines or vertices. In other words, the path of
a particle that is moving forward in time should not be distorted such
that it is moving backwards in time (and vice-versa, a particle moving
backwards should not be distorted so that it is moving forwards) — but
other than this constraint, any smooth deformation is allowed. Two ex-
amples of deformations that are allowed under causal isotopy are shown
in Fig. 12.34.

=

a a

=

a b d

e f g

a b d

e f g

Fig. 12.34 Two examples of deformations that are allowed under causal isotopy.
Deformations of the path are allowed as long as they do not require a particle to
reverse directions in the time-like direction. In the left example, this deformation
is allowed because in both cases the particle continues to move forward in the time
direction. In the right example, the temporal order of the vertices does not matter.

Certain deformation of diagrams are not allowed by causal isotopy.



12.4 Summary of Planar Diagram Rules in Physics Normalization 155

⇐⇒X

a a

a c

b

a c

ā

b

⇐⇒X

Fig. 12.35 Two examples of transformations that are not necessarily equalities
under causal isotopy. In some special theories these transformations will be allowed,
but generically they are not allowed. The diagrams on the far left are discussed in
chapter 14. The diagram on the far right is discussed in sections 12.4.1 and 14.4.

Two examples of such disallowed deformations are given in Fig. 12.35.
On the left of the figure we see a particle which turns around in time.
This need not be the same as the particle moving straight in time as it
involves a particle creation event and a particle annihilation event. On
the right of Fig. 12.35 a vertex is altered so instead of an a particle going
out of the vertex, a ā particle goes in. In this case we must have a a
with ā annihilation event in the far right diagram that does not exist
in the simpler diagram where a and c directly fuse to b. Thus these
two diagrams do not necessarily evaluate to the same result. (Although
in some cases, such as in chapter 16, one may have a simple theory
for which the transformations showed in Fig. 12.35 are allowed, such
theories are not generic.)

12.4 Summary of Planar Diagram Rules in

Physics Normalization

With the principles we have now discussed we should be able to evaluate
any planar diagram— taking a space-time process which starts and ends
in the vacuum and turning it into an amplitude (i.e, a complex number).
The same principles can be used to simplify operators such as Eq. 12.2.

a ā

b

=

a ā b

I

b
Fig. 12.36 One can always add or re-
move the identity (or vacuum) line to
any diagram.

Here are a summary of the important rules we have learned for dia-
gram evaluation

(1) One is free to continuously deform a diagram consistent with causal
isotopy as described in section 12.3. That is, particles must not
change their direction in time due to the deformation.

(2) One is free to add or remove lines from a diagram if they are labeled
with the identity or vacuum (I). See the example in Fig. 12.36.

(3) Reversing the arrow on a line turns a particle into its antiparticle
(See Fig. 8.4).

(4) Regions must maintain their quantum number locally as in Fig. 12.12.
In particular this means that a line must maintain its quantum
number unless it fuses with another line, or splits.

(5) Splitting and fusion vertices are allowed for fusion multiplicities
N c
ab > 0 (See section 8.3). This includes particle creation and
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annihilation as a special case where a particle-antiparticle pair fuse
to the vacuum or split from the vacuum (An example is shown in
Fig. 12.36).

(6) Hermitian conjugation is given by reflection of a diagram around
a horizontal line along with flipping the direction of arrows (See
Fig. 12.4 or for example, Fig. 12.23)

(7) One can use F -moves to change the structure of fusion trees in
order to simplify. For example, in Fig. 12.32.

(8) Once one reduces a diagram into tree structures that have the
same branching in the upper and lower half (as on the right of
Fig. 12.32) we can use the orthonormality of trees to complete
the evaluation. In cases where the diagram starts and ends in the
vacuum this reduces the diagram to a complex number (See, for
example, in Fig. 12.32). More generally operator diagrams can be
reduced to simple forms analogous to Fig. 12.26.

With these principles (and given an F -matrix as input information –
which will depend on the particular physical system we are considering)
it is possible to fully evaluate any planar diagram, starting and ending
in the vacuum, into a complex number. While there may be many
strategies to use these rules to reduce a complicated diagram to a single
complex number, the final result is independent of the order in which
we apply the rules24.24This is guaranteed by the pentagon

relation and the Mac Lane coherence
theorem.

The mathematical structure we have defined thus far (our Hilbert
space and F -matrices) is known as a “unitary fusion category”. There
is more structure to be uncovered in further chapters that follows from
what we have defined so far, and there are many special cases to be
discussed. In addition note that here we have only described planar
diagrams, so we have not yet described 2+1 dimensional theories — in
order to describe these, we will have to include braiding rules for our
diagrams we will add in chapter 13.

12.4.1 A Simple Example

As a simple example, let us try to evaluate the diagram shown on the far
left of Fig. 12.38. We first work on a small part of the diagram as shown
in Fig. 12.37 (Note that this is the same as the far right of Fig. 12.35).

I b

a

ā

c

= [F aābb ]Ic

b

b
c

a
ā c

= [F aābb ]Ic

b

ca

Fig. 12.37 To evaluate the diagram on the left, the vacuum line is inserted and an
F -move is made. The bubble is then removed with Fig. 12.16. These diagrams use
physics normalization. We will re-examine this diagram using a different normaliza-
tion in section 14.4.
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The result in Fig. 12.37 can also be reflected along the horizontal axis
as in Fig. 12.4 to give the Hermitian conjugate diagram. Using both
Fig. 12.37 and its reflection, we obtain the result given in Fig. 12.38.

a c b = |[F aābb ]Ic|2 b

b

b

a

a
c = |[F aābb ]Ic|2

Fig. 12.38 The first step invokes Fig. 12.37 and its Hermitian conjugate. The figure
on the right is a tree which evaluates to the identity so long as the fusion vertices are
allowed and assuming physics normalizations.

12.5 Appendix: Higher Fusion Multiplicities

When we have a theory with higher fusion multiplicities (i.e., N c
ab > 1

for at least one fusion channel), then the vertices must be given indices
as well as lines having indices, and tree states are orthogonal in these
indices as well. For example, we would need to modify Figs. 12.17 and
12.20. to the form shown in Figs. 12.39 and 12.40. See also the discussion
of the F -matrix with higher fusion multiplicities in section 9.5.3.

= δcdδµν c

c

d

ba

µ

ν

Fig. 12.39 The bubble diagram when there are fusion multiplicities. This diagram
is a result of the orthonormality of tree diagrams. The variables at the vertices must
match in order for the result to be nonzero. This diagram is drawn in the physics
normalization. We will change the normalization in chapter 16.

a b =
∑

c,µ

c

a b

a bµ

µ

Fig. 12.40 Insertion of a complete set of states. When there are fusion multiplicities,
these must be summed over as well µ ∈ Nc

ab. This diagram is drawn in the physics
normalization. We will change the normalization in chapter 16.

Chapter Summary

• This is an item
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Further Reading

This is some reading.

Exercises

Exercise 12.1 Evaluating diagrams with F -matrices
Evaluate the following diagram, writing the result in terms of F ’s.

a

b

c

d f
g

Exercise 12.2 Locality Principle
Show that the locality principle (Fig. 12.12) is derivable from our other rules

for evaluating diagrams, and is not therefore an independent assumption.



Braiding Diagrams1 13
Medium Material

1This chapter continues the develop-
ment of the diagrammatic algebra in
some detail. Those who would like a
brief and easier (albeit not as general)
introduction to diagrammatic algebra
should go straight to chapter 16.

In chapters 8, 9, and 12 we focused on planar diagrams. These diagrams
can be thought of as describing the physics of objects that live in 1+1
dimension. More to the point, the nontrivial physics we discovered is
really just a reflection of the nontrivial structure of the Hilbert spaces
we are working with.
Here we extend our diagrammatic rules to the 2+1 dimensional world.

In particular we want to describe what happens when we braid world
lines. In chapter 10 we started to discuss braiding of identical particles
and we continue that discussion here.

13.1 Three Dimensional Diagrams

We begin by generalizing the concept of a diagram that we developed in
chapters 9-16. The diagrams we want to consider now allow over- and
under-crossings of lines as in Fig. 13.1. We will end up with a set of
rules that are conceptually similar to the knot-invariants we discussed
way back in chapter 2 — starting with a picture of a generalized knot
(like Fig. 13.1), we reduce it to an output number. The generlization
here is that the lines have labels (a, b, c, . . .) and lines can fuse with each
other in addition to crossing over and under each other.

a

b

c

k

f

g

h

Fig. 13.1 A diagram with over- and
under-crossings representing a process
in 2+1 dimensions.

We should be somewhat cautious here that whereas when we consid-
ered the Kauffman bracket invariant, we had regular isotopy invariance
— meaning that, treating strands as ribbons, any deformation of the
diagram was allowed as long as we did not cut any strands. In contrast
here (while we should still treat strands as ribbons) not all deforma-
tions are allowed. In general we will only have the same type of causal
isotopy as described in section 12.3 (that is, we cannot freely deform a
particle line going forward in time to one that goes backwards in time).
Of course there do exist anyon theories with a higher level of isotopy
invariance (regular isotopy), which we will discuss in chapter 16, but we
should realize that these are not generic.
Our rules for evaluating diagrams with over- and under-crossings will

be a consistent extension of a set of rules for evaluating planar diagrams2. 2In mathematical language, the rules
introduced in this chapter give addi-
tional structure to a unitary fusion cat-
egory to make it a unitary braided fu-
sion category, or unitary ribbon fusion
category (these notions are equivalent).

Our next task is to consider how we handle over- and under-crossings.
With this information, used in conjunction with the rules we have al-
ready developed for planar algebras, we will be able to evaluate any
diagram in 2+1 dimensions.
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13.2 Braiding Non-Identical Particles

We now turn to ask what happens if we exchange two different particle
species, say a and b. We might be tempted to do something similar to
Figs. 10.1 and 10.2 — that is we define a state with two particles in a
given fusion channel then we exchange the two particles and determine
the phase accumulated in this process. However, such a scheme cannot
work in the case of non-indentical particles. The reason this fails is that
when the two particles are not identical the initial and final states are
fundamentally different and cannot be related to each other by just a
phase — for example, the initial state for Fig. 13.2 has a to the left of b
whereas the final state has a to the right of b.

a b

Fig. 13.2 One would ideally like a
rule for exchanging any two particles.
However, this will not generally be
just a phase since the initial and fi-
nal states are fundamentally differ from
each other.

Nonetheless, the R-matrix can still be precisely defined even when we
are braiding nonidentical particles. Diagrammatically we define the R-
matrix as shown in Fig. 13.3. On the right of this figure, the particles b
and a come from c, with a going off to the left and b to the right. In the
left of the figure, the two particles are moved away from each other, b to
the right and a to the left, before they are braided around each other.
The key here is that in both cases, the final state of the system has b
on the left and a on the right, and the two particles fuse to a quantum
number c, so that the two processes can be compared to each other and
differ from each other only by a phase, which we define3 to be Rabc .3The notation we use matches that of

Bonderson [2007].

= Rabc

b a

c

b a

c

Fig. 13.3 Definition of the R-matrix. It is crucial that the final state of the system
on both the left and right has b on the left and a on the right, and in both cases the
two particles fuse to a. However, the left diagram includes an exchange of the two
particles. The added exchange accumultates the phase Rabc .

In a unitary theory the R-matrix is always just a complex phase.
Note that Rabc is not defined if a and b are not allowed to fuse to c
(i.e, if N c

ab = 0). Further, note that braiding anything with the identity
(vacuum) particle should be trivial,

RIaa = RaIa = 1.

A full braid (two exchanges in the same direction) of two particles a
and b fusing to c is given by Rbac R

ab
c as shown in Fig. 13.4. Note that

in the representation on the far left of the figure, in both the initial
and final configurations of particles, the b particle is to the left of the a
particle meaning that we can understand this process as simply incurring
an Aharonov-Bohm-like phase dependent on the fusion channel.
Similarly we have the inverse braid shown in Fig. 13.5.

Note carefully that the upper legs are labeled in the opposite order
comparing Eq. 13.3 to 13.5. The reason for this is that after a single
exchange the order of the two legs at the vertex is switched, so in the
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c

b a

= = Rbac R
ab
c

b a

c

b a

c

Fig. 13.4 A double exchange is a full braid (one particle wrapping fully around
another). If you read two R matrices in right to left order, they are implemented top
to bottom.

= [Rabc ]
−1

a b

c

a b

c

Fig. 13.5 An exchange in the opposite direction from Fig. 13.3 gives [Rabc ]−1. Note
carefully that compared to Fig. 13.3, the upper legs are labeled in the opposite order.

application of R−1 we act on a state with the legs in the opposite order
as shown in Fig. 13.6.

c

b a

= = [Rabc ]−1Rabc

b a

c

b a

c

=

b a

c

Fig. 13.6 An exchange followed by the inverse exchange. Compare to Fig. 13.4.

If a particle a has trivial full-braiding with all other particles of a
theory, ie., if Rabc R

ba
c = 1 for all a, c where N c

ab > 0, then we call the
particle type transparent. (The identity, or vacuum particle, is always
transparent.)
Taken together with the F -matrices, the R-matrices allows us to cal-

culate the physical result of any braid. The scheme is mostly analogous
to the cases we discussed for braiding identical particles in chapter 10. If
we want to exchange two particles we first use the F -matrices to put the
system in a basis where those two particles have a known fusion channel.
We can then directly apply the R-matrix to describe the exchange.
In particular we can now give a general scheme for evaluating any

crossing of the form shown in Fig. 13.2 which is shown in Fig. 13.7.
Using this procedure any diagram with braiding can be reduced to a
planar diagram which can then be evaluated using only the F -symbols.

13.2.1 Summary of Rules for Evaluating any 2+1 D
Diagram with Physics Normalization

The rules for evaluating any diagram in 2+1 dimensions (working with
physics normalization of diagrams) are thus a very simple extension of
the rules presented in section 12.4. We simply add two more rules
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a b

=

a b a b

=
∑

c

b

c

a

=
∑

c

Rabc

a b

b a

c

Fig. 13.7 A generic crossing can be reduced to a planar diagram using the R-matrix.
In the second step a complete set of particles c is inserted as in Fig. 12.20. Note this
figure uses physics normalization.

a b

=
∑

c

[Rbac ]−1

a b

b a

c

Fig. 13.8 The inverse crossing. This figure uses physics normalization.

(1) We are allowed to use R-moves as in Fig. 13.3 and 13.5. In par-
ticular, this allows resolving of crossings by using Fig. 13.7 and
13.8.

(2) Once any diagram is reduced to a planar diagram, we can use the
rules of section 12.4.

As with the case of planar diagram, there is some degree of deforma-
tion of diagrams (causal isotopy, see section 12.3) which is freely allowed.
Here again the rules are similar: any deformation that does not involve
cutting lines, or changing the time-direction of motion is allowed. With-
out introducing new assumptions, natural moves such as those shown
in Fig. 13.9 and 13.10 can be derived (See exercise 13.4). These are
nothing more than the Reidermeister Type II and III moves introduced
in section 2.6.1, although here the strands carry labels.

13.3 The Hexagon

Using R-moves and F -moves any 2+1 D diagram (starting and ending
in the vacuum) can be reduced to a complex amplitude. One might
worry if the rules we have listed for evaluation of diagrams are self-
consistent: i.e., does it matter in which order we apply the rules? Will
we always obtain the same complex amplitude result? Indeed, given

a b = ab
a

b
=

a

b

Fig. 13.9 These moves, Reidermeister Type-II moves, are allowed in any anyon
theory. See section 2.6.1.
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a bc

=

a bc
Fig. 13.10 This move, a Reidermeister Type-III move, is allowed in any anyon
theory. See section 2.6.1.

an F -matrix, only certain sets of (physically acceptable) R-matrices will
have the property that the diagrammatic rules give a unique final result.
In fact, it is even possible that for a given set of F -matrices that satisfy
the pentagon, there may not even exist a set of consistent R-matrices!
When we discussed planar diagrams in chapter 12, the pentagon equa-

tion guaranteed self-consistency of F -matrices. Now, given some F -
matrices that satisfy the pentagon equations, the consistency equations
for R-matrices are known as the hexagon equations and are shown dia-
grammatically in Fig. 13.11.

d

e

ba c →R

→F

d

e

b ca

→F

→R

d

b

g

ca

→R

→F d

b

g

ca

d

ba c

f

d

f

b ca
d

e

ba c →R
−1

→F

d

e

b ca

→F

→R−1

d

b

g

ca

→R −
1

→F d

b

g

ca

d

ba c

f

d

f

b ca

Fig. 13.11 The hexagon equations in graphical form.

In equations the hexagon conditions can be expressed as

Rcae [F acbd ]egR
cb
g =

∑

f

[F cabd ]efR
cf
d [F abcd ]fg (13.1)

[
Race ]−1[F acbd

]
eg
[Rbcg ]−1 =

∑

f

[F cabd ]ef [R
fc
d ]−1[F abcd ]fg (13.2)

The top equation is the left diagram whereas the lower equation is the
right diagram in Fig. 13.11. The left hand side of the equation corre-
sponds to the upper path, whereas the right hand side of the equation
corresponds to the lower path.
The structure we have now defined — a consistent set of (unitary)

F and R-matrices satisfying the pentagon and hexagon equations, is
known as a unitary braided tensor category4 . All 2+1 D anyon theories

4This is also sometimes known as a uni-

tary ribbon tensor category due to the
fact that Eq. 15.4 holds, which is always
true for unitary theories with braidings.
The unitary braided tensor category is
also sometimes known as a premodular

category.

must be of this form.
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Given a set of fusion rules, the pentagon and hexagon equation are
very very strong constraints on the possible F - and R-matrices that
can result. We mentioned in section 9.3 that given a set of fusion rules
there are only a finite number of solutions of the pentagon, Similarly,
once we have a solution of the pentagon, i.e., once the F -matrices are
fixed, there are only a finite number of possible solutions of the hexagon
equations. Both of these statements are known as rigidity. In particular
this means that if you have an anyon theory (a solution of the pentagon
and hexagon) it is not possible to perturb this solution a small amount
and get another solution5.

5Solutions that can be obtained from
other solutions by gauge transform are
not counted as being different solutions.

With simple fusion rules, such as Fibonacci (as we saw in exercise
9.4) the fusion rules completely determine the F -matrices of the theory.
In this particular case, there are exactly two consistent solutions to the
Hexagon equations, corresponding to the left and right handed types of
Fibonacci anyons (See Eq. 10.2 and exercise 13.1).

13.4 R-matrix Odds and Ends

13.4.1 Appendix: Gauge Transforms and R

As in section 9.4 one can gauge make gauge transformations on the
vertices of a theory. Given the transform shown in Fig. 9.8,

c

a b

= uabc
∼
c

a b

Fig. 13.12 We have the freedom to make a gauge transform of a vertex by multi-

plying by a phase uabc . The tilde on the right notates that the vertex is in the tilde
gauge.

the R-matrix transforms as

R̃abc =
ubac
uabc

Rabc (13.3)

Note that Raac is gauge invariant, as is the full braid Rabc R
ba
c in Fig. 13.4.

13.4.2 Product Theories

Given two anyon theories T and t, we can construct the product the-
ory T × t as in section 8.5. If the theory T has consistent R-matrices
RABC and the theory t has consistent R-matrices Rabc (“consistent” here
means there are F -matrices that satisfy the pentagon relation and the
F ’s and R’s satisfy the hexagon relations), then the product theory has
a consistent R-matrices

R
(A,a)(B,b)
(C,c) = RABC Rabc
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Again, the point here is that in a product theory, the two consituent
theories don’t “see” each other at all.

13.4.3 Appendix: Higher fusion multiplicities

When we have a theory with higher fusion multiplicities (i.e., N c
ab > 1 for

at least one fusion channel), then the vertices must be given indices as
well as lines having indices as in section 12.5. In this case the R-matrix
carries vertex indices as well, and is a unitary matrix with respect to
these indices.

=
∑

ν

[Rabc ]µν
b a

c

µ νb a

c

Fig. 13.13 Definition of R-matrix when there are higher fusion multiplicities. Here
the vertices carry labels, and R is a unitary matrix with respect to these labels.

Under a gauge transformation, as in Fig. 9.10, the R-matrix trans-
forms as

[̃Rabc ]µ′ν′ =
∑

µ,ν

([uabc ]−1)µ′µ[R
ab
c ]µν [u

ba
c ]νν′ (13.4)

Exercises

Exercise 13.1 Fibonacci HexagonOnce F -matrices are defined for a TQFT,
consistency of the R-matrix is enforced by the so-called hexagon equations as
shown in the figure diagramatically by Fig. 13.11. or the Fibonacci anyon
theory, once the F -matrix is fixed as in Eq. 9.3, the R-matrices are defined up
to complex conjugation (i.e., there is a right and left handed Fibonacci anyon
theory — both are consistent). Derive these R-matrices. Confirm Eqs. 10.2
as one of the two solutions and show no other solutions exist.

Exercise 13.2 Evaluation of a Diagram
Consider the following diagram:

b

f
g

Evaluate this diagram in terms of R’s and F ’s. Hint: First reduce the
diagram to that shown in exercise 12.1.

Exercise 13.3 Gauge transform of R and Hexagon
(a) Confirm the gauge transform Eq. 13.3.
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(b) Show that a set of F -matrices and R-matrices satisfying the hexagon
equations, Eq. 13.1 and 13.2 remains a solution after a gauge transformation.
Remember that both R- and F - transform.

Exercise 13.4 Reidermeister Moves
(a) Use the R-matrix, and the completeness relationship, to derive the

equivalence shown on the left of Fig. 13.9.
(b) How does the hexagon equation imply the equivalence shown in Fig. 13.14.

Hint: This is very subtle, but is almost trivial.

a

b c

f a

b c

f

=

Fig. 13.14 This move is implied by the hexagon equation. (Similar with the straight
line f going under the other two, and similar if the left-to-right slope of f is negative
instead of positive.).

(c) Use Fig. 13.14 to show the equality on the right of Fig. 13.9.
(d) Use the result of Fig. 13.14 along with completeness and the R-matrix

to demonstrate Fig. 13.10.
This exercise shows that equalities like those shown in Fig. 13.9 and 13.10

are not indpendent assumptions but can be derived from the planar algebra
and the definition of an R-matrix satisfying the hexagon.
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Medium Hard Material

1This chapter continues the develop-
ment of the diagrammatic algebra in
some detail. Those who would like a
brief and easier (albeit not as general)
introduction to diagrammatic algebra
should go straight to chapter 16.

When we discussed knot invariants, like the Kauffman bracket invariant,
we were allowed to deform a knot in arbitrary ways so long as we didn’t
cut any strands2. This is what we called isotopy invariance. We would

2Meaning regular isotopy — i.e., we
should treat strings as ribbons. See sec-
tion 2.2.1.

very much like the diagramatic rules of our topological theories to obey
such isotopy invariance. However, as we discussed in section 12.3 we
really only expect invariance under a more limited set of moves which
we called causal isotopy. In this chapter we take steps to achieve the
higher level of isotopy invariance that we want in order to construct knot
and link invariants.
We have already established the invariance of our rules under certain

Reidermeister moves (see Figs. 13.9 and 13.10 and exercise 13.4). How-
ever, there is one much more crucial move that we need to have our
theory. Whether we are considering a planar theory or a 2+1 dimen-
sional theory, isotopy invariance requires the so-called zig-zag identity
shown in Fig. 14.1, which is not a property of theories having only causal
isotopy invariance as shown in Fig. 12.35.

=
?

a a

Fig. 14.1 A topological theory with
full isotopy invariance should have this
“zig-zag” identity. However, generi-
cally a set of F -matrices will not satisfy
this equality (See Fig. 14.2). We can of-
ten repair this problem by changing the
normalization of kets.

Unfortunately, a set of F -matrices (even if they satisfy the pentagon
self-consistency condition Eq. 9.7) does not generically satisfy this zig-
zag identity Fig. 14.1. To see this, consider the manipulations shown
in Fig. 14.2. With the physics normalization of diagrams we have been
using, the zig-zag identity does not hold.

= [F aāaa ]
II

a
I

I

a
I

I

a
= [F aāaa ]

II
a

Fig. 14.2 Straightening a zig-zag incurs a factor of F using physics normalization of
diagrams. The left of this diagram is the same as the left of Fig. 14.1. In the first step
we use an F -move on the lower part of the diagram. We then use orthogonality of the
tree to remove the small a bubble. This part of the diagram is just Fig. 12.18. Thus
this small a bubble can be removed. We conclude that with the physics normalization
we cannot satisfy the zig-zag identity Fig. 14.1.
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14.1 Isotopy Normalization of Diagrams

To fix the zig-zag problem, we take a cue from the Kauffman bracket
invariant and change our definition of diagrams just by a small bit. In
particular, let a simple loop of particle a, as shown in Fig. 14.3, be
given a value which we call da, which is sometimes called the “loop
weight.” This is different from our prior definition where we set the
loop weight to one as in Fig. 12.18. The change here only means that
we will be working with unnormalized bras and kets. We will call this
normalization “isotopy normalization”.

| 〉 = |state〉
a

=〈state|state〉 a = da= Isotopy
Normalization

a

Fig. 14.3 Using a new normalization (which we call “isotopy normalization”) of
bras and kets. Compare to Fig. 12.18.

We should not worry about working with unnormalized bras and kets
— we are allowed to do this in quantum mechanics. The price for using
unnormalized states is that expecations of operators are now given by

〈Ô〉 = 〈ψ|Ô|ψ〉
〈ψ|ψ〉

instead of the usual expression for normalized states which just has the
numerator.
We note that we would very much like to have

da = 〈state|state〉 > 0 (14.1)

so that we have a postive definite inner product, which is required by
quantum mechanics. Often it is said that “negative normed states break
unitarity” since they destroy the concept of the state living in a proper
Hilbert space3. (Below we will also discuss da negative, despite the

3The definition of a Hilbert space re-
quires a positive definite inner product.

problems in doing so!).
Note also that for the identity particle dI = 1 since we should be able

to add and remove vacuum lines freely4.

4Evaluation of an empty diagram also
gives unity, since one can add or remove
vacuum lines freely, we can think of the
empty diagram as being equivalent to
any number of loops of the vacuum I.

With this idea of changing the normalization of kets, we declare the
following:

Henceforth, we will use isotopy normalization!

With this new normalization, we can recalculate the value of a zig-
zag analogous to that of Fig. 14.1. If we can arrange that the prefactor
da[F

aāa
a ]II is unity then straightening a zig-zag such as that in Fig. 14.1

will be an allowed transformation. In the simplest theories, we can
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= [F aāaa ]
II

a
I

I

a
I

I

a
= da[F

aāa
a ]

II
a

Fig. 14.4 With the new isotopy invariant normalization of diagrams, straightening
a zig-zag incurs a factor of da[F aāaa ]II . We will choose the value of da so as to make
this factor unity.

simply choose da such that this product is unity. However, this is not
always going to be possible to do (this will be discussed in more detail
in section 14.2). Instead, what we will always be able to do is to arrange
that [F aāaa ]II is real5 and we choose da such that

5This is arranged by gauge transform.
See section 14.2.

da =
ǫa

[F aāaa ]II
(14.2)

where6 6I like to call ǫa the “zig-zag phase”
in absence of a better name. There
is a temptation to identify it with the
Frobenius-Schur indictor κa (which we
will meet in Eq. 14.4) but these may not
be the same if we choose da negative.

ǫa = ±1 . (14.3)

Given this choice, the product da[F
aāa
a ]II in Fig. 14.4 is ǫa = ±1 and

the the zig-zag identity (Eq. 14.1) generally becomes modified to that
shown in Fig. 14.5.

a a

== ǫa

a

Fig. 14.5 The modified zig-zag identity. Here ǫa is always arranged to be +1 or
−1. The equality on the left is from Fig. 14.4. The equality on the right follows from
Hermitian conjugation of the equality on the left (turning the diagrams upside down
and reversing the arrows).

Thus by changing the normalization of a loop in Fig. 14.3 and choosing
the value da of this loop appropriately, we arrange such that zig-zag lines
as in Fig. 14.5 can be freely straightened out, up to a possible sign. In
the simplest theories, ǫa = +1 for all particle types and zig-zag lines
can be straightened out freely without accumulating any sign. However,
many theories will not allow this quite so straightforwardly. For the
meantime, let us ignore the possible sign accumulated from a zig-zag
and return to this sign in section 14.2.
Thus we have defined a new normalization of the loop Fig. 14.3 given

by the choice of Eq. 14.2. As we will see in section 17.1, the normalization
constant da will turn out (up to a possible sign7 ) to be the same quantum

7Note that our conventions allow da to
be positive or negative. We will discuss
potential issues with da < 0 in section
14.2 below. Some references, includ-
ing Bonderson [2007] and Kitaev [2006]
define da to be the absolute value of
this quantity so it is the same as da.
We have already seen examples where
da < 0 (see exercise 2.2).
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dimension da that we found in Eq. 8.10 from the Hilbert space dimension
of fusing anyons together!

| 〉
a b

c
Isotopy
Normalization

=

(
dadb
dc

)1/4 | 〉
a b

c
Physics
Normalization

Fig. 14.6 New “isotopy” normalization for vertices8 . Note that this is consistent
with Fig. 12.18 by setting c = I with a = b (and note that dI = 1.).

Having changed the normalization of our kets, for consistency we need
to change the normalization of fusions and splittings vertices as well.
Thus we define new normalization of vertices as shown in Fig. 14.68.

8One might be worried how one han-
dles the fractional power when one of
the d’s is negative. In fact we will only
need to consider cases where the fac-
tor inside the brackets ends up positive.
(See Eq. 14.8 below).

With this new normalization, the orthonormality of trees is now dif-
ferent from what we previously assumed. For example, Fig. 12.32 should
now have a factor of

√
dadbdedd on the right hand side.

c

d

ba

ba
= δcd

√
dadb
dc

c

Fig. 14.7 Bubble diagram with isotopy invariant normalization of diagrams. See
Eq. 14.9 for how to interpret the square root in cases where d < 0.

a b =
∑

c

√
dc
dadb

c

a b

a b

Fig. 14.8 Insertion of a complete set of states with isotopy invariant normalization
of diagrams. See Eq. 14.9 for how to interpret the square root in cases where d < 0.

Similarly our bubble diagram Fig. 12.17 and our completeness diagram
Fig. 12.20 need to be modified as shown in Fig. 14.7 and Fig. 14.89.

9Once again if Nc
ab > 1 there are addi-

tional indices at the vertices and these
must match as well. See section 12.5.

A crucial point is that the F -matrix does not need any alteration when
we switch from physics normalization to isotopy normalization10! One10Indeed, the reason why we changed

the value of all vertices, as in Fig. 14.6,
and not just rescale the vertex cor-
responding to a simple loop as in
Fig. 14.3, is in order to keep F from
changing.

can check that in changing normalizations both sides of Fig. 9.1 (equiv-
alently Fig. 12.29) are multiplied by the same factor of (dadbdc/de)

1/4.
With this isotopy invariant normalization the rules for evaluating pla-

nar diagrams are exactly the same as those described in section 12.4
except that loops are now normalized with da as in Fig. 14.3 and our
orthonormality relationships (Fig. 12.20 and Fig. 12.17) are altered to
those shown in Fig. 14.8 and Fig. 14.7.
The same R-matrix rules can be applied to diagrams with over- and

under-crossings as in chapter 13. The use of the R-matrix is unchanged.
Be warned, however, that in Fig. 13.7 and 13.8 we have used the com-
pleteness relationship Fig. 12.20 which now needs to be modified to
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Fig. 14.8, so that when we evaluate crossings we now obtain, for exam-
ple, Fig. 14.9.

a b

=
∑

c

√
dc
dadb

Rabc

a b

b a

c

Fig. 14.9 Resolving a crossing with isotopy normalization. Compare to Fig. 13.7.
See Eq. 14.9 for how to interpret the square root in cases where d < 0.

14.2 Gauge Choice and Frobenius-Schur

Indicator

Let us now return to the zig-zag in Fig. 14.1 and our choice of the
quantity da in Eq. 14.2. First, we claimed that we can always arrange
to have [F aāaa ]II be real. With a gauge choice, we can fix the phase of
[F aāaa ]II any way we like, at least for cases where a 6= ā. Let us see how
this can be done. On the far left of Fig. 14.4 we have a vertex |aā〉 as well
as a vertex which we write as 〈āa| (compare to Fig. 14.10). Note that,
at least when a 6= ā these two vertices are not Hermitian conjugates of
each other (recall that when Hermitian conjugating a diagram arrows
get reversed as well as reflecting the diagram). By making separate
gauge transforms on these two states, these kets can be redefined by an
arbitrary phase as discussed in section 9.4, and this phase then ends up
in [F aāaa ]II (See the transformation in Eq. 9.8). Thus by a gauge choice
we can choose any phase for [F aāaa ]II , as long as a 6= ā. It is often (albeit
not always) convenient to choose [F aāaa ]II to be real and positive so that
we can have da positive and ǫa = +1 postive as well.

= |aā〉
āa

= |āa〉
aā

= 〈āa|
aā

= 〈aā|
āa

Fig. 14.10 Cups (top two) and Caps
(bottom two). The vertex |aā〉 (top fig-
ure) and the vertex |āa〉 (second fig-
ure) can be assigned different phases as
a gauge choice (See section 9.4). The
third figure here is the Hermitian conju-
gate of the top figure and must have the
conjugate phase choice. The bottom
figure is the Hermitian conjugate of the
second figure. In Fig. 14.4 the leftmost
figure includes |aā〉 and 〈āa|, whereas
the phases cancel in the loop formed
in the middle picture of Fig. 14.4 from
|āa〉 and 〈āa|. Thus choosing gauges we
can choose any phase for [F aāaa ]II un-
less a = ā (See section 9.4 for discussion
of the effects of gauge transform on F ).

However, if a = ā, it is not possible to change [F aaaa ]II by gauge
transform. In this case the kets |aā〉 and |āa〉 are equal and we do not
have the freedom to gauge transform them separately. It is easy to show
that when a = ā, the factor of [F aaaa ]II must be real (See appendix 14.6
for a three line proof). The sign of [F aaaa ]II is then a gauge invariant
quantity, known as the Frobenius-Schur indicator11

11For particles which are not self-dual
there are severeal different definitions
of what people call the Frobenius-Schur
indicator. Some references just define
it to be zero for such particles. Other
references define it to be ǫasign[da] and
others define it to be unity! To avoid
confusion we will not use the phrase
Frobenius-Schur in the context of non-
self-dual particles.

κa = sign[F aaaa ]II = ǫa sign[da] . (14.4)

If the Frobenius-Schur indicator is positive for all the self-dual parti-
cles in a theory, then we can set ǫa = +1 for all particles and we can
also have da positive for all particles. This means that we can both have
a positively normed inner product, and we can freely straighten out zig-
zags as in Fig. 14.5 without incurring any minus signs. Theories of this
type are fairly simple to work with12.

12Theories with all positve Frobenius-
Schur indicators are sometimes called
unimodal or unimodular.

However, when the Frobenius-Schur indicator of a self-dual particle
is negative, things are more complicated as it looks like we must give
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up either isotopy invariance or positively normed inner product. Un-
fortunately, many anyon theories, even very simple ones like SU(2)1
(the semion theory) have negative Frobenius-Schur indicators. The
Frobenius-Schur sign associated with a zig-zag, though perhaps surpris-
ing, is a genuine physical quantity which occurs in more familiar places
as well. In section 14.7 we show that such a Frobenius-Schur sign actu-
ally occurs for simple systems such as spin-half particles! Independent of
why this sign occurs, theories that have self-dual particles with negative
Frobenius-Schur indicators seem to force us to choose between several
imperfect options:

Option A: Negative ǫa

Here (for particles with negative Frobenius-Schur indicator) we choose
ǫa = −1, but da > 0. With da > 0 we have a postive definite inner
product, and therefore a theory that can properly represent a (neces-
sarily unitary) quantum mechanical system. On the other hand, with
ǫa = −1, we incur a minus sign for straightening out any zig-zag as
in Fig. 14.5, so our diagrammatic rules are not completely isotopically
invariant.

Unless otherwise stated we will work with Option A
such that all da > 0 and self-dual particles with negative
Frobenius-Schur indicator have ǫa = −1 (and all other par-
ticles have ǫa = +1).

Option B: Negative da

Here (for particles with negative Frobenius-Schur indicator) we choose
ǫa = +1, but da < 0. Choosing ǫa > 0 means we have isotopy invariant
diagram rules. However, negative da means a non-positive-definite inner
product (See Eq. 14.1) which is inappropriate for quantum mechanical
systems. Nonetheless, one will often see theories with negative da in the
physics literature attempting to describe quantum mechanical systems.
While this appears problematic, often one can reinterpret this as a valid
theory with a certain bookkeeping trick whereby we redefine our inner
product and signs are pushed around from one place to another to make
it look like we have da < 0 and ǫa = +1 whereas what we actually
have is the reverse da > 0 and ǫa = −1, and thus we are describing
a valid quantum mechanical theory. The interpretation of negative da
as a bookkeeping trick is elaborated in section 14.5. It will turn out
that that will be precisely equivalent to Option A. Nonetheless it may
be convenient at times to work with negative da so as to obtain isotopy
invariant rules. A good example of this is discussed in chapter 30.

Option C: Do Something Physically Different!

There is yet a third possibility — to do something which is physically
slightly different. It turns out that there is a way to preserve both the
usual definition of the positive definite inner product (i.e., describe a
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unitary theory) and maintain isotopy invariance, which is what we will
discuss next.

14.3 Isotopy Invariant Unitary Rules

Despite the fact that many anyon theories have particles with negative
Frobenius-Schur indicators, which appear to break isotopy invariance,
it is always possible to construct an isotopy invariant set of rules for
evaluating knot and link diagrams while at the same time maintaining
unitarity and a proper inner product. Indeed, such rules are natural
in the language of category theory (which we will not discuss). To un-
derstand what this alternative approach is, it is worth thinking back
to what we learned about Chern-Simons theory (which often does have
particles with negative Frobenius-Schur indicators).

14.3.1 Isn’t Chern-Simons Theory Isotopy Invariant
and Unitary?

Yes! All the way back in chapter 5 we explained that Chern-Simons
theory is based on a topologically invariant (diffeomorphism invariant)
action, and it is a unitary quantum theory. So why do we now seem to
have this contradiction that we either have to give up unitarity (i.e., ac-
cept a non-positive-definite inner product) or give up isotopy invariance
(i.e., accept a sign when we deform certain lines to insert a wiggle as in
Fig. 14.5). What went wrong here? Why do negative Frobenius-Schur
indicators show up in Chern-Simons theory?13

13The discussion of this section is taken
from a (yet unpublished) paper by
Joost Slingerland and myself. See also
references at the end of this chapter.

A hint to the answer to this question is hidden in footnote 18 of chapter
5. The Chern-Simons invariant of a knot or link is actually an invariant
of the framed knot or link. I.e., one must describe not just the path of
the knot, but also how the ribbon twists (as well as specifying a front
and back of the ribbon). We tried to take care of this issue by declaring
way back in section 2.2.2 that we would always assume “blackboard
framing”, meaning we assume the ribbon always lies flat in the plane of
the blackboard. However, here this simplification has come back to bite
us. What we need here is a slightly more general notation.

a ā

=

Fig. 14.11 Drawing a particle line as a
ribbon rather than a single line. Right-
handed framing means the dotted line
is to the right of the solid line when
walking in the direction of the arrow.
Left-handed framing means the dotted
line is to the left of the solid line when
walking in the direction of the arrow.
Framing a right-handed is equivalent to
framing ā left-handed.

a ā
Fig. 14.12 A right-handed framed a
particle can (only!) annilhilate a right-
handed framed ā particle.

Let us draw not just labeled lines with arrows on them, but rather
draw a solid line parallel to a dotted line to represent a ribbon as in
Fig. 14.11. We have a choice as to whether we put the dotted line to the
right or left of the solid line. We say the ribbon is right-handed framed
if the dotted line is to the right of the solid line when walking along the
line in the direction of the arrow. Framing particle a right-handed is
equivalent to framing particle ā left-handed as shown in Fig. 14.11. A
right-handed particle a can (only) annihilate a right-handed particle ā as
shown in Fig. 14.12. Note that we cannot turn right-handed framing into
left-handed framing by performing a half-twist (flipping over the ribbon)
because the ribbon is meant to have a well-defined front and back (say,
two different colors on the two different sides): a right-handed framed
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ribbon turned over is inequivalent to a left-handed framed ribbon.
We can then choose a convention that all particles of a particular type

are framed, say, right-handed. However, we run into a problem when
we try to establish a convention for particles that are self-dual: since we
do not draw arrows on particle lines, we cannot distinguish right- from
left-handed framing. To consistently describe the framing, we need to
establish a bit more notation, known as flags.
The scheme here is based on the idea that we should introduce a new

degree of freedom whose physical meaning is related to the framing14. A14In category theory one often at-
tempts to differentiate between a and
ā even if a = ā. One states that taking
the dual of a particle and then taking
the dual again gives you something iso-

morphic to the original particle, but not
necessarily exactly the original particle.
If you do it four times, you necessarily
get back to the original particle. See for
example Bakalov and Kirillov [2001];
Turaev and Virelizier [2017]; Bartlett
[2016]

version of this scheme is described by Kitaev [2006] which we will follow
(This is essentially equivalent to the discussions of Bakalov and Kirillov
[2001]; Turaev and Virelizier [2017]).
While one can apply this scheme to all the particles in the theory, for

non-self-dual particles, and self-dual particles with postive Frobenius-
Schur indicators, it is easy enough to just choose a gauge so that you
can remove zig-zags as in Fig. 14.5 with ǫ = +1. As such, we focus here
only on the self-dual particles with negative Frobenius-Schur indicators
where the minus signs from straightening zig-zags arise.
We assign each cup (pair creation) and cap (pair annihilation) a big

triangular arrow (called a “flag”) which can either point left or right as
shown in Fig. 14.13. These are not the same arrows we have been using
to distinguish particles from their antiparticles. Indeed, the particles we
are focusing on here are self-dual! These flags are supposed to indicate
the framing of the ribbon15.15In category language the flag tells

you if you are using ev versus ẽv for
caps, and similarly coev versus c̃oev for
cups. See Bakalov and Kirillov [2001];
Turaev and Virelizier [2017].

◮⊲ a
=

a

◭⊳ a
= a

◮⊲ a
=

a

◭⊳ a
= a

Fig. 14.13 Flags on cups and caps (the large arrows) are used to fix framing
conventions. Here we are assuming that a is self-dual so we cannot use the small
arrows on lines to fix a framing as in Fig. 14.11

◭⊳ = [ ]
†

◭⊳ ◮⊲ = [ ]
†

◮⊲

Fig. 14.14 Hermitian conjugation preserves the direction of the flag.

Hermitian conjugation does not flip the direction of the flag as shown
in Fig. 14.14. Thus the corresponding inner product is defined to be
positive definite as shown in Fig. ??.
Straightening a wiggle in a ribbon corresponds to cancelling a cup/cap

pair pointing in opposite directions as shown in Fig. 14.16
We can now add a rule which is outside of what can be done in Chern-

Simons theory, but will allow us to use the same notation to describe
the options described in section 14.2: Let us declare that the direction
of a flag can be reversed at the price of a factor of the Frobenius-Schur
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◮⊲ a

◮⊲
= = da > 0

a

◭⊳ a

◭⊳
= = da > 0

a

Fig. 14.15 The inner product is positive definite. (Flags must align to join ribbons).

◮⊲ a
= =

a

◭⊳ a

◭⊳ a
= =

a

◮⊲ a

Fig. 14.16 Straightening a wiggle corresponds to cancelling a cup/cap pair pointing
in opposite directions.

indicator (which is κa = −1 since these are the only particles we are
concerned with here)

◭⊳ a = κa
◮⊲ a κa = −1 (14.5)

Diagrams thus have different values depending on how the flags are
to be added to the the cups and caps of the diagram (for all self-dual
particles with negative Frobenius-Schur indicator). If we make the rule
that all flags always point right, we recover the above “Option A” (sec-
tion 14.2), that is, removing a zig-zag incurs a minus sign (this can be
seen from Eqs. 14.5 and ??).
However, another possible choice (motivated by Chern-Simons theory)

is to say that flags should be put on cups and caps so that they alternate
directions as you walk along any line. Because zig-zags with alternating
flags can be freely straightened we then have an isotopy invariant dia-
grammatic set of rules. This scheme of decorating with alternating flags
then provides a way that any braided anyon theory can be converted into
a knot (or link) invariant with full isotopy invariance16. Note, however, 16Meaning regular isotopy invariance:

strands should be treated as ribbons.that it provides a different output from our above “gauge-fixed” choice
(Option A).
One should be cautious that we defined our F -matrices without ever



176 Seeking Isotopy

specifying the direction of any flags (in some F -matrix diagrams with
cups and caps, such as in Figs. 14.2 and 14.4 we would be able to decorate
these cups and caps with flags). We should realize that in all prior
sections, we were implicitly working with the “Option A” version of
diagrams — in other words, our definitions of the F -matrix assumes
that all flags are pointing to the right. If flags are not all aligned right,
we should first flip the flags using Eq. 14.5 before using the F -matrix.
Let us now consider the isotopy invariant rules for evaluation of a

knot or link diagram, as defined in this section (where flags alternate
direction). Since we have isotopy invariance we can first use this the
isotopy invariance to simplify the knot or link as much as possible. Then
before applying F -moves, we should flip flags using Eq. 14.5 to get get
to a gauge fixed diagram (with all flags pointing right) and continuing
our evaluation. Once we have a gauge fixed diagram we must keep
careful track of zig-zags which may now incur minus signs if they are
straightened.
So which convention should one use? The answer is “it depends”. For

many mathematics applications (certainly for knot theory) one wants
to work with an isotopy invariant set of rules as described in this sec-
tion. However, for certain diagrammatic calculations, Option A will
be more appropriate. We again emphasize that the phases associated
with straightening zig-zags can actually be physical as discussed more
in section 14.7.

14.3.2 What Have We Achieved?

One of our original hopes for defining a TQFT, way back in chapter 7,
was some prescription that would turn a labeled knot or link diagram
into a complex amplitude (see Fig. 7.1) where the result would be un-
changed by any smooth deformation of space-time (treating the strands
of the knots as ribbons, i.e., we are allowed regular isotopy of the dia-
gram). We have now achieved this goal using the method17 of section17We can also obtain isotopy an isotopy

invariant knot invariant by using “Op-
tion B”, meaning negative da’s, from
section 14.2 but we give up unitarity.

14.3. We should be a bit cautious though, as once we start evaluating
diagrams using F -moves, we may decide it is more convenient to switch
to a gauge fixed evaluation (Further in some cases we may have fusion
diagrams which lose full isotopy invariance due to certain properties of
the fusion vertices as we will see in section 14.4).
Note that in chapter 7 when we were defining a TQFT we wanted to

more generally have a prescription for turning a knot or link embedded
in an arbitrary closed manifold into a complex number output. This
generalization will indeed be possible, and we will return to this issue
in chapter 22. However, for now we note that our scheme gives unity
for an empty diagram (which we can think of as any number of loops
of the identity particle with dI = 1) so our diagrammatic evaluation
corresponds to

diagram =
Z(S3 with labeled link embedded)

Z(S3)
(14.6)
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= Z(S2 × S1 with labeled link embedded)

with the caveat that the link does not go around the cycle of the S1 in
the latter case. Note that this normalization matches that of Eq. 5.18.

14.4 Impediments to Isotopy Invariance in
Fusion Diagrams

Once we consider diagrams with fusion vertices, full isotopy invariance
can be even harder to obtain. Even neglecting issues with Frobenius-
Schur indicator, we are not guaranteed that we can deform lines in any
way we like in the plane. For example, the right hand side of Fig. 12.35
cannot generically be turned into an equality. In Fig. 14.17 and 14.18
we give similar examples (Recapitulating the calculation in Fig. 12.37
but now using isotopy normalization) of turning-up transformations that
generically incur nontrivial factors.

I a

c

c̄

b

= [F cc̄aa ]Ib

a

a
b

c
c̄ b

=
√

dadc
db

[F cc̄aa ]Ib

a

bc

Fig. 14.17 To evaluate the diagram on the left, the vacuum line is inserted and an
F -move is made. The bubble is then removed with Fig. 14.7. Note that if we were
to use the physics normalization, the prefactor of

√
dadc/db would be absent (See

Fig. 12.37). Generally we should not expect that the prefactors of d’s and F obtained
on the right should cancel each other. In chapter 16 we focus on precisely the theories
where this does turn out to be unity as is required for full isotopy invariance. More
generally, as we will discuss in section 14.8.1, the transform from left to right in this
figure is unitary, meaning the resulting factor on the right

√
dadc/db[F

cc̄a
a ]Ib] is just

a magnitude one complex phase.

Ia

b

c̄

c

=
√

dadc
db

[F ac̄ca ]∗bI

a

cb

Fig. 14.18 The mirror image of Fig. 14.17. Here we use the fact that F is Hermitian,

so F−1 = [F ∗]T .

Thus it seems that our most general theory with fusions and with
causal isotopy invariance cannot achieve full planar isotopy invariance.
Perhaps this is not surprising. Even if we can deform space-time world
lines into each other, we might still expect that there would be some mi-
nor difference between a process on the far left and far right of Fig. 14.17:
On the far left c and c̄ are produced from the vacuum then c̄ and a come
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together to form b whereas on the far right, a simply turns into c and
b. Fortunately, many topological theories are not this complicated: as
we will see in chapter 16, there are many theories where one does have
full planar isotopy invariance, and the prefactor incurred in the process
shown in Figs. 14.17 and 14.18 turns out to be unity.
Given that we have handled the signs associated with removing zig-

zags, it turns out that one can always choose a gauge such that turning-
up and turning-down of legs (as in Figs. 14.17 and 14.18) is trivial unless
there is a particular obstruction. This possible obstruction is known as
the third Frobenius-Schur indicator18, κ

(3)
a , is a guage invariant quantity18The Frobenius-Schur indicator we

have been talking about, which we de-
fined in Eq. 14.4, is stictly speaking
the second Frobenius-Schur indicator,
but rarely does anyone speak of the
higher cases, so it is often just called
the Frobenius-Schur indicator without
specifying that it is the second.

which is defined in Fig. 14.19.

µ

a

a a

=
∑
νW

a
µν ν

a

a a

κ
(3)
a = Tr[W a]

Fig. 14.19 The definition of the third Frobenius-Schur indicator κ
(3)
a for particle

type a. Here we have defined it in generality, allowing for the possibility of fusion

multiplicity (so the vertices have indices µ). If N ā
aa = 0 then κ

(3)
a = 0. If N ā

aa = 1
then W a is just a scalar rather than a matrix. As mentioned in appendix ***, the
eigenvalues of the matrix W a must be third roots of unity. If the matrix W a is not
the identity matrix, then one cannot choose a gauge such that one has an isotopy
invariant diagram algebra.

The third Frobenius-Schur indicator for particle a is nonzero only if
N ā
aa > 0. We say the third Frobenius-Schur indicator is trivial if W a is

the identity matrix, or equivalently if

κ(3)a = N ā
aa ⇐⇒ “Trivial” (14.7)

If the third Frobenius-Schur indicator is nontrivial, then there is a an
obstruction to obtaining an isotopy invariant diagram algebra. This
means the two diagrams in Fig. 14.19 cannot be deformed into each
other without incurring a gauge invariant phase.
We will see simple examples of planar diagram algebras with nontriv-

ial κ(3) in section *** below. For theories with well defined braidings
and twists (i.e., so-called “ribbon” theories) it is not possible to have a
nontrivial κ(3) unless N ā

aa > 1 (proof of this statement and more detailed
conditions are given in Ref. ***)19.19The simplest braided theory we know

of that has this obstruction has 22 dif-
ferent quantum numbers (See ref ***).

14.5 Appendix: Bookkeeping Scheme with

Negative d

This bookkeeping scheme shows how one can push the minus sign from ǫa
onto da, redefine the inner product and reproduce the results of “Option
A” in section 14.2 by using “Option B”20.

20This scheme was constructed by
Joost Slingerland and myself, but is so
far unpublished.

We would like to work with a situation where isotopy invariance is
assured, i.e., where ǫa = +1 for all particle types. For any self-dual
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particle with κa = −1 we choose da < 0 to allowe ǫa = +1. For non-self-
dual particles we then choose a gauge such that the following identity is
satisfied21

21While this identity cannot always be
satisfied with all ǫa =+ 1, it is possi-
ble for all Chern-Simons theories, for
example, and among braided theories,
the smallest exception we know of is a
theory with 22 different fields. See ***.

sign[da] sign[db] = sign[dc] when N c
ab > 0 (14.8)

Note that choosing this may involve choosing da < 0 for certain non-self-
dual particles, but we can do this with a gauge choice just as well as we
can choose da > 0. The sign condition Eq. 14.8 assures that that factor
dadb/dc in Fig. 14.6 is positive, so that for example, the square roots in
Figs. 14.7, and 14.8 have positive arguments. This nonetheless, leaves an
ambiguity as to whether we should take the positive or negative square
root. The convention we will use below is that

√
dadb
dc

=

{
negative da < 0 and db < 0
positive otherwise

(14.9)

Having chosen ǫa = +1 for all particles yet we may generally allow
some da < 0. It may sound problematic to have some da < 0 since
the negative normed state in Fig. 14.3 seem like they would violate the
principles of unitary in quantum mechnanics. However, with a small
reinterpretation of the meaning of our inner product, we can reinterpret
our diagrammatics as representing a well behaved unitary theory.
Our reinterepretation of this diagrammatic algebra is quite simple.

We evaluate diagrams using the rules given in section 14.1. That is, we
use the rules from section 12.4 except that loops are now normalized
with da as in Fig. 14.3 and our orthonormality relationships (Fig. 12.20
and Fig. 12.17) are altered to those shown in Fig. 14.8 and Fig. 14.7
(noting the choice of sign in square roots given by Eq. 14.9.) If there are
over- and under-crossings, these can be evaluated using the R-matrix as
in Fig. 14.9. Crucially, since we have set all ǫa = 1, zig-zags like Fig. 14.5
can be freely straightened out (although recall that diagrams like 14.17
may not be freely straightened in general).

c

c

a b

a b
Fig. 14.20 With time going vertical,
the left diagram is a neagtive-d cap if
and only if da < 0 and db < 0. (The
directions of the arrows do not matter,
and if the particles are self-dual we do
not draw arrows). The right diagram is
never a negative-d cap.

a

a

Fig. 14.21 With time going vertical,
the left diagram is a negative-d cap if
and only if da < 0. The right diagram is
never a negative-d-cap. We can think of
these diagrams as being the same as the
diagrams in Fig.14.20 with c being the
identity. The directions of the arrows
do not matter.

In the case where there are some da < 0, we call the result of this
evaluation the non-unitary evaluation of the diagram as it corresponds
to the non-unitary inner product. However, we now insert one additional
rule into our list

(0) Before evaluating a diagram, count the number of negative-d caps,
and call it n. After fully evaluating the diagram multiply the final
result by (−1)n.

Here a negative-d cap occurs when we go forward in time and two par-
ticles with d < 0 come together to annihilate or form a particle having
d > 0. (See examples in Figs. 14.20 and 19.4). Another way of counting
the negative-d caps is to imagine erasing all lines in the diagram which
have d > 0. This leaves only a set of closed loops (due to Eq. 14.8). We
then just need to count caps in this set of closed loop of the form shown
in the left of Fig. 19.4.
With these new rules, we are now describing a unitary positive-normed
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quantum theory — we call this evaluation of a diagram, including rule
0, the unitary evaluation of the diagram. To understand the intuition
behind these rules, consider a self-dual particle with negative Frobenius-
Schur indicator. For such particles a zig-zag like in Fig. 14.5 is supposed
to incur a minus sign — however, in our scheme we have set ǫ = +1 and
instead made d negative. Since ǫ = +1 in the diagrammatic algebra,
there is no sign associated with straightening a zig-zag. However, the
zig-zag in Fig. 14.5 has a negative-d cap, so in the final evaluation of the
diagram (applying rule 0) we correctly obtain the required minus sign.
As a simple example, consider the evaluation of a single loop as in

Fig. 14.3 where da < 0. Before evaluating the loop we count that there is
a single negative-d cap on the top of the loop (as in the left of Fig. 19.4).
We evaluate the diagramwith the rules of section 16.1.2, to obtain da < 0
as the nonunitary evaluation. However, applying rule (0) this quantity
is then multiplied by −1, giving the final result for the −da = |da| > 0.
This is the result of the unitary evaluation of the diagram, and it is
positive as we would hope for a positive definite inner product for a
diagram that can be written as 〈state|state〉 (See Fig. 14.3.)

a b c̄

c

a b c̄

c

Fig. 14.22 An example of a dia-
gram which should have a postive def-
inite value since it can be written as
〈state|state〉.

As a second example, consider the diagram Fig. 14.22, and let us
assume that da, db < 0 and dc > 0. The (nonunitary) evaluation of the
diagram (without rule 0) gives −dc

√
dadb/dc, the square root coming

from Fig. 14.7 and the sign from the rule Eq. 14.9 of how to handle
square roots with negative d’s. However, applying rule 0, there is a
single negative-d cap (from the vertex with a and b coming in from the
bottom, and c going out the top), and hence the unitary evaluation of
this diagram is +dc

√
dadb/dc. Note that this is postive as it should be

for a diagram that can be written as 〈state|state〉 analogous to Fig. 14.3.
As a third example, consider the same diagram Fig. 14.22 but consider

the case where da, dc < 0 and db > 0. Here the nonunitary evaluation
gives dc

√
dadb/dc, but applying rule 0, with a single negative-d cap (the

top of the c loop) we obtain a final result of the unitary evaluation given
by −dc

√
dadb/dc. Note that this is also positive as it should be.

The situation described in this section — having a theory which allows
straightening of zig-zag, but has negative da is quite common. It is very
useful to be able to interpret such theories as being unitary theories with
this additional rule 0.

14.6 Appendix: [F aaa
a ]II is real

Let a be a self-dual particle (i.e., a = ā). Working with the physics
normalization we already showed (Fig. 14.2) that

= [F aaaa ]II aa

Similarly, using an inverse F -move, and the fact that F is unitary (See
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section 9.5.2) we derive

= [F aaaa ]∗II aa

Equivalently the last diagram can be derived as being the Hermitian
conjugate the previous diagram.
Finally, assuming only causal isotopy invariance, the equality

=
a a= = [F aaaa ]∗II[F aaaa ]II

a a

then shows that [F aaaa ]II must be real.

14.7 Appendix: Spin 1/2 Analogy and Why
We Have a Frobenius-Schur Sign

It may seem a bit odd that a zig-zag in a space-time line (as in Fig. 14.5)
can incur a minus sign. While this might appear a bit strange it turns out
that there is a familiar analog in angular momentum addition — where
the particle types (the labels a, b, c etc) correspond to the eigenvalue of
total angular momentum squared J2.
Consider three spin-1/2 particles which all taken together are in an

eigenstate of J = 1/2. We can describe the possible states of the system
with fusion trees as in Fig. 14.23 (see also Fig. 9.1)— in this case where
a, b, c and e are all labeled with J = 1/2. In Fig. 14.23 we can (on
the left of the figure) consider either the fusion of the left-most two
particles to some angular momentum d = 0 (meaning a singlet) or d = 1
(meaning a triplet), or we can (on the right of the figure) consider fusion
of the right-most two particles to either f = 0 or f = 1. The F -matrix

that relates these two descriptions of the same space is given by [F
1
2

1
2

1
2

1
2

]df
which is often known as a 6j symbol in the theory of angular momentum
addition. The analogy of negative Frobenius-Schur indicator here is the

fact that [F
1
2

1
2

1
2

1
2

]00 is negative.

a b c

d

e

=
∑

f

[
F abce

]
df

a b c

f

e

Fig. 14.23 The F -move.

Let us try to see how this happens more explicitly. Given that the
total spin is 1/2 we can focus on the case where the total z-component
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of angular momentum is Jz = 1/2 as well. The state where the leftmost
two particles fuse to the identity (or singlet J = d = 0) can then be
written explicitly as

|ψ〉 = 1√
2
(| ↑1↓2〉 − | ↓1↑2〉)⊗ | ↑3〉 (14.10)

where the subscripts are the particle labels given in left to right order.
This wavefunction is precisely analogous to the lower half (the “ket”) of
the far left hand picture in Fig. 14.2.
On the other hand, we could use a basis where we instead fuse the

rightmost two particles together first, as in the righthand side of Fig. 14.23.
We can write the state where the right two fuse to J = f = 0 analgously
as

|ψ′〉 = | ↑1〉 ⊗ (| ↑2↓3〉 − | ↓2↑3〉)
1√
2

(14.11)

which is precisly analogous to (but the Hermitian conjugate of) the top
half (the “bra”) of the left hand side of Fig. 14.2.
It is easy to check that the inner product of these two states |ψ〉 and

|ψ′〉, corresponding to the value of the left diagram of Fig.14.2 is2222This result of −1/2 is precisely the
6j symbol

{
1/2 1/2 0
1/2 1/2 0

} 〈ψ′|ψ〉 = −1/2

By redefining the normalization of these states, we can arrange for this
overlap to have unit magnitude. However, the sign cannot be removed.
The situation is the same for any two half-odd-integer spins fused to a
singlet.

14.8 Appendix: Some Additional Properties of
Unitary Fusion Categories

Unitary fusion categories (the theories we have been discussing!) have
two useful properties which we now present. bWe do not prove these
properties here. More detailed discussion is given by Kitaev [2006]. More
detailed discussions are given for example in Jones and Penneys [2017]
or Etingof et al. [2005]. These latter references are quite mathematical.

14.8.1 Pivotal Property

A property that may seem obvious is known as the pivotal property.
This states that there should be isomorphisms23 between a vertex with

23We do not say there is a unitary tran-
formation between the two diagrams
since the two diagrams operate on dif-
ferent Hilbert spaces —- the left dia-
gram having one down leg and two up,
whereas the right has one up and two
down.

a downturned line and one with an upturned line, such as that shown in
Fig. 14.24. While this seems like a rather small statement (which is a
property of any unitary fusion category) it turns out to be quite powerful.
One can deduce from this that the transformations in Figs. 14.17 and
14.18 are unitary — meaning that the constants on the right hand side
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c

a b

⇐⇒
a

b̄c
Fig. 14.24 A theory is pivotal if there exist isomorphisms between the states of the
Hilbert spaces described by pairs of vertices that differ by downturning and upturning
lines.

have unit magnitude
∣∣∣∣∣

√
dadc
db

[F cc̄aa ]Ib

∣∣∣∣∣ =
∣∣∣∣∣

√
dadc
db

[F ac̄ca ]bI

∣∣∣∣∣ = 1 (14.12)

See Kitaev [2006]; Bonderson [2007]. In the more general case where the
fusion multiplicity N c

ab is greater than one, the vertices have additional
indices µ and ν and the transform is a unitary matrix in these indices.
An example of this is given in Fig. 14.25.

µ

a

b

c̄

c

=
∑

ν

[Abca ]µν

a

cb

ν

Fig. 14.25 The matrix Abca is a unitary matrix in the indices µ and ν. In the
simpler case of Fig. 14.18, the prefactor is a unitary one-by-one matrix, meaning it
is a magnitude one complex scalar.

From this type of identity one can successively turn up and down legs
at vertices to obtain the identity in Fig. 14.26 where the prefactor C in
the figure is also a unit magnitude complex scalar (or a unitary matrix
in the case where the vertex has an additional index).

c

a b

= Cabc

c

a b

Fig. 14.26 The relationship between these two diagrams is unitary, meaning C is a
just a phase. For cases where Nc

ab > 1 the vertices are marked with an index, say µ
on the left and ν on the right, and for fixed a, b, and c, the constant Cabc becomes a
unitary matrix [Cabc ]µν in the indices µ, ν.

Quite a few more identities can also be derived from the pivotal prop-
erty. Detailed discussions of this property (and its meaning) are given by
Kitaev [2006]; Bartlett [2016]. One particularly useful identity is given
by applying Fig. 14.26 three times in a row to obtain

Cabc C
bc
a C

ca
b = 1 (14.13)
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which diagrammatically is drawn as the so-called “pivotal identity” in
Fig. 14.27. In the case where there are additional indices at the vertex,
Eq. 14.13 becomes a matrix product which equals the identity matrix.

c

a b

=

c

a b

Fig. 14.27 The pivotal identity

The derivation of the pivotal identity is a bit complicated and is given
by Kitaev [2006]. However, it can be made a bit more intuitive physi-
cally by turning up one of the branches to obtain the alternate form of
the pivotal identity shown in Fig. 14.28. This form can be understood
as the statement that the vacuum (or particles fusing to the vacuum)
can be rotated freely in space-time.

ba c

=

ba c

Fig. 14.28 Another version of the pivotal identity. We can derive this from Fig. 14.27
by turning up the c-leg.

14.8.2 Spherical Property

Theories which are unitary (describing real quantum mechanical par-
ticles) have an additional property called being “spherical”. Given a
diagram X with a line coming out the top and a line coming in the
bottom. The so-called left trace is defined by connecting up the top
line with the bottom line in a loop going to the left, as in the left of
Fig. 14.29. The right trace is defined similarly, except that the loop
goes to the right of the diagram X as in the right of Fig. 14.29. If the
left trace is always equal to the right trace we say that the theory is
spherical. The name here comes from the idea that we could pull the
string around the back of a sphere in order to turn a left trace into a
right trace as shown in Fig. 14.30. However, the spherical property is ac-
tually stronger than Fig. 14.30 suggests since it allows us to turn a right
trace into a left trace even when there are other objects on the sphere
which might prevent us from dragging a string all the way around the
back of the sphere.
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Xa = X a

Fig. 14.29 The Spherical Property sets the left trace equal to the right trace as
shown in the picture.

a X
=

aX

Fig. 14.30 The naming “spherical” comes from the idea that we can pull the string
around the back of a sphere (as indicated by the black arrows) to turn a left trace
into a right trace.

An obvious result of the spherical property is that da = dā.

14.9 Appendix: Higher Fusion Multiplicities

When we have a theory with higher fusion multiplicities (i.e., N c
ab > 1

for at least one fusion channel), then the vertices must be given indices.
The first two equations of this appendix is identical to that of section
12.5 except that here we have changed the normalization from physics
normalization to isotopy invariant normalization.

= δcdδµν

√
dadb
dc

c

c

d

ba

µ

ν

Fig. 14.31 The bubble diagram when there are fusion multiplicities. This diagram
is drawn in the isotopy invariant normalization. Compare to Fig. 12.39.
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a b =
∑

c,µ

√
dc
dadb

c

a b

a bµ

µ

Fig. 14.32 Insertion of a complete set of states. When there are fusion multiplicities,
these must be summed over as well µ ∈ Nc

ab. This diagram is drawn in the isotopy
invariant normalization. Compare to Fig. 12.40.

We can combine Fig. 14.32 with Fig. 13.13 to find the generalization
of Fig. 14.9.

a b

=
∑

c,µ,ν

√
dc
dadb

[Rabc ]µν

a b
µ

νb a

c

Fig. 14.33 Resolving a crossing with isotopy normalization and higher fusion mul-
tiplicity. See Eq. 14.9 for how to interpret the square root in cases where d < 0.

Further Reading

This is some reading.

Exercises

Exercise 14.1 Higher Fusion Multiplicities
Derive Eq. 14.33.
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Medium Easy Material

Recall from chapter 2 that we considered the procedure of pulling tight a
curl in a ribbon as shown in Fig. 15.1 (compare Fig. 2.7). Pulling tight
results in a twisted ribbon, which (viewing time as going vertically)
corresponds to a particle rotating around its own axis, while at a fixed
point in space, as time progresses. The twist in the ribbon can be
removed at the cost of a complex phase which we call θa, known as the
particle’s twist factor. In other words, the particle rotating around its
own axis accumulates a phase θa compared to a particle that does not
twist. This phase is something we should expect for any particle with a
spin, since rotating a spin in quantum mechanics accumulates a phase.

a a a

pull tight = θa

Fig. 15.1 Pulling tight a curl in a rib-
bon results in a twist. This twist in
a ribbon of particle type a can be re-
moved at the cost of a phase factor of
θa. See also Fig. 2.7.

In our diagrammatic notation, we do not draw ribbons. Rather to
represent a particle twisting around itself we use blackboard framing as
discussed in section 2.2.2 and we always imagine the ribbon lying flat in
the plane. We thus formally define the twist factor1 as given in Fig. 15.2.

a

= θa

a

=

a

Fig. 15.2 The definition of the twist factor θa drawn using blackboard framed
diagrams. The curled strings should be thought of as ribbons lying in the plane as
in Fig. 15.1 which are equivalent to a ribbon that twists around its own axis.

Invoking the Hermitian conjugation principle (if we reflect a diagram
around a horizontal axis, and reverse the arrows so they remain pointing
in the same direction, we complex conjugate its amplitude, see Fig. 12.4)
we similarly have the mirror image diagrams shown in Fig. 15.3

a

= θ∗a

a

=

a

Fig. 15.3 The mirror image diagrams to those of Fig. 15.2.

1If a nonunitary theory with da < 0 is used, but is meant to represent a unitary theory, via the “Option B” of section 14.2
(Detailed in 14.5), we must be careful of the fact that removing the twist also removes a cap. This means that

θunitary = sign(da)θ
nonunitary (15.1)
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It is easy to confirm that the twist factor θa can only be a unit mag-
nitude phase2 as expected. Proof of this is given in Fig. 15.4.

2One might think that θa has been act-
ing strange for a while — but it is just
a phase. Ha ha!.

a = a

Fig. 15.4 This equality establishes
θaθ∗a = 1, hence |θa| = 1. We can eval-
uate the diagram on the left by remov-
ing the two curls and getting θaθ∗a times
the diagram on the right. On the other
hand, the diagram on the left can also
be turned directly into that on the right
just by using moves which we know are
allowed such as Fig. 13.9. (See also ex-
ercise 15.2).

One further interesting fact about the twist factor is that

θa = θā

which can be seen from the equality of the diagrams shown in Fig. 15.5.

a

=

ā

Fig. 15.5 The equaltiy of these dia-
grams establishes θa = θā. See exercise
15.2.

The twist factor is related to the so-called topological spin, or con-
formal scaling dimension, usually called ha, via the relation

θa = e2πiha .

This phase accumulated from a 2π rotation is what we typically get in
quantum mechanics from the operator e2πiŜ with Ŝ the spin operator
and we set ~ = 1. The vacuum, or identity particle, should have zero
scaling dimension, hI = 0.
Note that many quantities of interest will depend only on the twist

factor θa, i.e., the fractional part of the topological spin, ha mod 1.
Indeed, we will see that many of the topological properties of a system
are independent of the integer part of the topological spin, and care only
about the fractional part. That said, in chapter *** below we will also
find cases where the integer part of ha is important too.
Recall also the famous spin-statistics theorem (as discussed near Fig.

2.7), which tells us that the twist factor should give us the phase for
exchanging two identical particle, and is thus intimately related to the
anyonic statistics of particles. Of course two cases are very well known
to us: if the spin ha is an integer, then e2πiha is the identity, and the
particle is a boson. If ha is a half-odd-integer, then the phase is −1 and
the particle is a fermion.

15.1 Relations between θ and R

Braiding and twisting are very closely related to each other. In fact,
twist factors θ are related to the R-matrices we introduced in chapters
10 and 13 in several different ways.
First, let us try to evaluate the curled ribbon in Fig. 15.2 using the

R-matrix as in Fig. 15.6

a

=
∑

c

√
dc
da

Raac

a

a

ac =
∑

c

dc
da
Raac N

aa
c a

Fig. 15.6 Relation of the twist factor to the R-matrix. In the first step we use
Fig. 14.9. In the second step we use Fig. 14.18 along with Eq. 14.12 and finally
Eq. 14.7. We have assumed Naa

c = 0 or 1 only. See Eq. 15.5 for the more general
case.
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This manipulation establishes the relation3,4 3Note that θa is gauge independent,

whereas Rabc is generally gauge depen-
dent. (Although Raac is gauge indepen-
dent as well).

4If da < 0 as in the case of us-
ing “Option B” from section 14.2, this
equation correctly gives θnonunitary =
sign(da)θ

unitary
a as mentioned in note 1

above.

θa =
∑

c

dc
da
Raac N

aa
c (15.2)

where we are assuming Naa
c = 0 or 1. (See section 15.2 for the case

where N c
aa > 1).

A second, and different, relationship can be derived via the manipu-
lations shown in Fig. 15.7. One might be tempted to identify the left of

a

=

a

I

= Ra,āI
a

I

Fig. 15.7 This curl is evaluated with the R matrix. Note that this diagram is not
precisely equal to θ∗a (See Fig. 15.8).

Fig. 15.7 with the twist factor θ but this is not quite right when we look
at it carefully, as shown in Fig. 15.8. From Fig. 15.7 and 15.8 we derive

a

= ǫa

a

= ǫa

a

= ǫaθ
∗
a

a

Fig. 15.8 A curl in a rope turned sideways gets a twist factor θ∗ along with a zig-zag
factor ǫa. The first step introduces a zig-zag in the curve and we incur a factor of
ǫa as in Fig. 14.5. The second step is an allowed smooth deformation (See exercise
15.2). In the last step we remove the curl and obtain a factor of θ∗a as in Fig. 15.3.
In isotopy invariant cases we have chosen ǫa to be unity.

RaāI = ǫa θ
∗
a . (15.3)

where ǫa is the zig-zag factor (See Fig. ??). If we are working with
“Option A” from section 14.2 then ǫa = +1 for all non-self-dual particles
and is the Frobenius-Schur indicator for self-dual particles. If we are
working with “Option B” then we have all ǫa = +1 but we are are
working with a non-unitary theory and we need to apply Eq. 15.1 to
obtain the twist for the corresponding unitary theory.
The final relationship between R and θ is called the ribbon identity,
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which is a gauge-invariant statement

Rbac R
ab
c =

θc
θaθb

(15.4)

which can be derived by the geometric manipulations in Fig. 15.9.

Rbac R
ab
c

b a

c

=

b a

c

=

b a

c

=
θc
θaθb

b a

c

Fig. 15.9 Deriving the ribbon identity. The middle is the nonobvious geometric
step. See also exercise 15.3.

The middle step in Fig. 15.9 is perhaps non-obvious, but is clarified if
viewed as a ribbon diagram as in Fig. 15.10. See also exercise 15.3.

c

b a

pull tight

c

b a

Fig. 15.10 The middle step of Fig. 15.9 viewed as a ribbon diagram.

15.2 Appendix: Higher Fusion Multiplicities

In the case where we have fusion multiplicities N c
ab > 1, then we have

the following more general equations. Eq. 15.2 is generalized to

θa =
∑

c,µ

dc
da

[Raac ]µµ (15.5)

and the ribbon identity Eq. 15.4 is generalized to

∑

ν

[Rbac ]µν [R
ab
c ]νλ =

θc
θaθb

δµλ (15.6)

Exercises

Exercise 15.1 Fibonacci Twists
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For Fibonacci anyons, the twist factor is θτ = e±4πi/5 (With ± being for
right or left-handed theories respectively). Check that these twist factors agree
with the R-matrices (Eq. 10.2) and Eq. 15.2 and Eq. 15.3.

Exercise 15.2 Using Geometric Moves I
(a) Using the allowed moves in Fig. 13.9, show the equivalence of the left

and right of Fig. 15.4 (b) Similarly, show the equivalence of the left and right
of Fig. 15.5. (c) Similarly show the equivalence of the middle two figures in
Fig. 15.8.

Exercise 15.3 Using Geometric Moves II
Demonstrate the middle step of Fig. 15.9 by using allowed geometric moves

such as Fig. 13.9 and Fig. 13.10 and Fig. 13.14. You may also need the pivotal
identity Fig. 14.27.

Exercise 15.4 Gauge Independence of Ribbon Identity
Show that the ribbon identity Eq. 15.4 is gauge independent.

Exercise 15.5 Higher Fusion Multiplicities
Derive Eq. 15.5 and Eq. 15.6.





Theories with Tetrahedral
Symmetry (or Full Isotopy) 16

Medium Material

In chapters 12 through 15 we carefully developed the principles of anyon
diagrammatics in quite a bit of generality. In the current chapter we
aim for a slightly simplified and abbreviated, but still extremely useful,
version of the diagrammatic rules developed (roughly axiomatically) in
the prior chapters.
Our original intent for a TQFT was to develop rules that would map

a labeled knot or link diagram into a complex amplitude output (as in
Fig. 7.1) in a way that would be invariant under any smooth deforma-
tions (isotopy) of space-time. Most generally in topological theories, we
found that there could some restrictions on what sort of deformations
of space-time would leave the output unchanged (See for example sec-
tion 14.4). In the current section we will focus on a simpler class of
theories where these impediments are lifted. In particular the topolog-
ical theories of this chapter have the property that they give the same
output amplitude for any smooth deformation of space-time (treating
world lines as ribbons). In other words, in this chapter we assume our
theories have “full isotopy” invariance (or “regular isotopy” invariance
as discussed in section 2.6.1). An example of such full isotopy is shown
in Fig. 16.1. Such invariance is essentially equivalent to something we
call “tetrahedral symmetry” which we will decsribe further below.

d

a

c

b
=

d
b

c

a

Fig. 16.1 For a theory with full isotopy invariance (regular isotopy invariance)
these two diagrams must evaluate to the same result since one can be continuously
deformed into the other treating the lines as ribbons.
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16.1 Planar Diagrams

We start by considering only planar diagrams, so we do not allow over-
and under-crossings (which we re-introduce in section 16.2). Because of
our specialization to these fully isotopy invariant theories, our rules for
diagrammatic manipulation will be slightly easier than those in chapter
12.
As in chapter 12 there is still a bra and ket interpretation of diagrams.

Roughly we can think of cutting a diagram in half and viewing one side
as a bra and the other as a ket1. We can also roughly think of these1We can think of any direction as be-

ing time, although it is sometimes most
convenient to think of time as up. The
fact that we can choose any direction
as “up” is a reflection of the fact that
there is an isomorphism between states
which allows us to interpret incoming
lines as either bra’s or kets.

diagrams as being world lines of particles moving in 1+1 dimensions.

16.1.1 Planar Diagrammatic Rules

In this chapter all (regular) isotopy of lines is allowed. In particular we
are freely allowed to make the deformation shown in Fig. 16.2. In the
language of Fig.14.5 we are assuming all ǫa = +1.

=

a a

Fig. 16.2 For the isotopy invariant
theories considered in this chapter, this
deformation is allowed.

As in previous chapters we would like to use F -matrices to help us
convert one diagram into another. Although we previously found that
bending lines up and down (as in Fig. 14.17) can incur nontrivial factors,
in this chapter we instead assume no such nontrivial factors so we may
turn up and down legs freely. Our F -matrix can thus be written as in
Fig. 16.3. Note that the conventions we use in this chapter are different
from that of the previous chapter but instead match those introduced
by Levin and Wen [2005].

b

a

c

e

d =
∑

f

F badecf

b

a

c

e

f

Fig. 16.3 The definition of the F -matrix for fully isotopy invariant theories. This
notation uses the conventions of Levin and Wen [2005]. For a unitary theory the
F -matrix with fixed indices a, b, c, d is unitary in the indices d and f . For this F
matrix to be nonzero, the vertices in the pictures must be allowed fusions — i.e.,
Nabd = Nced̄ = Nbcf = Naef̄ = 1. The case with fusion multiplicities N greater
than one is considered in section 16.4.

In this chapter, the orientiation of this diagram (how we direct the
legs compared to some direction we call time) does not matter. Further,
we can freely rotate the diagrams in Fig. 16.3 and we can bend legs up
and down freely as well. For example, the same F -matrix as in Fig. 16.3
applies to Fig. 16.4.
We can compare the definition of F -matrix in Fig. 16.3 to our prior

definition of the F -matrix shown in Fig. 9.1. Since we now assume that
we can bend legs up and down freely, we can bend legs in Fig. 9.1 and
reverse arrows to make it look like Fig. 16.3 and we thereby derive the
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a

b

c

e

d =
∑

f

F badecf

b

a c

e

f

Fig. 16.4 For fully isotopy invariant theories, the F -moves can be deformed in arbi-
trary ways. For example the same F matrix governs the transformation in Fig. 16.3
as in this figure.

relation between the two definitions

F badecf = [F āb̄c̄e ]df (16.1)

Again the idea of the F -matrix is to write a single diagram (on the left
of Eq. 16.3) as a sum of diagrams on the right. By successively applying
such F -moves to parts of complicated diagrams we can restructure any
given diagram in a multitude of ways.
There are several further useful rules for diagram evaluation. First,

we need to give a value to the labelled loop as in Fig. 16.5. As in the
case of the Kauffman bracket invariant, the value of the loop2 will be 2We have not yet shown the rela-

tionship between this definition of the
quantum dimension da and the defini-
tion of da which we called “quantum
dimension”) given in Eq. 3.8. In sec-
tion 17.1 we will show that these two
definitions are in fact the same up to a
possible sign!

called d, here indexed with a subscript a for each possible particle type
a.

a = da = dā

Fig. 16.5 The value of a loop labeled a is given by the quantum dimension da. Here
we have invoked the spherical assumption to give us da = dā.

It is always true that dI = 1, meaning that loops of vacuum can be
freely added or removed from a diagram. As emphasized in section 14.1,
giving the loop this normalization implies we are working with non-
normalized kets (see Fig. 14.3, and also note 20 of chapter 2). For now
we will allow da to be either positive or negative and we will discuss the
meaning of this further in section *** below.
Secondly we define the contraction of a bubble as shown in Fig. 16.6.

c d

a

b

= δcd

√
dadb
dc

c

Fig. 16.6 Contraction of a bubble for fully isotopy invariant theories. In cases where
some d’s are negative we interpret the sign outside the square root as negative if and
only if both da < 0 and db < 0. We must have Nc

ab = 1 or the value of the diagram
is zero. The case with fusion multiplicities Nc

ab > 1 is given in Fig. 16.25
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This identity is the same as Fig. 14.7 only written sideways (in this
chapter the orientation of the diagram on the page does not matter!).
Physically we should think of this as being a version of the locality rule
of section 8.2 — looked at from far away, one does not see the bubble.
In particular this locality rule implies the “no-tadpole” rule, that any
diagram of the sort shown in Fig. 16.7 must vanish unless the incoming
line is the vacuum.

c

a

Fig. 16.7 Picture of a tadpole. (Apparently this picture is supposed to look like
a tadpole.). The locality principle Fig. 16.6 implies that any diagram containing a
tadpole must vanish unless the incoming line is labeled with the vacuum. (I.e., unless
there is no incoming line!). Famously, Physical Review did not allow the use of the
name “spermion” for diagrams of this sort.

We also have again the completeness relation as shown in Fig. 16.8.

a b =
∑

c

√
dc
dadb

c

a b

a b

Fig. 16.8 Insertion of a complete set of states. In cases where some d’s are negative
we interpret the sign outside the square root as negative if and only if both da < 0
and db < 0.

This relation is precisely the same as Fig. 14.8, only now we can orient
the diagram in any direction.

16.1.2 Summary of Planar Diagram Rules For Fully
Isotopy Invariant Theories

Given the rules established in section 16.1.1, we can evaluate any planar
diagram3 and turn it into a complex scalar number made up of factors

3Any planar diagram with no loose
ends. As described in detail in section
12.1 a diagram with loose ends should
be considered a bra or ket or operator.

of F ’s and d’s— very similar to what we did with the Kauffman bracket
invariant, only without over- and under-crossings here. Here are a sum-
mary of the rules for diagram evaluation in the case of fully isotopy
invariant planar theories. These rules are analogous to those presented
in section 12.4, only here the rules are simpler.

a ā

b

=

a ā b

I

b
Fig. 16.9 One can always add or re-
move the identity (or vacuum) line to
any diagram.

(1) One is free to continuously deform a diagram in any way as long
as we do not cut any strand (for this section we assume no over-
or under-crossings).

(2) One is free to add or remove lines from a diagram if they are labeled
with the identity or vacuum (I). See the example in Fig. 16.9.

(3) Reversing the arrow on a line turns a particle into its antiparticle
(See Fig. 8.4).
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(4) A line must maintain its quantum number unless it fuses with
another line, or splits.

(5) Vertices are allowed for multiplicities N c
ab > 0 (See section 8.3).

This includes particle-antiparticle creation and annihilation pro-
cesses where N I

aā = 1 (an example is shown in Fig. 16.9).

(6) One can use F -moves to change the structure of diagrams.

(7) One can use relations Fig. 16.8 and 16.6 to change the structure
of diagrams.

(8) Every diagram can be reduced to a set of loops which can each be
evaluated to give da for each loop of type a.

16.1.3 Negative da and Unitarity

We have allowed theories with da to be negative. We will assume, how-
ever, that

sign[da]sign[db] = sign[dc] whenever N c
ab > 0 (16.2)

as we described previously in section 14.5 (and as mentioned there, this
is not a particularly stringent condition).
As discussed extensively in section 14.2 if we think of a loop as being

an inner product 〈state|state〉 as in Fig. 14.3, a negative da implies
a non-positive-definite inner product, which is forbidden in quantum
mechanics. This apparent problem is discussed in detail in sections 14.1–
14.2. Here we will very briefly adapt the scheme discussed in section 14.5
to the current situation.
Here we accept that our diagrammatic algebra has negative da’s. Eval-

uation of such diagrams with negative da’s we call the non-unitary eval-
uation. However, with a small reinterpretation of the diagrams we can
still think of these diagrams as describing a unitary theory.
To implement this reinterpretation of the diagrams, as discussed in

section 14.5, we add two simple rules to our list for evaluation of dia-
grams.

(0’) We must break the space-time symmetry and define a time direc-
tion (often up on the page).

(0) Before evaluating a diagram, count the number of negative-d caps,
and call it n. After fully evaluating the diagram multiply the final
result by (−1)n.

Recall from section 14.5, a negative-d cap occurs when we go forward
in time and two particles with d < 0 come together to annihilate or form
a particle having d > 0. (See examples in Figs. 16.10 and 16.11).

c

c

a b

a b
Fig. 16.10 With time going vertical,
the left diagram is a neagtive-d cap if
and only if da < 0 and db < 0. (The
directions of the arrows do not matter,
and if the particles are self-dual we do
not draw arrows). The right diagram is
never a negative-d cap.

a

a

Fig. 16.11 With time going vertical,
the left diagram is a negative-d cap if
and only if da < 0. The right diagram is
never a negative-d cap. We can think of
these diagrams as being the same as the
diagrams in Fig.16.10 with c being the
identity. The directions of the arrows
do not matter.

These modifications guarantee we are describing a unitary theory. For
example, if we take as simple loop like Fig. 16.5 with da < 0 the naive
evaluation (before application of rule 0) gives a negative result. However,
the diagram has one negative-d cap and so the result is multiplied by
(−1)1 thus giving a postive result as we should expect for a diagram



198 Theories with Tetrahedral Symmetry (or Full Isotopy)

that can be interpreted as 〈state|state〉 as in Fig. 14.3. More examples
of how these evaluations work are given in section 14.5.

16.1.4 Constraints and Examples

There are many constraints on our diagrammatic algebras for planar
isotopy invariant theories. Here we give such constraints and explain
where they all come from.

Constraint: The Pentagon

The consistency condition on F -matrices given in Eq. 9.7 can be con-
verted to the notation of this chapter (See Eq. 16.1) to give44In deriving Eq. 16.3 from Eq. 9.7 we

have taken a, b, c, d → ā, b̄, c̄, d̄ for ease
of notation. F cf̄gedl F

baf

el̄k
=
∑

h

F bafgch F
h̄ag
edk F

cbh
kdl (16.3)

Constraint: Relating F to d

For any theory with full planar isotopy the value of da should be fixed
by the F -matrices:

da =
1

F āaIāaI

(16.4)

This is demonstrated by the manipulations of Fig. 14.4, converted into
the notation of the current chapter. Recall that we are assuming ǫa =
+1.

Constraint: Inversion

One can perform an F -move on the right hand side of Fig. 16.3 to bring
it back into the form on the left. We obtain the diagrammatic relation
shown in Fig. 16.12,

b

a

c

e

d =
∑

f

F badecf

b

a

c

e

f =
∑

f,g

F badecf F
cbf
aeḡ

b

a

c

e

g

Fig. 16.12 In the second step we apply the same F -matrix equation from Fig. 16.3,
but the diagram is rotated by 90 degrees.

which necessarily implies the consistency condition

∑

f

F badecf F
cbf
aeḡ = δdg (16.5)

Constraint: Rotation

Rotating the diagram in Fig. 16.3 by 180 degrees and comparing it to
the original diagram, one derives

F badecf = F ecd̄baf̄ . (16.6)
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Constraint: Turning Up and Down

For a theory to be fully isotopy invariant, we must be able to freely
make the moves shown in Fig. 14.17. As shown there, this requires
1 =

√
(dadc)/db[F

cc̄a
a ]Ib, or in the notation of this chapter

F cc̄Iaāb =

√
db
dadc

(16.7)

whenever b× c = a+ . . ., with the sign of the square root taken negative
if and only if da and dc are both negative.

Constraint: Unitarity

As mentioned above in Fig. 16.3, the F -matrix, being a change of basis,
must be unitary. This means that

∑

f

F badecf [F
bad′

ecf ]∗ = δdd′ (16.8)

∑

d

F badecf [F
bad
ecf ′ ]∗ = δff ′ (16.9)

or equivalently [F baec ]
† = [F baec ]

−1 Comparing the former to Eq. 16.5 we
obtain

[F badecf ]
∗ = F cbf

aed̄
(16.10)

Constraint: Hermitian Conjugation

Using reflection across the horizontal axis as in Fig. 12.4, we can re-
flect the F -matrix equation Fig. 16.3 and compare the reflected to the
unreflected diagram to obtain

F badecf = [F āb̄d̄c̄ēf ]
∗ (16.11)

= [F c̄ēdāb̄f̄ ]
∗ (16.12)

= F ēāf
b̄c̄d

, (16.13)

where in the second line the first line has been used in combination
with Eq. 16.6, whereas in the third line the first line has been used in
combination with Eq. 16.10.

Constraint: Reflection

An independent condition that is very often imposed is that the F -
matrix should be invariant under left-right reflection. Compare the dia-
gram shown in Fig. 16.13 to that of Fig. 16.3.
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c

e

b

a

d =
∑

f

F ced̄abf

c

e

b

a

f

Fig. 16.13 The diagrammatic equation in Fig. 16.3 after being left-right reflected.
This is necessary for a isotopically invariant 2+1 dimensional theory, but is an inde-
pendent assumption for a planar diagram algebra.

If a theory has left-right reflection symmetry, then we must have a
further constraint

F badecf = F ced̄abf (16.14)

While this additional condition is not required for a planar diagram al-
gebra, and one can even have full isotopy invariance in two dimensions
without it, it is often assumed. For isotopically invariant three dimen-
sional theories, such a symmetry is necessary since one can view the
diagrams either from the front or the back.
Using Eq. 16.14 along with Eq. 16.13 gives us the natural seeming

constraint
F badecf = [F b̄ād̄ēc̄f̄ ]

∗ (16.15)

Example: Evaluating a bubble

As an example of showing how further constraints are derived, let us use
F -moves to evaluate the bubble shown in Fig. 16.14.

a d

c

b

=

a d̄

b̄

c

=
∑

f

F c̄ab̄d̄cf

a

c

d

f

= δadF
c̄ab̄
ācI dc

c

a

= δadF
c̄ab̄
ācI a

Fig. 16.14 Evaluation of a bubble diagram. In the first step, as usual we can flip
the direction of an arrow and turn a particle into its antiparticle. In the second step
we apply an F -move (compare to Fig. 16.3). Then by the no-tadpole (locality) rule
(Fig. 16.7) , we can set f to the vacuum particle I and hence a = d.

However, we also know the value of the diagram in Fig. 16.14 from

Fig. 16.6 which gives us
√
dcdb/da. Thus we derive F c̄ab̄ācI dc =

√
dcdb
da

, or

equivalently (while replacing b with b̄ for simplicity and using db = db̄)
we have

F c̄abācI =

√
db
dadc .

(16.16)



16.1 Planar Diagrams 201

whenever c × b = a + . . . where the sign of the square root is taken
negative if and only if da and db are both negative. Note that Eq. 16.16
could also be obtained from Eq. 16.7 with Eq. 16.13.

Example: The Theta diagram

A commonly considered diagram is the Theta diagram Θ(a, b, c) shown
in Fig. 16.15. This diagram is easily evaluated by using Fig. 16.6 along
with the value of a single bubble Fig. 16.5.

Θ(a, b, c) = =

a

b

c
ca b = dc

√
dadb
dc

=
√
dadbdc

Fig. 16.15 The Theta diagram. This is evaluated by using Fig. 16.6 along with
the value of a single bubble Fig. 16.5. The sign on the square root is taken negative
unless all three da, db and dc are positive.

Example: The tetrahedral diagram

Let us consider one more evaluation known as the tetrahedral diagram
as shown in Fig. 16.16. At this point we are considering this as a planar
diagram even though it looks three dimensional! However, we usually
consider diagrams to be well defined if they live on the surface of a
sphere, so if we want to think about this as being three dimensional, we
should think of this as living on a spherical surface.

f cb

a d
e

=
b

a

c

e

df =
∑

g

F badecg

b

a

c

e

g
f

= F badecf df
√

dbdc
df

√
dade
df

≡ Gbadecf

Fig. 16.16 Evaluation of the tetrahedral diagram. The first step is just smooth
deformation. The second step is application of an F move. Using Fig. 16.6, the
index g must be equal to the index f and we obtain some factors of

√
d. Finally we

are left with a single loop of f which gives a factor of df to give the final result which
we give the name G. As in Fig. 16.6 the square roots are taken negative if and only
if both d’s in the numerator of the square root are negative.

For theories with full planar isotopy, the tetrahedral diagram has some
obvious symmetries. For example, we should have rotational symmetry
in the plane as shown in Fig. 16.17 which implies the identity (note the
definition of G in Fig. 16.16)

Gbadecf = Gdbafēc̄ . (16.17)
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f cb

a d
e

= c ed

b a

f
Fig. 16.17 An obvious rotational symmetry of the tetrahedral diagram.

Another symmetry comes from Eq. 16.6

Gbadecf = Gecd̄baf̄ . (16.18)

which we draw as shown in Fig. 16.18.

f cb

a d
e

= f ae

c d

b

= b fc

d e

a
Fig. 16.18 The first step is the identity in Eq. 16.18 and the second step is a rotation
as in Fig. 16.17. Although this is actually a planar diagram it appears as a rotation
in 3D.

Although the diagram shown in Fig. 16.18 is a planar diagram, from
the far left to the far right, it appears as if it is a rotation in 3D. Using
Fig. 16.17 and 16.18 we can rotate this tetrahedron in any way we like.
If one assumes the reflection symmetry Eq. 16.14 then one can also take
the mirror image of the tetrahedron as well to obtain an equivalence
between 24 tetrahedral diagrams related by symmetries5.

5For an example of a spherical category
that cannot be put in a form with full
tetrahedral symmetry, see Hong [2009].

16.2 Braiding Diagrams Revisited

So far in this chapter we have considered planar theories only. Extension
to fully (regular) isotopy invariant three dimensional6 theories follows6Here we mean 2+1 dimensional theo-

ries, but we sometimes may not specify
a particular time direction.

almost exactly the expositions of chapters 13. Here we will recapitulate
the key points.
First, any regular isotopy (See section 2.6.1) of diagrams is allowed

and does not change the value of the diagram. This means that as
long as we treat the lines in a diagram as ribbons, we can deform the
diagram into any shape we like. Often this sort of regular isotopy can
turn a diagram with braiding into a planar diagram which can then be
evaluated using the rules of section 16.1.2. An example of this is shown
in Fig. 16.1.
Most generally, however, we will not be able to eliminate all over-

and under-crossing of lines just by using isotopy (i.e., by deforming a
diagram). To handle crossings, we invoke the R-matrix discussed in
chapter 13. The basic moves we need are summarized in Fig. 16.19
(which just repeat results previously discussed in Fig. 14.9). In the
current chapter, where we consider fully isotopy invariant theories, the
orientation of the crossing does not matter. So, for example, the same R-
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matrix formula applies to the crossing in Fig. 16.19 (top) as in Fig. 16.20.

a b

=
∑

c

√
dc
dadb

Rabc

a b

b a

c

a b

=
∑

c

√
dc
dadb

[Rabc ]−1

a b

b a

c

Fig. 16.19 Resolving a crossing with isotopy normalization. The square roots are
taken negative if any only if da and db are both negative

a

b

=
∑

c

√
dc
dadb

Rabc
a

b

b

a
c

Fig. 16.20 With fully isotopy invariant theories, we can rotate diagrams freely.
Thus the uncrossing formula here is identical to that in Fig. 16.19 (top).

The R-matrix moves in Fig. 16.19 allow us to take any diagram with
over-and under-crossings and turn it into a planar diagram7 which can 7Turning a crossing into a planar dia-

gram is known as “resolution of a cross-
ing”.

then be evaluated using the rules of section 16.1.2.
We thus add two rules for evaluation of diagrams in three dimensions

to our previously stated rules for planar diagrams of section 16.1.2:

(1’) One is free to continuously deform diagrams in three dimensions
in any way as long as we do not cut any strands (and strands
are treated as ribbons). In other words we have regular isotopy of
diagrams (See section 2.6.1). [This rule replaces rule (1) from the
list in section 16.1.2]

(9) Over- and under-crossings can be turned into planar diagrams us-
ing the R-matrix as in Fig. 16.19

16.2.1 Constraints

There are several further constraints on the braiding diagrammatic al-
gebra which we now mention.

Constraint: Rotation

As mentioned in Fig. 16.20, we can rotate crossings freely. By turning
a crossing entirely upside-down and comparing to the original crossing,
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we obtain an identity which holds for isotopy invariant theories

Rabc = Rb̄āc̄ . (16.19)

Constraint: Hermitian Conjugation

As in Eq. ?? we can use Hermitian conjugation to derive

[Rabc ]−1 = [Rbac ]∗ (16.20)

Constraint: Hexagon Equations

As discussed in section 13.3 there are consistency conditions between F
and R matrices known as hexagon equations (Eqs. 13.1 and 13.2). In
the notation of the current chapter these can be written as

Rcae F c̄āedb̄g R
cb
g =

∑

f

F āc̄edb̄f R
cf
d F b̄āfdc̄g (16.21)

[Rcae ]−1F c̄āedb̄g [Rcbg ]−1 =
∑

f

F āc̄edb̄f [Rcfd ]−1 F b̄āfdc̄g (16.22)

Relation to Twists

As detailed in chapter 15 each particle has a twist factor θa = θā (with
θI = 1) describing twisted strands as chapter 15 which we show again
here for completeness in Fig. 16.21.

a

= θa

a a

= θ∗a

a

Fig. 16.21 Definition of Twist Factors (See chapter 15 for more details)

In the current chapter the direction the twist is drawn on the page is
not important (only its chirality)
The R-matrix and the twist factors are related in several ways. The

identities Eq. 15.2, 15.3, and 15.4 hold where for fully isotopy invariant
theories we set ǫa = +1 for all particles.
The situation described in this section — having a theory which is

fully isotopy invariant but has negative da — is quite common. Funda-
mentally, as discussed in sections 14.1–14.2, the need to use negative d
comes from negative Frobenius-Schur indicators. There are many topo-
logical theories of this type — including very simple theories the semion
theory SU(2)1 and more generally theories like SU(2)k.
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16.3 Gauge Transformations

As in sections 9.4 and 13.4.1 it is possible to make gauge transforma-
tions of vertices, which makes resulting changes on F -matrices (and
R-matrices, see section ***) as shown also in Fig. 16.22.

c

a b

= uabc
∼
c

a b

Fig. 16.22 We have the freedom to make a gauge transform of a vertex by multi-

plying by a phase uabc . The tilde on the right notates that the vertex is in the tilde
gauge.

However, since in an isotopy invariant theory we have Fig. 16.23 we
conclude that we must have

uabc = ubc̄ā = uc̄ab̄

Depending on our bookkeeping of Frobenius-Schur indicators, there may
be additional signs if one or more of the particle types is self-dual (See
section *** below).

c

a b

=

c

a b

Fig. 16.23 This is an allowed identity in isotopy invariant theories. (Compare the
more general Fig. 14.26.

Given such a gauge transform, the F - and R- matrices transform as

F̃ badecf =
ub̄,c̄f uāfe

uāb̄d u
dc̄
e

F badecf (16.23)

R̃abc =
ubac
uabc

Rabc (16.24)

16.4 Appendix: Higher Fusion Multiplicities

As in section 9.5.3 when fusion multiplicities are greater than one, the
vertices have additional indices which we label with greek indices µ, ν, . . ..
For example, if a and b fuse to c with N c

ab > 1 then the vertex will have
an additional index µ ∈ 1 . . .N c

ab. Note that compared to section 9.5.3
we do not put black dots on the vertices here. In the conventions of the
current chapter we would then have
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b

a

c

e

dµ ν =
∑

fλτ

[
F badecf

]µν
λτ

b

a

c

e

f

λ

τ

Fig. 16.24 F -matrix for isotopy invariant theories with fusion multiplicity.
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Fig. 16.25 The locality principle for the isotopy invariant diagrammatic algebra
with fusion multiplicity.

=
∑

c,µ

√
dc
dadb

a b c

a b

a bµ

µ

Fig. 16.26 Insertion of a complete set of states with isotopy normalization and
fusion multiplicity.

a b

=
∑

c,µ,ν

√
dc
dadb

[Rabc ]µν

a b

b a

c

ν

µ

a b

=
∑

c,µ,ν

√
dc
dadb

[Rabc ]−1
µν

a b

b a

c

ν

µ

Fig. 16.27 Resolving a crossing with isotopy normalization and fusion multiplicity.
The square roots are taken negative if any only if da and db are both negative

Chapter Summary

• THis is an item
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Further Reading

This is some reading.
Levin-Lin?
Summary of properties of category?

Exercises

Exercise 16.1 Triangle Bubble Collapse
A useful lemma is the collapsing of a triangular bubble

p a

k

g

s j = F aj̄g
s̄pk̄

√

djds
dk

p a

k

Derive this lemma.





Further Structure 17
Medium Material

In this chapter we will explore some further structure that is inherent
in topological theories.

17.1 Quantum Dimension

Recall that we defined da, the quantum dimension, in terms of how
fast the Hilbert space grows as we fuse together many a particles (See
Eq. 3.8)

Dim of M anyons of type a ∼ d
M
a

An alternative definition (Eq. 8.10) is that1 1Recall that Na is defined as the matrix
with components [Na]cb = Nc

ab which
are the fusion multiplicities.da = the largest eigenvalue of the matrix Na (17.1)

We have claimed several times that these quantum dimensions are (up
to a possible sign) equal to the value of a loop da in our diagrammatic
algebra. In this section we will finally prove this important result.
To make a connection to our diagrammatic algebra, let us consider

fusing two loops labeled a and b as shown in Fig. 17.12

ab =
∑

c,µ

√
dc
dadb

c b a
µ

µ

=
∑

c,µ

√
dc
dadb

ac b
µ

µ

=
∑

c

N c
ab c

Fig. 17.1 Fusing two loops into a single loop. In the first line we use the completeness
relation Fig. 14.32, then we deform to the second line and finally in the last step we
remove the bubble using Fig. 14.31.

The result seems rather natural, that a and b can fuse together to form
c in all possible ways. The derivation uses the completeness relation in

2This result holds very generally. One might worry that for general theories, without
full isotopy invariance, going from the first line to the second line might be problem-
atic. However, it turns out that one does not need full isotopy invariance, just the
pivotal property is enough to get to the second line (See section 14.8.1 and exercise
17.2).
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the first line (Fig. 14.8), then we deform to get to the second line, and
finally in the last step we remove the bubble using Fig. 14.7.
Now the value of a loop in our diagrammatic algebra is da. However,

if da is negative we must implement rule 0 from section 14.5 and we
always obtain a positive definite result |da| for a single loop (which is
appropriate for a diagram which can be interpreted as 〈state|state〉, see
Fig. 14.3). Thus the diagramatic manipulations of Fig. 17.1 give us33One says that the quantities |da| form

a representation of the fusion algebra.
Compare to Eq. 8.3. |da| |db| =

∑

c

N c
ab |dc| (17.2)

Eq. 17.2 has an interesting interpretation if we define a vector ~dabs
to have components |d|c with the vector index being c. We can then
rewrite the Eq. 17.2 as an eigenvalue equation

|d|a ~dabs = Na ~dabs

Since Na is a matrix of nonnegative numbers4, and ~dabs is a vector4The Perron-Frobenius theorem is usu-
ally applied to matrices of all posi-
tive numbers and is slightly weaker
when applied to the nonnegative case.
See the detailed discussion in appendix
17.7.

of positive numbers, we identify ~dabs as the so-called Perron-Frobenius
eigenvector of the matrix Na, and its eigenvalue |da| is guaranteed by
the Perron-Frobenius theorem (see appendix 17.7 ) to be the largest5

5Strictly speaking Na may have several
eigenvalues of the same absolute magni-
tude with the Perron-Frobenius eigen-
value being the only one which is real
and positive. This does not change our
conclusion.

eigenvalue of Na which, by Eq. 17.1 gives us

da = |da|

as claimed. This derivation does not rely on the theory having a well-
defined braiding.

17.2 The unlinking S̃-matrix

First let use the locality principle (or no-transmutation) principle (See
Fig. 8.7) to show that a closed loop of type a around a world line of
type x gives some constant which we call S̃ax as shown in Fig. 17.2.
(In fact using the R-matrix we can explicitly derive this identity and
evaluate S̃ax in terms of twist factors θ, the fusion multiplicities N c

ax

and the quantum dimensions d. See exercise 17.4. However, we will not
need this explicit expression.) Note in particular that S̃Ix = 1 since the
identity loop can be removed for free, and S̃aI = da since a single loop66Here if d is negative we include the

sign associated with rule 0 of section
14.5 in the evaluation of the diagram
so that we obtain a postive quantum
dimension d.

of a gives da.

a

x

= S̃ax

x

Fig. 17.2 The locality principle tells us that the value of a loop of a around a

world line x is some number which we call S̃ax. (Indeed, we can use the R-matrix to
calculate S̃ax. See exercise 17.4.)
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ab

x

=
∑

c,µ

√
dc
dadb

c b a

x

µ

µ

=
∑

c,µ

√
dc
dadb

ac

x

µ

µ

b =
∑

c

N c
ab c

x

=
∑

c

N c
abS̃cx

x

Fig. 17.3 Similar reasoning as in Fig. 17.1 allows us to write this diagrammatic
relationship.

ab

x

= S̃bx a

x

= S̃axS̃bx

x

Fig. 17.4 Application of S̃ twice (compare to Fig. 17.2).

Now, if we have two loops a and b around x, we can fuse the two loops
to all possible loops c as shown in Fig.17.3. This identity is entirely
analogous to that of Fig. 17.1. In essence we are fusing a and b to form
all possible strands c and then in the last step we apply S̃. On the other
hand, we could also evaluate the left hand side of Fig. 17.3 by applying
the identity of Fig. 17.2 twice in a row, as in Fig. 17.4.
Equating the result of Fig. 17.3 to that of Fig. 17.4 we obtain

S̃axS̃bx =
∑

c

N c
abS̃cx (17.3)

This result holds for any anyon theory with a well defined braiding (i.e.,
that satisfies the hexagon relationship). Note that in the special case
where x is the identity we just recover Eq. 17.2.

17.3 The (modular) S-matrix

Recall from section 7.3.1 that we defined the S-matrix (Eq. 7.6) in several
ways. On the one hand we defined

Sab = Z(S3; a loop linking b loop) (17.4)

whereas on the other hand, we said that S was (under certain conditions
that the theory has no transparent particles) a unitary transformation
between two different bases for describing the Hilbert space of a torus.
Now recall our normalization of diagrams is given by diagram =

Z(S3; diagram)/Z(S3) (See Eq. 14.6), so we can write7

7As mentioned near Fig. 7.13, there is
not agreement in the literature as to
which way the arrows should point in
the definition of Sab. Our convention
matches that of Kitaev [2006], which
seems to be more common.
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Sab = a b × 1

D (17.5)

where we have defined

D =
1

Z(S3)
(17.6)

Using isotopy of diagrams and Hermitian conjugation it is easy to
establish (see exercise 17.3) that

Sab = Sba = Sāb̄ = Sb̄ā = S∗
āb = S∗

bā = S∗
ab̄ = S∗

b̄a (17.7)

And further by setting one of the indices to the vacuum I, we are left
with a single loop that evaluates to the quantum dimension8, hence8Here again we are using rule 0 from

section 14.5 so that a single loop al-
ways evaluates to a positive number
da = |da| independent of the sign of
da. If we do not apply rule 0, the right-
hand side of Eq. 17.5 will instead give
us Sab sign(dadb).

giving us
SIa = SaI = da/D. (17.8)

Let us now evaluate the S-matrix in terms of our unlinking matrix S̃.
By bending the top of x in Fig. 17.2 and forming a closed loop with the
bottom of x, we construct linked rings as shown in Fig. 17.5.

a b = S̃ab b = S̃ab db

Fig. 17.5 Evaluation of linked rings. In the case where db < 0, we have applied rule
0 from section 14.5 so that the single loop gives us a positive db quantum dimension.

Comparing to the definition of S in Fig. 17.5 we obtain

Sab = S̃ab db/D = S̃abSIb

or equivalently

S̃ab =
Sab
SIb

Plugging this into Eq. 17.3 gives us

SaxSbx
SIx

=
∑

c

N c
abScx. (17.9)

Again this is generally true for any braided anyon theory, i.e., any theory
which satisfies the pentagon and hexagon relations.

17.3.1 Unitary S = Modular

When S is unitary, we say the theory is modular9. It turns out that S
9We will explain the meaning of the
word “modular” in section 17.3.2.

is unitary if and only if the identity is the only transparent particles in
the theory10. A particle a is said to be transparent if braiding a all the

10We ran into this concept as far back
as section 4.3.2

way around any other particle accumulates no phase. Equivalently, in
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terms of the S-matrix we can write

a is transparent ⇔ Sax =
dadx

D for all x (17.10)

In other words, a full braiding of a with any particle is trivial11. 11An equivalent statement using the
ribbon identity Eq. 15.4 is that a is
transparent if and only if θc/(θaθb) = 1
for all b and c whenever Nc

ab 6= 0.

It is clear that an S matrix cannot be unitary if there is any transpar-
ent particle a besides the identity (since the row Sax and the row SIx
would be proportional to each other). What is not obvious is that the
absence of any transparent particle guarantees S is unitary. This state-
ment can be proven using our axiomatic diagrammatic principles (i.e.,
not invoking any of the topological discussion of section 7.3.1 above).
However, the proof is a bit complicated and we refer the reader to Ki-
taev [2006]; Etingof et al. [2015] for details.
As mentioned a number of times, in some sense all “well-behaved”

anyon theories are modular (we say they are modular tensor categories).
Unfortunately, there are common theories which are not modular. For
example, a simple theory of a single fermion which obtains a minus sign
under exchange. A full braiding gives a plus sign exactly like the vacuum,
and is hence non-modular (although it may have a well defined braiding).
It is not unusual to have fermions in a theory that braid identically to
the vacuum and thus prevent the theory from being modular.
Let us assume for the remainder of this section that we have a modular

theory, i.e., that S is unitary, as we had stated in section 7.3.1. First,
unitarity implies that

1 =
∑

a

|SaI |2 =
1

D2

∑

a

d
2
a

which thus allows us to identify12 12We conventionally choose the posi-
tive square root. Choosing the negative
square root describes a theory whose
central charge is different by 4 from the
positive square root case, which we can
see from Eq. 17.16 below.

D = +

√∑

a

|da|2 (17.11)

which is usually called the total quantum dimension. Note in particular
that this implies

SII = 1/D (17.12)

Again assuming a unitary S matrix we can multiply Eq. 17.9 by S−1 =
S† on the right to obtain the often quoted Verlinde formula13 13Verlinde [1988] derived this in the

context of conformal field theories. In
different context it was derived earlier
by Pasquier [1987].N c

ab =
∑

x

SaxSbx[S
−1]xc

SIx
=
∑

x

SaxSbxS
∗
cx

SIx
(17.13)

which tells us that all the information about the fusion algebra is con-
tained entirely within the S matrix!.
Alternatively, one can multiply Eq. 17.9 by S−1 = S† on the left to
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obtain (with S and N treated as matrices on the left)

[S†NaS]xy = δxy

(
Sax
SIx

)

This means that the S matrix (at least for modular theories) is the
unitary matrix that simultaneously diagonalizes all of the Na fusion
multiplicity matrices (We mentioned this previously after Eq. 8.13).
A useful quick application of the Verlinde formula, Eq. 17.13, is to

write an expression for the conjugation14 matrix14The word “conjugation” is meant
to evoke charge conjugatoin which
changes positive charges to negative
charges.

Cab ≡ δab̄

This is simply a permutation matrix that permutes each particle with
its antiparticle. Obviously C2 = 1 is the identity.
We can find a relationship between C and the S-matrix by writing C

as the fusion multiplicty matrix of two particles fusing to the identity

Cab = N I
ab =

∑

x

SaxSbx = [SST ]ab

where we have used the Verlinde formula to evaluate N I
ab along with SIx

being real. Finally using the fact S is symmetric we obtain

C = S2

17.3.2 Modular Group and Torus Diffeomorphisms

Let us define one more matrix, which is the diagonal matrix of the twist
factors

Tab = θaδab (17.14)

It turns out to be more useful to absorb an additional complex phase
into this matrix, so let us also define1515Most references mean T̃ when they

say “T -matrix”. However, a few mean
T . T̃ = Te−2πic/24 (17.15)

where c is a real constant, known as the chiral central charge which is an
important piece of data for an anyon theory. The central charge modulo
8 can be calculated from the twist factors and quantum dimensions via
(Fröhlich and Gabbiani [1990]; Rehren [1990]),

e2πic/8 =
1

D
∑

a

d
2
a θa (17.16)

We will discuss the central charge further in section 17.3.3 below.
The set of operations generated by T̃ and S form16 a group known as

16We do not need C as an independent

generator since C = S2.

the modular group.1717Be warned there are several closely
related groups that are sometimes
known as the modular group. S2 = C C2 = 1 (ST̃ )3 = C (17.17)
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For proof of the last identity we again refer the reader to Kitaev [2006];
Etingof et al. [2015]. These relations are equivalent to the group SL(2,Z),
the group of two-by-two matrices with integer coefficients and unit de-
terminant which has generators

S =

(
0 −1
1 0

)
T =

(
1 1
0 1

)
(17.18)

It is easy to check that Eq. 17.17 are satisfied by these two by two
matrices.
The modular group has a beautiful topological interpretation: it is the

group of topologically distinct18 orientation preserving diffeomorphisms 18What we mean here is the so-called
“mapping-class group” of the torus sur-
face. I.e., two mappings of the torus
surface to the torus surface are con-
sidered to be the same if one can be
smoothly deformed into the other.

of the torus surface. To see how this works we consider a torus to be a
plane R2 with the lattice of integers Z2 modded out so that each lattice
point is identified with every other lattice point.

T 2 = R2/Z2

Any transformation on the plane that one-to-one maps lattice-points to
lattice points gives a representative diffeomorphism of the torus. Such
transformations are given by the elements of the group SL(2,Z) just by
mapping points ~v in the plane to A~v where A is an member of SL(2,Z)19. 19It is obvious that such a transforma-

tion of the plane corresponds to a dif-
feomorphism of the torus. What is a bit
less obvious is that all diffeomorphisms
of the torus are topologically equivalent
to (i.e, can be smoothly deformed into)
a linear map of this sort. See, for ex-
ample, Rolfson [1976]; Farb and Mar-
galit [2012] for detailed discussions of
this point.

Graphical description of the S and T transformations are shown on the
image in Fig. 17.6.

S = T =

Fig. 17.6 The S and T transformations on the surface of a torus. Here one interprets
the picture as being put on the surface of a torus with opposite sides of the picture
identified. The matrices from Eq. 17.18 are applied to the coordinates in the plane.

This analogy with the diffeomorphisms of the torus is certainly not
coincidental! Let think back to the discussion of section 7.3 and 7.4. We
considered the solid torus D2 × S1 with a particle world line of type a
around the handle. We wrote the wavefunction on the surface as

|ψa〉 = |Z(D2 × S1; a)〉

which forms an orthonormal basis 〈ψa|ψb〉 = δab. As mentioned there,
this inner product corresponds to sewing together the two solid tori to
create S2×S1. However, we could also have sewn the tori together after
exchanging meridian and longitude to create S3, and the inner product
then becomes (See Eq. 7.6)

〈Z(S1 ×D2; b)|Z(D2 × S1, a)〉 = Sab

A different way of thinking of this is that we make a diffeomorphism on
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the surface of the torus before gluing the two halves back togther. Thus
we could have said

〈ψb|Ŝ|ψa〉 = Sab

where Ŝ is the operator that makes the diffeomorphism on the surface
(the diffeomorphism precisely exchanges meridian and longitude).
Note further that Ĉ ≡ Ŝ2 exchanges the meridian and longitude twice,

giving a net effect of rotating the torus by 180 degrees. If we think back
to the solid torus with a world line of type a around the handle, the
rotation of the torus surface by 180 degrees changes the relative direction
of the embedded world line and thus changes a to ā, implementing the
conjugation operation C.
Finally, we can define a T̂ operation on the torus surface which imple-

ments an elementary Dehn twist as described in section 7.4. Analogously
the matrix elements of the T̂ operation will give the matrix T̃ . The fact
that the T̃ operation on the state |ψa〉 corresponds to a twist factor θa is
fairly obvious from looking at Fig. 7.15. The presence of the additional
complex factor related to the central charge in Eq. 17.15 is a subtle point
and stems from a change in the 2-framing discussed in section 5.3.4.

17.3.3 Central Charge

In Eq. 17.15 and 17.16 we introduced the idea of the central charge
of a TQFT. The central charge stems from the relationship between
2+1 dimensional TQFTs and 1+1 dimensional conformal field theories
which we will explore more in chapters *** below in the context of the
fractional quantum Hall effect. However, this connection has some deep
physics buried in it.
Roughly, 1+1 dimensional conformal field theories describe the physics

of gapless one dimensional systems20. For a chiral system (meaning that20“Gapless” means having arbitrarily
low energy excitations in the large sys-
tem size limit.

flow only goes in one direction) the central charge c is related to (i.e., can
be defined by) the heat capacity cv of the system via cv = πk2BTc/(3v)
where v is the speed of light (the velocity of flow at low energy), T is
temperature, kB is Boltzmann’s constant21. If one makes a small change21π is pi and 3 is three.

in temperature, the change in heat flowing along the edge is then

δJq = (πk2BTc/3)δT . (17.19)

TQFT are gapped systems: there are no arbitrarily low energy excita-
tions in the bulk. Thus the low temperature heat capacity must be zero.
However, in a finite system (say on a disk geometry) the edge of a TQFT
system may have gapless modes which can carry heat, and indeed this
heat transport defines the central charge of the TQFT as well (Cappelli
et al. [2002]). For example, one can consider a finite rectangular strip of
the TQFT and attach two opposite ends to two thermal reservoirs differ-
ing in temperature by δT . The total heat flowing between the reservoirs
is then given by Eq. 17.19 where c is the central charge of the bulk.
Note that net heat always flows from the hot reservoir to the cold reser-
voir22 even though the central charge can have either sign. The sign of22One must obey the second law of

thermodynamics!
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the central charge simply determines in which direction (which chirality,
clockwise or counterclockwise) around the edges the heat is flowing.
The coefficient in parenthesis in Eq. 17.19 in the context of two dimen-

sional systems is known as the thermal Hall coefficient23 κxy in analogy 23It is also known as the Righi-Leduc
coefficient, after Augusto Righi and
Sylvestre Anatole Leduc who indepen-
dently discovered the thermal Hall ef-
fect in 1888.

with the electrical Hall coefficient σxy which we will study in chapters
***.
Given two different TQFTs, say T and t, as described in section 8.5,

we can construct a product theory T × t which can roughly be thought
of as just putting the two theories in the same place at the same time.
The central charge of the two theories necessarily add since the total
thermal current will just be the sum of the two thermal currents of the
two theories.
The fact that the central charge in Eq. 17.16 is only defined modulo

8 has an interesting explanation: There exists a particular CFT, the
Chern-Simons theory (E8)1 (meaning we use the exceptional Lie group
E8 at level 1) which has no particles in it except the identity particle I,
but has central charge c = 8. Given any TQFT, call it T , we can con-
struct the product theory T × (E8)1 and it would have exactly the same
particle content, and hence the same result on the right of Eq. 17.16,
but the central charge would be increased by 8 compared to the theory
T . (Similarly the opposite chirality theory (E8)−1 = (E8)1 has central
charge c = −8).

17.4 Periodic Tables of TQFTs

As mentioned in sections 9.3 and 13.3, anyon theories (or TQFTs) are
extremely constrainted by the pentagon and hexagon equations. Indeed,
for any given set of fusion rules there are only a finite number of possi-
ble solutions up to gauge equivalence (Etingof et al. [2005]). Once one
includes additional conditions, such as the theory being modular, the
number of possible solutions drops even more. This makes it possible to
consider building a “periodic table” of possible TQFTs — i.e., a com-
plete list of all consistent modular solutions of pentagon and hexagon.
The procedure for building this table is to hypothesize that there are
only n different particle types, with n a small number. With fixed n one
can constrain the possible fusion rules, then pentagon solutions, and fi-
nally hexagon solutions. For modular tensor categories this program has
been carried out by Rowell et al. [2009] for up to four particle types24 24See also earlier work by Gepner and

Kapustin [1995] as well as Bonderson
[2007].

Some of the key results from this periodic table is presented in table
17.1. In chapter 18 we will see a few of the basic principles used for
compiling such a table.
Extensions of the idea of a periodic table have been made in a number

of directions. Of note, the periodic table has been extended to include all
possible braided theories (solutions of pentagon and hexagon) without
imposing the modularity condition. Further since theories with fermions
are such an important special case, theories that only fail to be modular
due to a fermion that braids like the vacuum, have been put in periodic
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Table 17.1 Rank≤ 4 modular tensor categories. From Rowell et al. [2009].
particle types Fusion rules # solutions Examples

I 1 (E8)1

I,X X2 = I 2 Z2 = SU(2)1 = Semion

I,X X2 = I +X 2 (G2)1=Fibonacci

I,X, Y X2 = Y , XY = I, Y 2 = X 2 Z3 = SU(3)1

I,X, Y X2 = I + Y , XY = X, Y 2 = I 8 SU(2)2, Ising, (E8)2

I,X, Y X2 = I +X + Y , XY = X + Y ,
Y 2 = I +X

2 SU(2)5/Z2

I,X, Y, Z X2 = Y = Z2, XZ = I = Y 2,
XY = Z, ZY = X

4 Z4 = SU(4)1

I,X, Y, Z X2 = I, XY = Z, XZ = Y ,
Y 2 = I, Y Z = X, Z2 = I

1
1

of type D(Z2)=Toric Code
of type (D4)1

3 of type Z2 × Z2

I,X, Y, Z X2 = I +X, XY = Z,
XZ = Y + Z, Y 2 = I, Y Z = X,
Z2 = I +X

4 Fibonacci × Z2

I,X, Y, Z X2 = I +X, XY = Z,
XZ = Y + Z, Y 2 = I + Y ,
Y Z = X +Z, Z2 = I+X +Y +Z

3 Fibonacci × Fibonacci

I,X, Y, Z X2 = I +X + Y ,
XY = X + Y + Z, XZ = Y + Z,
Y 2 = I +X + Y + Z,
Y Z = X + Y , Z2 = I +X

2 (G2)2, SU(2)7/Z2

Some comments on this table: G2, E8, D4 and SU(N) are Lie groups. Theories
listed, such as (G2)2 are Chern-Simon theories with the last subscript indicting the
level of the theory. SU(2)5/Z2 means start with the Chern-Simons theory SU(2)5 and
consider only the “even” subset of anyons, which form a complete theory by themselves.
(Similar for SU(2)7/Z2). D(Z2) is the quantum double of Z2 which we will discuss in
section *** . The counting of the number of solutions in most cases is obvious. For
SU(2)1, (G2)1, SU(2)5/Z2 and (G2)2 we have the right (R) and left (L) handed versions
of the theory (The left and right version of (D4)1 turn out to be the same). The 3 cases
of Fib × Fib and Z2 × Z2 correspond to taking L × L, R × R, and L × R. Note that
R × L is equivalent to L × R so does not count as a different theory. However, for Fib
×Z2, all four L×L, R×R, R×L and L×R are different. We will discuss the 8 versions
of anyon theories related to the Ising or SU(2)2 in section 18.3 below. Note that the
(E8)1 theories need not be entirely trivial – even though it has no nontrivial particles –
since it can have a central charge which is any integer multiple of 8. Note that nowhere
in this table do we have fusion multiplicity Nc

ab > 1.
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tables as well. References to these works are given in the further reading
below.

17.5 Ω Strand (Kirby Color)

A particularly useful object to consider is a weighted sum of particle
types particular sum of particle types known as an Ω-strand25, or some- 25The Ω strand can be defined for any

planar diagram algebra, even without a
well defined braiding.

times “Kirby color” strand26,27, as shown (purple) in Fig. 17.7.

26Sometimes the Ω strand is normal-
ized with an additional factor of D or
D−1 out front. We define this below as
Ω̃ in Fig. 17.10.

27One can also define Ω with a prefac-
tor of da/D instead of da/D. This is ap-
propriate if one is not applying rule 0,
i.e., if one is making a non-unitary eval-
uation (as discussed in section 14.5).
The killing property, Fig. 17.8, will then
hold for the nonunitary evaluation of
the diagram. See for example, note 15
in chapter 22.

Ω =
1

D
∑

a

da a =
∑

a

SIa a

Fig. 17.7 A String of Kirby color (Ω-strand) is a weighted superposition of all anyon

string types26. Note that the Kirby color string does not have an arrow on it since
it is an equal sum over all particles and their antiparticles. Here d is the quantum
dimension, S is the modular S-matrix, and I is the identity, or vacuum, particle.

This weighted sum will occur in several different contexts, including
sections 22.3,***,*** below. The Ω-strand has some interesting proper-
ties. For example, in Fig. 17.8 we show the so-called “killing property”
of a loop of Ω for modular theories — a loop of Ω allows only the identity
to go through it: all other particle types are “killed.”

Ω

x

=
∑

a

SIa a

x

=
∑

a

SIaS̃ax

x
= DδIx

I

Fig. 17.8 The killing property of the Ω-strand for modular theories. A loop of
Kirby color (Ω) allows no particles through it except the identity. In the final step
we use unitarity of S (and the fact that SIa = S∗

Ia).

A useful corrolary of the Killing property is given in Fig. 17.9.

a b

Ω=
∑

c

√
dc
dadb

ba

ba

Ω
c

= δab̄
D
da

a

a

Fig. 17.9 The Ω-strand joins two lines due to the killing property which we use in
the second step to force c to be the identity.

Given the factors of D that occur in these expressions, it is sometimes
useful to define an Ω strand with a different normalization
A loop of Ω strand with a twist, shown in Fig. 17.11, interestingly re-

produces our expression for the central charge modulo 8, as in Eq. 17.16.
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Ω̃ =
1

D2

∑

a

da a =
∑

a

SIa
D a

Fig. 17.10 A different normalization of the Ω-strand. Compare Fig. 17.7

A loop of Ω̃ is normalized to have value unity.

=
1

D
∑

a

da

Ω

a

=
1

D
∑

a

d
2
aθ

∗
a = e−2πic/8

=
1

D
∑

a

da

Ω

a

=
1

D
∑

a

d
2
aθa = e2πic/8

Fig. 17.11 For modular theories, a twisted Ω-strand gives e±2πic/8 with c the (real)
central charge. See Eq. 17.16. (See also exercise 22.5)

17.6 Still Further Structure

Modular (and many non-modular) theories have a great deal of extra
structure that we have not even touched on. The theories are obviously
very highly constrained, so it is rather natural to expect that there will be
many nontrivial relationships between the quantities we have discussed.
A useful relationship which is assigned as exercise 17.4 is2828Don’t miss the fact that the subscript

on N is b̄ not b (!)

Sab =
1

D
∑

c

N c
ab̄

θc
θaθb

dc . (17.20)

Another interesting result is a theorem by Bantay [1997] which gives us
the following nontrivial relationship between the Frobenius-Schur indi-
cator κk of a particle k and the modular S matrix

∑

i,j

Nk
ijS0iS0j

θ2i
θ2j

=

{
κk = ǫksign(dk) k = k̄
0 k 6= k̄

(17.21)

A beautiful theorem by Vafa [1988] tells us that for any braided uni-
tary theory (modular or not) all the spin factors θa must be an nth root
of unity so that θna = 1 where the integer n is determined only by the
fusion multiplicity matrices N c

ab. For example, we have

∏

b

θXabb = 1 (17.22)

with
Xab = −2N b

aāN
b̄
aā −N b

aaN
b̄
āā + 4δab

∑

q

N q
aaN

q̄
āā
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17.7 Appendix: Perron-Frobenius Theorem

The Perron-Frobenius theorem states that for a matrix with all positive
entries, there is a unique eigenvector with all positive entries (up to mul-
tiplication by an overall constant) known as the Perron-Frobenius eigen-
vector. The corresponding eigenvalue is the largest magnitude eigen-
value, and is positive. Further for a unitarily diagonalizable nonzero
matrix with all non-negative entries, if there exists an eigenvector with
all positive entries (up to multiplication by an overall constant), its
eigenvalue is positive and is of magnitude greater or equal to all other
eigenvalues. The application of the Perron-Frobenius theorem to the
fusion matrix Na is a bit tricky since the theorem is stronger when the
matrix being considered has strictly postive entries and the Na matrices
are only guaranteed to have nonnegative entries. To avoid this problem,
construct an arbitrary sum of the Na matrices M =

∑
a αaNa where all

the coefficients αa are positive. Since all the N ′
as have common eigen-

vectors (since they are normal matrices and they commute with each
other, see section 8.3.1), these are also the eigenvectors of the matrix
M . Further, all the elements ofM are strictly positive, so we may apply
the Perron-Frobenius theorem for postive definite matrices to M . We
thus obtain a Perron-Frobenius eigenvector of M with strictly positive
entries (up to a multiplicative constant). But the eigenvectors of Na
match those of of M so we have a postive definite eigenvector of Na
which then must be the Perron-Frobenius eigenvectors whose eigenvalue
is greater or equal to any eigevalue of Na.

17.8 Appendix: Algebraic Derivation of the
Verlinde Form

In this section we show that we do not need the structure of braiding in
order to derive an equation of the Verlinde form, analogous to Eq. 17.13.
Let us begin by recalling from section 8.3.1 that for any topological the-
ory29,30 the fusion rules are described by fusion multiplicity matrices 29Here we can mean any planar algebra

(unitary fusion category) or any 2+1
dimensional topological theory with a
braiding (unitary braided fusion cate-
gory).

30All we actually need is a commuta-
tive fusion ring with a unique identity
and inverses.

N c
ab which can be viewed as a set of square normal matrices Na with

indices b and c. As discussed in section 8.3.1 these normal matrices com-
mute with each other and therefore can be simultaneously diagonalized
by a matrix which we will call U (See Eq. 8.13)

Na = Uλ(a)U † (17.23)

where λ(a) is a diagonal matrix for each a. We note again that we will
discover below that for a so-called modular braided theory we will find
that S is the modular S-matrix. More generally we call U the mock
S-matrix.
From Eq. 17.23, the columns of U are the simultaneous eigenvectors
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of the N matrices which we can make explicit as

∑

c

[Na]
c
bUcd = Ubdλ

(a)
d (17.24)

and no sum on d implied. Note, at this point, the columns of U may
be multiplied by an arbitrary phase (i.e., a phase redefinition of the
eigenvectors).
Since there is a particle type called the vacuum I (or identity) which

fuses trivially with all other particles, we have [Na]
c
I = δca so we have

Uad =
∑

c

[Na]
c
IUcd = UIdλ

(a)
d

so that

λ
(a)
d =

Uad
UId

(17.25)

substituting back into Eq. 17.23 we get the Verlinde formula

[Na]
c
b =

∑

x

Ubx
Uax
UIx

U∗
cx . (17.26)

This result is extremely general30.

17.9 Appendix: Algebraic Derivation that
Quantum Dimensions Form a

Representation of the Fusion Algebra

Recall that the columns of U are the simultaneous eigenvectors of the
Na matrices. Invoking the Perron-Frobenius theorem, there must be a
particular index z such that31 the eigenvector Ubz has all postive entries

31This index z must be I in well
behaved modular anyon theories, but
more generally in fusion rings it could
be another index (Gannon [2003]).

with fixed z (up to an overall multiplicative constant). This is a common
eigenvector of all the Na matrices, and the corresponding eigenvalues
are λ

(a)
z . By the Perron-Frobenius theorem, since the eigenvector is all

positive λ
(a)
z must be the largest eigenvalue of Na. Recalling (Eq. 8.10)

that the quantum dimension can also be defined as the largest eigenvalue
of Na, we have

da = λ(a)z

Now let us multiply the Verlinde relation Eq. 17.26 on both sides by
dc = λ

(c)
z = Ucz/UIz (see Eq. 17.25) and sum over c. We have

∑

c

N c
abdc =

∑

x,c

Ubx
Uax
UIx

U∗
cx

Ucz
UIz

=
∑

x

Ubx
Uax

UIxUIz
δxz

=
Ubz
UIz

Uaz
UIz

= dadb
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where we have used the fact that U is unitary. Thus we conclude

dadb =
∑

c

N c
abdc

Further Reading

The table from Rowell et al. [2009] was extended to five particle types
in Bruillard et al. [2015]; Hong and Rowell [2010] and to six in Creamer
[2019]. The modularity condition was relaxed to build a periodic table of
all unitary braided theories for up to four particles in Bruillard [2016] and
five in Bruillard and Ortiz-Marrero [2018]. Periodic table for theories
with fermions (which are a special subset of non-modular theories) have
been built in Bruillard et al. [2020] (See also Bruillard et al. [2017]).

Exercises

Exercise 17.1 Fibonacci S-matrix Recall the Fibonacci theory which we
introduced in sections 8.2.1 and 10.2.1.

(a) First let us pretend that we have not calculated the R-matrices or θτ ,
i.e., we do not know the braiding phases or the twist factors. We only know
the fusion rules τ × τ = I + τ . Using the quantum dimensions, we can obtain
three out of four elements of the 2 by 2 S-matrix. Determine the remaining
elment of the S-matrix by enforcing unitarity.

(b) Given the twist factor θτ = e±4πi/5 (With ± being for right or left-
handed theories), calculate the S-matrix explicitly by using Eq. 17.20.

Exercise 17.2 Using the pivotal property
Use the pivotal property (Section 14.8.1) to demonstrate the identity shown

in Fig. 17.12. You should not assume full isotopy invariance. Nor should you
assume ǫ = +1 for any of the particles.

c b a = ac b

Fig. 17.12 This identity can be shown
without full isotopy invariance by using
the pivotal property.

Exercise 17.3 Symmetries of S
Use isotopy of diagrams and Hermitian conjugation of diagrams to show

the identities in Eq. 17.7.

Exercise 17.4 Evaluation of the S-link
(a) Use the R-matrices and Eq. 15.4 to derive the value of the matrix

S̃ax (See Fig. 17.2) in terms of fusion multiplicities, twist factors θa, and the
quantum dimensions da.

(b) From your result show that

a b =
∑

c

Nc
ab̄

θc
θaθb

dc

Note that this diagram differs from Sab by a factor of Z(S3) = 1/D.

Exercise 17.5 Theories with one nontrivial particle
Consider an anyon theory with only the identity and one nontrivial particle

type a having twist factor θs. The only possible fusion rules are s×s = I+ms



224 Exercises

for some integer m (the semion model is m = 0 the Fibonacci model ism = 1).
Calculate ds and D from the fusion rules. Use Eq. 17.20 to calculate the S
matrix in terms of θs. Show that this matrix cannot be unitary for any m > 1.
This justifies that on table 17.1 there are only two types of theory with one
nontrivial particle.

Exercise 17.6 Product theories[Easy]
Given two anyon theories A and B with corresponding S-matrices SA and

SB.
(a) Show that the product theory A×B has S-matrix SA ⊗ SB .
(b) Show that A×B is modular if and only if both A and B are modular.
(c) Show that the central charge of the product theory is the sum of the

central charges of the constituent theories. I.e.,

cA×B = (cA + cB) mod 8 (17.27)

In fact, central charges strictly add in product theories. However, we have
only defined the central charge mod 8 so far!

Exercise 17.7 Probability of Fusion Channels
Consider a modular anyon theory on a sphere with a very large number of

quasiparticles of all types.
(a) Divide these anyons randomly into two large groups. Show that the

probability that the two groups have overall fusion channels a and ā is given
by

p(a, ā) = d
2
a/D2.

Hint: You are counting the total number of fusion trees. Use the strategy of
section 8.3 along with the Verlinde formula, and the knowledge that S0b/S00 ≥
|Sxb/Sxb| for all x. (You may start by assuming this is strictly > and worry
about the ≥ case later).

(b) Instead divide the anyons randomly into three large groups. Show that
the probability that the groups have overall fusion channels a, b, c is given by

p(a, b, c) = Nabcdadbdc/D4

(c) Finally try four large groups. Show that the probability that the groups
have overall fusion channels a, b, c, f is given by

p(a, b, c, f) = Nabcfdadbdcdf/D6

where Nabcf is the number of ways a, b, c and f can fuse to the vacuum.
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In this chapter we consider a few simple examples of anyon theories. Our
strategy will be the same in each case. First, we decide on a set of fusion
rules. From this we examine the possible planar planar diagram algebras.
To a mathematician these are known as spherical tensor categories (See
section 14.8.2). Once we have found the possible planar algebras we will
look for possible braidings to build full anyon theories.
All of the examples given here will enjoy full isotopy invariance (with

ǫa = +1, although if there are nontrivial Frobenius-Schur indicators we
will need negative d’s) so we will use the notation of chapter 16.

18.1 Z2 Fusion Rules

Let us start with the simplest system of particles we can imagine, an
identity 0 and a nontrivial particle 1. The simplest fusion rules we can
have are1

1We have switched notations — here
the vacuum is 0 not I, and the nontriv-
ial particle is 1. I hope this does not
cause confusion!

1× 1 = 0

which tells us that 1 is its own antiparticle 1 = 1̄ so we do not draw
arrows on the corresponding line. This is known as Z2 fusion rules and
is shown in Fig. 18.1. The corresponding fusion multiplicity matrix is
N0

11 = N0
00 = N1

10 = N1
01 and N1

11 = N0
10 = N0

01 = N1
00 = 0.

=
1 1 1 1

0

Fig. 18.1 Fusing two 1-particles to the
vacuum, shown in two notations.

Fig. 18.2 Examples of allowed vertices
for the Z2 fusion rules. A 1 particle
(drawn solid) comes into the vertex and
the 1-partice must also go out of the
same vertex. The 0 particle, the iden-
tity, is drawn dotted, but it need not be
drawn at all.Fig. 18.3 A loop gas has Z2 fusion rules. The loop gas drawn here is planar —

there are no over- or under-crossings.

With 0 being the identity, the only nontrivial vertices we can have
with these fusion rules is where one particle 1 comes in and one particle
1 also goes out as shown in Fig. 18.2. If one does not draw the identity
particle, diagrams must then be just a so-called loop gas as shown in
Fig. 18.3. The constraint N0

01 = N1
00 = N0

10 = 0 means that loops
cannot end, and N1

11 = 0 means that loops cannot intersect.
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Since the largest eigenvalue of [Na]
c
b is 1, we have quantum dimensions

d1 = d0 = 1 (See Eq. 8.10).
The Z2 loop gases were studied in Exercise 2.2 (where we allowed

over and undercrossings in addition to just planar diagrams), and we
will consider them again in section 19.1 below.
With these fusion rules, there are two sets of F -matrices that give

a consistent fully isotopy invariant planar algebras. These moves two
solutions correspond to d1 = ±1, which are the only two options given
d1 = 1.

18.1.1 d = +1 Loop Gas

Here we choose d1 = +1 for the nontrivial particle, in which case every
F which is nonzero is +1. (I.e., every F diagram where all vertices are
consistent with the fusion rules. See Fig 16.3). In other words, F badecf = 1
for every case where Nabd = Nced = Nbcf = Naef = 1 and F is zero
otherwise. We can write out explicitly the nonzero elements

F 000
000 = 1/d0 = 1 (18.1)

F 110
110 = 1/d1 = 1 (18.2)

F 110
001 = F 000

111 = 1 (18.3)

F 101
101 = F 011

011 = 1 (18.4)

F 101
010 = F 011

100 = 1 (18.5)

The first two lines are required from Eq. 16.4. Eq. 18.3 is from Eq. 16.7.
Eq. 18.4 and Eq. 18.5 can be derived from Eq. 18.2 and Eq. 18.3 by the
tetrahedral symmetry equation Eq. 16.17. Examples of these F -moves
are shown in Fig. 18.4 and 18.5.
The d = 1 planar loop gas turns out to be a relatively trivial diagram-

matic algebra. The value of every allowed diagram is unity! (or is zero
if there is anything disallowed in the diagram, such as the intersection
of loops.)

= F 011
011

= F 110
001

Fig. 18.4 These F -moves for the Z2

loop gas simply deform the path of the
particles. These are known as “isotopy”
moves.

= F 110
110

Fig. 18.5 This F -move for the Z2 loop
gas reconnects the paths of particles.
This is known as a “surgery” move.

We now turn to consider the possible braidings that we can impose
on this planar algebra. The only nontrivial R matrix element is R11

0 .
Using the hexagon equation 16.21 and setting a = b = c = d = 1 and
e = c = g = 0 we obtain (the only allowed value of f is 0)

[R11
0 ]2F 110

110 = [F 110
110 ]

2R10
1 (18.6)

The R on the right is unity, and the F ’s are all unity. Thus

[R11
0 ]2 = 1 (18.7)

This limits us to two possible anyon theories for the d = +1 loop gas:
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Bosons

We choose the R11
0 = +1 case. This gives us no phases or signs with

F moves or braiding. The corresponding twist factor (via Eq. 15.2) is
θa = +1 which corresponds to bosons.

Fermions

We choose the R11
0 = −1 case. This gives us minus sign under exchange

of identical partiecles. The corresponding twist factor (via Eq. 15.2) is
θa = −1 which corresponds to fermions.
For both bosons and fermions the S matrix describing the braiding is

S =
1√
2

(
1 1
1 1

)
(18.8)

which is not unitary, so neither of these two cases are modular2. 2Since this is not a modular theory, the
S matrix is not the matrix that diago-
nalizes the fusion rules! That matrix is
Eq. 18.16.18.1.2 d = −1 Loop Gas

Here we choose d1 = −1 for the nontrivial particle, in which case every F
which is consistent with the fusion rules is ±1. The signs of the nonzero
elements of F are given as follows

F 000
000 = 1/d0 = 1 (18.9)

F 110
110 = 1/d1 = −1 (18.10)

F 110
001 = F 000

111 = 1 (18.11)

F 101
101 = F 011

011 = 1 (18.12)

F 101
010 = F 011

100 = 1 (18.13)

As with the d = +1 loop gas, the first two lines are required from
Eq. 16.4. Eq. 18.3 is from Eq. 16.7. Eq. 18.4 and Eq. 18.5 can be
derived from Eq. 18.2 and Eq. 18.3 by the tetrahedral symmetry equation
Eq. 16.17. Note in particular how the signs work in Fig. 16.16 in the
definition of the tetrahedral diagram.
It is worth looking at the two different signs that F can take. (If

necessary, refer back to Fig. 16.3 for details of how the F -matrix is
defined). Moves such as shown in Fig. 18.4 simply deform the path
of the particle and do not incur a sign. However, the move shown in
Fig. 18.5 perform “surgery” on the parths and reconnect loops and does
change the sign. Such a surgery always changes the number of loops in
the diagram by one. The value of any loop diagram is thus given by

Value of (d = −1)
loop diagram

= (−1)number of loops (18.14)

As discussed in detail in sections 14.2 (See also 16.1.3), while this is
a perfectly consistent planar diagrammatic algebra, it has non-positive
definite inner products and therefore is not appropriate for describing
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quantum mechanics. I.e., this is the non-unitary evaluation of the dia-
gram in the language of section 14.5.
However as discussed in 14.5 we can make make a proper unitary

theory out of the d = −1 loop gas just by implementing rule 0. So the
unitary evaluation of a diagram is

Value of (d = −1)
loop diagram
including rule 0

= (−1)number of loops+number of caps

(18.15)
For example, in Fig. 18.3 there are 10 loops and 14 caps, so the full value
of the diagram is +1.
The nontrivial particle here has a negative Frobenius-Schur indicator.

Here we have chosen to do our bookkeeping by working with a negative
d, by maintaining isotopy invariance of diagrams (with ǫ = +1) and
implementing rule 0 to obtain a unitary theory. There are other possible
ways to account for this sign, but in the end we will always have to pay
the price of a minus sign for a space-time zig-zag such as Fig. 14.5.

Semions

We now consider possible braidings for the d = −1 loop gas. As in the
case d = +1, we can apply the hexagon to obtain Eq. 18.6. In this case,
however, F 110

110 = −1 so we obtain

[R11
0 ]2 = −1

Again there are two solutions R11
0 = ±i corresponding to right- and left-

handed semions. In either case wrapping a semion all the way around
another gives −1, so the S matrix is given by

S =
1√
2

(
+1 +1
+1 −1

)
(18.16)

This is unitary, telling us that the theory is modular. The right handed
semion theory R11

0 = θ1 = i (See Eq. 15.3) is equivalent to the Chern-
Simons theory SU(2)1 or U(1)2.

18.2 Fibonacci Fusion Rules: The Branching
Loop Gas

We now consider Fibonacci fusion rules as discussed in sections 8.2.1
and 9.1 above. Here the nontrivial fusion rule is3

3Here we have switched back to the no-
tation of τ for the nontrivial particle
and I for the vacuum. Using 1 and 0 is
also common.

τ × τ = I + τ

Again τ = τ̄ is self-dual. These fusion rules allow vertices with three τ
particles (one coming from each direction as shown in Fig. 18.6) so the
loop gas can have branches as shown in Fig. 18.7.

Fig. 18.6 An allowed fusion vertex
(right) and a disallowed fusion vertex
(left) for the Fibonacci fusion rules.
The solid line is τ and the dotted line
is the identity. The vertices shown in
Fig. 18.2 are also allowed.
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Fig. 18.7 A Fibonacci branching loop diagram allows intersections of loops, but no
loop ends.

The fusion multiplicity matrix N c
ab is zero if exactly one of the indices

is τ and the other two are I. Otherwise N c
ab = 1. We can establish the

nonzero components of the F -matrices for these fusion rules:

F IIIIII = 1/dI = 1 (18.17)

F ττIττI = 1/dτ (18.18)

F ττIIIτ = F IIIτττ = 1 (18.19)

F ττIτττ = 1/
√
dτ (18.20)

F τττττI = 1/
√
dτ (18.21)

F τIττIτ = F IττIττ = 1 (18.22)

F τIτIτI = F IτττII = 1 (18.23)

F τττIττ = F ττττIτ = F Iτττττ = F τIττττ = 1 (18.24)

F ττττττ = −1/dτ (18.25)

As with the case of the Z2 loop gases, the first two lines are required from
Eq. 16.4. Eq. 18.19 and Eq. 18.20 are from Eq. 16.7. Eq. 18.21 comes
from Eq. 18.20 and Eq. 16.10. Eqs. 18.22, 18.23, and 18.24 can be derived
from Eqs. 18.18, 18.19, 18.20 and 18.21 by the tetrahedral symmetry
equation Eq. 16.17. Finally, Eq. 18.25 comes from the requirement that
the two by two matrix [F ττττ ] is a unitary matrix (See Fig. 16.3) which
we write out as4 4This F -matrix matches our previous

claim in Eq. 9.3. With any proposed
F -matrix, one should always check that
one has a valid solution of the pentagon
equation Eq. 9.7 (or Eq. 16.3). See ex-
ercise 9.4 for the Fibonacci case!

F ττττ =

(
1/dτ 1/

√
dτ

1/
√
dτ −1/dτ

)
(18.26)

The unitarity requirement on this matrix also gives us

1

d2τ
+

1

dτ
= 1 (18.27)

The solution to this is

dτ =
1 +

√
5

2

which matches the expected quantum dimension dτ given in Eq. 8.2 as
it must, given the considerations of section 17.1. Eq. 18.27 also has a
solution with dτ < 0. However, we cannot accept this solution because
it would violate Eq. 14.85. 5Since τ × τ = τ + . . . we need to have

sign[dτ ]× sign[dτ ] = sign[dτ ].As in the case of the Z2 loop gases, many of the F -matrix elements
correspond to simple deformations of paths (isotopy) as in Fig. 18.4.
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= 1
dτ

+
√

1
dτ

=
√

1
dτ

− 1
dτ

Fig. 18.8 The F -moves for the Fibonnaci branching loop gas. Note that the first
line is actually the insertion of a complete set of states as in Fig. 16.8

The nontrivial F -moves (corresponding to the matrix F in Eq. 18.26)
are summarized in Fig. 18.8.

18.2.1 Braidings for Fibonacci Anyons

To determine the possible braidings for Fibonacci fusion rules, we must
solve the hexagon equation given the F matrices we just derived. This
is assigned as exercise 13.1. There are two possible solutions, a right-
handed solution given in Eq. 10.2, and a left-handed solutions which is
the complex conjugate of the right handed solution. These are the only
solutions of the hexagon equations for the Fibonacci fusion rules. The
solution with (RττI )∗ = θτ = e4πi/5 matches the Chern-Simons theory
(G2)1 whereas the case with (RττI )∗ = θτ = e−4πi/5 matches (F4)1.

18.3 Ising Fusion Rules: A Two Species Loop
Gas

As discussed in section 8.2.2 the Ising fusion rules (also known as SU(2)2
fusion rules) are given by

ψ × ψ = I

ψ × σ = σ

σ × σ = I + ψ

with both particle types being self dual ψ = ψ̄ and σ = σ̄. These rules
describe a loop gases with two non-vacuum particles ψ (which we draw
as blue lines and loops in Fig. 18.9) and σ (which we draw red loops in
Fig. 18.9). The rule of this loop gas is that one may have a vertex with
two sigmas and one ψ, which appears as a blue line splitting off from a
red loop.
Looking at the first fusion rule, ψ × ψ = I, we realize this rule alone,

is simply a Z2 fusion rule. Indeed, this tells us immediately that we have

1/dI = 1/dψ = 1

= F IIIIII = FψψIψψI = FψψIIIψ = F IIIψψψ = FψIψψIψ = F IψψIψψ = FψIψIψI = F IψψψII
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Fig. 18.9 A diagram with Ising fusion rules. Here σ is red and ψ is blue.

as given in Eqs 18.1-18.5. One might wonder why we do not consider
dψ = −1. This is for the same reason why we could not consider negative
dτ in the Fibonacci case. Here we must have sign[dσ]sign[dσ] = sign[dψ ],
so we must have dψ positive.
Very similarly we have

F σσIσσI = 1/dσ

F σσIIIσ = F IIIσσσ = 1

F σIσσIσ = F IσσIσσ = 1

F σIσIσI = F IσσσII = 1

The first equation is from Eq. 16.4, and the second from Eq. 16.7. The
last two are derived from the first two via the tetrahedral symmetry
Eq. 16.17.
Further using Eqs. 16.7 and 16.16 we obtain

F σσIσσψ = F σσψσσI = 1/dσ (18.28)

F σσIψψσ = FψψIσσσ = F σψσψσI = FψσσσψI = 1 (18.29)

Enforcing unitarity on the two by two matrix [F σσσσ ] we get

F σσψσσψ = −1/dσ (18.30)

giving the two by two matrix the form

[F σσσσ ] =

(
1/dσ 1/dσ
1/dσ −1/dσ

)
(18.31)

The unitarity condition also gives us the condition that

dσ = ±
√
2

which is expected from section 8.2.2 since the fusion rules give us dσ =
|dσ| =

√
2. Both of these roots are viable solutions of the pentagon.

The remaining nonzero elements of F are obtained from Eq. 18.28-
18.30 by using tetrahedral symmetry Eq. 16.17 to obtain

1 = F σIσσψσ = F Iσσψσσ = F σψσσIσ = FψσσIσσ (18.32)

= F σIσψσψ = F Iσσσψψ = FψIψσσσ = F Iψψσσσ (18.33)
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= FψσσσIψ = F σσψIψσ = F σσψψIσ = F σψσIσψ (18.34)

−1 = F σψσσψσ = Fψσσψσσ (18.35)

The nontrivial F -moves corresponding to the matrix Eq. 18.31 are
shown in Fig. 18.10.

= 1
dσ

+ 1
dσ

= 1
dσ

− 1
dσ

Fig. 18.10 The nontrivial F -moves for the Ising fusion rules. Note that the first
line is actually the insertion of a complete set of states as in Fig. 16.8

18.3.1 Braidings For Ising Fusion Rules

The most straightforward way to find all the possible braidings for the
Ising fusion rules is to explicitly solve the hexagon equations 13.1 or
equivalently Eq. 16.216 . We here outline how we proceed (Exercise 18.1

6Since the F matrices are real, Eq. 13.2
and 16.22 are equivalent to Eq. 13.1 and
16.21.

asks you to work out the details!). For each possible settings of the
variables in the hexagon equation, we derive a different identity. For
each of the following cases, the F -matrices are simple scalars (1 and −1
only) so we derive

a = ψ, b = c = σ, d = I ⇒ Rσψσ Rσσψ = RσσI (18.36)

b = ψ, a = c = σ, d = I ⇒ Rψσσ Rσσψ = RσσI (18.37)

a = b = σ, c = ψ, d = I ⇒ [Rψσσ ]2 = RψψI (18.38)

a = b = σ, c = d = ψ ⇒ [Rψσσ ]2 = −1 (18.39)

For the following case one uses the two-by-two F matrix meaning we are
working with a two dimensional vector space and the hexagon gives us
two identities

a = b = c = d = σ, e = I ⇒
{

[RσσI ]2 = 1
dσ

(1 +Rψσσ )

RσσI Rσσψ = 1
dσ

(1−Rψσσ )
(18.40)

These equations are enough to pin down all of the possible solutions
for the R-matrix. From Eq. 18.38 and 18.39 we obtain

RψψI = −1

which also implies θψ = −1 from Eq. 15.3. Note that since ψ is a Z2

field with dψ comparing to our above discussion of the Z2 fusion rules
we already knew that we had to have ψ be either a fermion or a boson
(we could re-establish this by looking at the hexagon with only ψ and
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I fields). The hexagon including the σ field now establishes ψ to be a
fermion!
From Eqs. 18.36 and 18.37 and 18.39 we establish

Rσψσ = Rψσσ = ±i

This sign is an additional free choice we can make (in addition to the
choice of dσ = ±

√
2). To keep these independent choices straight we

will use the notation

dσ =
1
±

√
2 (18.41)

Rψσσ =
2
± i (18.42)

We now plug in our choices for dσ and Rψσσ into the first of Eq. 18.40
to solve for RσσI . This gives yet another independent choice of sign for

a square root which we label with
3
±. We thus obtain

RσσI = exp

[
2πi

(
3

8

)]
exp

[
2πi

(
3
± 1

4

1
∓ 1

8

2
± 1

16

)]

Note now that

θ∗σ = RσσI sign[dσ] = exp

[
2πi

(
5

8

)]
exp

[
2πi

(
3
± 1

4

1
∓ 3

8

2
± 1

16

)]

(18.43)
from which we see there are a total of eight possible choices, and they are
all of the possible odd-sixteenth roots of unity which is what we would
predict from the fusion rules given Eq. 17.22.
For the record, from Eq. 18.36, we also have

Rσσψ =
2
∓ iRσσI = exp

[
2πi

(
3

8

)]
exp

[
2πi

(
3
± 1

4

1
∓ 1

8

2
∓ 3

16

)]

We should also check that none of the other hexagon relations are vi-
olated for any of these eight solutions (We could for example, evaluate
the hexagon with a = d = ψ, b = c = σ or any of the other possible
combinations). Remarkably, perhaps, all eight solutions solve all the
hexagon relations with no violations (see exercise 18.1).
The eight possible solutions all have the same S-matrix (see exercise

18.2)

S =
1

2




1
√
2 1√

2 0 −
√
2

1 −
√
2 1


 (18.44)

The two possibilities

1
±= +

2
±= −

3
±= −

1
±= +

2
±= +

3
±= −
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gives the Ising TQFT and its conjugate respectively. These cases have
dσ chosen positive.
The two possibilities

1
±= −

2
±= +

3
±= −

1
±= −

2
±= −

3
±= +

correspond to SU(2)2 Chern-Simons theory and its conjugate respec-
tively. Both of these cases have dσ negative.

Further Reading

Exercises

Exercise 18.1 Using the Hexagon for Ising Fusion Rules
Use the hexagon relations to derive Eqns. 18.36-18.40. Confirm that the

eight solutions we find give no violations of any hexagon relations.

Exercise 18.2 S-matrix for Ising Fusion Rules
Explicitly derive the S-matrix for all eight solutions of the hexagon equation

for the Ising fusion rules and confirm that they all give Eq. 18.44. Thus confirm
that all eight solutions are modular. Hint: It might be easiest to use Eq. 17.20.

Exercise 18.3 Frobenius-Schur Indicator for Ising Fusion Rules
Use Eq. 17.21 to calculate the Frobenius-Schur indicator for the σ particle

in each of the eight possible solutions of the hexagon equation for the Ising
fusion rules. Show that the Frobenius-Schur indicator is negative exactly when
dσ is negative.

Exercise 18.4 Evaluating Diagrams I
Show that evaluation of the diagram in Fig. 18.7 gives −d9/2τ .

Exercise 18.5 Evaluating Diagrams II
Show that evaluation of the diagram in Fig. 18.9 gives d2ψd

3
σκσ.

Exercise 18.6 Deriving an F -matrix
(Easy) Consider a theory containing three particle types, I,A,B where I is

the identity. Let the nontrivial fusion rules be given by

B ×B = I

A× A = I +A

A×B = A

Let us assume we have a theory with full isotopy invariance and full tetrahedral
symmetry. There is only one set of F matrices for these fusion rules. Find
these F -matrices and convince yourself that it satisfies the pentagon equation.

Exercise 18.7 Deriving an F -matrix
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(Hard) Consider a theory containing three particle types, I, S, V where I is
the identity. Let the nontrivial fusion rules be given by

S × S = I

S × V = V

V × V = I + S + V

Let us assume we have a theory with full isotopy invariance and full tetrahedral
symmetry. There is only one set of F matrices for these fusion rules. Find
these F -matrices. (Hint: applying the techniques of this chapter will give
the correct solution as well as a spurious solution which you can eliminate by
showing it does not satisfy the pentagon equation.) Show that the hexagon
equaution is solved with Rabc = 1 for all a, b, c.





Temperly-Lieb Algebra and
Jones-Kauffman Anyons 19

Medium Hard Material

Let us look back at the Kauffman bracket invariant that we introduced
in chapter 2. In the current chapter we want to make use of these rules
and determine some of the properties of the corresponding anyons in the
langauge we have been developing since chapter 8. Our strategy will be
to first consider a planar diagram algebra in detail before considering
braiding properties in section 19.5 below.
So we start by considering a planar version of the Kauffman bracket.

I.e., we only consider diagrams with with no over- and under-crossings.
Our diagrams are isotopically invariant in the plane and the only addi-
tional rule then is that the a loop is given a value d as shown in Fig. 19.1.
As compared to the diagrammatic algebra we have constructed over the
last few chapters (roughly starting in chapter 8, and continuing through
chapter 16), one things that was missing in the discussion of the Kauff-
man bracket invariant is the idea of multiple particle types and fusion
rules. In this chapter we will try to construct particle types, fusion rules,
and F -matrices given only the rule 19.1 as a starting point. The planar
algebra of loops that we will construct is known as the Temperly-Lieb al-
gebra. (When we reintroduce braiding to our theory the resulting theory
is called called Jones-Kauffman, or Temperley-Lieb-Jones-Kauffman.)

= d

Fig. 19.1 The loop rule for the
Kauffman bracket invariant and the
Temperly-Lieb algebra.

Let us start by thinking a bit about what kind of particle types we
already have in our theory. Certainly we have the simple string1 which

1It is admittedly confusing that 1 is not
identity, but this is the usual notation!
It is (not coincidentally!) similar to
spins where spin 0 is the identity (no
spin), and spin 1 is nontrivial.

we will call “1”; and we always have a vacuum particles, which we will
call “0”. Now we would like to ask whether we can fuse two of these
1-strings together to make another particle.
Several things are immediately obvious. First consider the fact that

two 1-particles can fuse to the vacuum, or in other words, a 1-string
can go up and then turn down, as shown in Fig. 19.2. This tells us
immediately that

1 = 1̄.

The fact that 1 is its own antiparticle is why we do not draw arrows
on the 1-string. For simplicity, if a string is not labeled we will assume
it is a 1-string. Given that loop of 1-string is assigned the value d, we
identify this d1 (which is often called the quantum dimension, although
we have been reserving the words “quantum dimension” for d1 = |d1|).

=
1 1 1 1

Fig. 19.2 Fusing two 1-particles to the
vacuum

We might also consider the possibility that two of these 1-particles
can fuse to something besides the vacuum, in a way similar to that
shown in Fig. 19.3. This is a good idea, but it isn’t yet quite right. If

1 1

?

Fig. 19.3 Attempting to Fuse two
1-particles to something different from
the vacuum
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the two strings fuse to some object besides the vacuum 0, we have to
make sure that this new object is appropriately “orthogonal” to 0. This
orthogonality must be in the sense of the locality, or no-transmutation
rule (see Fig. 8.7): a particle type must not be able to spontaneously turn
into another particle type (without fusing with some other particle or
splitting). In Fig. 19.3 it looks like the two strings brought together could
just fuse together to form the vacuum as in Fig. 19.2, and this would
then turn the collection of two strings into the vacuum. To prevent
such transmutation, we will work with operators known as Jones-Wenzl
projectors.

19.1 Jones-Wenzl Projectors

Fig. 19.4 A cup (left) and a cap
(right).

The general definition of a projector is an operator P such that P 2 = P .
This means that P has eigenvalues 0 and 1. Let us think of a string
diagram as an operator that takes as an input strings coming from the
bottom of the page, and gives as an output strings going towards the top
of the page (compare Fig. 12.2). Now consider a set of n-strings traveling
together in the same direction (in what is often called a cable). The
Jones-Wenzl projection operator Pn operates on a set of n such strings
— it takes n-strings in and gives n-strings out — and it is defined such
that attaching a cup or a cap to the bottom or top of the operator gives
a zero result (See Fig. 19.4). The n-particle Jones-Wenzl projector Pn
acting on a cable of n-strings should be interpreted as the nth particle
species.
The purpose of the Jones-Wenzl projector is to fix the problem we

discovered with Fig. 19.3. That is, if a cable of two strings forms a
nontrivial particle (the particle we will call 2), we should not be able to
put a cap on the top of these two strings and transmute the 2-particle to
the vacuum. I.e., adding a cap should make the entire diagram vanish,
and this is the property we are looking for in the 2-string Jones-Wenzl
projector.
Let us now try to construct the 2-string Jones-Wenzl projector P2

out of two incoming 1-particles2 (two elementary strings ). To do this2The Jones-Wenzl projector, if you
want to defines one, for a single string
is the trivial operator. I.e., one string
comes in and the same string comes out
unchanged.

we first construct a different projector P̄2 that forces the two incoming
particles to fuse to the vacuum3 as shown in Fig. 19.5.

3The estute reader will notice that
a particle “turning around” as in
Fig. 19.2 is not quite the same as pro-
jecting to the 0 particle, due to the pref-
actor 1/d. We will return to this issue
in section 19.3 below.

P̄2 =
1

d
= P̄2

Fig. 19.5 The projector of two strings to the vacuum P̄2. This figure should
be thought of as an operator that takes as an input two strings coming in from
the bottom, and gives as an output two strings going out the top. Sometimes the
operator is represented as a labeled box as shown on the right.

To establish that this P̄2 operator is a projector we need to check that
[P̄2]

2 = P̄2. To apply the P̄2 operator twice we connect the two strings
coming out the top of the first operator to two strings coming in the
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bottom of the second operator. As shown in Fig. 19.6, using the fact
that a loop gets value d we see that [P̄2]

2 = P̄2 meaning that P̄2 is indeed
a projector.

[P̄2]
2 =

1

d

1

d
=

1

d2
=

1

d
= P̄2

Fig. 19.6 Checking that [P̄2]2 = P̄2. In the second step we have used the fact that
a loop gets the value d.

The Jones-Wenzl projector P2 for two strings is the complement of
the operator P̄2 we just found, meaning P2 = I− P̄2 where I is the iden-
tity operator, or just two parallel strings. Diagrammatically we have
Fig. 19.7. Since the P̄2 operator projects the two strings onto the vac-
uum, the P2 operator projects the two strings to a different orthogonal
particle type which we call 2.

− 1

d
P2 = = P2

Fig. 19.7 The projector of two strings to the nontrivial particle made of two strings

P2 = I − P̄2. Sometimes this projector is drawn as a labeled box, as on the right.

We can algebraically check that P2 is indeed a projector

P 2
2 = (I − P̄2)(I − P̄2) = I − 2P̄2 + P̄ 2

2 = I − P̄2 = P2

and also we can check that P2 is orthogonal to P̄2, by

P̄2P2 = P̄2(I − P̄2) = P̄2 − P̄ 2
2 = 0

and similarly P2P̄2 = 0.
Often it is convenient to draw these projection operators as a labeled

box, as shown on the right of Figs. 19.5 and 19.7. Sometimes instead of
drawing two lines with a projector P̄2 or P2 inserted, we simply draw a
single line with a label, 0 or 2 respectively as in the right of Fig. 19.10
or the left of Fig. 19.8.
It is useful to calculate the value of the of the 2-string loop4. This is 4In many references d2 is called ∆2

(and similarly dn is called ∆n). We will
stick with d to fit with the notation in
the rest of this book.

shown in Fig. 19.8.

d2 = 2 = P2 = − 1
d = d2 − 1

Fig. 19.8 Evaluating the 2-string loop.
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Abelian Case

In the case where d = ±1 it is easy to prove (see Exercise 2.2 and ***)
that two horizontal strings equals d times two vertical strings as shown
in Fig. 19.9. In this case, notice that the projector P2 = 0 since the
two terms in the projector in Fig. 19.7 are equal with opposite signs.
Correspondingly note that for d = ±1 (and only for these values), the
value of the 2-string loop is d2 = 0 as shown in Fig. 19.8, meaning that
no such 2-particle exists. Thus the only possible outcome of fusion of
two 1-strings is the vacuum as shown in Fig. 19.2. Thus the entire fusion
rules of these theories are

1× 1 = 0

where again 0 is the identity or vacuum. These abelian fusion rules
result in abelian braiding statistics.

For d = ±1 :

=
1

d

Fig. 19.9 Two cases where the Kauff-
man bracket invariant rules become
very simple. If you have not convinced
yourself of these rules, try to do so! (See
exercise 2.2). Note that d = 1 occurs
for bosons or fermions and d = −1 oc-
curs for semions.

These two possible cases here obviously correspond to the d = ±1
loop gases that we studied in sections 18.1.1 and 18.1.2 above. When
braidings are considered we obtain bosons or fermions for d = 1 and
left or right handed semions (SU(2)1) for d = −1. Since this has been
discussed in depth in section 18.1 we do not elaborate further here.

Two Strands in the General Case

For values of d not equal to ±1, the projector P2 does not vanish. This
means that two 1-strands can fuse to either 0 or 2 as shown in Fig. 19.10.
We can write the fusion rule as

1× 1 = 0 + 2

We might ask whether it is possible to assemble a third type of particle
with two strands. It is obvious this is not possible since P̄2 + P2 = I,
which means these two particle types form a complete set (P̄2 projects
the two particles to the vacuum, and P2 projects to the 2-particle type).

P̄2 or P2 =

1 1

0 or 2

Fig. 19.10 Two possible fusions of two
1-strands, drawn in two different no-
tations. A single line labeled 2 is in-
terpreted as two 1-strands traveling to-
gether with a P2 operator inserted. The
label 0 means the two strands fuse to
the vacuum as in Fig. 19.2.

Three Strands in the General Case

We can move on and ask what kind of particles we can make if we are
allowed to fuse three strands together. We want to try to construct
a three leg projector. The most general three legged operator we can
construct is of the form in Fig. 19.11.

P3 = α + β +γ + δ + ǫ

Fig. 19.11 The form of the most general three legged operator we can construct.
Where α, β, γ, δ, ǫ are arbitrary constants.
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We would like to find the three-string operator which is a projector. So
we should enforce P 2

3 = P3. However, there are other things we want to
enforce as well. Since 0 is the identity, we want 0 × 1 = 1 which means
we should not be able to fuse P̄2 (the projector of two strings onto the
vacuum) with a single strand to get P3. Diagrammatically this means
we must insist on relations like Fig. 19.12.

1 0

3

= = 0
P3

P̄2

Fig. 19.12 Insisting that 0× 1 does not give 3

This and analogous constraints allow us to insist on the conditions
shown in Fig. 19.13.

P3 = P3 = P3 = P3 = 0

Fig. 19.13 Four conditions that come from the fusion condition shown in Fig. 19.12.

However, we should alllow fusions of the form 1 × 2 = 3 as shown in
Fig. 19.14. Enforcing the condition in Fig. 19.13, along with P 2

3 =
P3 gives the form of P3 shown in Fig. 19.11 with the results that (see
Exercise 19.1)

α = 1

β = γ = − d

d2 − 1

δ = ǫ =
1

d2 − 1

1 2

3

=
P3

P̄2

Fig. 19.14 We allow 1× 2 = 3

We can do a short calculation in the spirit of Fig. 19.8 to obtain the
value of a loop of 3-string4, giving the result (See exercise 19.1) shown
in Fig. 19.15.

d3 = 3 = d(d2 − 2)

Fig. 19.15 Evaluating the 3-string loop.

Ising Anyons

In the case where d = ±
√
2 (and only in these cases) the three string

loop has d3 = 0 meaning that there is no 3-string particle. Equivalently
it is possible to show that P3 vanishes when evaluated in any diagram
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(See exercise 19.1). It is similarly possible to show that P4 = 0 and so
forth. Thus, for the case of d = ±

√
2 there are only three particle types

0, 1, and 2. In addition to the fusions we have already determined, we
have 2×2 = 0 as shown in Fig. 19.16 and 2×1 = 1 as shown in Fig. 19.17.
(Note that showing 2 /∈ 2 × 2 requires another explicit calculation, not
shown here! See exercise 19.1)

2 2

0

=
P2 P2

Fig. 19.16 2× 2 = 0.

2 1

1

= P2

Fig. 19.17 2 × 1 = 1. We recog-
nize this as the fusion 1 × 1 = 2 from
Fig. 19.10 just turned on its side.

We thus have the full set of nontrivial fusion rules

1× 1 = 0 + 2

2× 2 = 0

1× 2 = 1

which we recognize as Ising fusion rules (see sections 8.2.2 and 18.3)
where 1 = σ and 2 = ψ and 0 is the vacuum I

For d = ±
√
2 :

P2

P
2

P
2

= 0

Fig. 19.18 For d = ±
√
2 we have 2×2

not fusing to 2.

Recall in our discussion of Ising anyons in sections 8.2.2 and 18.3.
There we found that dσ = ±

√
2 and dψ = 1. This indeed agrees with

the present discussion: We obtain Ising fusion rules for d1 = dσ = ±
√
2

and evaluating using Fig. 19.8, we also have dψ = d2 = 1. Thus our
string algebra recovers details of the Ising fusion algebra.

19.2 General Values of d

The generalization of the above discussions for d = ±1 and d = ±
√
2 is

fairly straightforward. One can generally show the following properties
(See Kauffman and Lins [1994] and exercise 19.2). First, the Jones-
Wenzl projector for n+ 1 strands can always be written in terms of the
projector for n strands as shown in Fig. 19.19 (See exercise 19.2)

......

......
Pn+1 =

.....

.....
Pn − dn−1

dn

....
Pn

....
Pn

Fig. 19.19 Recursion Relation For Jones-Wenzl Projectors

Note in particular that if Pn vanishes, we can conclude that Pm van-
ishes for allm > n as well. We define dn of particle type n by connecting
n strings coming from the bottom of projector Pn to those coming from
the top as shown in Fig. 19.20.
Using the recursion shown in Fig. 19.19 and the definition of dn in

Fig. 19.20 we obtain the recursion relation (you can do this in your
head!)

dn+1 = d dn − dn−1 (19.1)

where we define d−1 ≡ 0 and d0 = 1 and hence d1 = d. This recursion
has the general solution

dn = Un(d/2) (19.2)
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dn = n =

...

...

....

....
Pn.....

Fig. 19.20 Evaluating the quantum dimension of the n-string particle. We connect
the n strings coming from the top of the projector Pn to those coming from the
bottom. Often this quantity is notated as ∆n.

where Un is the nth Chebyshev polynomial of the second kind. These
are defined by (See exercise 19.2)

Un(cos θ) sin θ = sin[(n+ 1)θ] (19.3)

A theory has a finite number of particle types if dn = 0 for some n (Such
that Pn vanishes for all p ≥ n). This situation occurs precisely when
(See exercise 19.2)

d = 2 cos

(
kπ

n+ 1

)
(19.4)

for5 some k ∈ 1, . . . , n. For values of d that are not of this form, one 5For odd n the k = (n+1)/2 case corre-
sponds to the unphysical case of d = 0.can construct an infinite number of orthogonal particle types (n-strand

projectors with different values of n), which indicates a badly behaved
theory. (I.e., the algebra never “closes”).
Once one constructs the appropriate n-strand projectors, the general

vertex between three different particle types can be constructed analo-
gous to that shown in Fig. 19.21. Consider a vertex between particle
types (a, b, c) as in with a, b, c,≥ 0 as in Fig. 19.22. The number of
strings going between the projectors (as in the fight of Fig. 19.21) is
given by

m = (a+ b− c)/2 = strings between a and b (19.5)

n = (a+ c− b)/2 = strings between a and c (19.6)

p = (b+ c− a)/2 = strings between b and c (19.7)

these quantities must be non-negative, and we must have all of these

4 5

3

=
P3

P 5

P
4

Fig. 19.21 The general vertex in the Temperly-Lieb algebra. Here the vertex is
shown for 4 and 5 fusing to 3.
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quantities integer, which is assured if

(a+ b+ c) is even (19.8)

Note that a, b or c are allowed to have the value 0, meaning no strings
come out that edge. These variables are also allowed to have the value 1
meaning a single string comes out the edge (and no projector is needed,
see note 2.)

a b

c

Fig. 19.22 A general vertex between
particle types (a, b, c) with a, b, c ≥ 0

One can show that a vertex between particle types (a, b, c) can be
nonzero only if further if the projector

P(a+b+c)/2 is nonzero (19.9)

This final conditon is nontrivial and we will not prove it in all generality
here (See for example, Kauffman and Lins [1994], for a proof). However,
Fig. 19.18 is an example of this condition: When d = ±

√
2, we’ve shown

that P3 vanishes and this implies the vertex (2, 2, 2) must also vanish.
The conditions we have just described for a vertex (m,n, p non-negative

integers and P(a+b+c)/2 nonzero) gives us the fusion relations for the the-
ory which are given by

a× b = |a− b|, |a− b|+ 2, . . . , min(a+ b, 2k − a− b)

where k is the largest integer such that Pk is non-zero.6

6This is entirely equivalent to the gen-
eral SU(2)k Chern-Simons fusion rules
where particles j take integer and half-
integer values and

j1 × j2 = |j1 − j2|, |j1 − j2|+ 1, . . . ,

min(j1 + j2, k − j1 − j2) (19.10)

where we have made the identifica-
tion that a in the Temperly-Lieb-Jones-
Kauffman theory is 2j. Note further
that in the case where k is infinitely
large (so that the final term in the se-
ries on the right of Eq. 19.10 is always
j1+j2), these fusion rules match the an-
gular momentum addition rules of reg-
ular SU(2).

With this definition of a vertex we can evaluate any planar diagram.
A particularly useful diagram is the version of the Theta diagram shown
in Fig. 19.23. The value of this diagram can be derived generally and is
given by

∆(a, b, c) = (d(a+b+c)/2)!
(dn−1)! (dm−1)! (dp−1)!

(da−1)! (db−1)!(dc−1)!
(19.11)

where we have defined

(dn)! ≡ dndn−1dn−2 . . . d2d1

with d1 = d and d0 = d−1 = 1. From Eq. 19.11 we see that ∆(a, b, c)
is symmetric in exchanging any of its arguments. Further we see that
the quantity vanishes when d(a+b+c)/2 vanishes which agrees with the
condition Eq. 19.9.

∆(a, b, c) =

a

b

c

Fig. 19.23 The Theta diagram in the
Temperly-Lieb-Jones-Kauffman theory.

While the most general derivation of Eq. 19.11 is somewhat compli-
cated (See Kauffman and Lins [1994]), it is easy enough to confirm it is
correct for a few examples (See exercise 19.3)
The value, Eq. 19.11, of the Theta diagram does not match what

we would have expected given the rules in chapter 16. Comparing to
Fig. 16.15 we would have expected the Theta diagram in Fig. 19.23 to
have a value

√
dadbdc which in general it does not here. We will now fix

this problem.
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19.3 Unitarization

The diagrammatic algebra we have constructed so far in this chapter
is a perfectly self-consistent algebra (See Kauffman and Lins [1994] for
a large amount of detail of this algebra). However , this algebra does
not fit the rules we have establshed in prior chapters. In section 19.2
we just found that the value of the Theta diagram does not match the
expectation from chapter 16. If we tried to work out further details of
the diagrammatic algebra, we would find other failures as well — for
example, we would find the F -matrices to be non-unitary! Fortunately,
it is not hard to modify the theory a small amount so that it fits within
our existing framework from chapter 16.

a b

c
= v(a, b, c)

a b

c

Fig. 19.24 A renormalized vertex between particle types (a, b, c) with a, b, c ≥ 0
marked with a blue dot on the left is defined in terms of the original vertex on the
right. We assume here that the vertex on the right, defined analogous to Fig. 19.21
is nonzero.

Θ(a, b, c) =

a

b

c

Fig. 19.25 The Theta diagram with
renormalized vertices.

Let us define a new vertex which is a constant multiple of the old
vertex as shown in Fig. 19.24. We define the rescaling factor as

v(a, b, c) =

√√
dadbdc

∆(a, b, c)

such that the value of the Theta diagram in Fig. 19.25 is now Θ(a, b, c) =√
dadbdc as we expect from Fig. 16.15. It turns out that this simple mod-

ification is sufficient to make the theory fit into the framework developed
in chapter 16.

19.4 F-matrices

We can now determine the F -matrices directly from the graphical al-
gebra. As a simple example, consider the F -matrices F 11α

11β (which we
abbreviate as Fαβ ) as shown in Fig. 19.26. Note that for this equation
we use renormalized vertices as defined in Eq. 19.24 and notated by dots
on the vertices.
This F -matrix equation is that of Fig. 16.3 for four incoming 1-string

particles. The F matrix is nontrivial since there is more than one fusion
channel when we fuse the 1’s together: 1× 1 = 0+ 2, so long as d 6= ±1
(in which case the 2-string particle vanishes). We can now rewrite the F -
matrix equation in terms of string diagrams as in Fig. 19.27. Note that in
Fig. 19.27, the prefactors of d/

√
d2 come from the vertex renormalization

factors v(1, 1, 2)2, and the quantities in brackets are P2 projectors which
force the two strings to fuse to the 2-particle.
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1

1

1

1
0

= F 0
0

1

1

1

1

0 + F 0
2

1

1

1

1

2

1

1

1

1
2

= F 2
0

1

1

1

1

0 + F 2
2

1

1

1

1

2

Fig. 19.26 The F -matrix in the Temperly-Lieb-Jones-Kauffman theory is unitary

when use renormalized vertices, indicated by dots. Here we have abbreviated F 11α
11β

as Fαβ for brevity.

= F 0
0 + d√

d2
F 0
2

[ ]
− 1
d

d√
d2

[ ]
− 1
d = F 0

2 + d√
d2
F 2
2

[ ]
− 1
d

Fig. 19.27 Explicitly writing out the F -matrix equations of Fig. 19.26. The pref-
actors terms in brackets are P2 projectors. The prefactors d2 is from the ver-
tex renormalization factors v(1, 1, 2)2 = d2/d2. (The other renormalization factor
v(1, 1, 0) = 1).

We then match up terms on the right and left of the graphical equa-
tions in Fig. 19.27. In the first line we see that the diagram on the left
is topologically like the first term in the brackets on the right, so we
have F 0

2 =
√
d2/d. Similarly the first term on the right is topologically

the same as the second term in the brackets, so F 0
0 = 1/d. Then in the

second line the second term in brackets on the left is topologically the
same as the first term in brackets on the right, so we have F 2

2 = −1/d.
Then among the remaining terms, the first term in brackets on the left,
the first term on the right, and the second term in brackets on the right,
are all topologically the same, so we have d/

√
d2 = F 0

2 − (1/
√
d2)F

2
2 or

F 0
2 = (1/d)(d2 − 1)/

√
d2. Finally using d2 = (d2 − 1) (See Fig. 19.8) we

obtain the full form of the F -matrix (and returning the 11 superscripts
and subscripts which we have suppressed)

[F 11
11 ] =




1
d

√
d2−1
d√

d2−1
d − 1

d


 (19.12)

Note that this matrix is properly unitary for any value of d. For d = ±
√
2

the matrix matches our expectation for the Ising fusion rules given in
Eq. 18.31.
With similar diagrammatic calculations, we can work out the F -
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matrices for any incoming and outgoing n-string particles. Detailed
calculations are given in Kauffman and Lins [1994]. However, note that
the results given there are nonunitary expressions due to the use of un-
rernormalized vertices.

19.5 Twisting and Braiding

So far we have not yet used the braiding rules of the Kauffman bracket
invariant, we have only used the loop rule and we have only considered
planar diagrams. We finally can reintroduce the braiding rules for the
Kauffman invariant for evaluating crossings as in Fig. 2.3 and thus we
are now considering a full anyon theory. As shown in Fig. 2.6, comparing
to Fig. 15.3 we see that the twist factor of the single strand is

θ∗1 = −A−3.

It is a reasonably straightforward exercise to use these crossing rules to
evaluate the twist factors for other particles in the theory (See exercise
19.5), as well as the R-matrices. Just to do a simple example, let us
evaluate R2

11 as shown in Fig. 19.28.

= A−1
1 1

2
+A

P2
= A−1

P2

=
P2

=
1 1

2

R11
2

1 1

2

Fig. 19.28 Evaluation of R11
2 = A−1 using the Kauffman bracket invariant. In

going from the first line to the second we invoke the bracket rules Fig. 2.3. The last
step invokes the fact that P2 is a projector orthogonal to the turn-around thus killing
the term with coefficient A.

We have already seen that in order to have a well-behaved theory with
a finite number of particle types, d must take some very special values
(Eq. 19.4). Also recall from Fig. 2.3 that d is related to A via

d = −A2 −A−2

This means that we must have (with k = 1, . . . , n)5

−A2 = exp (±iπk/(n+ 1))
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or

A = exp

(
1
± 2πi

[
1

4

2
± k

4(n+ 1)

])
(19.13)

where we have labeled the two different ± with two different superscripts
to keep track of them. Note that the first ± (with the superscript 1),
just changes the overall chirality of the theory.
Let us take, for example, the n = 3 case, meaning P3 vanishes and

we have Ising fusion rules as discussed in section 19.1. There are two
possible5 values of k given by k = 1 corresponding to d =

√
2 and k = 3

corresponding to d = −
√
2. Each of these has four possible choices of

the signs in Eq. 19.13, thus resulting in eight possible anyon theories.
This matches the eight theories with Ising fusion rules that we found in
section 18.3 above.
Just for completeness, let us determine the twist factors for the σ

particle for each of these anyon theories. We have

θ∗a = −A3 = exp

(
1
± 2πi

[
−1

4

2
± k

16

])

with k = 1 or 3. This gives all the possible odd-sixteenth roots of unity
as in Eq. 18.43.

Further Reading

• Louis Kauffman, Knots and Physics, World Scientific, (2001), 3ed.
Kauffman [2001]

• L. H. Kauffman and S. L. Lins, Temperley-Lieb Recoupling Theory

and Invariants of 3-Manifolds, Annals of Mathematics Studies, no
134, Princeton University Press (1994).
Kauffman and Lins [1994]

• Wang book for unitarization Wang [2010]

• some of the ideas date back to Penrose [1971]

Exercises

Exercise 19.1 Jones-Wenzl projectors P0, P2, and P3

For two strands one can construct two Jones-Wenzl projectors P0 and P2

as shown in Fig. 19.5 and 19.7.
(a) Show that these projectors satisfy P 2 = P , so their eigenvalues are 0

and 1. Further show that the two projectors are orthogonal P0P2 = P2P0 = 0.
(should be easy, we did this in lecture)

(b) Show that for d = ±1 we have P2 = 0 in the evaluation of any diagram.
The result means that in these models there is no new particle which can
be described as the fusion of two elementary anyons. Why should this be
obvious? Hint: Look back at the exercise 2.2.

(c) The three strand Jones-Wenzl projector must be of the form shown in
the figure 19.11.
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The coefficients α, β, γ, δ, ǫ are defined by the projector condition P 2
3 = P3

and also by the condition that P3 is orthogonal to P0 which is shown in the
Figs. 19.12 and 19.13.

Calculate the coefficients α, β, γ, δ in P3. Calculate the quantum dimension
d3 shown in Fig. 19.15.

(d) Choosing d = ±
√
2 show that P3 = 0 in the evaluation of any diagram.

We can then conclude that in this model there is no new particle that is the
fusion of three elementary strands. Hint: Try putting P3 within a some simple
diagrams and calculate the results.

(e) For the case of d = ±
√
2 show that, when evaluated in any diagram,

2× 2 /∈ 2. In other words, prove Fig. 19.18.

Exercise 19.2 More General Jones-Wenzl Projectors
(a) A Jones-Wenzl projector for n strands is defined both by P 2

n = Pn+1

as well as by being orthogonal to P0 analogous to Fig. 19.13. Assuming these
properties are satisfied for Pn show that they are satisfied for Pn+1 given by
Fig. 19.19. Hint: Use the fact that connecting up a single string from Pn+1

from top to bottom as in Fig. 19.29 must give something proportional to Pn
(Why?).

......

......
Pn+1

Fig. 19.29 This figure, with n strands
going in the bottom, and n strands
coming out the top, must be propor-
tional to Pn.

(b) Using Fig. 19.19 derive Eq. 19.1. Show that the solution to this equation
is given by Eqs. 19.2 and 19.3. Confirm the condition for dn to vanish given
in Eq. 19.4.

Exercise 19.3 Theta Diagram
(a) Show ∆(a+ 1, a, 1) = da+1. Hint: Use Fig. 19.29.
(b) More generally show ∆(a+ k, a, k) = da+1. Hint: Generalize Fig. 19.29

to the case where k strands are connected in a loop from the top to the bottom.

Exercise 19.4 F -matrix diagrammatics
Using the diagrammatic algebra, determine F 21α

12β and F 21α
21β for arbitrary d.

Confirm that your results are unitary matrices.

Exercise 19.5 Twists of Kauffman Anyons
Use the Kauffman bracket rules to calculate θa for the Pa kauffman anyon.

Show that
θ∗a = (−1)aA−a(a+2)

Hint: Try a = 2 then a = 3 to figure out the pattern.





Anyons from Groups 20
Medium Hard Material

In this chapter we will use the structure of discrete groups to build rules
for anyon theories1. There are two general approaches to consider. In 1In chapter *** (also section ***)

we discuss another construction of an
anyon theory from a discrete group,
known as the quantum double con-
struction. We defer discussion of that
construction for now.

section 20.1 we will label the lines in our diagrams with group elements
whereas in section 20.2 we will label lines in our diagrams with group
representations. As we have done previously, in each case we will con-
sider planar diagrammatic algebras first before considering braiding.

20.1 Fusion as Group Multiplication

One way to construct a wide variety of consistent planar diagrammatic
algebras is to construct our fusion rule based on the structure of a group.
In this approach we consider a discrete group G, and each element g ∈ G
is a particle type with the identity element I of the group being the
vacuum.
Fusion rules follows the rules for group multiplication. That is, for

g, h ∈ G
g × h = gh

which we draw as shown in Fig. 20.1.

g h

gh

=

g h

h−1g−1

Fig. 20.1 Fusion is defined by group
multiplication. On the right we show
the three particles orientied as all leav-
ing the vertex. With this orientation
when the three particles are multiplied
together in clockwise order, they should
fuse to the identity gh(h−1g−1) =
h(h−1g−1)g = (h−1g−1)gh = I.)

Since gg−1 = g−1g = I, antiparticles are given by the inverse elements
in the group, or ḡ = g−1. This means that in a diagram we may reverse
an arrow if we invert the group element as shown in Fig. 20.2.
Let us consider diagrams where each line is labeled by a group element

g ∈ G. Reversal of a line corresponds to inversion of the group element
as shown in Fig. 20.2 analogous to reversing an arrow in order to turn a
particle into its antiparticle.

g g−1

=

Fig. 20.2 Reversing an arrow inverts
the group element.

In cases where the group is abelian so that g × h = gh = hg = h× g
which is what we required for fusion of particle types in section 8.1 above.
In section 20.1.3 we will consider the possibility of using nonabelian
groups, but for now we will assume the group is abelian. We thus have
fusion rules given by group multiplication

Na
g,h = δa,gh = δa,hg

Since the result of any fusion is always uniquely defined by group mul-
tiplication (one never has a sum on the right hand side, such as g× h =
a+ b), the quantum dimension of every particle is dg = 1 meaning the
Hilbert space size does not grow with the number of particles.
An example of a planar diagram with this type of group multiplication

is shown in Fig. 20.3.
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b

a
ab

c

cab
d

dcab
dca

ca
f

Fig. 20.3 A planar diagram with fusion being defined as group multiplication. For
each vertex, if all arrows are pointed out of the vertex, then going around the vertex
clockwise, the group elements multiply to the identity, as shown in Fig. 20.1.

20.1.1 Group Cohomology

We now have the task of trying to construct consistent F -matrices for
our planar diagram algebra. This is an extremely well studied problem
in the field of group cohomology.2

2Group cohomology is a very general
framework which we will not delve into
more than is necessary. However, it
is worth knowing that it enters promi-
nently in a number of topological theo-
ries.

Consider a general group G. A so-called 3-cocyle of the group is given
by a function of three variables ω(a, b, c) where a, b, c ∈ G that satisfies

ω(a, b, c)ω(a, bc, d)ω(b, c, d) = ω(ab, c, d)ω(a, b, cd) (20.1)

Generally we will consider cases of ω being a U(1) valued complex phase.
In group cohomology notation we say that

ω ∈ H3(G,U(1)) (20.2)

Eq. 20.1 may look obscure, but it is actually just a translation of the
pentagon equation! Let us make the identification, in the notation of
chapter 9,

[F a,b,c(abc)](ab),(bc) = ω(a, b, c)

So that we have diagrammatically

a b c

ab

abc

= ω(a, b, c)

a b c

bc

abc

Fig. 20.4 The 3-cocycle is precisely an F -matrix. Compare to Fig. 9.1.

Examining the pentagon equation Eq. 9.7 and Fig. 9.7 we see that
this is precisely the same as Eq. 20.1 in a different language. Note that
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there is no sum over indices here (like the sum over possible elements
h in Eq. 9.7) since the fusion of any two group elements always gives a
unique group element as an outcome.

ab

a b

→ u(a, b)

ab

a b

Fig. 20.5 We have the freedom to
make a gauge transform of a vertex by
multiplying by a phase u(a, b).

As with F -matrices, it is possible to choose different gauges (See sec-
tion 9.4). In particular given a 3-cocycle (ie., a solution of the pentagon
equation) we can multiply each a, b vertex by a phase u(a, b) as shown
in Fig. 20.5 to transform the cocycle by

ω(a, b, c) → u(a, bc)u(b, c)

u(a, b)u(ab, c)
ω(a, b, c). (20.3)

By making such a gauge transform we generate additional solutions of
the pentagon equation. We view different solutions which are gauge
transforms of each other as being physically equivalent, We will typically
work with just one representative 3-cocycle for each equivalence class by
choosing a convenient gauge. It is useful to always work with a so-called
normalized gauge, where ω(a, b, c) = 1 whenever a = I or b = I or c = I.
(I.e, fusing with the vacuum gives no phase). Further we want to only
consider gauge transforms that maintain this normalized gauge, so we
must insist on u(I, g) = u(g, I) = u(I, I) = 1. Given this restriction
to normalized gauge, however, one still has a large additional gauge
freedom.
The 3-cocycle (pentagon) equation Eq. 20.1 typically will have more

than one gauge-inequivalent solution. Further, if we have two different
3-cocycles ω and ω′, we may multiply these together to generate another
solution ωω′ and we may invert ω to generate another solution. Thus,
the space of 3-cocycles H3(G,U(1)) in Eq. 20.2 is itself a group, known
as the third cohomology group of G with coefficients in U(1).
A trivial 3-cocycle ω(a, b, c) = 1 for all a, b, c ∈ G is always possible. In

this case all diagrams have value 1. However, for any group (beyond the
trivial group with only one element), there are always other possible 3-
cocycles as well. Such 3-cocycles and group cohomology in general have
been studied extensively in the mathematics and physics communities
and it is possible to simply look up the form of the possible 3-cocyles.
(See the end of the chapter for good references).
While all 3-cocycles provide a solution to the pentagon equation, they

do not always allow for full isotopy invariance as discussed in chapter 16.
Indeed, for any 3-cocycle ω, we will need to check whether it satisfies all
the requirements for full isotopy invariance. For example, we want to be
able to freely turn up and down legs of a vertex as shown in Fig. 20.6.
Thus for full isotopy invariance (and allowing for d both +1 and −1)

we need to have

s(a, b)ω(a, a−1, b) = 1 (20.4)

s(a, b)ω(a, b−1, b) = 1 (20.5)
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for all a, b in the group with

s(a, b) =

{
−1 da = db = −1
+1 otherwise

(20.6)

While this condition seems quite restrictive, the gauge freedom Eq. 20.3
allows us often to achieve this.

b

a

a-1

a-1b

= s(a, b)ω(a, a-1, b)

b

a-1ba

a

ab-1

b-1
b

= s(a, b)ω(a, b-1, b)−1

a

bab-1

Fig. 20.6 Turning up and down relations (analogous to Fig. 14.17). The prefactor

s comes from the proper interpretation of the sign of the
√
d factors in 14.17. See

section 14.5.

A further item to note is that

da = ω(a, a−1, a)

and if a is self-dual (a = a−1) this is the gauge invariant Frobenius-Schur
indicator. If we can do so, we will try to choose a gauge for our 3-cocyles
such that we have full isotopy invariance (this is not always possible) by
choosing negative da but keeping ǫa positive as discussed in section 14.5.

20.1.2 Simple Examples with G = ZN

For example, let us take a simple case of the group G = ZN , the group
of integers modulo N with the group operation being addition modulo
N . Since this group is abelian, we have3 gh = hg as we want for fusion3Confusingly gh = g×h here mean ad-

dition of g and h modulo N . of particle types as described in chapter 8.
The inequivalent 3-cocyles of the group ZN can be written as (See

references at the end of the chapter)

ω(a, b, c) = exp

(
2πip

N2
a(b+ c− [b+ c]N )

)
(20.7)

where here a, b, c ∈ 0, . . . , N − 1, and the brackets [b + c]N means b + c
modulo N where the result is chosen to lie in the range 0, . . . , N − 1.
Here the index p is an integer in the range 0, . . . , N − 1 describing the
N different gauge-inequivalent 3-cocyles.
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The trivial 3-cocyle is given by p = 0 which gives ω = 1 always. The
nontrivial 3-cocycles are more interesting.

Z2

Lets consider the simple case of Z2 fusion rules. Here the group elements
are g = 0, 1 and the group operation is addition modulo 2. One has the
trivial 3-cocycle p = 0 in Eq. 20.7, giving ω = 1, or all F -matrix elements
equal to 1, which we identify as being exactly the same as the d = 1
loop gas from section 18.1.1.
The only nontrvial 3-cocycle is the p = 1 case. Here, using Eq. 20.7

we determine the 3-cocycle is of the form

ω(a, b, c) =

{
−1 a = b = c = 1
+1 otherwise

(20.8)

We recognize this as being exactly the case of the d = −1 loop gas
from section 18.1.2 (This translates to saying that the F -matrix is −1 if
and only if all four incoming legs a, b, c and abc are in the 1 state as in
Eq. 18.10, and note that abc here means multiplication with the group
operation so is really (a+ b+ c)mod 2.).

Z3 and beyond

Generalizing the Z2 fusion to Z3, we now have g = 0, 1, 2 with the
group operation being addition modulo three. In this case we have
three different 3-cocycles, the trivial 3-cocycle (p = 0 in Eq. 20.7) and
two nontrivial 3-cocycles (p = 1 and p = 2 in Eq. 20.7).
While these nontrivial cocycles provide a valid solution to the pen-

tagon equation 20.1 (or Eq. 9.7) they are not in a form where they enjoy
full isotopy invariance. One can use gauge transforms Eq. 20.3 to try to
put the cocyles in different forms, but it is not possible to find a gauge
where both Eq. 20.4 and Eq. 20.5 are satisfied at the same time. This
is precisely the κ(3) obstruction discussed in section 14.4 (See exercise
20.2). Nonetheless these cocycles still provide a consistent planar dia-
grammatic algebra, although not a fully isotopy invariant one. Thus the
only isotopy invariant case is the trivial cocycle p = 0. We will discuss
the possible braidings that are consistent with this planar algebra when
we discuss the trivial cocycle below.
More generally, there are two possible impediments to obtaining an

isotopy invariant diagram algebra: (i) In the case of ZN for any N a
multiple of 3 is similar to the case of Z3: Any p that is not a multiple of
3 cannot be fully isotopy invariant. (ii) For ZN with N a multiple of 4,
only even p can be fully isotopy invariant (See exercise 20.2). However,
if neither of these two impediments (i or ii) occurs, then we should be
able to choose a gauge where the diagram algebra is isotopy invariant.
Of all the cocyles, only the p = 0 cases (for all N) and p = N/2 (for
even N) can be given a consistent braiding. More details of these cases
are provided in section 20.4 below.
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Other abelian groups

Abelian groups are always4 of the form ZN1×ZN2×. . . with some number4See the brief discussion in section
41.2.1. of factors of cyclic groups ZN . We can look up the cocycles for such

groups in, for example, de Wild Propitius [1995] or Hu et al. [2013b] or
a book on group cohomology! Note that the variety of different possible
cocycles grows when there are multiple ZN factors. We will not pursue
these theories further here5.5It looks like a fun exercise to explore

this!

20.1.3 Using Nonabelian Groups?

In the case where the group is nonabelian we deviate from what was
done when we discussed fusion of particle types in section 8.1 above.
In the discussion of fusion of particle types, we have always assumed
g× h = h× g and with a nonabelian6 group gh may not be the same as

6We have a bit of a language difficulty
here. Here we use the word nonabelian

to mean when g×h 6= h×g whereas pre-
viously (See section 8.2) we used non-
abelian to describe fusion rules where
there is more than one fusion channel,
such as g × h = a+ b+ . . ..

hg.
Why did we insist in chapter 8 that particle fusion should satisfy

g × h = h × g? If we think about particles living in three dimensions,
when we bring two particles, g and h together, looking at the system
from one angle it looks like g is to the right of h but looking at the two
particles from another angle, it looks like h is to the right of g. Thus
there is no way to decide whether the pair fuses to gh or hg.
However, if we are only concerned with a planar diagram algebra (or

a diagram algebra on the surface of sphere) then there is no ambiguity!
The surface we are considering is assumed to be oriented so we can
always unambiguously decide which particle is clockwise of which other
particle at a vertex. Thus we can make the general rule that for a
vertex to be an allowed fusion, the three particles leaving the vertex
must multiply in clockwise order to the identity as shown in the right of
Fig. 20.1. Thus, at least for planar diagrams we can generalize our rules
for particle fusion to allow non-commutative fusions.
All of the figures we have drawn in this section (Fig. 20.1 – Fig. 20.6)

have been drawn so as to be consistent with our rule for nonabelian
groups — that is, if all of the arrows are outgoing, when you multiply
the group elements clockwise around the vertex you obtain the identity.
For definiteness we discuss the example of the nonabelian group S3 in

the appendix section 20.5.

20.2 Fusion of Group Representations: Rep(G)

Another way to construct a consistent planar diagrammatic algebra is
to work with representations of discrete groups7. Suppose we have ir-

7To remind the reader, each discrete
group has a finite number of irreducible
representations, and any representation
of the group can be decomposed into
a direct sum of irreducible representa-
tions. See section 41.2.4.

reducible representations Ri of a group G. A tensor product of two of
these irreducible representations will necessarily decompose into a direct
sum of irreducible representations. I.e., we have8

8If we write M ⊗ N = P we mean
the following. If Mab is a matrix
of dimension m and Ncd is a matrix
of dimension n then P is defined as
P(ac),(bd) = MabNcd and is of dimen-
sion nm. If we write P = N ⊕ M
we mean that P is block diagonal with
blocks N and M . Finally note that the
relation in Eq. 20.9 is an isomorphism
not an equality. One can choose a basis
such that the right hand side is block
diagonal, however, this is not the natu-
ral basis for the left.

Ra ⊗Rb ≃ Rc ⊕Rd ⊕ . . . (20.9)
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with the sum on the right hand side being finite. We thus propose to
label a particle type for our diagrammatic algebra with an irreducible
group representation, and have the fusion relations be given by these
tensor product decompositions. Thus we interpret the tensor product
equation Eq. 20.9 as a particle fusion relation

a× b = c+ d+ . . .

and accordingly particle a’s corresponding to representation Ra has an-
tiparticle ā corresponding to the dual representation which we write as
Rā = R∗

a. This fusion category (this set of fusion rules with the associ-
ated F -matrices) using the representations of the group G is known as
Rep(G).
It is fairly easy using some tricks of group theory to determine the

fusion rules for discrete group representations. Recall that a represen-
tation R is a homomorphism9 from each group element g to a matrix

9Meaning a mapping where the
group operation is preserved:
ρR(g1)ρR(g2) = ρR(g1g2).

ρRmn(g) (See section 41.2.4). The trace of the representation matrix is
known as its character

χR(g) = Tr[ρR(g)]

One can either work out the characters of a group explicitly or (much
more commonly) just look them up on character tables, which can be
found in any group theory book or on the web.
Since Tr(ab) = Tr(ba) we have χR(g) = χR(hgh−1) meaning that the

character depends only on the so-called conjugacy class of the group
element g.
Characters combine in fairly simple ways under both direct product

and direct sum

χRa⊕Rb(g) = χRa(g) + χRb(g) (20.10)

χRa⊗Rn(g) = χRa(g)χRb(g) (20.11)

Further we have orthonormality relations for irreducible representations:10

10This orthonormality is derived triv-
ially from the grand orthogonality theo-
rem, Eq. 41.6. Since the character χ(g)
is a function of only the conjugacy class
of g it is sometimes more convenient to
replace the sum over all elements with
a sum over classes where we then also
include a factor of the number of ele-
ments in the class. So the left hand
side would read instead

∑

classesC

|C|
|G| [χ

Ra(g ∈ C)]∗ χRb (g ∈ C)

with |C| meaning the number of ele-
ments in class C.

1

|G|
∑

g∈G
[χRa(g)]∗ χRb(g) = δRa,Rb

(20.12)

where the sum is over all elements g of the group G and |G| is the total
number of elements in the group. We can thus deduce the tensor product
decomposition11,12

11The
⊕

symbol here means a direct
sum of all the arguments. The prefactor
Nc
ab here means the Rc representation

occurs Nc
ab times in the direct sum.

12We have Ra ⊗Rb ≃ Rb ⊗Ra mean-
ing the two tensor products are isomor-
phic, but they are not equal. The two
matrices have their entries in different
places. See the definition in note 8 of
this chapter above.Ra ⊗Rb ≃

⊕

c∈ irreps

N c
abRc (20.13)

where

N c
ab =

1

|G|
∑

g∈G
[χRc(g)]∗ χRa(g)χRb(g) (20.14)
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identity rotations reflections
1 element 2 elements 3 elements

trivial rep (I) 1 1 1
sign rep (S) 1 1 -1
2d rep (V ) 2 -1 0

Table 20.1 Character table for the group S3. Notice the orthogonality of rows as
defined by Eq. 20.12.

or in our fusion product language

a× b = b× a =
∑

c

N c
ab c

Note that in the case where the group is abelian, the representations
themselves are also an abelian group (meaning N c

ab = N c
ba ∈ {0, 1}

only.)
It is not hard to show (See exercise 20.3) that the quantum dimension

of a representation Ra is given by

da = χRa(e) (20.15)

where e is the identity element of the group.

20.2.1 Example: Representations of S3

As a simple example, let us consider the representations of the group S3

which can also be thought of as the symmetries of a triangle. To remind
the reader13 this group has 6 elements which can be written in terms of13The group S3 is also sometimes

known as the dihedral group with 6 ele-
ments, often denoted D3 or sometimes
D6. See section 41.2 for a few more de-
tails of this group.

two generators x (a reflection) and r (a rotation) with multiplcation rules
x2 = r3 = e and xr = r−1x with e the identity. The 6 elements can be
written as e, r, r−1, x, xr, xr−1. There are three conjugacy classes, which
we will call the identity (e), the rotations (r, r−1) , and the reflections
(x, xr, xr−1).
There are also three irreducible representations14. The group has a14The number of irreducible reps is al-

ways equal to the number of conjugacy
classes.

character table as given in table 20.1. It is then easy to use Eq. 20.14
to determine the fusion laws for the representations, which are given by

I × I = I, I × S = S, I × V = V (20.16)

S × S = I, S × V = V (20.17)

V × V = I + S + V (20.18)

from which we see that I plays the role of the vacuum particle. Just as
an example, let us consider Eq. 20.18. From the character table we have
χV = (2,−1, 0) and so χV⊗V = χV χV = (4, 1, 0) = (1, 1, 1)+(1, 1,−1)+
(2,−1, 0) = χI + χS + χV .
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class 1 -1 {±iσx} {±iσy} {±iσz}
elements 1 1 2 2 2

I 1 1 1 1 1
Rx 1 1 1 -1 -1
Ry 1 1 -1 1 -1
Rz 1 1 -1 -1 1
S 2 -2 0 0 0

Table 20.2 Character table for the group Q8. Notice the orthogonality of rows as
defined by Eq. 20.12.

20.2.2 Example: Quaternion Group Q8

The quaternion group15 can be defined as the eight two-by-two matri-

15The quaternions were famously dis-
overed by Hamilton. He was so ex-
cited by this discovery that he carved
them into the stone of Brougham
(Broom) Bridge in Dublin. There is
a plaque there today to commemorate
this event.

ces ±1,±iσx,±iσy,±iσz. The group has five conjugacy classes 1, −1,
{±iσx}, {±iσy}, {±iσz}, and correspondingly five representations. The
character table is given in table 20.2. From the character table it is easy
to use Eq. 20.14 to derive the nontrivial fusion rules (Again I plays the
role of the vacuum particle and we do not write its fusions)

Ri ×Ri = I i = x, y, z (20.19)

S ×Ri = S i = x, y, z (20.20)

Rx ×Ry = Rz (and cyclic permutations) (20.21)

S × S = I +Rx +Ry +Rz (20.22)

Note that S is the 2-dimensional representation given by the defining
two-by-two matrices.

20.2.3 F-Matrices

With a bit of work, the F -matrices (often known as 6j symbols in this
context) can also be derived using group theoretic methods. In general
this can be a bit complicated but the principle is straightforward group
theory. As usual we should think of F badecf as a basis transform (See
Fig. 16.3). In this case it is convenient to think of the process of b, a, e
and c fusing to the identity in different ways or equivalently, the tensor
product of Rb, Ra, Re and Rc fusing to the identity representation.

(1) ConsiderRa⊗Rb ≃
⊕

d̄N
d̄
abRd̄ and fuse withRc⊗Re ≃

⊕
dN

d
ceRd.

The resulting representations, Rd and Rd̄ then fuse together to
form the identity representation. Such a process corresponds to
the diagram in the top of Fig 20.7 (same as the left of Fig. 16.3).

(2) Consider instead Rb ⊗Rc ≃
⊕

f̄ N
f̄
bcRf̄ and fuse with Ra ⊗Re ≃⊕

f N
f
aeRf , and finally fuse Rf̄ and Rf to form the identity rep-

resentation. Such a process corresponds to the diagram on bottom
of Fig 20.7 (same as the right of Fig. 16.3).

b

a

c

e

d

b

a

c

e

f

Fig. 20.7 Fusion of representations.
Compare to the diagrams in Fig. 16.3.
The top figure can be thought of as the
d component of Ra⊗Rb ≃

⊕
d̄N

d̄
abRd̄

fused with Rc ⊗ Re ≃ ⊕
dN

d
ceRd to

form the identity. The bottom figure
can be thought of as the f component of

Rb⊗Rc ≃
⊕
f̄ N

f̄
bcRf̄ fused with Ra⊗

Re ≃ ⊕
f N

f
aeRf to form the identity.
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Both of these processes correspond to fusion of the four representations
to the identity. The first, we might say is the identity component of
(Rb⊗Ra)⊗ (Re ⊗Rc) whereas the second is the identity component of
(Rb⊗Rc)⊗(Ra⊗Re). While these two tensor products are isomorphic,
they are expressed in a different basis (see note 12 above). The F -matrix
F badecf matrix is just the matrix relating these bases to each other. The
details of working out such F -matrices are given in appendix ??.

20.2.4 Some Simple Braidings for Rep(G)

So far we have only discussed consistent fusion of representations —
i.e, fusion rules that will satisfy the pentagon equation. Given a set of
F -matrices, we can then look for braidings, or R-matrices that satisfy
the hexagon. We already know that there will typically be multiple
solutions16 of the hexagon. Some of the braidings, however, can be16Recall that if G is abelian, then the

representations of G are isomorphic to
the group G itself. In which case
Rep(G) is just the trivial cocycle of G.
As we discussed in section 20.1.2 and
20.4 the trivial cocycle of ZN has N
different braidings.

stated easily for any group G, as we now discuss.

“Trivial” Braidings: Bosons

We can assign a “trivial” braiding to Rep(G) by defining a braiding to
simply be a re-ordering of the tensor factors. So if we start with particle
a to the left of particle b we haveRa⊗Rb and if we braid b with a (either
in front of or behind) we end up with b to the left of a or Rb ⊗Ra. We
can assign1717Note that Rabc with a 6= b is gauge

dependent, so Eqs. 20.23 and 20.24 im-
ply a gauge choice. However, Rabc R

ba
c is

gauge independent, Raac is gauge inde-
pendent, and θa is gauge independent.

Rabc =





1 a 6= b
1 a = b and Rc occurs in

symmetric part of the space Ra ⊗Ra

−1 a = b and Rc occurs in
antisymmetric part of the space Ra ⊗Ra

(20.23)
In the case where a = b we need to know a bit about how the c represen-
tation is related to product of two a representations. This is not hard to
do, and we give details in appendix 20.6.1. The intuition for the minus
sign in the last case of Eq. 20.23 is clear: If we have an antisymmetric
combination of Ra and Ra (like a spin-singlet made of two spin 1

2 ’s),
exchanging the two will incur a minus sign.18

18Since θa = 1, using Eq. 15.3, we find
that the Frobenius-Schur indicator is
κa = −1 exactly when Ra and Ra fuse
antisymmetrically to the identity repre-
sentation, again analogous to the spin
1
2
example of section 14.7. See section

20.6.2

This rule (Eq. 20.23) provides a solution of the hexagon for Rep(G)
for any group G. If we choose this braiding we are describing particles
that are bosons and have trivial spin θa = 1, with internal quantum
numbers given by the representations of the group G.

Fermions and Bosons

If it so happens that G contains a central element19 z such that z2 = e

19“Central” means that z commutes
with all the elements of the group. I.e.,
zg = gz for all g ∈ G.

with e the identity of the group, then each representation Ra can be
assigned a degree p(a) which is 0 or 1 depending on whether z acts as
the identity in the representation or acts as −1 in the representation20.

20To see this consider applying z in

the representation twice ρR(z)ρR(z) =
ρR(z2) = ρR(e). This means that
ρR(z) can only act as the identity or
as minus the identity.
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A consistent braiding is then given by (See exercise 20.5)

[Ra,bc ]new = (−1)p(a)p(b)[Ra,bc ]as in Eq. 20.23 (20.24)

In other words, we have altered the braiding defined in Eq. 20.23 to
account for the possibility of both bosons or fermions. We have declared
a particle a to be if bosonic if p(a) = 0 (if ρRa(z) acts as 1) or fermionic
p(a) = 1 (if ρRa(z) acts as −1). The fermionic particles have θa = −1
whereas the bosonic particles have θa = +1. Sometimes this braided
solution to the hexagon is called Rep(G, z) compared to the fully bosonic
solution which can then be called Rep(G, e). I.e., if you set z = e, the
identity, then you set all particles to be bosons.
An nontrivial example of Rep(G, z) is given by the quaternion group

Q8 where we choose z = −1. It is easy to check that this makes the Ri

representations bosons, but the S representation is a fermion (note the
negative sign on the character χS(−1)).

20.2.5 Continuous (Lie) Group Representations?

One can imagine that instead of looking at the representations of dis-
crete groups, one considers instead the representations of Lie groups
(See section 41.2.3). For example, the different representations of the
group SU(2) are the different values of the spin quantum number j, and
these fuse together with the usual angular momentum addition rules.
Further, the F -matrices are (up to a normalization) precisely what we
call 6j symbols of angular momentum addition.
While such a scheme makes a perfectly good planar diagrammatic

algebra, the problem is that there are an infinite number of different
representations (For the case of SU(2) for example, the angulular mom-
mentum j can inifinitely large) and this violates our rule of having a
finite number of “particle types” for our diagrammatic algebra. Such
algebras can be problematic when used for physical purposes (For ex-
ample, as we will see in section 21.3 using a diagrammatic algebra with
an infinite number of representations for construction of a TQFT results
in divergences). Schemes have been constructed to regularize such a dia-
grammatic algebra and arrange that only a finite number of representa-
tions ever occur; such schemes are often known as “deformations” of the
Lie algebra representation21. The most common such deformations cor- 21The term “quantum group” is often

used. Be warned that a quantum group
is not a group.

respond precisely to the particle types of a corresponding Chern-Simons
theory at some finite level. For example, in the case of SU(2), one can
consider SU(2)k Chern-Simons theory which has deformed F -matrices
such that angular momentum j = 0, 1/2, . . . k/2 can occur, but one never
gets any higher angular momenta.

20.3 Parastatistics Revisited

Way back in section 3.5.1 we asked why we could not have exotic statis-
tics in 3+1 dimensions. While there are nontrivial representations of
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the permutation group that would satisfy the quantum mechanical com-
position rule, we stated that additional constraints — such as particle
creation and annihilation and locality — limits us to just bosons and
fermions. We are now at the point where we can discuss exactly what
we mean by this.
The structure we have built up for anyons in 2+1 dimensions is that

of a braided unitary category: a set of particles with fusions, F -matrices
satisfying the pentagon, and R-matrices satisfying the hexagon. If we
try to do something similar in 3+1 dimensions we will no longer have
nontrivial braiding of world lines since, as discussed in section 3.3.2, in
3+1 dimension no knots can be formed in one-dimensional world lines.
Thus, we must impose the restriction shown in Fig. 20.8 that all particles
are transparent. In equations this can be stated as

b a

=

b a

Fig. 20.8 In 3+1 dimensions these
two pictures are topologically equiva-
lent. Thus all particles are transparent.
This implies Eq. 20.25. Rabc R

ba
c = 1 (20.25)

for all a, b, c such that N c
ab > 0. If the condition Eq. 20.25 holds and yet

we have a solution of the hexagon equation, we say we have a symmetric
tensor category22. Thus if we are to construct an anyon theory with22A symmetric tensor category is in

some sense the exact opposite of a mod-
ular tensor category. For a modular
tensor category no particles are trans-
parent except the identity, whereas for
a symmetric tensor category all parti-
cles are transparent.

point particles in 3+1 dimensions, it must be described by a symmetric
tensor category.
In fact we have already given two examples of symmetric tensor cat-

egories, in section 20.2.4: (a) the theory Rep(G) (or Rep(G, e)) which
describes bosons having internal quantum numbers given by the repres-
ntations of the group G, and (b) the theory Rep(G, z) where some of
the particles are instead declared fermions depending on how their cor-
responding representation transforms under the action of the element
z. The crucial theorem we mentioned in section 3.5.1, originally due to
Doplicher and Roberts (See also Müger [2007]; Deligne [2002]), is that
there are no other possibilities: Any symmetric tensor category is equiv-
alent to Rep(G) =Rep(G, e) if it has no fermions, or Rep(G, z) if it has
fermions. In other words for point particles in 3+1 dimensions, there
are only bosons and fermions; nothing else!

20.4 Appendix: Isotopy Invariant Planar
Algebras and Anyon Theories from

G = ZN Cohomology

Here we start with the cocycles for ZN given in Eq. 20.7 and we look for
isotopy invariant cases. We have two general types of isotopy invariant
solutions: the p = 0 (trivial cocycle) solution, which exists for any N
and the p = N/2 case which exists for even N only. Let us discuss each
of these in a bit more detail.
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20.4.1 Trivial Cocycle: Z(n)
N Anyons

For any ZN one can always choose p = 0 in Eq. 20.7 which gives the
trivial cocycle ω(a, b, c) = 1 for all a, b, c and we correspondingly have
da = 1 for all a.
Recall that these cocycles are really F -matrices, which have now all

been set to unity. We now want to determine the possible braidings for
this theory by using the hexagon Eq. 13.1. Plugging in F = 1 into the
hexagon, we obtain23

23Recall the notation [a]N means a
modulo N .

Rc,a[c+a]N
Rc,b[c+b]N

= R
c,[a+b]N
[c+a+b]N

(20.26)

There are exactly N solutions24 of this system which we label n =

24Examining ρc(a) = Rc,a
[a+c]N

we see

that ρc(a) is a group representation of
the group ZN , which can only be of the
form exp(2πipa/N) for some p. Finally
we invoke the symmetry ??.

0, . . . , N − 1 which are given by

Ra,b[a+b]N
= exp

[
2πin

N
ab

]

where ab on the right is actual multiplication, not the group operation
which is addition modulo N . The twist factors are (using Eq. 15.3)

θa = e2πina
2/N

and the corresponding S matrix is (perhaps easiest derived with Eq. 17.20)

Sa,b =
1√
N

exp

[
4πin

N
ab

]

This is a modular theory only for N odd with n andN mutually prime25. 25For n = (N − 1)/2 the modular the-
ory matches the Chern-Simons theory
SU(N)1 with N odd.

These theories are sometimes known as Z(n)
N anyons (See Bonderson

[2007]).

20.4.2 Nontrivial Cocycle: Z(n)
N=2p

Here we considerN = 2p. The cocycle in Eq. 20.7 again hasN consistent
solutions of the hexagon equations, given by n = 0, . . . , (N − 1) in the
equation (See Bonderson [2007])

Ra,b[a+b]N
= exp

[
2πi(n+ 1

2 )

N
[a]N [b]N

]

with all da = +1, resulting in (from Eq. 15.2)

θa = exp

[
2πi(n+ 1

2 )

N
[a]2N

]
(20.27)

Sa,b =
1√
N

exp

[
4πi(n+ 1

2 )

N
[a]N [b]N

]
(20.28)
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These are known as Z
(n+ 1

2 )

N anyon theories for obvious reasons. They
are modular when 2n+ 1 and p are coprime26.26When n = (N/2 − 1) the modular

theory matches SU(N)1 with N even,
and when n = 0 the modular theory
matches U(1)N/2. Be cautioned that
there is some disagreement in the liter-
ature as to how you label the level of a
U(1) Chern-Simons theory.

These anyon theories, in the gauge given by Eq. 20.7 are not generally
isotopy invariant. We can generally make transformations to put these
results in potentially simpler forms.

Case I: p-odd

With N = 2p and p odd, the pth particle is self dual particle, and has
Frobenius-Schur indicator −1, which is a gauge invariant quantity. We
will thus need to push this sign onto d in order to have a fully isotopy
invariant theory. As discussed in section 14.5 we choose a gauge where

da = (−1)a

(and as usual we are working with all ǫa = +1 for an isotopy invariant
theory). Note that the composition rule Eq. 14.8 is satisfied. In this
gauge the cocycle can be written as2727If we try to use the same rule for

N = 2p, with p even where we still set
da = (−1)a, this actually gives us the
trivial cocycle discussed above in a less
convenient gauge. Note that the self-
dual particle has d = +1 in the p even
case indicating that we do not need to
push any signs onto d.

ω(a, b, c) =

{
−1 a, b, c all odd
+1 otherwise

(20.29)

The hexagon equation now takes the form

Rc,a[c+a]N
Rc,b[c+b]N

= ω(a, b, c)R
c,[a+b]N
[c+a+b]N

which compared to Eq. 20.26 introduces a minus sign if all a, b, c, are
odd. This system of equations again has N solutions which we index as
n̄ = 0, . . . , N − 1,

Ra,b[a+b]N
= exp

[
2πin̄

N
[a]N [b]N

]
(i)r(a,b)

where r(a, b) = 1 if both a and b are odd and equals zero otherwise.
which gives us (using Eq. 15.2 or Eq. 15.3 with da = (−1)a and ǫa = +1)

θa = e2πin̄a
2/N (i)t(a)

where t(a) = 1 if a is odd and is zero otherwise. It is a short exercise to
show that this recovers the correct θa, Eq. 20.27, and S-matrix Eq. 20.28
with the mapping n̄ = n− (p− 1)/2. Again, the advantage of using this

gauge for the description of Z
(n+ 1

2 )

N anyons is full isotopy invariance (with
N = 2p and p odd).

Case II: p-even

In this case the Frobenius-Schur indicator of the self-dual particle is +1
so we can choose to work in a gauge where all da = +1. While it is
possible to make a gauge transform that puts the theory into an isotopy
invariant form, the transform is not particularly transparent. For this
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reason it is often convenient to stay with the gauge given in Eq. 20.7.
However, it is not too hard to transform to an isotopy invariant gauge
if we would like.
An example of this, let us consider the nontrivial cocycle for the group

Z4. Here we can make a gauge transform (See exercise 20.2) such that

ω(a, b, c) =





−1 (a, b, c) = (1, 1, 1); (1, 2, 3); (2, 1, 2);
(2, 3, 2); (3, 2, 1); (3, 3, 3)

1 otherwise

(20.30)

and with d = 1 for all particles 0,1,2,3. This gives a fully isotopy invari-
ant theory. There are correspondingly 4 solutions of the hexagon given
by28 n = 0, 1, 2, 3 with

28This n is the same as that of
Eq. 20.28

Ra,b[a+b]4
= exp

[
2πi(n+ 1

2 )

4
[a]4[b]4

]
(−1)r(a,b)

where r(a, b) = 1 for (a, b) = (1, 2), (1, 3), (2, 1), (3, 1) only and is zero
otherwise.

20.5 Appendix: Cocyles for S3

To give an example of a non-abelian group, let us look at the case of the
group S3. To remind the reader this group has 6 elements which can
be written in terms of two generators x and r with multiplcation rules
x2 = r3 = e and xr = r−1x with e the identity. The 6 elements can be
written as e, r, r−1, x, xr, xr−1. Let us write them as (A, a) = xAra with
A = 0, 1 and a = −1, 0, 1. There are 6 independent 3-cocycles described
by p = 0, . . . 5 in the equation (See references at the end of the chapter)

ω((A, a), (B, b), (C, c)) = (20.31)

exp{iπpABC} exp
{
2πip

9
(−)B+Ca

{
(−)Cb+ c− [(−)Cb+ c]3

}}

where the bracket []3 indicates modulo 3 where the result is assumed to
be in the range −1, 0, 1.
Note that within S3 there is a Z2 subgroup consisting of e and x, or a =

0 with A = 0, 1. The first term on the right hands side, exp(iπpABC),
matches the two possible 3-cocyles from the Z2 group. For even p it is
the trivial cocycle, whereas for odd p we have a ω being −1 only when
A,B,C are all in the 1 state, equivalent to Eq. 20.8. The second factor
looks similar to the Z3 cocycles but only when C = 0. Setting C = 0 for
a moment, the same argument as in the Z3 case shows that we cannot
have full isotopy invariance unless p = 0 or p = 3, in which case the
second factor on the right hand side of Eq. 20.31 is trivial. Thus this
case of p = 3 gives an isotopy invariant cocyle which essentially ignores
the a variable of (A, a) and is equivalent to Eq. 20.8 for the A variables
with d(A,a) = (−1)A.
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20.6 Further Group Theory

20.6.1 Symmetry of Fusion Products in a⊗ a

When we fuse two representations a⊗ a there is a beautiful formula for
determining which part of this fusion product is symmetric between the
two pieces and which is antisymmetric. We can construct the character
of the symmetric part and antisymmetric parts separately2929The proof of this formula is not too

hard. Thinking in terms of represen-
tation matrices, let the basis states
for this representation be ei with i =
1 . . . d and let the eigenvalues of ρ(g)
be λ1 . . . λd. The eigenvalues of ρ(g2)
are then λ21 . . . λ

2
d. The character is

is the sum over all eigenvalues. So
χ(g) =

∑
i λi and χ(g2) =

∑
i λ

2
i .

The tensor product ρ(g) ⊗ ρ(g) can be
subdivided into the so-called symmet-
ric square and the antisymmetric (or al-
ternating) square. The symmetric part
has basis states ei ⊗ ej + ej ⊗ ei with
1 ≤ i ≤ j ≤ d whereas the antisymmet-
ric part has basis states eiej−ejei with
1 ≤ i < j ≤ d. The eigenvalues of the
symmetric part of ρ(g) ⊗ ρ(g) are then
just λiλj for 1 ≤ i ≤ j ≤ d whereas
the eigenvalues of the antisymmetric
part are just λiλj with 1 ≤ i < j ≤
d. Thus χsym(g) =

∑
1≤i≤j≤d λiλj

whereas χasym(g) =
∑

1≤i<j≤d λiλj
which can be massaged into the given
result of Eqs. 20.32 and 20.33.

χa⊗asym(g) =
(
[χa(g)]2 + χa(g2)

)
/2 (20.32)

χa⊗aasym(g) =
(
[χa(g)]2 − χa(g2)

)
/2 (20.33)

As with regular characters, these characters depend only on the conju-
gacy class of g.

Example: S3

As an example, let us consider the group S3 again. Using the character
table 20.1 along with the groupmultiplication described in section 20.2.1,
let us attempt to decompose V ⊗V into its symmetric and antisymmetic
parts.
From the Table, 20.1, the chararacters of the rep V are χV = {2,−1, 0}.

Thus [χV ]2 = {4, 1, 0}. To calculate χV (g2) we have to determine the
square of elements g in each conjugacy class. The conjugacy class of
the identity includes only the identity, and its square is the identity so
χV (g2) = 2. The second conjugacy class is rotations, and the square of
a rotation is also a rotation so χV (g2) = −1. The final conjugacy class is
a reflection, and the square of a reflection is the identity so χV (g2) = 2.
So we have χV (g2) = {2,−1, 2}. Thus using use Eqs. 20.32 and 20.33
we have χV⊗V

sym = ({4, 1, 0}+{2,−1, 2})/2 = {3, 0, 1} = χV +χI whereas
χV⊗V
asym = ({4, 1, 0} − {2,−1, 2})/2 = {1, 1,−1} = χS . As stated in

Eq. 20.18 (and worked out explicitly just thereafter) we have the fusion
rules

V × V = I + S + V

Here we have shown that on the right hand side of this equation I and
V are symmetric and S is antisymmetric.

20.6.2 Frobenius-Schur Indicator

Let us consider a ⊗ a and consider whether its fusion to the identity
is in the antisymmetric or symmetric channel. We first construct the
symmetric and antisymmetric characters as in Eqs. 20.32 and 20.33.
Then to determine whether the identity occurs in the symmetric or an-
tisymmetric channel we use Eq. 20.12, multiply by the identity character
χI(g) = 1 and sum over the group. Thus, we have 1

|G|
∑

g∈G χ
a⊗a
sym(g)

giving one if the identity occurs symmetrically in a ⊗ a and zero if it
occurs otherwise. And similarly we have 1

|G|
∑

g∈G χ
a⊗a
asym(g) giving one

if the identity occurs antisymmetrically in a ⊗ a and zero otherwise.
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Subtracting these from each other (and using Eqs. 20.32 and 20.33) we
obtain an expression for

κa =
1

|G|
∑

g∈G
χa(g2) =





1 identity occurs in
symmetric part of a⊗ a

−1 identity occurs in
antisymmetric part of a⊗ a

0 a not self-dual
(20.34)

which we recognize as the Frobenius-Schur indicator30 for the “parti- 30Here we obtain a value of zero for the
case where a is not self-dual. In other
places in this book we have avoided
defining Frobenius-Schur indicators for
the non-self-dual case.

cle type” a. The discussion of section 14.7 shows how objects which
fuse to the identity in antisymmetric combinations must have negative
Frobenius-Schur indicators.

20.6.3 Working out an F matrix

Details of working out F -matrices (or 6j symbols, possibly with a change
in normalization) are given in Refs. Refs. Hamermesh [1989]; Buer-
schaper and Aguado [2009]; Wang et al. [2020]; Butler [1981] (all using
slightly different techniques). Here we have tried to explain an equiva-
lent version of the procedure as simply as possible. We will also work
through one as an example in exercise 20.6.
Our starting point is the tensor product decomposition of Eq. 20.13

which we rewrite here (with slightly simplified notation) as

a⊗ b ≃
⊕

c∈ irreps

N c
ab c (20.35)

This equation is an isomorphism of representations, not an equality. We
can make an equality of the corresponding representation matrices with
a unitary transform

ρa(g)⊗ ρb(g) = U




ρc1(g) 0 · · · 0

0 ρc2(g) · · · 0
...

...
. . .

...

0 0 . . . ρcn(g)



U † (20.36)

where each block corresponds to one of the terms on the right hand side
of Eq. 20.35 (if N c

ab > 1 then there are N c
ab identical blocks with irrep c.

Note that he same unitary matrix block diagonalizes this equation for
all g ∈ G.
For simplicity of notation we will write the block diagonal matrix as

ρc1(g)⊕ ρc2(g)⊕ . . .⊕ ρcn(g), so that Eq. 20.36 reads

ρa(g)⊗ ρb(g) = U (ρc1(g)⊕ ρc2(g)⊕ . . .⊕ ρcn(g))U † (20.37)

The entries in the unitary matrix in Eq. 20.37 are actually the Clebsch-
Gordan coefficients of the group — they indicate how elements of reps
a and b fuse together to form elements of a given rep c. This generalizes
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the case of angular momentum addition where combine element m1 of
rep j1 with element m2 of j2 to form element m of j which we notate as
the Clebsch-Gordon coefficient 〈jm|j1m1; j2m2〉.
It may sound difficult to actually determine the coefficients of the

matrix U . However, there is a beautiful trick (I believe first used by
Sakata [1974]) that enables quick calculation of this matrix. We choose
any random matrix A and calculate

Ũ =
∑

g∈G

(
ρa(g ⊗ ρb(g)

)
A (ρc1(g)⊕ ρc2(g)⊕ . . .⊕ ρcn(g))

†
(20.38)

this matrix Ũ is equivalent to U except that the columns of Ũ are un-
normalized.
We now define a projection operator notated as [·]cp which projects

out only the representation corresponding to cp of the block diagonal
representations in Eq. 20.37 and replaces all the others with zero. We
write

[ρa(g)⊗ ρb(g)]cp = U (0⊕ . . .0⊕ ρcp(g)⊕ 0 . . .⊕ 0)U † (20.39)

Here we say that reps a and b fuse to c. We can use even shorter-hand
notation and simply write

[a(g)⊗ b(g)]cp

Note that if the irrep Rc occurs more than once in the block diago-
nalization, we need to specify which one we mean (this will correspond
to an index µ on a vertex).
We can now determine some useful elements of the F -matrix. Let us

conisder fusing three reps a, b, c (of dimension da, db, dc) to the identity
rep in two different ways. First we consider the two fusions

[a(g)⊗ b(g)]c̄ ⊗ c(g) (20.40)

a(g)⊗ [b(g)⊗ c(g)]ā (20.41)

Both of these expressions are dadbdc matrices. We can extract the iden-
tity component by simply summing over g since by the grand orthogo-
nality theorem such a sum kills all reps except the identity. The result
must be rank one matrix (it has only one nonzero eigenvalue). Thus we
have

1

|G|
∑

g∈G
[a(g)⊗ b(g)]c̄ ⊗ c(g) = zz† (20.42)

1

|G|
∑

g∈G
a(g)⊗ [b(g)⊗ c(g)]ā = yy† (20.43)

where z and y are normalized vectors of dimension dadbdc. Note that
the vectors x and y are defined only up to a phase and this phase
corresponds to a gauge choice.
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The inner product of the vectors is the F matrix

[F abcI ]c̄b̄ = y†z

We can see this diagrammatically from the F -matrix equation
a b c

c̄

I

=
[
F abcI

]
c̄b̄

a b c

ā

I

(20.44)

where the left hand side corresponds to the fusion in Eq. 20.42 and the
right corresponds31 to the fusion in Eq. 20.43. With an appropriate 31The subtlety here is that the di-

agrams do not represent the tensors
themselves, but rather the states on
which the tensors act. This is why we
take the inner product of z and y rather
than using zz† and yy†.

gauge choice for y and z (corresponding to the gauge choice for the ver-
tices in this diagrammatic equation, see Eq. 9.9), this F -matrix element
can always be chosen to be unity.
A similar calculation, fusing four representations a, b, c, d together to

the identity in two different ways allows us to calculate general F -matrix
elements.
First, we will need to note that

a⊗ b⊗ c⊗ d = P (d⊗ a⊗ b⊗ c)PT (20.45)

where P is a permutation matrix and PT its transpose, since we are just
permuting the order of elements.
Now consider the following two fusions to the identity

1

|G|
∑

g∈G
[a(g)⊗ b(g)]e ⊗ [c(g)⊗ d(g)]ē = zez

†
e (20.46)

1

|G|
∑

g∈G
[d(g)⊗ a(g)]f ⊗ [b(g)⊗ c(g)]f̄ = yfy

†
f (20.47)

Both z and y are normalized dadbdcdd dimensional vectors. The two
processes correspond to the diagrams

a b c d

ēe

I

d a b c

f̄f

I

Taking the inner product of these two (turn the right one upside-down
and stack it on the left) then gives us the following diagram

√
dadbdcdd(y

†
fPze) =

a b c

d
ēe

f̄ f
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=

a

b

d

c
e

f

= κ(d)[F abcd̄ ]ef
√
dadbdcdd (20.48)

A few comments are in order about these equations. First, on the
the left of the top line, we have included factors of

√
d because we are

drawing diagrams in isotopy normalization and our inner product y†
fPze

is in physics normalization (since yf and ze are normalized to unity).
Secondly, we have also inserted the permutation matrix P from equation
20.45 because in Eqs. 20.46 and 20.47 defining yf and ze the factors are
in different orders. Third, in picture on the top line we have drawn the
line labeled d behind the other lines, but it would be the same if it were
drawn in front as we have “trivial” braiding as described in section 20.2.4
(also the twist factors of all particle types are θ = +1). Fourth, to get
between the two diagrams, we have had to use the move from Eq. 20.44
twice, and we have made the assumption that we have chosen a gauge
so that this F matrix element is unity. Finally note that we have had to
straighten zig-zags of the particle type d to evalute the diagram on the
right. This straightening accounts for the factor of κ(d) which is unity,
unless the Frobenius-Schur indicator of d is -1 in which case κ(d) = −1.

Further Reading

Exercises

Exercise 20.1 Cocycle Equation
(a) Show that the 3-cocycle given by Eq. 20.7 satisfies cocycle condition

Eq. 20.1 and thus represents a valid cocycle.
(b) Show that Eq. 20.31 also satisfies Eq. 20.1.

Exercise 20.2 Isotopy Invariance of Cocycles
(a) Show that the cocycle Eq. 20.1 can represent an isotopy invariant planar

diagram algebra only in the following cases:

(i) For N a multiple of 3, only when p is a multiple of 3.

(ii) For N a multiple of 4, only when p is even.

For (i), one can show that there is no isotopy invariant diagram algebra
when N is a multiple of 3 and p is not a multiple of 3 by either showing a
nontrivial κ(3) or equivalently by showing that Eq. 20.4 and 20.5 cannot be
satisfied at the same time. (Can you also show that these two conditions are
equivalent?).

For (ii) consider the quantum number N/4 which fuses with itself to give a
self-dual quantum number (N/2). Calculate the Frobenius-Schur indicator of
the N/2 quantum number. Show that one cannot satisfy Eq. 14.8.
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(b) For the case of n = 4 and p = 2, find the gauge transformation that
transforms Eq. 20.1 into Eq. 20.30.

Exercise 20.3 Quantum Dimension of a Representation Prove Eq. 20.15.
Hint: Remember that that quantum dimension da tells you how the Hilbert
space dimension grows as you fuse together the particle a many times. Try
fusing together many representations Ra⊗Ra⊗Ra . . . and imagine decompos-
ing the result into irreducible representations using the orthogonality theorem
for characters. Note that for characters χ(e) ≥ χ(g) for e the identity repre-
sentation.

Exercise 20.4 Frobenius-Schur Indicators in Rep(G)
(a) Use Eq. 20.34 to calculate the Frobnius-Schur indicators of the repre-

sentations for the groups S3 and Q8.
(b) The dihedral group with 8 elements, D8 (sometimes called D4) is the

group of symmetries of a square. Look up the properties of this group. It
turns out that it has exactly the same character table as Q8 (!!). Show that
the Frobenius-Schur indicators do not match that of Q8.

Exercise 20.5 Bosons and Fermions in Rep(G, z)
Let z be a central element of the group G (i.e, zg = gz for all g ∈ G) such

that z2 = e, the identity. As in section 20.2.4 for a representation Ra set
p(a) = 0 if z acts as the idenity in representation Ra and set p(a) = 1 if z
acts as −1 in representation Ra.

(a) Show that if Ra ⊗Rb = Rc ⊕ . . ., then p(a)p(b) = p(c). Hint, conisder
the characters χR(e) and χR(z).

(b) Given that setting all particles to bosons (i.e., Eq. 20.23) solves the
hexagon equation, show that Eq. 20.24 also provides a solution to the hexagon
equation.

Exercise 20.6 Some F -matrix elements for representatons of S3 [Hard]

Let us consider the simplest nonabelian group S3,which we discuss in sec-
tions 20.5, 20.2.1, and 41.2.1.

We remind the reader that this group has 6 elements which can be written in
terms of two generators x and r with multiplcation rules x2 = r3 = e and xr =
r−1x with e the identity. The 6 elements can be written as e, r, r2, x, xr, xr2

which are grouped into conjugacy classes {e}, {r, r2}, {x, xr, xr2} (See Table
20.1).

The three representations are as follows: The trivial represenatation has
ρI(g) = 1 for all g in the group. The sign rep has ρS(g) = 1 for g ∈ {e, r, r2}
and ρS(g) = −1 for g ∈ {x, xr, xr2}. (Note that since both these reps are one
dimensional, they are completely defined by the character table). We write
the two dimensional represenation in a unitary form as

ρV (x) =

(

−1 0
0 1

)

ρV (r) =
−1

2

(

1
√
3

−
√
3 1

)

with ρV (e) the identity matrix and all other matrices ρV (g) for the other
elements g in the group can be generated by using the group multiplication
properties. (Do this first, you will need it later!)32 32 It may be useful to use a computer to

multiply matrices (Mathematica, mat-
lab, octave, and python are all fairly
convenient), since there are a lot of ma-
trix manipulations in this problem and
a single error will destroy the result.

Note that we already know the fusion rules for these representations as they
are given in Eqs. 20.16–20.18.

In this exercise we will calculate some F -matrix elements by focusing on the
most interesting case, where all four incoming lines in Fig. 16.3 are in the two
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dimensional V representation. Thus we are interested in the unitary matrix
[F V V VV ]ef .

(a) Check using Eq. 20.34 that the Frobneius-Schur indicator of all particles
is +1.

(b) Using Eq. 20.38 calculate the unitary matrix that diagonalizes V ⊗ V
into direct sums of I ⊕ S ⊕ V .

(c) Check that the gauge you have chosen allows us to set the F in Eq. 20.44
to unity.

(e) Use Eq. 20.46 and 20.47 to calculate ze and yf and for all possible values
of e and f . Note that the bracket in these equations represents projection
defined in Eq. 20.39.

(f) Given two-dimensional matrices A,B,C,D find the permutation matrix
such that

P (A⊗B ⊗ C ⊗D) = P (D ⊗ A⊗B ⊗ C)P T

(g) Finally use Eqn. 20.48 to calculate

[F V V VV ]ef =
1

2





1 1
√
2

1 1 −
√
2√

2 −
√
2 0





up to a gauge choice.
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Medium Hard Material

Having learned about planar diagrammatic algebras we are now in a
position to explicitly construct a real 3D TQFT1. There are several steps 1The input for the construction in

chapter will be a planar diagram alge-
bra — we do not have to specify any

sort of R-matrix or braiding. It is a bit
surprising that one only needs a planar
algebra to make a 3D TQFT! In sec-
tion 21.2 we will input a spherical ten-
sor category whereas in section 21.4 we
will input a group and a 3-cocycle.

in this idea. We start by considering a closed 3D manifold M which we
discretize into tetrahedra (a so called simplicial decomposition of the
manifold). Next we construct a model, similar in spirit to statistical
mechanics, which sums a certain weight over all quantum numbers on
all edges of all tetrahedra. The weights being summed are defined in
terms of our planar diagrammatic algebra as we will see below. The
result of this sum is the desired TQFT partition function Z(M) which
we discussed extensively above, and particularly in chapter 7.
This discretization of a manifold into tetrahedra is very commonly

used in certain approaches to quantum gravity, which we will discuss in
section 21.3.

21.1 Simplicial Decomposition and Pachner
Moves

We start by considering a so-called simplicial decomposition of our man-
ifold. Such decompositions can be made of smooth manifolds in any
number of dimensions2. 2It is interesting (but beyond the scope

of this book) that manifolds exist in
dimension d ≥ 4 that cannot be
smoothed, and cannot be decomposed
into simplicies.

21.1.1 Two Dimensions

As a warm up let us think about two-dimensional manifolds. In two
dimensions, the elementary 2-simplex is a triangle, so this decomposition
is the familiar idea of triangulation shown in Fig. 21.1.
Since we are only concerned with the topology of the manifold, not the

geometry, the precise position of vertex points we use is irrelevant— only

Fig. 21.1 Some triangulations of 2-manifolds
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the connectivity of the points is important, i.e, the topological structure
of the triangulation network. Furthermore, a particular manifold, like a
sphere, can be triangulated in many different ways. It turns out that any
two different triangulations can be related to each other by a series of
elementary “moves” known as two-dimensional Pachner moves3,4, which3I encourage you to play with these two

moves and see how you can restructure
triangulations by a series of Pachner
moves.
4It is interesting to note that a Pach-
ner moves can be thought of as view-
ing a 3D tetrahedron from two oppo-
site directions. We can thus think of
2D Pachner moves as a cobordism (See
chapter 7) in 3D between a surface tri-
angulated with the initial triangulation
and a topologically equivalent surface
triangulated with the final triangula-
tion.

are shown in Figs. 21.2 and 21.3.

⇋

Fig. 21.2 The 1-3 Pachner move in two dimensions corresponds to adding or re-
moving a point vertex from the triangulation. This turns one triangle into three or
vice-versa.

⇋

Fig. 21.3 The 2-2 Pachner move in two dimensions corresponds to replacing two
adjacent triangles with two complementary triangles. This turns two triangles into
two different triangles.

Thus if we want to construct a manifold invariant (like Z(M) we
discussed in chapter 7) with a manifold represented in terms of a trian-
gulation we only need to find some function of the triangulation that is
invariant under these two Pachner moves.

21.1.2 Three Dimensions

The story is quite similar in three dimensions. Since we have been fo-
cused on 2+1 dimensional TQFTs we will mostly discuss three-dimensional
manifolds. We discretize any closed three-dimensional manifold5 by5For now let us focus on closed mani-

folds. We briefly discuss manifolds with
boundary in section 21.2.2.

breaking it up into tetrahedra (otherwise known as three-dimensional
simplices). Any two discretizations are topologically equivalent to each
other if they can be related to each other by a series of three-dimensional
Pachner moves6, which are shown in Figs. 21.4 and 21.5. Again, the key6Analogous to the 2D case (see note 4

above), the 3D Pachner moves can be
thought of as viewing a 4D-simplex (a
so-called pentachoron) from two oppo-
site directions.

point here is that if we can find some function of the the network struc-
ture that is invariant under the Pachner moves, we will have constructed
a topological invariant of the manifold.
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Fig. 21.4 The 1-4 Pachner move in three dimensions corresponds to adding or removing a point vertex to the tetrahedon
decomposition. This turns a single tetrahedron into four or vice versa. On the far right we show the four tetrahedron separated
for clarity.

Fig. 21.5 The 2-3 Pachner move in three dimensions corresponds to re-splitting a double tetrahedron (left) into three
tetrahedron (right). This turns a single tetrahedron into four or vice versa. On the far left we show the two tetrahedra
separated for clarity; and on the far right we have the three tetrahedra separated for clarity.

21.2 The Turaev-Viro State Sum

The idea of the Turaev-Viro state sum is to build a 3D manifold invariant
from one of the planar diagrammatic algebras we have been discussing
in chapters 8-20.
First, let us choose any particular planar diagrammatic algebra. We

take any decomposition of an orientable three dimensional manifold into
tetrahedra. Let each edge of this decomposition be labeled with one
of the quantum numbers (the particle labels) from the diagrammatic
algebra7. We then consider the following sum

7As we have been doing all along, when
we label an edge with a quantum num-
ber we must put an arrow on the edge
unless the particle type is self-dual.

ZTV (M) = D−2Nv
∑

all edge labelings

W (labeling) (21.1)
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where Nv is the number of vertices in the decomposition, and

D =

√∑

n

|dn|2

is the total quantum dimension (See Eq. 17.11). In Eq. 21.1, W is
a weight assigned to each labeling of all the edges8. We consider the8In the language of statistical physics

we can think of W as a Boltzmann
weight for each edge label configura-
tion, although it need not be positive,
or even real.

following definition of a weight assigned to a given labeling of edges

W (labeling) =

∏
tetrahedra G̃(tetrahedron)

∏
edges dedge∏

triangles Θ̃(triangle)
(21.2)

Thus each tetrahedron is given a weight G̃, depending on its labeling,
each edge labeled a is given a weight da and each triangle is given a
weight Θ̃−1 depending on its labeling.
The weights G̃ and Θ̃ are very closely related to quantities G and Θ

we have already studied9 in chapter 16 for example10. The functions G̃9Many works, including the original
works by Turaev and Viro [1992],
use the diagrammatic algebra based
on Temperly-Lieb which we discussed
in chapter 19. However, in those
works, they have used the nonuni-
tary version of the diagrammatic al-
gebra without the vertex renormal-
ization which we introduce in section
19.3. In such an approach Θ(a, b, c)
is replaced by ∆(a, b, c), for example
(See Eq. 19.11). It is easy to show
that these vertex renormalization fac-
tors completely cancel and the end
value of the Turaev-Viro invariant is in-
dependent of whether the renormaliza-
tion factors are included or not. Indeed,
it is not necessary to have a fully uni-
tary algebra for the Turaev-Viro con-
struction to give a well behaved mani-
fold invariant. We only need a consis-
tent planar diagrammatic algebra. See
also next margin note!

10In chapter 16 we insist on a fully iso-
topy invariant algebra with tetrahedral
symmetry, and we will continue to as-
sume those simplifications here. How-
ever, for constructing a Turaev-Viro in-
variant it turns out to be sufficient to
have a spherical (hence pivotal) tensor
category as we discuss in chapter 12.
Full isotopy invariance is not required.
This is discussed in depth by Barrett
and Westbury [1996].

and Θ̃ are given by11

11See the comments in chapter 16
about how to choose the signs of the
square-roots in cases where some d’s are
chosen negative.

Θ̃




a

c b


 = Θ(a, b, c) =

√
dadbdc (21.3)

and

G̃




b

d
c

e

a f




= Gbadecf = F badecf df

√
dbdc
df

√
dade
df

(21.4)

Note that the tetrahedron shown here is different from the one shown
in Fig. 16.16 that defines G from a planar diagram (or perhaps more
properly a diagram drawn on the surface of a sphere). In fact the two
tetrahedra are dual to each other. For example, in Fig. 16.16 the lines
f, e, c̄ form a loop whereas f, ē, ā meet at a point. In the diagram in
Eq. 21.4 on the other hand e, f, c̄ meet at a point where f, ē, ā form a
loop. In Eq. 21.4 the three edges around any face must fuse together to
the vacuum. I.e., we have the four conditions

Nbad > 0 Ncd̄e > 0 Nfēā > 0 Nc̄f̄ b̄ > 0

or else G̃ will vanish. Note that, like G, the value of G̃ is unchanged
under any rotation of the tetrahedron.
It is important to note that ZTV is gauge invariant. While we can

make a gauge transformation on the F -symbols (and hence G̃) as in
Eq. 16.23, for exmple, such gauge factors will cancel out in the overall
weight Eq. 21.2 (See exercise 21.4).
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21.2.1 Proof Turaev-Viro is a Manifold Invariant

The proof that ZTV (M) is a manifold invariant is not difficult — one
only needs to show that it is unchanged under the 1-4 and 2-3 Pachner
moves. This is basically an exercise in careful bookkeeping (see exercise
21.2). Roughly, however, it is easy to see how it is going to work.
Let us first examine the 2-3 Pachner move shown in Fig. 21.5. On the

left we have two tetrahedra (call them 1 and 2) which are joined along
a triangle (call it α). On the right we have three tetrahedra (call them
3, 4 and 5 which are joined along three triangles (call them β, γ, and δ)
with the three triangles intersecting along a new edge down the middle
(shown vertical in the figure) which we label with the quantum number
n. To show that the ZTV remains invariant we need to show that

G̃(1)G̃(2)Θ̃(α) =
∑

n

G̃(3)G̃(4)G̃(5)Θ̃(β)Θ̃(γ)Θ̃(δ)dn

The factors of Θ̃ are simply factors of
√
da and these cancel some factors

of
√
da in the definition of G̃ in Eq. 21.4. After this cancellation what

remains is a relationship between two F ’s on the left and a sum over three
F ’s on the right. The relationship that remains is exactly the pentagon
equation Eq. 16.3 (or Eq. 9.7)! Thus any diagrammatic algebra which
satisfies the pentagon equation will result in a Turaev-Viro partition
function (Eq. 21.1) that is invariant under the 2-3 Pachner move!
The case of the 1-4 Pachner move is only a bit harder and we will

sketch the calculation here. The large tetrahedra on the left of Fig. 21.4
(lets call this large tetrahedron 1) needs to be equivalent to the four
smaller tetrahedra on the right (lets call these small tetrahedra 3, 4, 5
and 6) once we sum over the quantum numbers on the four internal edges
on the right. The three tetrahedra 3, 4 and 5 share a common edge, and
this is entirely analogously to the three tetrahedra we considered in the
case of the 2-3 Pachner move. Summing over the quantum number of
this common edge, and using the same pentagon relation replaces the
three tetrahedra 3, 4, 5 with two tetrahedra 1 and 2, where 1 is the large
tetrahedron and 2 includes exactly the same edges as the remaining
small tetrahedron 6. The tetrahedra 2 and 6 have 3 edges which are
not shared with tetrahedron 1 — these are the remaining internal edges
that need to be summed over. Summing over one of these internal edges,
one invokes the consistency condition Eq. 16.5 to create a delta function
which then kills one of the two remaining sums. The last remaining sum
just yields a factor of D2 =

∑
n d

2
n which accounts for the prefactor in

Eq. 21.1 being that we have removed one vertex from the lattice.

21.2.2 Some TQFT Properties

The Turaev-Viro state sum has all the properties we expect of a TQFT.
Although we need to discretize our manifold, the resulting “partition
function” ZTV (M) for a manifold M is a complex number which is
indeed independent of the discretization and depends on the topology
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of the manifold only.
As we discuss at length in section 7.1 we would also like ZTV (M)

to represent a wavefunction if M is a manifold with boundary. To
remind the reader, the point of this construction is that when we glue
together two manifolds with boundary to get a closed manifold, this
corresponds to taking the inner product between the two corresponding
wavefunctions to get a complex number.
To see how this occurs let us consider discretizing a manifold with a

boundary. Here the 3D bulk of the manifold M should be discretized
into tetrahedra, and the 2D boundary surface Σ = ∂M should be dis-
cretized into triangles. We divide the edge degrees of freedom into bulk
and boundary where a boundary edge is defined as an edge where both
vertices are on the boundary and all other edges are defined to be bulk.
We define Z(M) of such a discretized manifold with boundary as a sum
like Eq. 21.1 where the sum is only over the edges in the bulk, leaving
fixed (un-summed) the quantum numbers for the edges that live en-
tirely on the boundary (i.e., both vertices on the boundary). Thus for
manifolds with boundary we more generally write

ZTV (M; a1, . . . , aN) = D−2Nv−nvW ′(a, . . . , aN )
∑

bulk labelings

W (bulk labels)

where Nv is the number of vertices in the bulk and nv the number of
vertices on the boundary. The weight function W is exactly the same
as the weight function in Eq. 21.2 but only including edges, triangles,
and tetrahedra in the bulk (All tetrahedra are considered bulk, and a
triangle is considered boundary only when all three vertices are on the
boundary). Here a1, . . . , aN are the quantum numbers of the edges on
the boundary, and these are not included in the sum over bulk labels.
An additional weight is included which is a function of these boundary
edge labels

W ′(a1, . . . , aN ) =

√√√√
∏

boundary edges dedge∏
boundary triangles Θ̃(triangle)

The partition function ZTV (M; a1, . . . , aN ) is now a function of the edge
variables and is interpreted as a wavefunction12 |Z(M)〉 that lives on the12The wavefunction here takes some

complex scalar value as a function of
the physical variables which are the
quantum numbers on the edge.

boundary Σ = ∂M .
It is then quite natural to see how two manifolds can be glued together

along a common boundary as in Fig. 7.3. In that figure we have a closed
manifold M ∪Σ M′ where M and M′ are manifolds with boundary
joined along their common boundary Σ = ∂M = [∂M′]∗. When we
glue together M and M′ we obtain the partition function for the full
manifold as in Eq. 7.1 where we obtain the inner product by summing
over the degrees of freedom of the wavefunction — which in this case
means summing over the quantum numbers a1, . . . , aN of the edges on
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the boundaries. In other words, we have

ZTV (M∪Σ M′) = 〈ZTV (M′)|ZTV (M)〉

=
∑

a1,...,aN

[ZTV (M′; ā1, . . . , āN )]∗ ZTV (M; a1, . . . , aN ) (21.5)

=
∑

j1,...,jN

ZTV (M′; a1, . . . , aN ) ZTV (M; a1, . . . , aN ) (21.6)

where in the second line the edge variables in the first term are inverted
because the surface of M′ has the opposite orientation from the surface
of M. Going from the second to third line is an easy exercise (See
exercise 21.1). The final result is easily seen to be the correct expression
for the Turaev-Viro invariant for the full manifold M∪M′. I.e., it now
sums over all the quantum numbers in both bulks and on the common
boundary.
As in section 7.2 on can generalize the idea of a TQFT to include

particle world lines (labeled links) as a well as the space-time manifold
M. As mentioned there we can roughly think of these world lines as
internal boundaries, and we just fix the quantum number of edges along
these hollow tubes to describe different world-line types. (See references
at the end of the chapter).

21.2.3 Connection to Chern-Simons Theory

There is a remarkable connection between the Turaev-Viro partition
function and Chern-Simons theory. If we build a Turaev-Viro theory
from the F -matrices of a Chern-Simons theory, it turns out that the
partition function of the Turaev-Viro theory is related to that of the
Chern-Simons theory via13 13Below in section 22.3.2 we call

the Chern-Simons partition function
ZWRT for reasons explained in section
22.3.

ZTV (M) = |ZCS(M)|2

This is known as the Turaev-Walker theorem (Turaev [1992, 1994]; Walker
[1991]), and we will outline its derivation in section 22.3.2 below. The
TQFT resulting from Turaev-Viro is sometimes known as the quantum
double of the input theory of F -matrices (the input category) and this
formula gives at least one reason why the name is appropriate — Turaev-
Viro is equivalent to two copies of the Chern-Simons theory (of opposite
handedness).

21.3 Connections to Quantum Gravity
Revisited

The Turaev-Viro invariant is a natural descendant of one of the very
earliest approaches to quantum gravity pioneered by Penrose [1971] and
Ponzano and Regge [1968]. Indeed much of the continued interest in
Turaev-Viro and similar state-sum invariants is due to this relationship.
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An interesting approach to macroscopic general relativity, used for
example, in numerical simulation, is to discretize space-time into sim-
plices — tetrahedra in three dimensions or four dimensional simplices
(sometimes known as pentachora) in four dimensions14. The curvature

14It is also possible to discretize space
and leave time continuous. This leaves
some concerns with Lorentz invariance
but may have other advantages. Other
discretization approaches also exist, see
Regge and Williams [2000].

of the space-time manifold (the metric) is then determined by the lengths
assigned to the edges15.15All of general relativity can be refor-

mulated in this discrete language. This
is known as Regge calculus. See Regge
[1961].

If one then turns to quantum gravity, one wants to follow the Feynman
prescription and perform a sum over all possible metrics as we discussed
previously in section 6.1. We can write a quantum partition function as

Z =

∫
Dg eiSEinstein[g]/~ (21.7)

We can imaging performing such as sum for a discretized system by
integrating over all possible lengths of all possible edges. However, not
all triangle edge lengths should be allowed — in Euclidean space one
must obey the crucial constraint of the triangle inequality1616These inequalities must hold even

with a curved spatial metric.

l1

l3
l2 ⇒ |l1 − l2| ≤ l3 ≤ (l1 + l2) (21.8)

The key observation is that the triangle inequality is precisely the same
as the required inequality for regular angular momentum addition

j1 ⊗ j2 = |j1 − j2| ⊕ |j1 − j2|+ 1⊕ . . .⊕ |j1 + j2|. (21.9)

Thus it is natural to label each edge of with a quantum mechanical spin,
and sum over all possible spins. Such an approach is known as a spin
network. We thus imagine building a Turaev-Viro model (Eq. 21.1) with
a planar diagrammatic algebra built from angular momentum addition
rules: quantum numbers are the angular momenta j, the fusion rules
are as given in Eq. 21.9, and the F -matrices are given by the regular
6j symbols of angular momenta addition17. Such a model turns out to

17Building a diagrammatic algebra
based on a Lie group (SU(2) in this
case) is mentioned in section 20.2.5
above.

be very precisely18 the quantum gravity partition function Eq. 21.7 (up

18Although the idea of spin networks
as a toy model for quantum gravity
goes back to Penrose [1971], and was
pursued further by Ponzano and Regge
[1968], it was only much later that
Hasslacher and Perry [1981] showed a
more precise equivalence of the model
to gravity.

to the fact that one still needs an additional sum over topologies of the
space-time manifold if one wants a full sum over all possible histories)!
As we expect from the discussion in chapter 6, the resulting description
of quantum gravity in 2+1D is a TQFT.
There is, unfortunately, one clear problem with this approach. Be-

cause there are an infinite number of different representations of SU(2)—
i.e., an infinite number of different values for the angular momentum
quantum number j — the partition function sum formally diverges. This
divergence becomes regularized if we find a way to consistently cut off
the sum over angular momenta at some maximum value k. Using the
diagrammatic rules of SU(2)k (the same diagrammatic rules we built up
in chapter 19, see in particular margin note 6) implements this cutoff
and yields a divergence-free result19.

19As mentioned in section 21.2.3 above,
the Turaev-Viro model built from the
SU(2)k diagrammatic rules is equiva-
lent to Chern-Simons theory SU(2)k ⊗
SU(2)−k . As we mentioned in section
6.3 above, such a Chern-Simons the-
ory is equivalent to 2+1D gravity with
a cosmological constant λ = (4π/k)2.
Taking the limit of large k then gives
the classical limit of simple SU(2) an-
gular momentum addition correspond-
ing to a universe with no cosmological
constant.
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21.4 Dijkgraaf-Witten Model

Another state sum model of some interest is the so-called Dijkgraaf-
Witten model20(Dijkgraaf and Witten [1990]). As with Turaev-Viro
this model discretizes space into simplices and sums over possible labels
of all the edges.
In the Dijkgraaf-Witten model we choose a group G and we label

the edges of the simplices with elements from that group. The general
idea is very similar to that of Turaev-Viro just using the multiplication 20Robbert Dijkgraaf is a very promi-

nent theoretical physicist and string
theorist. His surname is likely to be dif-
ficult to properly pronounce for those
who are not from the Netherlands be-
cause the “g” is a gutteral sound that
only exists in Dutch. However, those
from the south of the Netherlands don’t
use the gutteral “g” and instead pro-
nunce it as Dike-Hraff, which is prob-
ably about the closest most English
speakers will get to the right result.
The word “Dijkgraaf” refers to an oc-
cupation: A Dijkgraaf is the person in
charge of making sure that water stays
in the ocean and does not flood the
cities and the rest of the Netherlands.

properties of the group to give us a set of fusion rules as in section 20.1
and we use a 3-cocycle in place of the F -matrix21. These fusion rules

21For the case of an abelian group
Dijkgraaf-Witten is a special case of
Turaev-Viro. However Turaev-Viro
does not consider fusion rules where
g × h = h× g so for nonabelian groups
Dijkgraaf-Witten is not just a special
case of Turaev-Viro. The group need
not be abelian since we only need to
have an algebra that is consistent on a
plane (or sphere) in order to defne its
value on a tetrahedron (see the com-
ments in section 20.1.3).

require that multiplication of the group elements around every triangle
must result in the identity as shown in Fig. 21.6. This is the analog of
Eq. 21.3 where three quantum numbers around a triangle must fuse to
the identity. This condition is known as a “flatness” condition, with the
name coming from lattice gauge theory, which we will see in more detail
in chapter ***.

a

c b ⇒ cba = identity

Fig. 21.6 Multiplying group elements around a triangle in Dijkgraaf-Witten theory
results in the identity. This is known as the “flatness” condition

As mentioned in section 20.1 when we use group multiplication for
fusion rules, the quantum dimensions22 of all the particles are all da =

22In chapter 20 we considered also the
possibily of da = −1 but this is a gauge
choice. We are always entitled to chose
+1 instead at the cost of possibly losing
isotopy invariance.

1. This means that in Eq. 21.2 both the da factor and the Θ̃ factor
are trivial. We are thus left with only the tetrahedron factor and the
Dijkgraaf-Witten partition function looks like a simplified version of the
Turaev-Viro case in Eqs. 21.1 and 21.2 given by23

23With apologies for using G and G̃ in
the same equation to mean completely
different things!

ZDW (M) = |G|−Nv
∑

labelings

∏

tetrahedra

G̃(tetrahedron) (21.10)

where Nv is the number of vertices, |G| is the number of elements in
the group G, and the sum is only over labellings that satisfy the flatness
condition (Fig. 21.6).
The tetrahedral symbol G̃ is a bit more complicated than in the case

of the Turaev-Viro invariant. We do not generally have full tetrahedral
symmetry so it could matter which way we orient the tetrahedron when
we evaluate G̃. In order to define the tetrahedral symbol G̃ properly
we do the following: First we label each vertex in the system with a
unique integer (it will not matter which vertex gets which label!). Given
a tetrahedron with vertices i1, i2, i3, i4 we sort these vertices in ascending
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order so that

[j1, j2, j3, j4] = sort[i1, i2, i3, i4] such that j1 < j2 < j3 < j4

we then define

G̃




i1

i2 i3

i4




= ω(gj2,j1 , gj3,j2 , gg4,g3)
s(j1,j2,j3,j4) (21.11)

Here gk,l is the group element on the edge directed from vertex k to
vertex l, and ω is the chosen 3-cocycle. The exponent s(j1, j2, j3, j4) is
either +1 or −1 depending on whether the orientation of the tetrahe-
dron defined by the ordered set of vertices [j1, j2, j3, j4] has the same or
opposite orientation as the manifold we are decomposing24. This pre-24To find the orientation of a tetrahe-

dron, place j1 closest to you and see if
the triangle [j2, j3, j4] is oriented clock-
wise or counterclockwise.

scription gives a manifold invariant (The Dijkgraaf-Witten invariant) for
any choice of 3-cocycle even if the corresponding diagrammatic algebra
does not have isotopy invariance. Analogous to the Turaev-Viro invari-
ant, the partition function here is gauge invariant if we transformation
the cocyles with Eq. 20.5 (See exercise 21.4).

21.4.1 Other Dimensions

An interesting feature of Dijkgraaf-Witten theory is that essentially the
same recipe builds a Dijkgraaf-Witten TQFT in any number of dimen-
sions. One discretizes the D-dimensional manifold into D-dimensional
simplices (segments in 1D, triangles in 2D, tetrahedra in 3D, penta-
chora in 4D) and labels each edge with a group element g ∈ G and
each vertex is assigned an integer label. The flatness condition is al-
ways the same as that shown in Fig. 21.6 — multiplying the group ele-
ments around a closed loop must give the identity. In D-dimensions we
build the partition function by multiplying a weight for each D-simplex,
where the weight is given now by a so-called D-cocycle25 which we call25I won’t give the most general defini-

tion of cocycle as this takes us too far
afield into group cohomology. However,
as with the 3-cocycle it is simply a func-
tion satisfying a particular cocycle con-
dition. See Eq. 20.1 for the 3D case and
Eq. 21.13 for the 2D case.

ωD(g1, g2, . . . , gD) which is now a function of D arguments. Finally, one
builds a partition function by summing over all possible labelings

ZDW (MD) = |G|−Nv
∑

labelings

∏

D-simplices

ωD(gj2,j1 , . . . , gjD+1,jD )
s(j1,...,jD+1)

(21.12)
As with the 3D case, the arguments of the cocycle gk,l are the group
elements along the edges of the simplex from vertex k to vertex l and
we always write them ordered such that j1 < j2 < . . . < jD. Finally
the exponent s is always ±1 depending on whether the orientation of
simplex described by the ordered set [j1, . . . , jD+1] matches that of the
underlying manifold or not.
As a quick example, let us consider the 2D case. The definition of a

2-cocycle ω2 is any function that satisfies the condition2626The 2-cocycle condition is equiva-
lent to the consistency condition for a
so-called “projective representation” of
the group. For projective representa-
tions we have the multiplication rule
ρ(g)ρ(h) = ω2(g, h)ρ(gh) whereas for
regular group representations we have
ω2 = 1. See section 41.2.4.
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ω2(g, h)ω2(gh, k) = ω2(h, k)ω2(g, hk) (21.13)

In the partition function, Eq. 21.12, each triangle gets a weight given by
the cocycle. It is then easy to see that the cocycle condition is precisely
the condition necessary to make the partition function invariant under
the 2-2 Pachner move, as shown in Fig. 21.7. It is not a hard exercise to
demonstrate invariance under the 3-1 Pachner move as well (See exercise
21.3).

01

2 3

h

g

k

(gh)kgh

ω2(gh, k)

ω2(g, h)

=

01

2 3

ω2(h, k)

ω2(g, hk)

h

g

k

g(hk)
hk

Fig. 21.7 Each triangle satisfies the flatness condition Eq. 21.6 meaning multiplying
all three edges in order gives the identity. In the partition function each triangle gets
a weight given by the corresponding cocycle ω2 as written in black text. All of
the triangles in the figure are oriented positively s = +1. The cocycle condition
Eq. 21.13 guarantees that the product of the cocycles on the left equals the product
of the cocycle on the right.

21.4.2 Further Comments

One particularly interesting special case of Dijkgraaf-Witten theory is
the case of the trivial 3-cocycle where ω is always unity. In this case,
the argument of the sum in Eq. 21.10 (or more generally Eq. 21.12) is
just unity so the partition function just counts the number of flat field
configurations (See Fig. 21.6) and then divides by |G|Nv . This partition
function is exactly that of lattice gauge theory, as we will see in chapter
*** below, and the resulting topological quantum field theory is known
as the quantum double of the group G. The more general case, with
a nontrivial cocycle is correspondingly sometimes known as “twisted”
gauge theory, where the cocycle is thought of as some sort of twist to
the otherwise simple theory.
A further interesting relatioship is that Dijgraaf-Witten theory can

be thought of as result of symmetry breaking an appropriately cho-
sen Chern-Simons theory (See for example Dijkgraaf and Witten [1990],
de Wild Propitius [1995]). One might imagine, for example, breaking a
compact U(1) Chern-Simons gauge theory into a discrete Zn group —
like breaking the symmetry of a circle into an n-sided regular polygon.
The particular cocycle one gets in the resulting Dijkgraaf-Witten theory
depends on the choice of the coefficient (the “level”) of the Chern-Simons
term.
Dijkgraaf-Witten theory has had extensive recent applications within

quantum condensed matter physics where it turns out that a classifica-
tion of so-called symmetry protected topological (SPT) phases is given in
terms of Dijkgraaf-Witten theories. We will briefly discuss SPT phases
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in section *** below.

Further Reading

• The Turaev-Viro invariant was introduced in Turaev and Viro
[1992]. Rather interestingly Turaev and Viro were apparently un-
aware of the earlier work by Penrose, Ponzano, Regge and others
when they first discussed these state sums! The work was extended
to include all spherical fusion categories by Barrett and Westbury
[1996]. A recent rather complete discussion, including looking at
the possible world-lines and boundaries is given by in the book
Turaev and Virelizier [2017]. Unfortunately, these references and
many other works in the field are written in rather mathematical
language that is not particularly transparent for most physicists!

• It is worth commenting that the state-sum approach to quantum
gravity has been extended in a multitude of ways, and continues
to be an active area of research. Among the key directions are
extension to 3+1 dimensions (Ooguri [1992] and Crane and Yet-
ter [1993] for example), and extensions to Lorentzian signature
(Barrett and Crane [2000]). A nice general dicussion of discrete
approaches gravity is given by Regge and Williams [2000].

• One very popular extension of the spin-network modes, known as
a spin-foam, is to discretize space but allow the discretization to
change as a function of time. A nice review of this direction is
given by Lorente [2006].

Exercises

Exercise 21.1 Some More Facts about Turaev-Viro
Consider a manifold M with boundary Σ which has been discretized into

tetrahedra on in the bulk and triangles on the surface. Let the edges on
the surface be labeled by j1, . . . , jN . Assume tha the theory has relflection
symmetry as in Eq. 16.14, show that

[ZTV (M; ā1, . . . , āN )]∗ = ZTV (M; a1, . . . , aN )

And as a result show that for a closed manifold Z(M) is real.

Exercise 21.2 Details of Turaev-Viro
Work carefully through the details of the proof that the Turaev-Viro parti-

tion function is invariant under Pachner moves.

Exercise 21.3 2D Dijkgraaf-Witten
The invariance of the two dimensional Dijkgraaf-Witten partition function

under the 2-2 Pachner move is established in section 21.4.1. Show that the
partition function is also invariant under the 3-1 Pachner move.

Exercise 21.4 Gauge Invariance
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(a) Show that ZTV is unchanged if we make a gauge transformation of the
type of Eq. 16.23 (Hint: each plaquette appears in two F -matrices in the
product Eq. 21.2).

(b) Show that ZDW is unchanged if we make a gauge transformation of the
type of Eq. 20.5.

1
1

2

2
1

1

1

1

Fig. 21.8 The manifold S3 has two
very simple triangulations each involv-
ing only a single tetrahedron. On the
left two vertices (1 and 2) are connected
together with three different edges (sin-
gle, double, and triple arrow). On the
right a single vertex (1) is connected
to itself with two different edges (single
and double arrow).

Exercise 21.5 Lattice Gauge Theory on S3

The manifold S3 has two very simple one-tetrahedron triangulations (See
Jaco and Rubinstein [2003]). These are shown in Fig. 21.8. First convince
youreslf that these triangulations describe closed manifolds (i.e., check that
each face occurs twice in opposite orientations).

Dijkgraaf-Witten theory with a trivial cocycle (ω = 1) is equivalent to
lattice gauge theory. By performing the sum in Eq. 21.10 calculate ZDW (S3)
in the case of the trivial cocyle for both triangulations of S3 and check that
they give the same result.

Exercise 21.6 Turaev-Viro on S3

(a) Consider a Turaev-Viro model built from any F -matrices with the prop-
erty that there is no particle a, except the identity, for which a× a× a gives
the identity. Using a simple triangulation of S3, calculate ZTV (S

3). (Hint:
this is much easier than it seems if you use the single vertex triangulation from
Fig. 21.8). Does this result agree with the statements in section ***.

(b) [Harder] Repeat this calculation without the special condition on a ×
a× a.

Exercise 21.7 Dijkgraaf-Witten for Z2 cocycle
Let us calculate ZDW (M) for a Z2 theory on the three-torus manifold M =

S1 × S1 × S1. We can represent the 3-torus manifold by identifying opposite
faces of the cube shown in Fig. 21.9. Once faces are identified there is only
a single vertex in the figure and only 3 edges. One can make a triangulation
of this cube with 6 tetrahedra given by 1278, 2378, 3478, 4578, 5678, 6178
(this introduces four new diagonal edges which can be written as 18 = 74 and
38 = 76 and 58 = 72 and 78).

With this triangulation, sum over all possible assignments of group elements
to the edges satisfying the flatness condition (Fig. 21.6) and explicitly deter-
mine the partition function ZDW when the group is G = Z2. There are two
possible 3-cocyles we can choose for this group (See section 20.1.2). Show that
ZDW is the same for both of them.

Note that there are much easier methods for evaluating partition functions
of this type which do not involve actually doing the whole sum. (See the
original work by Dijkgraaf and Witten [1990].)
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Fig. 21.9 To represent a 3-torus, all 8
points are identified. There are 3 dis-
tinct edges (for example, the edges 28
and 16 and 34 and 75 are all identified).





Formal Construction of TQFTs
from Diagrams: Surgery and
More Complicated 3-Manifolds1 22

Medium Hard Material

1Although this chapter is super inter-
esting and fun, physicists can probably
skip it on a first reading.

Having constructed diagrammatic algebras in 2+1 dimension2, we have

2I.e., including braiding again, which
we did not need to define the TQFTs
in chapter 21.

almost all we need to define a TQFT based on these diagrams. As dis-
cussed in section 14.3.2 our diagrammatic algebra gave us a way to eval-
uate a partition function Z(labeled link in S3)/Z(S3), or equivalently
Z(labeled link in S2 ×S1) with the caveat that no link goes around the
cycle of S1. However, a TQFT should be able to evaluate a partition
function in any arbitrary manifold M. Indeed, in the simplest case
we might dispense with the labeled link and want to find a partition
function of the manifold M alone.
In this chapter we develop a prescription for handling more compli-

cated manifolds. One important thing this will achieve will be to give a
formal definition to Chern-Simons theory, which we like to think of as
being defined as some sort of functional integral, but as pointed out in
section 5.3.4 is not really well defined in that language as such integrals
do not actually converge.
The way we will handle more complicated manifolds is by sewing

pieces of manifolds together with a procedure known as surgery.

22.1 Surgery

In chapter 7 we saw two examples of assembling manifolds by gluing
together pieces. We found that we could assemble together two solid
tori (D2 × S1) into either S3 or S2 × S1 depending on how we glue
together the S1×S1 surfaces. (In fact, one can consider gluing together
the surfaces in yet other ways to get even more interesting results3, but 3See for example the discussion in sec-

tion 7.4 as well as Rolfson [1976] for ex-
ample.

we will not need that for the moment). We would like to use this sort
of trick to study much more complicated three dimensional manifolds.
The understanding of three dimensional manifolds is a very rich and

beautiful problem4. In order to describe complicated manifolds it is
useful to think in terms of so-called surgery. Similar to what we were

4Many important results on three dimensional manifolds have been discovered recently. Perelman’s5 proof of the Poincaré
Conjecture, along with the methods he used are apparently extremely revolutionary and powerful. But this is way outside the
scope of our book!
5Grigori Perelman is a brilliant, but startlingly puzzling character. He famously declined the million dollar Millenium Prize
offered to him for proving the Poincaré conjecture in three dimensions. He turned down the Fields Medal as well.
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= ∪
S1 ∪ S1
( )∪

S2 = [S2 − (D2 ∪D2)] (D2 ∪D2)∪
S1 ∪ S1

Fig. 22.1 Writing a sphere M = S2 as the union of two manifolds glued along their

boundaries. M2 is the union of two disks D2 ∪ D2. M1 = S2 − (D2 ∪ D2) is the
remainder. The two manifolds are glued along their common boundary S1 ∪ S1.

discussing in section 7.3 — assembling a manifold by gluing pieces to-
gether — the idea of surgery is that we remove a part of a manifold and
we glue back in something different. Imagine replacing someone’s foot
with a hand!6 By using successive surgeries we will be able to construct6Prehensile toes could be useful I sup-

pose! any three-dimensional manifold7.
7We will only be concerned with ori-
entable manifolds

The general scheme of surgery is to first write a manifold as the union
of two manifolds-with-boundary sewed along their common boundaries.
If we have a closed manifold M that we would like to alter, we first split
it into two pieces M1 and M2 such that they are sewed together along
their common boundary ∂M1 = ∂M∗

2. So we have

M = M1 ∪∂M1 M2

We then find another manifold with boundary M′
2 whose boundary

matches M2, i.e,
∂M2 = ∂M′

2

We can then replace M2 with M′
2, to construct a new closed manifold

M′ as
M′ = M1 ∪∂M1 M′

2

We say that we have performed surgery on M to obtain M′. In other
words, we have simply thrown out the M2 part of the manifold and
replaced it with M′

2.

22.1.1 Simple Example of Surgery on a 2-manifold

To give an example of surgery consider the sphere M = S2 as shown
in Fig. 22.1. Here we write the sphere as the union of two disks M2 =
D2 ∪D2 and the remainder of the sphere M1 = S2 − (D2 ∪D2). These
are glued along their common boundary S1 ∪ S1.
Now we ask the question of what other 2-manifolds have the same

boundary S1 ∪ S1. There is a very obvious one, the cylinder surface!
Let us choose the cylinder surface M′

2 = S1 × I where I is the interval
(or D1). It also has boundary ∂M′

2 = S1 ∪ S1 as shown in Fig. 22.2.
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∪∪∂ = ∂( ) =

∂(S1 × I) = ∂(D2 ∪D2) = S1 ∪ S1

Fig. 22.2 The boundaries of the cylinder surface is the same as the boundary of
the two disks. Both boundaries are two circles. This means that we can remove two
disks from a manifold and sew in the cylinder.

Thus we can sew the cylinder surface in place where we removed
M2 = D2 ∪ D2, as shown in Fig. 22.3. The resulting manifold M′

is the torus T 2

∪
S1 ∪ S1

=

[S2 − (D2 ∪D2)] ∪ [S1 × I] = T 2

S1 ∪ S1

Fig. 22.3 Gluing the cylinder surface M′
2 = S1 × I to the manifold M1 = S2 −

(D2 ∪D2) along their common boundary S1 ∪ S1 gives the torus T 2. Note that the
object on the right is topologically a torus.

Thus we have surgered a sphere and turned it into a torus. Note
that there is another way to think of this procedure. If M = ∂N then
surgery on M is the same as attaching a handle to N . In the case we
just considered we would take N = B3 the 3-ball (sometimes denoted
D3), and we attach a handle D2 × I, the solid cylinder. We obtain the
new manifold N ′ which is the solid torus, whose boundary is T 2 the
torus surface. This is written out in the diagram Fig. 22.4

N = B3 ∂N = M = S2

↓ Add Handle ↓ Surgery

Solid Torus ∂(Solid Torus) = T 2

Fig. 22.4 Handle attaching on the manifold N is the same as surgery on a manifold
M = ∂N .



292 Formal Construction of “Chern-Simons” TQFT: Surgery and More Complicated Manifolds

22.1.2 Surgery on 3-manifolds

We can also perform surgery on three-dimensional manifolds8. Start8This is the part that is guaranteed to
make your head explode. with a simple closed 3-manifold M, such as S3 (or, even simpler to

think about, consider M = R3 and let us not worry about the point at
infinity). Now consider a solid torus

M2 = D2 × S1

embedded in this manifold. The surface ∂M2 = S1×S1 = T 2 is a torus
surface. Now, there is another solid torus with exactly the same surface:

M′
2 = S1 ×D2

These two solid tori differ in that they have opposite circles filled in.
Both have the same S1 × S1 surface, but M2 has the first S1 filled in
whereas M′

2 has the second S1 filled in.
The idea of surgery is to remove M2 and replace it with M′

2 to gener-
ate a new manifold M′ with no boundary9. The reason this is difficult9Stop here, think about what we have

done. Collect the pieces of your ex-
ploded head.

to visualize is because if we start with a very simple space like M = R3

the new structure M′ is not embeddable within the original manifold
M.
This procedure, torus surgery on a 3-manifold, is called Dehn surgery.

Another way to describe what we have done is that we have removed
a solid torus, switched the meridian and longitude (switched the filled-
contractible and the unfilled-uncontractible) and then glued it back in.
In fact, one can make more complicated transformations on the torus
before gluing it back in (and it is still called Dehn surgery, see section
7.4) but we will not need this.
It is worth noting that the solid torus we removed could be embedded

in a very complicated way within the original manifold — i.e, it could
follow a complicated, even knotted, path, as in the figure on the right
of Fig. 7.10. As long as we have a closed loop S1 (possibly following a
complicated path) and it is thickened to D2 in the direction transverse
to the S1 path, it is still a solid-torus topologically.

22.2 Representing Manifolds with Knots

22.2.1 Lickorish-Wallace Theorem

An important theorem10 of topology is due to Lickorish [1962] and Wal-10In Witten’s groundbreaking paper on
the Jones polynomial (Witten [1989]),
he states the theorem without citation
and just says “It is a not too deep re-
sult. . . ”. Ha! Seriously though, the
proof is actually not too difficult. Al-
though some of the details are a bit
tricky the main idea is fairly under-
standable. See the references at the end
of the chapter.

lace [1960].

Theorem: Starting with S3 one can obtain any closed connected
orientable 3-manifold by performing successive torus surgeries, where
these tori may be nontrivially embedded in the manifold (i.e., they may
folllow some knotted path).

One has the following procedure. We start with a link (some knot
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possibly of several strands), embedded in S3. Thicken each strand to
a solid torus. Excise each of these solid tori, and replace them by tori
with longitude and meridian switched11. Any possible 3-manifold can

11See also section 7.4.

be obtained in this way by surgering an appropriately chosen link. We
summarize with the mapping

Link in S3 surger−→ Some M3 (22.1)

We can thus represent any three dimensional manifold as a link in
S3. If we think of a topological quantum field theory as being a way to
assign a complex number to a three dimensional manifold, i.e., Z(M) we
realize that what we are now looking for is essentially a knot invariant
— a way to assign a number to a knot. We exploit this connection
further when we discuss the Witten-Reshitikhin-Turaev invariant below
in section 22.3.

22.2.2 Kirby Calculus

It turns out that not all topologically different links, when surgered, give
topologically different manifolds. Fortunately, the rules for which knots
give the same manifolds have been worked out by Kirby [1978]. These
rules, known as Kirby calculus, are stated as a set of transformation
moves on a link which change the link, but leave the resulting manifold
unchanged. There are several different sets of moves that can be taken
as “elementary” moves which can be combined together to make more
complicated transformations. Perhaps the simplest set of two elementary
basic moves are known as Kirby moves which we will present here12. We

12If one does not start with the knot

embedded in S3, one may need a third
move known as “circumcision”. This
says that if any string loops only once
around another string (without twist-
ing around itself and without loop-
ing around anything else), both strings
may be removed. I.e., in Fig. 22.5, both
strings may be removed (independent
of how the string going off to the left
forms any knot).

will not rigorously prove that these moves leave the manifold unchanged,
but we will give rough arguments instead.

Fig. 22.5 A circumcision. Both
strings can be removed. This is a third
Kirby move which is implied by the first
two if you start with a link embedded
in S3 but is more generally an indepen-
dent move that is required. See for ex-
ample Roberts [1997].

Kirby Move 1: Blow Up/ Blow Down:13
13The nomenclature is obscure when
discussing 3-manifolds, but makes sense
when one discusses 4-manifolds. See
any of the books on 4-manifold topol-
ogy listed at the end of the chapter.

One can add or remove a loop with a single curl, as shown in Fig. 22.6,
to a link and the manifold resulting after surgery remains unchanged.

Addition or Removal of

or

Fig. 22.6 Blow up/ Blow down. Addition or removal of an unlinked loop with a
single curl leaves the 3-manifold represented by surgery on the knot unchanged.

Argument: First let us be a bit more precise about the surgery pre-
scription. Given a link, we think of this link as being a ribbon (usually
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we draw it with blackboard framing, see section 2.2.2). Thicken each
strand into a solid torus, and draw a line around the surface of this torus
that follows one of the edges of the ribbon. Remove this solid torus, but
the torus surface that remains still has the line drawn around it. Reat-
tach a new solid torus where the new meridian (the circle surrounding
the contractible direction) follows precisely this line.

Fig. 22.7 A line that wraps both the
longitude and meridian of the torus. If
we thicken the knot shown in Fig. 22.6
to a torus and draw a line around
the longitude of the torus, then try to
straighten the torus out to remove the
twist, the straight line ends up looking
like this.

Now consider a curled loop as in Fig. 22.6 embedded in S3. As shown
in Fig. 2.7 a string with a small curl as in Fig. 22.6 can be thought of
as a ribbon with a twist (but no curl) in it. Let us use this description
instead. Thicken the loop to a torus, and then the edge of the ribbon
traces out a line as shown in Fig. 22.7 on the torus surface. We remove
the solid torus and insert a new torus where the meridian follows the
twisted line on the surface of the hole that is left behind. This is exactly
the construction of L(1, 1) = S3 described in 7.4 above (it is (1, 1) since
the blue line goes around each cycle once), thus showing an example
of how surgery on the curled loops in Fig. 22.6 does nothing to the
manifold.

Kirby Move 2: Handle-Slide:14
14The nomenclature “handle slide”
comes from an interpretation of this
move as sliding handles around on a
manifold. Consider the example used
in section 22.1.1 where we attached a
handle to a ball and obtained a solid
torus. We could also attach two han-
dles and get a two-handled solid torus.
Here it doesn’t matter where the han-
dles are attached to the sphere – they
can be slid around. Indeed, they can
even be slid over each other (where one
handle attaches to some point on the
other handle). It is the sliding of a han-
dle over another handle which gives this
move its name.

A string can be broken open and pulled along the full path of another
string, and then reconnected, and the resulting manifold remains un-
changed. See Fig. 22.8 or 22.9.

↔

Fig. 22.8 A handle-slide move. (See Fig. 22.9 for another example.) Both left and
right sides of this picture represent the same 3-manifold after surgery. Note that we
should always view both strings as ribbons, and we need to keep track of how many
self-twists the ribbon accumulates when it is slid over another string.

Argument: Consider the simple handle-slide shown in Fig. 22.9. Let
us think about what happens when we surger the horizontal loop. First
we thicken the horizontal loop into a torus (as shown), then we exchange
the contractible and non-contractible directions. In this procedure, the
longitudinal direction (The long direction) of the torus is made into
something contractible. This means (after surgery) we can pull the far
left vertical line through this torus without touching the three vertical
blue lines. Thus the right and left pictures must describe the same man-
ifold. While it is a bit harder to argue generally, this principle remains
true even if the torus is embedded in the manifold in a complicated way,
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↔

Fig. 22.9 An example of a simple handle-slide move.

as in Fig. 22.8.

Two links in S3 describe the same 3-manifold if and only if one link
can be turned into the other by a sequence of these Kirby moves as well
as any smooth deformation of links (i.e., regular isotopy).
Note that if we have two disconnected links L1 and L2 which surgered

give two manifolds M1 and M2 respectively,

L1
surger−→ M1

L2
surger−→ M1

then if we consider a link L1 ∪ L2 which is the disconnected union of
the two links (i..e, the two links totally separated from each other) it is
fairly easy to see that we obtain the so-called connected sum of the two
manifolds which we write as follows:

L1 ∪ L2
surger−→ M1#M2

See the discussion of connected sums in section 7.3.3.

22.3 Witten-Reshitikhin-Turaev Invariant

By using the ideas of surgery, we are now in a position to use our dia-
grammatic algebra to handle complicated manifolds. Recall that one of
the definitions of a TQFT is a mapping from a manifold M to a complex
number Z(M) in a way that depends only on the topology of the mani-
fold (for example, Eq. 5.17 or Fig. 7.1 but without the embedded link).
By using surgery (Eq. 22.1) we can describe our manifolds as links in
S3. If we can then find a link invariant that is unchanged under Kirby
moves, we will effectively have something we can use as a manifold in-
variant. Thus we are now looking to construct a link invariant, and our
diagrammatic algebra will provide exactly what we need!
We want to have a link invariant which is fully isotopy invariant (since

Kirby calculus is isotopy invariant). In the simplest case let us assume
we have no negative Frobenius-Schur indicators15 so we can take all

15In the more general case where we
have negative Frobenius-Schur indica-
tors, we can use the scheme of sec-
tion 14.3 to insure isotopy invarience.
It is also possible to work work with
negative da’s as discussed in section
14.5 and not apply rule 0, i.e., per-
forming a non-unitary evaluation of
the diagram. In many discussions of
Reshitikhin-Turaev invariant, this is es-
sentially what is done. Note that in this
case the Kirby color Fig. 17.7 is then de-
fined with da/D rather than da/D. The
identities of Fig. 17.8 and 17.11 hold for
this non-unitary evaluation.

da = da positive and we have a fully isotopy invariant diagram algebra
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for links (as discussed in section 14.3.2).
The key to this construction is to consider a link of the Ω (Kirby)

strands discussed above in section 17.5.
This link made of Ω represents the link to be surgered, and thus rep-

resents our manifold. Let us now consider a manifold invariant defined
as

ZWRT (M) =
1

D
[
e2πic/8

]σ ( Evaluate link made of Ω-strands where
surgery on link in S3 gives M

)

(22.2)

where σ is the so-called signature of the link, defined to be the number
of positive eigenvalues minus the number of negative eigenvalues of the
matrix of linking numbers linkij between the (possibly multiple) strands
of the link (The diagonal element linkii is just the self-linking or writhe
of strand i. See section 2.6.2 for definition of linking number16).16Note that to calculate a linking ma-

trix, we must orient all of the strands
(i.e., put arrows on them). It does not
matter which way these arrows point.

It is not so obvious that the definition in Eq. 22.2 should provide a
manifold invariant. What we would need to show is that ZWRT (M)
gives the same output for any link that describes the same M. In other
words we have to show that the expression on the right hand side of
Eq. 22.2 is unchanged when we make Kirby moves on the link.
Let us consider the first Kirby move, the addition of a twisted loop as

in Fig. 22.6. Using Fig. 17.11, adding such a twisted loop multiplies the
value of the link (the final term in Eq. 22.2) by e±2πic/8 (± depending on
which way the loop is twisted). However, the addition of the twisted loop
also changes the signature of the link σ by ∓1 thus precisely canceling
this factor. Thus the expression in Eq. 22.2 is certainly unchanged under
the first Kirby move17, the Blow-Up/Blow-Down.17The killing property of Fig. 17.8 also

makes Eq. 22.2 invariant under the
third Kirby move, Fig. 22.5.

We now turn to the second Kirby move. Here we show a rather re-
markable property of the Ω-strand — it is invariant under handle slides!
(up to phases which are properly corrected by the prefactor of Eq. 22.2).
The derivation of this result is given in Fig. 22.10. One must be a bit cau-
tious in applying this handleslide law, as the strand being slid (say the
left strand in Fig. 22.10) can develop self-twists if it slides over a strand
(say the right, Ω-strand in Fig. 22.10) which itself has twists. However,
the phase prefactor of Eq. 22.2 is designed to precisely account for this.
Thus Eq. 22.2 is unchanged under Kirby moves and therefore gives an
invariant of the manifold.
The manifold invariant Eq. 22.2 is known as the Witten-Reshetikhin-

Turaev invariant, and was invented by Reshetikhin and Turaev [1991].
The reason it also gets named after Witten is that it gives a rigorous re-
definition of the Chern-Simons manifold invariants (Eq. 5.17) discussed
byWitten [1989]. This is a rather important result being that the Chern-
Simons functional integral is not well defined as an integral! (See the
comments in section 5.3.4)18.

18We mention in section 5.3.4 that
the Chern-Simons partition function,
among other reasons for being ill-
defined, actually depends on a so-
called 2-framing of the manifold.
The Reshitikhin-Turaev invariant cor-
responds to choosing so-called canoni-

cal framing. This is discussed in depth
by Atiyah [1990b]; Kirby and Melvin
[1999].
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a Ω

=
∑

b

db
D

a b

=
∑

b,c,µ

db
D

√
dc
dadb

c

a b

a b

µ

µ

=
∑

b,c,µ

db
D

√
dc
dadb

a

c
a b

a

cµ µ

=
∑

c

dc
D =

a

a

c

a

a

Ω

Fig. 22.10 Proof that the Ω strand satisfies the handle-slide. Here we show that any strand a can freely slide over the Ω strand
in the sense of Fig. 22.8. The Ω strand on the right is meant to be connected up to itself in some way in a big (potentially
knotted or linked) loop which we don’t draw. In going from the first to the second line, and also in going from the second to
the third line we have used the completness relation Eq. 16.26. The equality in the second line is just sliding the vertex from
the top (where a and b split from c) all the way around the b strand on the right until it almost reaches the bottom a, b, c
vertex. Note this derivation does not even require a well defined braiding.

Note the multipication law for connected sums of manifolds

ZWRT (M1#M2) = D ZWRT (M1)ZWRT (M2) (22.3)

This multiplication law is from the fact that surgery on a disjoint union
of links gives a connect sum of manifolds (Eq. 22.2) and the evaluation of
the disjoint union of links gives the product of the individual evaluation
of the two links19. 19Some references redefine ZWRT

without the factor of D out front such
that Z(M1#M2) = Z(M1)Z(M2) in-
stead.

Further one can extend these manifold invariants to give a topological
invariant partition function of a labeled link within a manifold as in
Fig. 7.1 (this was one of our general definitions of what we expected
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from a TQFT). To make this extension we simply define

ZWRT (M; labeled link) =
1

D
[
e2πic/8

]σ




Evaluate link made of(
Ω-strands where

surgery on link in S3 gives M
∪ labeled link

)




In other words, we simply include the labeled link into the diagram to
be evaluated.
Without ever saying the words “path integral” or “Chern-Simons ac-

tion” we think of an anyon theory as simply a way to turn a link of
labeled world lines into a number (like evaluating a knot invariant, but
with rules for labeled links), and surgery on Ω strands allows us to rep-
resent complicated manifolds.

22.3.1 Some examples

It is worth working through a few examples of calculating the Witten-
Reshitikhin-Turaev Invariant for a few simple manifolds.
For M = S3, we don’t need to surger the manifold at all, so we don’t

need any Ω link at all. The value of the (empty) link is normalized to
unity and including the prefactor in Eq. 22.2 (with signature zero) we
obtain

ZWRT (S
3) = 1/D

which matches our expectations given Eqs. 17.12 and 7.7. Note that
given this relationship (See Eq. 17.6) Eq. 22.3 formula agrees with Eq. 7.15.
For M = S2 × S1 we need to surger a single loop in S3 to obtain

S2 × S1 (See exercise 22.1). Thus we need to evaluate a single loop of
Ω string. It is an easy calculation to evaluate a loop of Ω

=
∑

a

da
D a =

∑

a

d2a
D = D (22.4)

Thus including the prefactor in Eq. 22.2 (the signature of the link is
zero) we obtain

ZWRT (S
2 × S1) = 1

which is in agreement with Eq. 7.8.

Fig. 22.11 Borromean Rings. Cutting
any one strand disconnects the other
two. Surgery on this link in S3 creates
the three-torus S1 × S1 × S1.

Finally let us consider the three-torus manifold M = S1 × S1 × S1 =
T 2 × S1 = T 3. First, we note that surgery on the Borromean rings20

(Fig. 22.11) yields the three torus (See exercise 22.3). To evaluate the
link we use the corollary of the killing property of the Ω strand, Fig. 17.9

20The rings are named for the crest of the royal Borromeo family of Italy, who rose
to fame in the fourteenth century. However the knot (in the form of three linking
triangles) was popular among Scandinavian runestones five hundred years earlier and
was known as the “Walknot” or “Valknut”, or “the knot of the slain.”
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to show (See exercise 22.4.)

ZWRT (T
3) = number of particle species (22.5)

which matches the prediction from Eq. 7.3 along with Eq. 7.5.

22.3.2 Turaev-Viro Revisited: Chain-Mail and the
Turaev-Walker-Roberts Theorem

Using the ideas of surgery Roberts [1995] produced a beautiful geometric
proof of the Turaev-Walker theorem (Turaev [1992, 1994]; Walker [1991])
which relates the Turaev-Viro invariant to the Chern-Simons (Witten-
Reshitikhin-Turaev) invariant of a manifold. The result is, given a mod-
ular tensor category (a modular anyon theory) we have

ZTV (M) = |ZWRT (M)|2 (22.6)

We will not give the full proof here, only the general idea.
First we will require one more minor collorary. Similar to Fig. 17.9

we have the identity shown in Fig. 22.12 (See exercise 22.6).

ba c

Ω =
D

Θ(a, b, c)

a b c

a b c

Fig. 22.12 The Ω strand fuses three lines due to the killing property. Here we
have assumed an isotopy invarient theory as discussed in chapter 16, so we can draw
vertices with all three lines pointing in the same direction so a, b, c fuse together to
the identity. Here Θ(a, b, c) =

√
dadbdc as in Eq. 21.3.

We now want to construct a link of Ω strands which evaluates to
the same value as the Turaev-Viro invariant discussed in chapter 21.
Recall that to define the Turaev-Viro invariant, we first make a simplicial
decomposition of the manifold, breaking it up into tetrahedra, we label
each edge, and we sum a certain weight over all possible labelings as
given in Eq. 21.1.
Given our simplicial decomposition here we will instead construct a

link of Ω strands via the following procedure: Put one loop of Ω following
the edges of each triangular face (colored gold in Fig. 22.13), and one
loop of Ω around the waist of each edge (colored purple in Fig. 22.13) in
such a way that the two types of strands link with each other. Such a
link is known as chain-mail21 . We then define the so-called chain-mail

21When I have given talks on this
subject I have been surprised to dis-
cover that many people don’t know that
chainmail is a medieval type of armor
made of linked metal loops. Of course
those who had misspent youth play-
ing Dungeons and Dragons, or reading
the Lord of the Rings are very familiar
with the concept and can tell you why
Mithril is the best type of chainmail.

invariant of the manifold M as

CH(M) = D−Nv−Ntet
(

Evaluate Chain-Mail Link of Ω strands
for simplicial decomposition of M

)

(22.7)
where Nv is the number of vertices in the simplicial decomposition and
Ntet is the number of tetrahedra22.

22More generally the chain-mail link
can be defined for any handlebody de-

composition of the manifold where Ω
loops are put around 1-handles and 2-
handles and Nv is then the 0-cells and
Ntet is the 3-cells.
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First, it is extremely easy to prove that the chain-mail invariant is
independent of the particular simplicial decomposition (and hence is a
manifold invariant as claimed). We need only show that it is unchanged
under the Pachner moves (Fig. 21.4 and 21.5). This can be done entirely
geometrically using only the killing property (Fig. 17.9) and the handle-
slide property (Fig. 22.10) of the Ω strand (this is exercise 22.7).
Moreover, it is not hard to show that the chain-mail invariant is actu-

ally equal to the Turaev-Viro invariant. To do this we directly evaluate
the chain-mail link. We start by using idenity 22.12 on each Ω strand
attached to each face (those drawn as gold in Fig. 22.13). This generates
a factor of D/Θ(a, b, c) for each face. The remaining Ω strands (purple
in Fig. 22.13) are decomposed into sums of all quantum numbers as per
the definition of Ω in Fig. 17.7 each weighted by da/D. This leaves
one tetrahedron of particle strings per simplex as shown on the right
of Fig. 22.13. (Note that the remaining tetrahedron of strings to be
evaluated is a tetrahedral diagram dual to the original tetrahedron, in
agreement with the discussion below Eq. 21.4).

⇒ =
∏

faces

D
Θ(face)

∏

edges

∑

da

da
D

a

a

b

b

c

c

Fig. 22.13 The chain-mail invariant is equivalent to Turaev-Viro. We start with a simplicial decomposition on the
left. To form the chain-mail link we put one Ω-loop around each triangular face (gold in the figure) and one Ω loop
around each edge (purple in the figure) such that the gold and purple are linked. Let the gold loops “kill” the three
purple strands that go through them using Fig. 22.12 to leave only tetrahedra (blue on the right) dual to the original
tetrahedra.

Putting together the factors we have obtained leaves us with the chain-
mail invariant (including the prefactor in the definition) being given by

CH(M) =
DNf

DNv+Ne+Ntet

∑

edge labels

∏
tetrahedra G̃(tetrahedron)

∏
edges dedge∏

triangles Θ̃(triangle)

with Nv, Ne, Nf , Ntet being the number of vertices, edges, faces (trian-
gles), and tetrahedra respectively. Finally using the well-known topolog-
ical fact that in three dimensions, the Euler characteristic Ntet −Nf +
Ne − Nv is zero, the factors of D are reassembeled to give exactly the
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definition of the Turaev-Viro invariant Eq. 21.1 thus deriving

CH(M) = ZTV (M)

Finally we turn to briefly discuss the derivation of the Turaev-Walker
theorem Eq. 22.6. The key to this derivation is the fact23 that if one 23This key fact is not too hard to prove

— it requires only about two para-
graphs in the original work (Roberts
[1995]). However, it requires some
knowledge of handlebody theory, so we
will not discuss it here.

uses a particularly simple decomposition of the manifold, surgery on the
chain-mail link generates the connected sum of the original manifold M
and its mirror image M

Chain-mail link for M surger→ M#M (22.8)

Evaluating the chain-mail link is therefore essentially equivalent to eval-
uating ZWRT (M#M)
Using the equivalence between chain-mail and the Turaev-Viro invari-

ant we thus have (Eq. 22.3)

ZTV (M) ∼ ZWRT (M#M) ∼ ZWRT (M)ZWRT (M) ∼ |ZWRT (M)|2

We have written this equation with ∼ rather than an equality because
we have dropped factors of D. To get these right we have to know more
details about the particular decomposition of the manifold for which
Eq. 22.8 holds so that we can keep track of the factors of D in the
definition of the chain-mail invariant (Eq. 22.7). Keeping track of these
factors carefully one obtains the desired Eq. 22.6.

Further Reading

Reshetikhin and Turaev [1991]; Lickorish [1993]; Witten [1989].
For more detailed discussion of Surgery, the Lickorish-Wallace theo-

rem, and Kirby Calculus, as well as a nice discussion of manifold in-
variants see Prasolov and Sossinsky [1996]; Saveliev [2012] or Lickorish
[1997].
Roberts/Blanchet refinement.
Mention Crane-Yetter
The following references are standards for Surgery and Kirby Calculus,

although they emphasize four dimensional topology. Gompf and Stipsicz
[1999]; Kirby [1989]; Akbulut [2016].

Exercises

Exercise 22.1 Surgery on a Loop
Beginning with the three-sphere S3, consider the so-called “unknot” (a sim-

ple unknotted circle S1 with no twists) embedded in this S3. Thicken the circle
into a solid torus (S1×D2) which has boundary S1×S1. Now perform surgery
on this torus by excising the solid torus from the manifold S3 and replacing
it with another solid torus that has the longitude and meridian switched. I.e.,
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replace S1 ×D2 with D2 × S1. Note that both of the two solid tori have the
same boundary S1 ×S1 so that the new torus can be smoothly sewed back in
where the old one was removed. What is the new manifold you obtain? (This
should be easy because it is in the book!).

Exercise 22.2 Surgery on the Hopf Link [Not hard if you think about it
right!]

Fig. 22.14 A Hopf Link

Consider two linked rings, known as the Hopf link (See Fig. 22.14). Consider
starting with S3 and embedding the Hopf link within the S3 with “blackboard
framing” (i.e., don’t introduce any additional twists when you embed it).
Thicken both strands into solid tori and perform surgery on each of the two
links exactly as we did above. Argue that the resulting manifold is S3.

Exercise 22.3 Surgery on the Borromean Rings [Hard]
Consider the link shown in Fig. 22.11 known as the Borromean rings. Con-

sider starting with S3 and embedding the Borromean rings within the S3 with
“blackboard framing”. Thicken all three strands into solid tori and perform
surgery on each of the three links exactly as we did in the previous two prob-
lems. Show that one gets the three torus as a resul. Hint 1: Think about
the group of topologically different loops through the manifold starting and
ending at the same point, the so-called “fundamental group” or first homotopy
group. (See section 41.3). Hint 2: If we say a path around the meridian of one
of the three Borromean rings (i.e., threading though the loop) is called a and
the path around the meridian of the second ring is called b, then notice that
the third ring is topologiclly equivalent to aba−1b−1. Hint 3: In some cases
the fundamental group completely defines the manifold! (Don’t try to prove
this, just accept this as true in this particular case.)

Exercise 22.4 Evaluation of Borromean Ring Ω-Link
Use Fig. 17.9 to evaluate the Ω-link of Borromean rings shown in Fig. 22.11.

Use this to establish Eq. 22.5. Note that the signature of the link is zero.

Exercise 22.5 Product of Blow Up and Blow Down
Use the handle-slide and the killing property of Ω to prove that the diagram

made of two oppositely twisted Ω loops, as shown in Fig. 22.15, gives the
identity.

ΩΩ

Fig. 22.15 The product of these two
oppositely twisted Ω loops gives the
identity.

Exercise 22.6 Killing Three Strands with Ω
Prove the relationship shown in Fig. 22.12.

Exercise 22.7 Pachner Moves and the Chain-Mail Invariant
Using killing moves (Fig. 17.9) and handle-slides (Fig. 22.10) show that the

chain mail invariant Eq. 22.7 is unchanged under Pacher moves (Fig. 21.4 and
21.5). The answer is given by Roberts [1995], but it is a fun exercise. Looking
up the answer spoils the fun!



Anyon Condensation 23
Medium Easy Material

A commonly discussed mechanism that derives one anyon theory from
another is known as anyon condensation. The idea is modeled on the
notion of conventional Bose-Einstein condensation. Under certain con-
ditions one can imagine anyons forming a superfluid state, akin to a
Bose-Einstein condensate. One can imagine making a condensate form
either by continuously reducing the temperature with a fixed Hamilto-
nian, or by continuously changing the Hamiltonian at fixed (perhaps
zero) temperature1. If one begins with a consistent anyon theory before 1A phase transition that occurs at zero

temperature as some parameter of the
Hamiltonian is changed is often known
as a “quantum phase transition”.

the condensation, the system after the condensation will also be a con-
sistent anyon theory, which we call the condensed theory2. It is believed

2It is sometimes possible that the con-
densed theory is a trivial theory —
having only the vacuum particle type,
and zero central charge. We should
think of that as just being an uninter-
esting insulator. Strictly speaking this
is a TQFT, just a very trivial one. It is
also possible to have phase transitions
from topological theories to nontopo-
logical phases of matter such as gapless
phases or fermi liquids.

that all continuous phase transitions that can occur between different
anyon theories can be described in terms of anyon condensation3.

3First order, or discontinuous, phase
transitions can always occur between
any two phases of matter.

There is a very detailed theory of anyon condensation, worked out by
Bais and Slingerland [2009] and others (see references at end of chapter).
Here we will give an abbreviated discussion, along with a few explicit
examples.
Let us review some aspects of Bose condensation (See Leggett [2006]

or Annette [2004] for much more information about the physics of super-
fluids and condensates). Recall that in a Bose condensate a macroscopic
number of the particles reside in one special lowest-energy single-particle
eigenstate which we call the condensate wavefunction. For a uniform sys-
tem (say with periodic boundary conditions) the wavefunction for this
single particle eigenstate is just a constant

ψ(r) =
1√
V

(23.1)

with V the volume of the system. It is crucial that bosons accumulate
no phase or sign when they are braided around each other or exchanged
with each other. If they were to accumulate any phase or sign, this
would prevent them from remaining in the eigenstate Eq. 23.1 which is
everywhere real and positive. This gives us:

Principle 1: Bosons must experience no net phase or sign
when they move around then comes back to the same con-
figuration — i.e., when bosons exchange or braid with other
particles in the condensate.

Indeed, accumulating no sign when exchanging with other identical
particles is the very definition of a boson4.

4It is possible that the condensate
wavefunction has a spatial structure
such as eiφ(r), which happens when
there is, say, a vortex within the con-
densate. What is crucial is that when
bosons move around within the conden-
sate, when they get back to the same
many-particle configuration the phase
is the same as when they started.

With interacting bosons, one does not strictly have Bose condensation
(not all of the bosons occupy the same single particle eigenstate, since
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interactions kick the particles out of this eigenstate). Nonetheless, in-
teracting bosons can condense to form superfluids which share many of
the properties of Bose condensates. In particular, one still has the idea
of a condensate wavefunction (or order parameter), and in order to form
a condensate, no phase or sign must be accumulated when the particles
exchange and braid.
To describe a condensate wavefunction (or order parameter) micro-

scopically, one writes55For systems with strictly fixed to-
tal number of particles this expecta-
tion would be zero and one instead
looks at 〈ψ̂†(r)ψ̂(r′)〉 in the limit of
r very far from r′. This is known as
“Off-Diagonal Long Ranged Order” or
ODLRO.

φ(r) = 〈ψ̂(r)〉
where ψ̂(r) is the (second quantized) operator which annihilates a parti-
cle at position r. For noninteracting bosons, where many bosons are in
the single particle wavefunction Eq 23.1, we obtain |φ|2 = N0/V where
N0 is the number of bosons in the single eigenstate.
The fact that this order parameter is (at least locally) number noncon-

serving (it destroys a particle) gives us the second important principle

Principle 2: Bosons can be freely absorbed by, or emitted
from, the condensate.

23.1 Condensing Simple Current Bosons

We now would like to generalize the idea of Bose condensation to anyon
theories. For simplicity begin by restricting our attention to bosons that
are also simple currents6 and only lift this restriction in section 23.7 To6In the language of of conformal field

theory, condensation of a simple cur-
rent is known as “extension of the chiral
algebra.”

remind the reader, a particle, let us call it J , is a simple current if
N c
Ja = 0 or 1 for all particle types a and c. This condition is equivalent7

7This condition is also equivalent to
either of the following also equivalent
statements:

(a) J × J̄ = I.

(b) dJ = 1

to the statement that JN = I for some integer N where I is the identity
(where JN here means N factors of J fused together).
For a particle J to condense, it must be a boson. This means that it

must have trivial braiding with itself.

RJ,JJ×J = 1

or equivalently a trivial spin factor (See Eq. 15.2)

θJ = 1

which is what we expect for a boson. This condition implements the
above Principle 1: the boson must not experience a nontrivial phase
as it exchanges with another particle as this would prevent a condensate
wavefunction from forming.
Within the condensate, bosons may fuse with each other to form par-

ticles Jp for any value of p. It is not hard to show that all such resulting
particle types must also be bosons θJp = 1 and further, they all must
braid trivially with each other (See exercise 23.1).
While one can condense bosons that are not simple currents, the rules

for doing so are a bit more complicated and we will return to discuss
this more complicated case in section 23.7.
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We will start with an initial anyon theory which we call A. Within
this anyon theory, we assume there is a bosonic simple current J which
we intend to condense to form a new anyon theory. The final anyon
theory that comes out at the end of the condensation procedure will be
called U .
We can think of anyon condensation as proceeding in two conceptual

steps as shown in Fig. 23.1. In between the initial theory A and the final
theory U there is another theory T which is not a full anyon theory, but
rather a fusion algebra (or planar diagram algebra), as we will discuss
further in a moment.

Uncondensed anyon theory A

⇓ identify (and split)

Fusion algebra T (edge theory)

⇓ confine

Condensed anyon theory U
Fig. 23.1 Condensing one anyon theory to another can be described as having two
“steps”. The original anyon theory is labeled A and the final anyon theory is labeled
U . In between we have the intermediate theory T which is not generally a full-fledged
anyon theory, but rather a fusion algebra (planar diagram algebra). The first step
from A to T involves identification and possibly splitting. The second step from T
to U involves confinement.

23.2 Identification Step

The first step in the condensation process is the identification step. In
this step we group the particle types from the uncondensed theory A
into so-called orbits.

Definition: The orbit of a particle type a under the action of J is
the set of all particle types b ∈ A such that b = Jp × a for some integer
p. We denote the orbit as [a]J , or when it not ambiguous we just write
[a].

One should be cautioned8 that the orbit [a] is the same as orbit [b] if 8This can sometimes cause some nota-
tional confusion. It is often useful to
choose a single representative of each
orbit so that each orbit is uniquely de-
noted as a particular [a] and one never
writes [b] if b = Jq × a.

b = Jq × a for any q.
Further, we note that if N is the smallest integer such that JN = I

then there are at most N particle types in any given orbit, although
there may be fewer particles in an orbit, as we will discuss in detail in
section 23.4.
The physical point here is that all of the particles types in the same

orbit of the original theory A are identified as being the same particle
type in the T theory. The physical reason for this isPrinciple 2: bosons
can be freely emitted from or absorbed into the condensate. A particular
particle a can absorb a boson from the condensate and become J × a or
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it can absorb two bosons from the condensate to become J2 × a and so
forth. The quantum number a is no longer a conserved quantum number
(and therefore is not a valid particle type), but the orbit [a] remains
conserved and can play the role of a particle type in the condensed
theory. The orbits in the condensed theory will inherit fusion rules
from the fusion rules of the uncondensed theory (with some potential
complications we will address in section 23.4).

23.2.1 Orbits of maxmum size

Here we will consider the case where all of the orbits are of maximum
size. I.e., all orbits have exactlyN particle types in them (where N is the
smallest positive integer so that JN = I). We will return to the more
complicated case where not all orbits are of maximum size in section
23.4.
We start with the original theoryA, and each particle a can be mapped

to an orbit [a] in the T theory. The fusion rules of the T theory are
inherited from the fusion rules of the orginal anyon theory in a natural
way which we can write in terms of the fusion multiplicity matrices as

N
[c]
[a],[b] = N c

a,b

Note in particular that the identity particle I of the A theory maps to
the orbit [I] which becomes the identity particle of the T theory.

Example: Z(3+1/2)
8

Let us consider the anyon theory Z(3+1/2)
8 discussed in section 20.4.2

which is equivalent to the Chern-Simons theory SU(8)1. There are 8
particles which we label p = 0, . . . , 7 with fusion rules

p× p′ = (p+ p′) mod 8 (23.2)

and p = 0 is the identity. The corresponding twist factors are

θp = exp

[
2πi7

16
p2
]

(23.3)

We notice that p = 4 has trivial twist factor θ4 = 1 and is therefore a
boson. Let us call this bosonic particle J , and we notice that J2 = I so
the maximum orbit size is 2.
In this model we have four different orbits under the action of fusing

with the boson J , and each of these orbits is of maximum size 2. Let us
write down these orbits (Recalling that [a] means the orbit of a)

[0] which is also equal to [4]

[1] which is also equal to [5]

[2] which is also equal to [6]

[3] which is also equal to [7]
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The meaning here should be obvious. Remembering that the boson J ,
which is particle p = 4 can be absorbed or emitted for free, we then for
example, must identify particles 1 and 5 into a single orbit since fusing
1 with 4 gives 5 and fusing 5 with 4 gives 1.
These four different orbits comprise the particle types of the interme-

diate T theory. Let us denote these four orbits as [p] with p = 0, . . . 3.
The fusion rules are inherited from the original uncondensed anyon fu-
sion rules (Eq. 23.2) in an obvious way giving

[p]× [p′] = [(p+ p′) mod 4 ] (23.4)

with [0] playing the role of the identity in the T theory. To see how
these fusion rules come from those of Eq. 23.2, consider, for example,
[1] × [2] = [3]: Here either 1 or 5 (the two particle types in the orbit
[1]) fused with either 2 or 6 (the two particle types in the orbit [2]) will
always give us 3 or 7 (the two particle types in the orbit [3]).

23.3 Confinement Step

The particle types in the intermediate theory T form a consistent fusion
algebra (and indeed a consistent planar diagrammatic algebra) but they
do not generally form a consistent anyon theory, as they do not generally
have a consistent braiding (or solution to the hexagon equations). The
reason for this is that some of the particles in T are not valid particles
of the final condensed anyon theory U and must be thrown out.
The reason some particles of T are not valid anyons in the condensed

phase is that they braid nontrivially with the condensed boson. Trying
to put a particle within the condensate that braids nontrivially with
the condensed boson would violate Principle 1: when a boson in the
condensate moves around, the phase must be the same when it arrives
back at the same point. We thus have the rule that any particles a (or its
orbit [a]J ) allowed in the final condensed theory U must braid trivially
with the condensate, meaning that

Ra,JJ×aR
J,a
J×a =

θJ×a
θa

= 1 (23.5)

where we have used Eq. 15.4 and the fact that θJ = 1. Since J × a and
a are in the same orbit [a] the condition Eq. 23.5 can be rephrased by
saying that an orbit (a particle type of the T theory) is allowed into the
final anyon theory U if all of the particles in the orbit have the same
spin factor θ. Such particles that are allowed in U we say are deconfined,
meaning that they can travel freely within the condensate. The particle
types from T that braid nontrivially with the condensate are not allowed
within the condensate and we say they are confined.
Although the confined particles of the T theory are not part of the

final condensed anyon theory, they still have physical meaning. The
full T theory can be physically realized as a 1+1 dimensional theory
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living on the edge of a droplet of the U anyon theory living inside a
larger region of the A uncondensed theory. The reason for this is that
if we restrict motion of particles to a one-dimensional edge, there is no
possibility of braiding one particle around each other and there is thus
no problem with any of the particles of the full T theory — both the
confined and deconfined particles can live there. The T theory, since it
describes a 1+1 dimensional edge is not a braided anyon theory, but is
rather a fusion algebra (or a planar diagram algebra).
If we try to drag one of the confined particles of the T theory into the

condensed U droplet, its nontrivial braiding with the condensate creates
a “branch-cut” in the condensate along its path into the condensate and
destroys the condensate along this path. This costs an energy propor-
tional to the distance the particle has been dragged into the U region.
Thus there is a force pushing these confined particle back to the edge of
the droplet. The particles are confined to the edge.

Z(3+1/2)
8 Again

Let us return to our example of Z(3+1/2)
8 and determine which of our

orbits (particle types of T ) are confined or deconfined. Recall the rule
that an orbit is deconfined if all of the constituent particles in the orbit
have the same twist factor θ. From Eq. 23.3 we have

θ0 = θ4 = 1

θ1 6= θ5

θ2 = θ6 = −i
θ3 6= θ7

Thus, the only two particle types allowed in the final condensed U theory
are the orbits [0] (which is the identity) and [2] with corresponding spin
factors θ[0] = 1 and θ[2] = −i. The only nontrivial fusion we obtain from
Eq. 23.4 is

[2]× [2] = [0].

We thus recognize this condensed anyon theory as the (left-handed)
semion theory! Further we establish that if we condense a semion droplet
within a Z(3+1/2)

8 background there will be two additional particle types
([1] and [3]) that remain confined at the edge of the droplet.

23.4 Splitting: Orbits not of maximum size

Above in section 23.2.1 we assumed all of the orbits were of maximum
size. That is, if N is the smallest positive integer so that JN = I, then
all orbits are of size N .
If we have a situation where some orbits are not of maximum size,

then we have a new physical phenomenon, known as splitting. This
phenomenon is a reflection of the fact that assigning each orbit [a] from
the uncondensed theory A to be a particle type of the intermediate
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theory T will not give an acceptable fusion algebra. Let us see how this
happens.
Let us suppose we have some particle a such that Jp × a = a with

0 < p < N (In fact, p must divide N). We start by recalling

a× ā = I + . . .

On the other hand, we can also write

a× ā = (Jp × a)× ā = Jp × (a× ā) = Jp × (I + . . .) = Jp + . . .

We thus conclude that we must have9 9In fact we can generalize this argu-
ment to give

a× ā = I + Jp + J2p + . . . JN−pa× ā = I + Jp + . . . (23.6)

Now we claim that this feature will result in the orbits inA not producing
an acceptable fusion algebra in T . As in the previous example, let us
divide all of the particles in A into their orbits under the aciton of J ,
which we write as [a]. The fusion equation Eq. 23.6 then would imply
the fusion for the orbits

[a]× [ā] = [I] + [Jp] + . . .

= [I] + [I] + . . . (23.7)

where here we have used that [Jp] is in the J orbit of the identity (i.e.,
[Jp] = [I]). Eq. 23.7 now presents an inconsistency as one of our rules of
fusion algebras (Eq. 8.6) is that N I

aā = 1, i.e., the identity field should
occur only once on the right hand side. We conclude that this is not
acceptable as a fusion algebra for T .
To resolve this problem the orbit [a] must split into multiple particle

types in T which we will write as [a]i with i = 1, 2, . . . , qa for some
number qa.
Most generally we can write the mapping between the original A and

T as

a→
qa∑

i=1

nai [a]i (23.8)

where now [a]i are particle types of the T theory and the n’s are integers.
If the orbit of [a] is maximal, then [a] does not need to split, meaning

(na1 = 1 and qa = 1, and we don’t need to write a subscript on [a]).
However, if the orbit is not maximal, then [a] must split into multiple
different particles [a]1, [a]2, . . . such that the twist factors all agree

θ[a]i = θa . (23.9)

As in the simple case with no splitting, the fusion rules of the T theory
must be consistent with those of the uncondensedA theory. In particular

a× b =
∑

c

N c
ab c
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in the A theory implies
(

qa∑

i=1

nai [a]i

)
×
(

qb∑

i=1

nbi [b]i

)
=
∑

c

N c
a,b

(
qc∑

i=1

nci [c]i

)

within the T theory. This consistency implies the relationship

da =

qa∑

i=1

nai d[a]i (23.10)

between the quantum dimensions in the A theory (left) and the quantum
dimensions in the T theory (right). Once the particles have split, it is
then possible to have a consistent set of fusion rules in the T theory.
Once these fusion rules have been established, one can determine which
fields are confined in order to determine the final condensed anyon theory
U .
While the phenomenon of identification (section 23.2) has a fairly

obvious physical interpretation, it is often not as obvious how to interpret
the phenomenon of splitting — except to say that it is required for
consistency. However, a physical understanding is given by realizing
the presence of a condensate can cause certain physical quantities to be
locally conserved where they are indefinite in the uncondensed phase.
It is the presence of these new locally conserved quantities which allow
us to form [a]i where i can take qa different values — corresponding
to the qa different values that the conserved quantity may take. This
picture of emergent conserved quantities is elucitated by Burnell et al.
[2011, 2012].

Example: SU(2)4

Let us consider the example of the Chern-Simons theory SU(2)4. We list
the fields10, their quantum dimensions, and their fusion rules in table10The integer label of the field used

here is twice its spin value, usually
called “j”. As in usual SU(2) algebra,
spins take integer and half-integer val-
ues, so for simplicity of notation here
we just double the spin to get an inte-
ger.

23.1.

particle d θ
0 1 1

1
√
3 e2πi/8

2 2 e2πi/3

3
√
3 e2πi5/8

4 1 1

× 1 2 3 4
1 0 + 2 1 + 3 2 + 4 3
2 1 + 3 0 + 2 + 4 1 + 3 2
3 2 + 4 1 + 3 0 + 2 1
4 3 2 1 0

Table 23.1 Data for SU(2)4. Left: quantum dimensions and twist factors for the
different particles. Note that 0 is the identity. Right: Nontrivial fusion rules. Note
that the fusion rules are given by Eq. 19.10, and the quantum dimensions are given
by Eq. 19.2 given d =

√
3. You can check the consistency of da with the fusion rules

by using Eq. 8.10 (i.e, da should be the largest eigenvalue of the fusion matrix [Na]cb).
Particle 4 is a simple currrent boson which we will attempt to condense.

We notice that particle 4 is a simple current with orbit of length 2
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(4× 4 = 0). Let us now list the orbits in this theory

[0] = [4] Maximum size orbit (also the identity)

[1] = [3] Maximum size orbit

[2] Not a maximum size orbit. This orbit must split

These orbits are just read off from the bottom line of the table 23.1:
under fusion with the field 4, we have 0 mapping to 4 and vice versa; we
have 1 mapping to 3 and vice versa, but 2 just maps to itself.
The nontrivial11 fusion rules for the orbits, which we read off of table 11“Nontrivial” means we don’t write

fusion with the identity.23.1, are12

12Just to give an example, consider
[1] × [1]. Each factor of [1] could ei-
ther represent the particle 1 or the par-
ticle 3 = 1 × 4. So the result of this
fusion [1] × [1] could be 1 × 1 = 0 + 2
or 1 × 3 = 2 + 4 or 3 × 1 = 2 + 4 or
3 × 3 = 0 + 2. In all cases the result
contains one particle from the [0] orbit
and one from the [2] orbit. Thus giving
[1]× [1] = [0] + [2].

[1]× [1] = [0] + [2]

[1]× [2] = [1] + [1]

[2]× [2] = [0] + [2] + [0]

where [0] is the identity orbit. It is the last line here which demonstrates
explicitly the problem noted in Eq. 23.7 — we should not have the
identity twice on the right hand side. To fix this problem we split the
particle [2] into two pieces [2]1 and [2]2.

[1]× [1] = [0] + [2]1 + [2]2 (23.11)

[1]× ([2]1 + [2]2) = [1] + [1] (23.12)

([2]1 + [2]2)× ([2]1 + [2]2) = [0] + ([2]1 + [2]2) + [0] (23.13)

While this is not quite the full fusion rules of the T theory, one can
nonetheless extract13 a unique set of fusion rules for the T theory con-
sistent with Eq. 23.11-23.13, which are shown in table 23.2.

particle d θ

[0] 1 1

[1]
√
3 e2πi/8

[2]1 1 e2πi/3

[2]2 1 e2πi/3

× [1] [2]1 [2]2

[1] [0] + [2]1 + [2]2 [1] [1]

[2]1 [1] [2]2 [0]

[2]2 [1] [0] [2]1

Table 23.2 Data for the intermediate T theory obtained from condensing the 4
particle in SU(2)4. This is the fusion theory describing the edge of a condensed
droplet.

Several things are worth noting on this table. First, note that d[2]1 +
d[2]2 is the same as d2 from the original SU(2)4 as is required by Eq. 23.10.
Secondly note that the twist factors are unchanged (even if a particle

13Eq. 23.11 is already written as a proper fusion rule. Eq. 23.12 implies [1]× [2]1 = [1] and [1]× [2]2 = [1]. Next we note that
the left hand side of Eq. 23.13 can be rewritten as ([2]1 × [2]1) + ([2]2 × [2]2) + 2 ([2]1 × [2]2) which, comparing to Eq. 23.13,
immediately implies that [2]1× [2]2 = [0]. To pin down the remaining fusion rule we use associativity [2]2 = ([2]1× [2]2)× [2]2 =
[2]1(×[2]2 × [2]2) which implies the only consistent set of fusion rules to be [2]2 × [2]2 = [2]1 and [2]1 × [2]1 = [2]2.
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type splits) as stated in Eq. 23.9.
We can obtain the final U anyon theory, with a proper braiding, by

throwing out the particles that are confined. Looking back at table 23.1
we see that the orbit [1] is made up of particles 1 and 3 which have
different spin factors. This implies that particle [1] must be confined
(it braids nontrivially with the condensate, see Eq. 23.5). However, the
orbit [2] is made of a single particle type and therefore is deconfined
(even if it splits). Thus our final anyon theory after confinement is given
by table 23.3. We recognize the resulting anyon theory as SU(3)1 or
equivalently Z1

3. See section 20.4.1. It is worth noting that there is an
obvious symmetry between the two split pieces which we will discuss
further in chapter 32 – it does not matter which piece we labeled with
subscript 1 and which with subscript 2.

particle d θ

[0] 1 1

[2]1 1 e2πi/3

[2]2 1 e2πi/3

× [2]1 [2]2

[2]1 [2]2 [0]

[2]2 [0] [2]1

Table 23.3 Data for the final U anyon theory obtained from condensing the 4

particle from SU(2)4. We recognize this theory as SU(3)1 or equivalently Z1
3.

Example: Ising × Ising

As a second example, let us consider the product theory Ising × Ising.
First recall some key properties The Ising theory shown in Table 23.4

particle d θ
I 1 1

σ
√
2 eiπ/8

ψ 1 −1

× σ ψ
σ I + ψ σ
ψ σ I

Table 23.4 Data for Ising TQFT. Left: quantum dimensions and twist factors for
the different particles. Note that I is the identity. Right: Nontrivial fusion rules.

From the data for Ising we can construct the product theory Ising ×
Ising. The data for Ising is the same as that for Ising except that the
twist factors are complex conjugated.
We will notate the particles types from Ising × Ising as (a, b) where

a, b ∈ I, σ, ψ meaning that a is from the Ising theory and b is from the
Ising theory, thus giving nine total particle types. The twist factor of the
combined particles is the product of the spin from the two constitutents.
So for example, the spin of θ(ψ,σ) = (−1)(e−iπ/8).
There are two bosons in this theory (σ, σ) and (ψ, ψ). Here we consider

condensing (ψ, ψ). We will write the orbit of (a, b) as [a, b]



23.4 Splitting: Orbits not of maximum size 313

The orbits under the action of (ψ, ψ) are as follows

[I, I] = [ψ, ψ] Maximum size orbit (also the identity)

[I, σ] = [ψ, σ] Maximum size orbit

[σ, I] = [σ, ψ] Maximum size orbit

[I, ψ] = [ψ, I] Maximum size orbit

[σ, σ] Not a maximum size orbit. This orbit must split

It is convenient here to take a short-cut and check which of these are
going to be confined. The twist factor of (σ, I) is eiπ/8 whereas the twist
of (σ, ψ) is −eiπ/8 and similarly the twist for (I, σ) and (ψ, I) differ by a
minus sign. Thus these two orbits will be confined and for convenience
we just drop them now.
The nontrivial fusion rules of the remaining particle types are14 14For example, to derive the last of

these, we use σ × σ = I + ψ for both
left and right sides of the theory to ob-
tain (σ, σ) × (σ, σ) = (I, I) + (I, ψ) +
(ψ, I)+ (ψ, ψ) then grouping these into
orbits gives the result.

[I, ψ]× [I, ψ] = [I, I]

[I, ψ]× [σ, σ] = [σ, σ]

[σ, σ] × [σ, σ] = [I, I] + [I, I] + [I, ψ] + [I, ψ] (23.14)

again indicating that the orbit [1, 1] needs to split into two pieces [σ, σ]1
and [σ, σ]2. There are two consistent fusions that can result from this
splitting, but only one of them reults in a consistent anyon theory15,
which we show in table 23.5. Although we have not run into this par-
ticular theory before, it turns out to be the toric code TQFT16, which 16The mapping to the conventional

form of the toric code is that [I, I] is
the identity [ψ, I] is the fermion f . Fi-
nally [σ, σ]1 and [σ, σ]2 are assigned to
e and m although it does not matter
which one is assigned to which.

we will study in depth in chapter 25 and thereafter. Note again that
there is a symmetry between the two pieces of the splitting, it does not
matter which one we labeled with the subscript 1 and which one with
2. This symmetry is discussed in depth in chaper 32.

particle d θ

[I, I] 1 1

[σ, σ]1 1 1

[σ, σ]2 1 1

[ψ, I] 1 −1

× [σ, σ]1 [σ, σ]2 [ψ, I]

[σ, σ]1 [I, I] [ψ, I] [σ, σ]2

[σ, σ]2 [ψ, I] [I, I] [σ, σ]1

[ψ, I] [σ, σ]2 [σ, σ]1 [I, I]

Table 23.5 Data for the final U anyon theory obtained from condensing the (ψ, ψ)

particle from Ising × Ising. We recognize this theory as the toric code theory.

15From Eq. 23.14 we know we must have ([σ, σ]1 + [σ, σ]2) × ([σ, σ]1 + [σ, σ])2 = 2[I, I] + 2[I, ψ] which implies that we must
have either (a) [σ, σ]i × [σ, σ]i = [I, I] for i = 1, 2 and [σ, σ]1 × [σ, σ]2 = [I,ψ] or (b) [σ, σ]i × [σ, σ]i = [I, ψ] for i = 1, 2 and
[σ, σ]1 × [σ, σ]2 = [I, I]. Case (a) will turn out to be consistent and we show it in table 23.5 above. To show that case (b) is

inconsistent, we use the ribbon identity 15.4 to derive that R
[σσ]1,[σσ]1
[ψ,I]

= ±i. We can plug this result into Eq. 15.2 which then

does not give the correct θ[σ,σ]1 = 1 thus showing an inconsistency.
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23.5 Other Features of Condensation

A few other features of condensation are worth mentioning. First, if we
start with a modular anyon theory, A, then the condensed theory U is
also modular. Further for modular theories, the central charge (modulo
8) remains unchanged

cA = cU mod 8 (23.15)

Secondly, there is a beautiful relationship between the total quantum
dimensions of the uncondensed theory A, the fusion algebra T and the
final theory U . Recalling that total quantum dimension is defined by

D = +

√∑

a

d2a

We then have DA
DT

=
DT
DU

(23.16)

Let us check these relations for the SU(2)4 condnensation example.
From tables 23.1, 23.2, and 23.3 we obtain

DA=SU(2)4 =
√
12 DT =

√
6 DU=SU(3)1 =

√
3

in agreement with Eq. 23.16. Also (From Eq. 17.16) we can calculate
that

cSU(2)4 = cSU(3)1 = 2 (mod 8)

in agreement with Eq. 23.15.

23.6 Cosets

In Chern-Simons theory, one of the most common ways to construct
new TQFTs is the idea of a coset theory first discussed in the context of
conformal field theory (See Di Francesco et al. [1997]; Moore and Seiberg
[1989]; Goddard et al. [1985]). Given Lie groups G and H such that H
is a subgroup of G, we may consider theories Gk (Chern-Simons theory
G at level k) and correspondingly Hk′ . There is then a well defined
way to make a so-called coset theory which we write as Gk/Hk′ . One
rough physical interpretation of this construction is that we are gauging
the subgroup H , essentially making these degrees of freedom redundant.
One can have more complicated cosets where we embedH into a product
of Lie groups G×G′, to construct coset theories like Gk ×Gk′/Hk′′ .
While cosets of this type can seem quite complicated, they actually

have an extremely simple interpretation in terms of boson condensation.
To construct Gk/Hk′ we first construct Gk × Hk′ where the overbar
means we should switch the chirality of the theory17. Then if we con-17In Chern-Simons theory, G−k = Gk.

Switching chirality in the diagrammatic
algebra can be achieved by evaluating
the mirror image of the diagram.

dense all possible simple current bosons in the product theory Gk×Hk′

we obtain the coset theory Gk/Hk′ . (This is much simpler than the con-
ventional coset construction!) This technique can be generalized in an
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obvious way. For example, to construct Gk×Gk′/Hk′′ we first construct
Gk × Gk′ × Hk′′ and then condense all of the simple current bosons.
Note that given Eq. 23.15 and Eq. 17.27 the central charge of a coset is
equal to the sum of central charges in the numerator minus the sum of
central charges in the denominator.

Example: SU(2)2/U(1)2

To construct the coset SU(2)2/U(1)2 we want to first construct SU(2)2×
U(1)2 and then condense all simple current bosons. Let us recall the data
for SU(2)2 (See section 18.3.1) and U(1)2 (See section 20.4.2) which are
shown in Table 23.6.

SU(2)2

particle d θ

I 1 1

σ
√
2 e2πi3/16

ψ 1 −1

× σ ψ

σ I σ

ψ σ I + ψ

U(1)2

particle d θ
0 1 1
1 1 e2πi7/8

2 1 −1

3 1 e2πi7/8

i× j = (i+ j) mod 4

Table 23.6 Data for SU(2)2 (top) and U(1)2 (bottom). The overline indicates we
take the mirror image theory, meaning all of the twist factors are complex conjugated
compared to the definition given in section 20.4.2.

The product theory SU(2)2 × U(1)2 has particles types of the form
(a, b) where a is from the SU(2)2 theory and b is from the U(1)2. The
twist factor of such a product particle is θ(a,b) = θaθb.
One can see from the table that the product particle (ψ, 2) is a boson

simple current (twist factor θ = 1), so we can condense it. (In fact,
not including the identity particle (I, 0), this is the only boson simple
current). There are 12 particles in the product theory which divide into
6 orbits which all are of maximum size (so there is no splitting). These
orbits (under the action of fusion with the (ψ, 2) boson) are

[I, 0] = [ψ, 2] ; [σ, 0] = [σ, 2] ; [ψ, 0] = [I, 2]

[I, 1] = [ψ, 3] ; [σ, 1] = [σ, 3] ; [ψ, 1] = [I, 3]

These are the six particle types of the T theory. Finally, examin-
ing the twist factors we can see that only the three orbits [I, 0] and
[σ, 1] and [ψ, 0] are deconfined. The final condensed anyon theory U =
SU(2)2/U(1)2 is given in table 23.7. We recognize this result as being
simply the Ising TQFT (See section 18.3.1).
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particle d θ

[I, 0] 1 1

[σ, 1]
√
2 e2πi1/16

[ψ, 0] 1 −1

× [σ, 1] [ψ, 0]

[σ, 1] [I, 0] [σ, 1]

[ψ, 0] [σ, 1] [I, 0] + [ψ, 0]

Table 23.7 The final anyon theory data for the coset SU(2)2/U(1)2 is just the Ising
TQFT.

23.7 More General Condensations

One can also consider condensations of objects that are not simple cur-
rents. There is a fairly simple rule for constructing all possible condensa-
tions of a modular anyon theory which has been worked out by Neupert
et al. [2016].
Given a modular anyon theory (a modular tensor category or TQFT)

with N particle types. Each condensation is described by a matrix M
with nonnegative integer entries with the following properties

[M,S] = [M,T ] = 0 (23.17)

with MI,I = 1 where S and T are the modular S and T matrices respec-
tively (See section 17.3). The M matrix must be of the form

M = nnT (23.18)

where n is a rectangular matrix with nonnegative integer entries and T

means transpose. The n matrix is the same coefficients as in Eq. 23.8
except we only include resulting particles that are deconfined (i.e., we
count the particles in the U theory and not all the particles in the T
theory).
From the nmatrix we construct the S and T matrices of the condensed

(U) theory as

Sn = nScondensed Tn = nTcondensed (23.19)

We must then confirm that Scondensed is valid meaning that it is sym-
metric, unitary, and generates non-negative fusion coefficients with the
Verlinde formula (Eq. 17.13).
Note that M being a permutation matrix is a valid solution and this

simply permutes the particles of the original theory and should not be
considered a condensation18.18The presence of a permutation sym-

metry, when it occurs, is itself an in-
teresting feature which is discussed at
length in chapter 32 23.8 Condensation and Boundary Modes

[MOVE THIS SECTION? OR remove reference to topological phases]
Many topological phases of matter have the property that they must

have gapless modes along their boundary when you have a finite region
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of the matter (say, a droplet or a disk). We will explore this in detail for
quantum Hall states in section *** below. Here however, we introduce
some general principles.
As mentioned in section 17.3.3, if the central charge of the TQFT is

nonzero, then the edge of the system necessarily carries heat and there-
fore must be gapless (i.e., has low energy thermal excitations). However,
even when the central charge is zero and the thermal conductance is zero,
there can be cases where the edges of a system must be gapless. It turns
out that the condition for this to be true is intimately related to con-
densation! Without giving detailed proof we will state the result (See
Refs. Burnell [2018]; Kong [2014]; Levin [2013])

The edge of a topologically ordered system can only be gapped
if one can condense a set of bosons from this system and ob-
tain a topologically trivially ordered system (a system with no
anyons).

(See footnote 2 from this chapter). The converse of this statement is
not generally true, as a gapped system can always be made gapless by
altering the Hamiltonian a bit near the edge to allow gapless excitations.
While we won’t give a any proof of this19, but instead just give a 19Indeed, while there is no rigorous

proof of this criterion, although the
arguments given in the literature are
farily strong! See Kong [2014]; Levin
[2013] for example.

cartoon of what it means. It is perhaps easier to think about a general
boundary between a TQFT C and another one D. If we think of the
Hamiltonian transitioning slowly as a function of position between the
region of C and D our above arguments are that a smooth transition
occurs only if C can be obtained by a condensation transition from D
or vice versa. It is exactly this type of smooth transition that we need
in order to avoid a gapless mode between the two regions (at a cartoon
level one can think about some abstract order parameter vector changing
direction in some abstract space as we move from one region to another).
This criterion (that D should come from C by condensation, or vice
versa) suffices to justify the above condition for when we can have a
gapless edge to the vacuum if we just choose, say D to be the vacuum
(the trivial TQFT). However, it does not actually give the right rule
for determining if one can have gapless modes on the boundary between
regions of C and of D.
In fact the correct, more general ruleBais et al. [2009] is given by:

The boundary between two topologically ordered systems C
and D can only be gapped if the system C×D̄ can have a gapped
edge to the trivial theory, i.e., if a set of bosons from C × D̄ can
be condensed to give a topologically trivially ordered system.

If C is obtained from D by a boson condensation, or vice versa, then
this criterion is certainly satisfied. However, there are cases where C is
not obtained from D by condensation (and neither D from C) and yet
this criterion can be satistified. The reason for this difference is that
this criterion allows another physical process whereby a particle near
the boundary of C binds with a particle near the boundary of D to form
an object that condenses along the boundary.



318 Exercises

Further Reading

Bais and Slingerland [2009] is the original discussion of anyon conden-
sation. Full disclosure, I was the referee for this paper. I spent a lot
of time reading it in great detail and I ended up deciding it was pretty
brilliant.
A nice review of the physics of anyon condensation is given by Burnell

[2018].
Eliëns et al. [2014] gives methods of extracting detailed data, such as

F -matrices of a condensed theory from the data for the uncondensed
theories.
Neupert et al. [2016] is also a good reference on the mathematics of

condensation.
Much of the structure of anyon condensation (at least for condensation

of simple currents) was worked out originally in the context of so-called
“fixed point resolutions” of conformal field theories. See for example,
Schellekens [1999]
A more mathematical discussion of condensation is given by Kong

[2014]
Chapter 40 shows how to use the computer program Kac to work out

the results of certain condensations.

Exercises

Exercise 23.1 Fusion of Bosonic Simple Currents
Given an anyon theory with a bosonic simple current J , such that RJ,J

J2 = 1

and JN = I , show that all of the particle types Jp with 0 < p < N are also
bosons, and further that the braiding any two of these particle types is trivial

RJ
p,Jp

′

Jp+p
′ = 1. Hint: This is fairly trivial given some results of chapter 20.

Exercise 23.2 Condensation to the Vacuum
The toric code one of the simplest TQFTs, which we will study in great

depth in later chapters. The particle types and fusion relations are given in
Table 26.1, and the S- and T -matrices are given in Eq. 26.5.

Show that there are two possible bosons that can condense, and that the
resulting U theory in either case is the trivial TQFT (no particles but the
vacuum).

Exercise 23.3 Splitting
Consider Ising × Ising (Unlike the example in the text, both sides of the

theory have the same handedness). There is a single simple current boson
that can be consdensed. Find the T theory (there is a splitting!) and the final
U theory after condensation.

Exercise 23.4 Cosets
(a) Calculate the properties of the coset SU(16)1/SU(2)2.
(b) Calculate the properties of the coset SU(2)1 × SU(2)1/SU(2)2.

Exercise 23.5 General Condensation Method
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The S-matrix for SU(2)4 is given by

Sij =
1√
3
sin

(

(i+ 1)(j + 1)π

6

)

where i, j ∈ 0, . . . 4. (If you are adventurous you can confirm this formula by
using Table 23.1 and Eq. 17.20)

Using the method of section 23.7 confirm that the matrix n given by

nT =





1 0 0 0 1
0 0 1 0 0
0 0 1 0 0





satisfies Eqs. 23.18 and 23.17.
Show that the S- and T - matrices of SU(3)1 or equivalently Z1

3 (See section
20.4.1) satisfy the requirement for the condensed phase given by Eq. 23.19.
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Introducing Quantum Error
Correction 24

Easy Material

Before we look at the toric code, it is worth introducing some ideas of
quantum error correction. While initially the ideas of error correction
may seem somewhat different from what we have been discussing, we will
see that (at least some quantum error correcting codes) are extremely
closely related to the topological ideas we have been discussing in prior
chapters. Some of this material may be well known to most readers, but
we reiterate it for completeness and to orient the discussion.

24.1 Classical Versus Quantum Information

24.1.1 Memories All alone in the moonlight!

Classical Memory

The unit of classical information is a bit2 — a classical two state system 2You almost certainly know this al-
ready!which can take the values 0 or 1. A memory with N bits can be in any

one of 2N states — each state corresponding to a particular bit-string,
such as 011100111.

Quantum Memory

The unit of quantum information is the quantum bit or qubit2 which is
a quantum two state system — i.e. a two-dimensional complex Hilbert
space spanned by vectors which we usually call |0〉 and |1〉. A qubit can
be in any state

|ψ〉 = α|0〉+ β|1〉
with arbitary complex prefactor α, β (where we normalize wavefunctions
so |α|2 + |β|2 = 1).
A quantum memory with N qubits is a vector within a 2N dimensional

complex Hilbert space. So for example, with 2 qubits the general state
of a system is specified by four complex parameters

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉 (24.1)

with the normalization condition |α|2 + |β|2 + |γ|2 + |δ|2 = 1. So to
specify the state of a quantum memory with 2 bits, you have to specify
four complex parameters, rather than, in the classical case just stating
which of the four states the system is in.
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24.2 Errors

An error is some process which accidentally changes the state of the
memory away from the intended state. Often we take as an error model
the case where only one bit or one qubit is effected at a time (a “minimal”
error) although more complicated errors can occur in practice.

24.2.1 Classical Error Correction

There is a simple way to protect the information stored in a classical
memory from errors. Instead of storing a single bit 0 or 1, we will
store multiple copies of the bit. For example in Table 24.1 we use three
“physical” bits to store one “logical” bit of information.

logical bit physical bits
0 000
1 111

Table 24.1 Three bit repetition code. Stores a single logical bit of information
using three physical bits. The code space is the set 000 and 111.

Our memory should always either be in the state 000 or 111 — we
call these two possibilities the code space. If we detect the system being
in any other state of the three bits (i.e., not in the code space) we know
an error has occured. If an error does occurs on one of the physical bits
(i.e., if one of the bits is accidentally fliped) we can easily find it, because
it would leave our memory with not all of the physical bits being the
same. For example, if our system starts as 000, an error introduced on
the second bit would leave it in the form 010. Then, by just using a
majority-rule correction system, it is easy to figure out what happened
and flip the mistaken bit back. So our error correction protocol would
be to continuously compare all three bits, if they don’t all match, flip the
one which would bring them back to matching. Assuming errors are rare
enough (and only occur on one bit at a time3) this scheme is an effective3If two bit flips happen at the same

time, then an uncorrectable logical er-
ror occurs. It is thus imperitaive that
we check the state of our physical bits
very frequently so that we catch errors
and correct them before multiple errors
can occur.

way to prevent errors. For added protection one can use more redundant
physical bits, such as five physical bits or seven physical bits for a single
logical bit. Such larger codes could withstand several bit-flip errors at
a time and would still allow successful correction. For example, the five
bit code could withstand two bit-flip errors at a time and correction via
majority rule would still be successful.
One might think the same sort of approach would work in the quantum

world: make several copies of the qubit you want to protect, and then
compare them to see if one has changed. Unfortunately, there are two
big problems with this. The first is the so-called no-cloning theorem —
it is not possible to make a perfect clone of a qubit. The second problem
is that measuring a state inevitably changes it.
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24.3 Quantum No Cloning Theorem

Because the quantum no-cloning theorem is such an integral part of the
discussion surrounding quantum error correction (and because the proof
is easy) it is worth going through the proof.
The result (usually credited to Wootters and Zurek [1982] and Dieks

[1982]) is such a straightforward result of quantum mechanics that some
people have argued whether it deserves to be called a theorem. Nonethe-
less, the statement of the “theorem” is as follows:

Theorem: Given a qubit in an arbitrary unknown state |φ1〉 and
another qubit in a known initial state |φ2〉, there does not exist any
unitary operator U (i.e., any quantum mecahnical evolution) such
that

U( |φ1〉 ⊗ |φ2〉 ) = eiχ(φ1) |φ1〉 ⊗ |φ1〉 (24.2)

for all possible input |φ1〉.

The point of the theorem is that there is no way to copy |φ1〉 into the
auxiliary qubit |φ2〉. The reason we are looking for a unitary operator U
is that all time evolutions in quantum mechanics correspond to unitary
operators4. The phase eiχ allows some arbitrary phase to occur during 4One can object that one can make

a measurement that has the effect of
projecting, rather than a unitary op-
eration. However, there a philsophy
known sometimes as “The Church of
the Larger Hilbert Space” which says
that we should simply treat our mea-
surement apparatus as part of the
quantum mechanical system, in which
case all time evolutions become uni-
tary again. The reason it is called a
“church” is because it is almost a re-
ligious view of how one should think
about quantum measurements.

the cloning process which we can allow to be a function of the cloned
state |φ1〉.

Proof of Theorem: Suppose such a unitary operator as specified
in Eq. 24.2 did exist. This means we can properly copy two orthogonal
states |0〉 and |1〉, meaning

U( |0〉 ⊗ |φ2〉 ) = eiχ(0) |0〉 ⊗ |0〉
U( |1〉 ⊗ |φ2〉 ) = eiχ(1) |1〉 ⊗ |1〉

Quantum mechanical operators must be linear so we can try applying
this operator to the linear superposition α|0〉+ β|1〉 and we must get

U( {α|0〉+ β|1〉 } ⊗ |φ2〉 ) = α eiχ(0)|0〉 ⊗ |0〉+ β eiχ(1)|1〉 ⊗ |1〉.

But this is not what a putative cloning device must give. Instead a clone
of the bit should have given the outcome

eiχ(α|0〉+β|1〉)
[
α|0〉+ β|1〉

]
⊗
[
α|0〉+ β|1〉

]

which is not generally the same result. Thus no cloning device is con-
sistent with the linearity inherent in quantum mechanical evolution. �
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24.4 Quantum Error Correction

Perhaps the most surprising thing about quantum error correction is
that it is possible at all! This was discovered5 in 1995 by Shor [1995],
and shortly thereafter by Steane [1996a, b].5

In the next chapter we will introduce the toric code (Kitaev [1997]),
which is a quantum error correcting code closely related to anyons. How-
ever, here, we will briefly introduce a very simple error correcting code
introduced in the original work by Shor [1995] to try to explain how such
codes typically work.6

6The discussion that follows (the re-
mainder of this chapter) is included for
completeness, but is not crucial on a
first reading.

24.4.1 Bit Flip Correcting Code

Let us consider the following simplified problem. Suppose we know
that the only error that can ever occur on our physical system is the
application of a Pauli σx operator. i.e, a so-called bit-flip error. We can
protect our qubit from such an error in the following way:
Given a qubit

|ψ1〉 = α|0〉+ β|1〉 (24.3)

let us encode this physical qubit into three logical qubits7

7This does not violate the no-cloning
theorem, since we are entangling two
qubits with the initial qubit, rather
than cloning the initial qubit. This pro-
cedure can be achieved with a quantum
circuit as shown in Fig. 24.1.

|ψ3〉 = α|000〉+ β|111〉 (24.4)

where by |000〉 we mean |0〉 ⊗ |0〉 ⊗ |0〉 and similarly for |111〉. The
code space is the Hilbert space spanned by wavefunctions of the form
Eq. 24.4.

|ψ1〉

|0〉

|0〉

Fig. 24.1 The output of this quantum
circuit, on the right, is the wavefunction
|ψ3〉 as in Eq. 24.4. The notation ⊕ in-
dicates a controlled not gate (CNOT)
where the lower bits controlled by the
bit |ψ1〉 such that the output of the
lower bits is |1〉 if and only if the input
bit in |ψ1〉 is |1〉. See the discussion in
section 11.4.1.

We must not measure any of the three physical bits since this will
collapse the entire wavefunction to either |000〉 or |111〉. However, we
can measure the product of two bits, such as8,9

8When we use Pauli matrices we are
thinking of |0〉 as being spin up and |1〉
as being spin down. So σz |0〉 = |0〉 and
σz |1〉 = −|1〉.
9We can also define Ô13, but this is re-
dundant information since

Ô13 = Ô12Ô23

Ô12 = σ1
zσ

2
z Ô23 = σ2

zσ
3
z (24.5)

The wavefunction |ψ〉3 is in a +1 eigenstate of the operator Ô12 so we can
measure this operator without collapsing the wavefunction. The purpose
of this operator is to check that bits 1 and 2 are the same. Similarly
Ô23 checks that bits 2 and 3 are the same. These operators are known
as stabilizer operator (these operators leave the code space unchanged)
and their eigenvalues are known as the syndrome since they are meant
to diagnose whether the wavefunction has developed any “sickness”, i.e,
whether an error has occurred

5Peter Shor is probably the single person most responsible for creating the field of quantum computing. While there were a
few early pioneers in the 1980’s, such as Feynman, Yuri Manin (See footnote 19 of chapter 2), and David Deutch, there was not
a lot of interest in the field for two key reasons: (a) it was not clear you could do anything useful with a quantum computer,
and (b) it was not clear you could actually build a quantum computer. Shor conquered both of these questions. In 1994
Shor invented the quantum algorithm for efficiently factoring large numbers. Being that most crypotography schemes rely on
large numbers not being efficiently factorizable this was obviously (a) useful, particularly to governments and spy agencies who
were then willing to invest large amounts of money into pursuing this type of science. The following year, Shor invented error
correcting codes, which then strongly suggested that (b) quantum computers could, at least in principle, be built.
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error stabilizers with fix by
created by −1 eigenvalue applying

σ1
x Ô12 σ1

x

σ2
x Ô12 , Ô23 σ2

x

σ3
x Ô23 σ3

x

Table 24.2 Error Detection and Correction Rules for Eq. 24.4. If an error is created
by the operator in the first column, the stabilizer(s) in the middle column will be
measured to have a −1 eigenvalue, indicating an error. The error is corrected with
the operator in the right column.

If we find that both operators Ô12, Ô23 are in the +1 eigensate, then
we conclude that all three bits are the same, so the wavefunction is
properly in the code space (I.e., is of the form of Eq. 24.4). However,
if one (or both) of these operators are measured in the −1 eigenstate,
then we know that an error has occurred. Assuming no more than one
σx error has occurred (i.e., we start with a wavefunction of the form of
Eq. 24.4 and only one physical bit is flipped over) we can easily identify
the problematic bit. For example, if σx has been applied to bit 1, then
we would find Ô12 in the −1 eigenstate but Ô23 remains in the +1
eigenstate. We can then correct the problematic bit by flipping it over
again with σx. The error detection and correction rules are given in
table 24.2.
Note that these stabilizer operators do not collapse superpositions of

the form of Eq. 24.4 since they do not actually measure the value of any
of the bits, they only check to see if two bits are the same as each other.
One might think that Eq. 24.4 (along with the error correction rules

of table 24.2) would constitute a quantum error correcting code. Unfor-
tunately, this is not the case. While we have constructed a code which
can correct errors created by σx (i.e., bit flip errors) one can also have
sign errors created by σz (Errors created by σy can be thought of as the
product of σz and σx). Applying a σz operator to any of the three bits
in Eq. 24.4 results in

|ψ3〉 = α|000〉 − β|111〉

and this cannot be detected by our stabilizers Ô12 and Ô23.

24.4.2 Nine Qubit Shor Code

Shor [1995] found that it is indeed possible to protect a qubit from both
σx and σz errors by using 9 physical qubits. Again we consider a general
qubit of the form

|ψ〉 = α|0〉+ β|1〉
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Shor encoded the qubit into nine physical bits in the following way

|ψ9〉 =
α

2
√
2
[(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉)]

+
β

2
√
2
[(|000〉 − |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉)]

(24.6)

The code space is the Hilbert space spanned by wavefunctions of the
form of Eq. 24.6. The stabilizers of this code are then as follows:

Ô12 = σ1
zσ

2
z Ô23 = σ2

zσ
3
z (24.7)

Ô45 = σ1
zσ

2
z Ô56 = σ2

zσ
3
z (24.8)

Ô78 = σ1
zσ

2
z Ô89 = σ2

zσ
3
z (24.9)

Ô1−6 = (σ1
xσ

2
xσ

3
x)(σ

4
xσ

5
xσ

6
x) (24.10)

Ô4−9 = (σ4
xσ

5
xσ

6
x)(σ

7
xσ

8
xσ

9
x) (24.11)

The qubits in Eq. 24.6 have been grouped in threes, and each set
of three acts effectively like the above code Eq. 24.4. The stabilizers
shown in lines 24.7–24.9 are analogous to the stabilizers in Eq. 24.5 and
are meant to detect, and allow correction of, bit flips (σx errors). For
example, if Ô12 is measured in eigenvalue −1 but all other Ôij have
eigenvalue +1 then we know that the first bit has been flipped over and
needs to be repaired by applying σ1

x again. The rules for correcting these
bit-flip errors are listed in the first nine rows of table 24.3.
The more interesting stabilizers are given in Eqs. 24.10 and 24.11.

These stabilizers are meant to detect, and allow correction, of sign er-
rors, i.e., errors produced by application of σz opertators. While these
stabilizers look somewhat different, in fact these are again quite similar
to the simple stabilizers we considered in Eq. 24.5, but in a different
basis. Let us define

|+〉 =
1√
2
(|000〉+ |111〉)

|−〉 =
1√
2
(|000〉 − |111〉)

With this notation, our error correcting code Eq. 24.6 appears as

|ψ9〉 = α|+++〉+ β| − −−〉

which we recognize as being the same form as Eq. 24.4. Further let us
define X to be the operator that flips over one of these effective qubits
and Z to be the operator that measures the qubit, as follows

X |±〉 = |∓〉
Z|±〉 = ±|±〉
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Note now that

σjz |±〉 = σjz
1√
2
(|000〉 ± |111〉) (24.12)

=
1√
2
(|000〉 ∓ |111〉) = |∓〉

for j = 1, 2 or 3. So that σjz with j = 1, 2 or 3 plays the role of the
X operator (the bit-flip operator) on the |±〉 qubit made from the first
three qubits (so let us call this X123). Note that the effect of all three
σjz on this wavefunction is the same.
Similarly we have

(σ1
xσ

2
xσ

3
x)|±〉 = (σ1

xσ
2
xσ

3
x)

1√
2
(|000〉 ± |111〉) (24.13)

= ± 1√
2
(|000〉 ± |111〉) = ±|±〉

So that (σ1
xσ

2
xσ

3
x) plays the role of Z operating on the |±〉 qubit made

from the first three spins (let us call this Z123).
With this notation, the stabilizers in Eq. 24.10 and 24.11 can then be

rewritten as operators on three of these effective qubits

Ô1−6 = Z123Z456 Ô4−9 = Z456Z789

entirely analogous to the stabilizers Eq. 24.5. These stabilizers can de-
tect when X123 or X456 or X789 are applied to the system. But these X
operators are equivalent to the σz operators on the original qubits. Thus
these two stabilizers can detect σz errors, and tell us what operator to
apply in order to repair the errors.

Thus we are able to write out Table 24.3 which gives the full error
detection and correction rules for the code Eq. 24.6. A few things are
worth noting about this table. First, consider the last three rows, which
address sign errors created by σz operators. Note that, for example, an
error created by σ1

z can be corrected by either σ1
z or σ2

z or σ3
z . Second,

note that the table addresses the possibility of errors being created by σx
or σz . If an error is created by σy it is simply considered as the product
of σz and σx, and can be corrected accordingly. All Hermitian operations
that can be performed on a single qubit are some linear combination of
σx, σy and σz, so this code allows correction of any error that can occur
on a single qubit.
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error stabilizers with fix by
created by −1 eigenvalue applying

σ1
x Ô12 σ1

x

σ2
x Ô12 , Ô23 σ2

x

σ3
x Ô23 σ3

x

σ4
x Ô452 σ1

x

σ5
x Ô45 , Ô56 σ5

x

σ6
x Ô56 σ6

x

σ7
x Ô78 σ7

x

σ8
x Ô78 , Ô89 σ8

x

σ9
x Ô89 σ9

x

σ1
z or σ2

z or σ3
z Ô1−6 σ1

z or σ2
z or σ3

z

σ4
z or σ5

z or σ6
z Ô1−6 , Ô4−9 σ4

z or σ5
z or σ6

z

σ7
z or σ8

z or σ9
z Ô4−9 σ7

z or σ8
z or σ9

z

Table 24.3 Error Detection and Correction Rules for Eq. 24.4. If an error is created
by the operator in the first column, the stabilizer(s) in the middle column will be
measured to have a −1 eigenvalue, indicating an error. The error is corrected with
the operator in the right column.
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Easy Material

We will describe the toric code approach to error correction which is
conceptually one of the simplest error correction scheme, as well as being
very possibly the best error correction scheme by many measures1. We
will see that the toric code is essentially a topological quantum field
theory, which is why we are studying it in this book! As with so many
great ideas in this field, the toric code was invented by Kitaev [1997]2. 2Alexei Kitaev is one of the great ge-

niuses of modern physics (MacArthur
Genius Fellow, Breakthrough Prize
Winner, etc., etc.). He is perhaps
best known for inventing several of the
most important algorithms of quan-
tum computing (See for example the
discussion of Kitaev-Solovay in section
11.1.1), but in fact these are not even
a small fraction of his highly influen-
tial works which span a wide range of
modern fields. He visibly gets excited
and smiles when he realizes something
new about physics, and (being that this
seems to happen frequently) he also
seems to be one of the happiest people
around.

25.1 Toric Code Hilbert Space

We imagine an Nx by Ny square lattice with a quibt (or spin- 12 ) on
each edge, as shown in Fig. 25.1, where the boundaries of the lattice
are made periodic hence forming a torus (hence the name “toric”). The
total number of spins is N = 2NxNy and correspondingly the dimension
of the Hilbert space is 2N .

⇒

Fig. 25.1 The Hilbert space of the toric code: An Nx by Ny square lattice with

qubits (or spin 1
2
), represented as dots, on each edge. The lattice is wrapped up to

make it periodic in both directions. I.e., the orange dashed lines at the top and the
bottom are identified, and the orange dotted lines at the left and right are identified.
Once the system is made periodic this is topologically a torus There are 72 spins in
this picture so the Hilbert space has dimension 272.

1The statement that it is the “best” is based on the fact that the so-called surface codes (which is essentially the toric code)
has the highest known error threshold. The idea of a threshold is the following: If you can make measurements on each bit at
a rate of one per second, and similarly you can perform operations on your qubit at a rate of one per second, how many errors
per second can you successfully correct? If you can correct errors sufficiently faster than they are created you can prevent any
errors from occurring and your quantum information will live forever. Codes are compared to each other to see which one can
withstand the greatest error rate, and very often the toric code wins. (See ******). One should be cautioned that the rules
of the competition can be modified to favor one or another type of code. (Different rules corresponding to different types of
potential hardware). For example, one might declare that performing a measurement on a qubit is faster than flipping qubits.
One might declare that single bit operations are faster than two-qubit operations, and so forth.
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We will think of the qubits along the edges as spin- 12 particles3. We3I somehow find it easier to think about
spin up and spin down rather than |0〉
and |1〉.

choose to work with a basis of up and down spins for our Hilbert space
(σz eigenstates). I.e, we have 2N basis states with all possible combi-
nations of some spins pointing up and some spins pointing down. A
convenient notation for this basis is given by coloring the edges contain-
ing down spins blue but leaving uncolored (i.e, black) the edges with up
spins as shown in Fig. 25.2.

= spin down = |1〉
= spin up = |0〉

Fig. 25.2 A particular basis state of the Hilbert space, working in the up-down
basis (σz-eigenstates). Here we denote down spins by thick (blue) lines. Up spins
are denoted by not uncolored edges (black).

25.2 Vertex and Plaquette Operators

Let us now define some simple operators on this Hilbert space which we
will use to build the toric code.

Vertex Operators

The first operator we define is known as a vertex operator. Given a
vertex α which consists of four incident edges i ∈ vertexα, we define the
vertex operator as

Vα =
∏

i∈vertexα

σ(i)
z (25.1)

I.e., this is just the product of σz applied to the four spins incident on
the vertex. This operator simply counts the parity of the number of
down spins (number of colored edges) incident on the vertex. It returns
+1 if there are an even number of incident down spins at that vertex
and returns −1 if there are an odd number. This is depicted graphically
in Fig. 25.3.
Note that since the eigenvalues of Vα are +1 or −1, we have

V 2
α = 1 (25.2)

which can also be seen by just squaring Vα in the defining Eq. 25.1 and
using the fact that σ2

z = 1. On a lattice of Nx by Ny sites, there are a
total of N = NxNy different vertex operators.
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= vertex operator Vα

α

= +1 if an even number of incident blue lines

= −1 if an odd number of incident blue lines

-1

+1

Fig. 25.3 The vertex operator Vα returns +1 if there are an even number of incident
down spins (blue lines) at vertex α and returns −1 if there are an odd number.

Plaquette Operators

We now define a second operator known as the plaquette operator. Given
a plaquette β which contains four edges in a square (edge i ∈ plaquette β)
we define

Pβ =
∏

i∈plaquetteβ

σ(i)
x (25.3)

which flips the state of the spins on all of the edges of the plaquette as
depicted in Fig. 25.4. On an Nx by Ny lattice, there are a total of NxNy
plaquette operators.

⇒

β = plaquette operator Pβ
= flips spins around plaquette β

Fig. 25.4 The plaquette operator (bright pink) flips the state of the spin on the four
edges of a plaquette. Blue edges become black and black edges become blue. The
small black arrow points to a particular vertex to emphasize that the number of blue
edges incident on this vertex has the same parity both before and after the plauqette
flip (implying that the plaquette and vertex operators commute as mentioned in
Eq. 25.7 below).

Since flipping a plaquette brings one back to the original configuration
we have

P 2
β = 1 (25.4)

which can also be seen by squaring Pβ in the defining Eq. 25.3. Given
Eq. 25.4 the only two possible eigenvalues of Pβ are±1. The eigenvectors
corresponding to each of these eigenvalues can also be determined. In
the basis we are using, the spin-up/spin-down basis corresponding to
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uncolored/colored edges, the Pβ operator is off-diagonal — it flips spins
around a plaquette. Thus the eigenvectors can be written as

eigenvector with
+1 eigenvalue

=
1√
2

(
unflipped
plaquette

+
flipped

plaquette

)
(25.5)

eigenvector with
−1 eigenvalue

=
1√
2

(
unflipped
plaquette

− flipped
plaquette

)
(25.6)

Two examples of such eigenvectors with +1 eigenvalue are shown in
Fig. 25.5.

|Ψ〉 = 1√
2





+

|Ψ〉 = 1√
2





+

Fig. 25.5 Two examples of wavefunctions that are eigenvectors with +1 eigenvalue
of the plaquette operator Pβ . The two terms added in each superposition are related
to each other by flipping the plaquette, i.e., by applying Pβ . (blue lines outside of
the plaquette remain unchanged). If we were to change the + sign to a − sign, we
would obtain eigenvectors with −1 eigenvalue instead.

Caution: In this section we define vertex operators (Eq. 25.1) with
σz operators and plaquette operators with σx operators (Eq. 25.3).
In Kitaev’s original work the convention is the opposite: vertex
operators are defined as a product of σx operators and plaquette
operators are a product of σz . Kitaev’s convention is used more
commonly in the quantum information community, while our con-
vention is perhaps more typical in the condensed matter commu-
nity. As we will see in section 29.7 below, Kitaev’s convention also
makes the toric code look more like a lattice gauge theory. We
can transform between the two conventions in either of two ways.
Method 1: we can rotate all of our spins so as to exchange x and z.
Method 2: we can make a duality tranform on the lattice so that
plaquettes become vertices and vertices become plaquettes. This
duality approach will be discussed in section *** below.

25.2.1 Operators Commute

I claim that all of the plaquette operators and all of the vertex operators
commute with each other. It is obvious that

[Vα, Vα′ ] = 0

since Vα’s are only made of σz operators and all of these commute with
each other (either two σz operators act on different edges, in which case
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they commute, or they act on the same edge in which case they are the
same operator so they commute). Similarly

[Pβ , Pβ′ ] = 0

since Pβ ’s are made only of σx operators and all of these commute with
each other.
The nontrivial statement is that

[Vα, Pβ ] = 0 (25.7)

for all α and β. The obvious case is when Vα and Pβ do not share
any edges, then the two operators obviously commute. When they do
share edges, geometrically they must share exactly two edges, in which
case the commutation between each shared σ

(i)
x and σ

(i)
z accumulates a

minus sign, and since there are exactly two shared edges the net sign
accumulated is (−1)2 = +1 meaning that the two operators commute.
An example of this commutation is shown in Fig. 25.4, where a small
black arrow points to a particular vertex. Note that the vertex oper-
ator has the same eigenvalue both before and after the application of
the plaquette opertor (eigenvalue= −1 since there is an odd number of
incoming blue lines). This shows explicitly that the vertex operator at
this vertex commutes with the bright pink plaquette operator.

25.2.2 Is This a Complete Set of Operators? (Not
quite!)

We have NxNy vertex operators and NxNy plaquette operators — all of
these operators commute, and each of these operators has 2 eigenvalues.
This appears to match the fact that there are 2NxNy spins in the sys-
tem each which can point up or down, thus apparently giving the same
number of degrees of freedom. So is our set of Vα and Pβ operators a
complete set of operators on this Hilbert space? I.e., if we describe the
eigenstate of each of these operators do we determine a unique state of
the Hilbert space?
It turns out that the Vα and Pβ operators do not quite form a complete

set of operators on the Hilbert space. The reason they fail to form a
complete set is that there are two constraints on these operators

∏

α

Vα = 1 (25.8)

∏

β

Pβ = 1 (25.9)

To see that Eq. 25.8 is true, note that each edge occurs in exactly two
operators Vα (since each edge is attached to exactly two vertices). Thus

when we multiply all the Vα’s together, each σ
(i)
z occurs exactly twice,

and (σ
(i)
z )2 = 1. Thus the product of all the Vα’s is the identity. The

argument is precisely the same for multiplying together all of the Pβ ’s.
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Thus we can freely specify the eigenvalues (±1) of (NxNy − 1) op-
erators Vα, but the value of the one remaining Vα is then fixed by the
values chosen for the other (NxNy − 1) of them. Similarly with the
Pβ ’s, we can only specify (NxNy − 1) eigenvalues (±1), and then the
last eigenvalue is fixed by the value chosen by the other (NxNy − 1). So
specifying the eigenvalues of these commuting operators specifies only
2(NxNy − 1) binary choices. Since we started with 2NxNy spins which
can be in two states (up or down) we must still have two binary choices
(two ±1 degrees of freedom) remaining that we have not fixed. These
two degrees of freedom (two binary choices) left unspecified are going
to be two error protected qubits (our logical qubits) in the toric code
scheme for building a quantum error correcting code.

25.3 Building the Code Space

We are now in a position to build our quantum error correcting code.
In particular, we want to define our code space — the space of possible
allowed states of our system that we use for encoding quantum informa-
tion. Analogous to the simple classical codes discussed in section 24.2.1
we must have some error checking protocol that continually checks that
the system remains in the code space.
We will now state two simple rules that define our code space. We

must (as often as possible) check to see that the two rules remain sat-
isfied. If we find that they are not satisfied we know a physical error
has occurred, the system has left the code space, and we must then go
about trying to correct it.

Rule 1: Specify that Vα = 1 for every vertex.

This condition guarantees that there are an even number of blue lines
(down spins) incident on every vertex. It is easy to see that this can
be interpreted as a constraint that all configurations must form closed
loops of the blue lines. There can be no ends of lines, and no branching
of lines. An example of such a loop configuration is shown in Fig. 25.6.

Fig. 25.6 A loop configuration con-
sistent with the constraint that Vα = 1
on every vertex. There must be an even
number of blue edges incident on every
vertex.

Thus our error checking protocol examines every vertex frequently and
if it ever finds that Vα = −1 then we know we are no longer in the code
space, i.e., an error has occurred that we must try to repair.

Rule 2: Specify that Pβ = 1 for every plaquette.

As mentioned near Fig. 25.5 this assures that every plaquette is in
an equal superpositon of flipped and unflipped states with a plus sign
between the two pieces. Note in particular that, because the Pβ and Vα
operators commute, the action of flipping a plaquette will not ruin the
fact that Rule 1 is satisfied (that is, that we are in a loop configuration).

The quantities Vα and Pβ are known as the stabilizers of the code —
the code space is unchanged under the application of these operators
(See also the discussion of stabilizers and syndromes in section 24.4.1).
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If these operators are measured to have a −1 eigenvalue then we know
an error has occurred.
We now have the following prescription for constructing a wavefunc-

tion that satisfies both Rule 1 and Rule 2, i.e., a wavefunction in the code
space: First start in any state of which satisfies Rule 1, i.e., some loop
configuration (this is a state with well defined spins up and down in the
σz basis). We call this configuration the reference configuration. Then
to this reference configuration wavefunction, we add all other wavefunc-
tions that can be obtained by flipping plaquettes. We thus have

|ψ〉 =
∑

all loop configs that can
be obtained by flipping pla-
quettes from a reference
loop config

N−1/2|loop config〉 (25.10)

where N is a normalization constant that counts the total number of
terms in the sum. By adding up all such flipped configurations, we
assure that every plaquette is in the correct superpositon of flipped and
upflipped and we satisfy Rule 2 (Recall from Fig. 25.5 that adding flipped
and unflipped gives Pβ = +1).
We now make a crucial observation: flipping plaquettes never changes

the parity (evenness or oddness) of the number of loops that go around
a nontrivial cycle of the torus. To see this, try drawing a line around
a cycle of the torus, as shown with the dashed red line in Fig. 25.7.
If one flips a plaquette (bright pink in the figure), it does not change
the parity of the number of blue edges that cross through the dashed
red line. As a result of this observation, we realize that the sum in
Eq. 25.10 does not include all possible loop configurations, but rather
contains all loop configurations with fixed parity of loops going around
the cycles (matching the parity of loops around the cycles in the reference
configuration).
Thus there are four independent wavefunctions of the form of Eq. 25.10,

which differ in whether the reference configuration has an even or an odd
number of blue edges going around each cycle. All of these states satisfy
the constraint rules that all Vα = 1 and all Pβ = 1 . We will call these
states

|ψee〉, |ψeo〉, |ψoe〉, |ψoo〉 (25.11)

where e and o stand for an even or an odd number of blue lines going
around a given cycle. So for example, we have

|ψeo〉 =
∑

all loop configs that have an even
number of blue strings around ver-
tical cycle and odd number of
blue strings going around horizon-
tal cycle

N−1/2|loop config〉

Or graphically, we have Fig. 25.8
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Fig. 25.7 A loop configuration (blue edges) on a torus (dotted orange lines on
opposite sides are identified as in Fig. 25.2). Drawing a line (dashed red) around one
of the cycles of torus, one can see that flipping a plaquette, such as the one marked in
bright pink, does not change the parity of the number of blue edges cutting through
the dashed red line. Further, it does not matter where we place the dashed red line.
So for example, we can change the y-coordinate of the horizontal dashed red line,
and the number of blue edges it cuts through is always odd Similarly if we change the
x-coordinate of the vertical dashed red line, the number of blue edges it cuts through
is always even.

|ψee〉 =
∣∣∣∣∣

〉
+

∣∣∣∣∣

〉
+

∣∣∣∣∣

〉
+ . . .

|ψeo〉 =
∣∣∣∣∣

〉
+

∣∣∣∣∣

〉
+

∣∣∣∣∣

〉
+ . . .

Fig. 25.8 Top Line: Graphical depiction of |ψee〉 which is a sum of all wavefunctions
having an even number of blue strings running around each cycle. Bottom line:
Graphical depiction of |ψeo〉 which has an even number of strings arond one cycle
(the meridian, short direction, or vertical in the planar diagram) and an odd number
around the other (the longitude, long direction, or horizontal in the planar diagram).

The code space is spanned by these four wavefunctions. Equivalently,
the most general wavefunction we can write within the code-space (i.e.,
that that satisfies the two above rules, that all Vα = 1 and all Pβ = 1)
is of the form

|ψ〉 = Aee|ψee〉+Aeo|ψeo〉+Aoe|ψoe〉+Aoo|ψoo〉 (25.12)

for arbitrary complex coefficients Aee, Aeo, Aoe, Aoo subject to the nor-
malization condition |Aee|2 + |Aeo|2 + |Aoe|2 + |Aoo|2 = 1. It is these
coefficients which store the two so-called “logical” qubits of quantum
information that we are trying to protect with this coding scheme (com-
pare Eq. 24.1). The underlying spins on the lattice that make up the
code are the “physical” qubits. Wavefunctions of the form of Eq. 25.12
are thus the code-space.
Note that in order to turn the |ψee〉 wavefunction into the |ψeo〉 wave-
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function we would need to insert a single blue loop around the horizontal
(longitude) cycle, which involves flipping an entire row of spins at once.
If one were to try to flip only some of these spins, we would have an
incomplete loop, or an endpoint of a blue line, violating the rule that
Vα = 1 for all vertex sites, therefore not being in the code-space. It is
this fact that allows us to test for errors (by looking for such endpoints)
and correct them efficiently, as we shall see next.

25.4 Errors and Error Correction

Let us now turn to study possible errors in more detail. What does a
physical error look like in this system? Imagine an evil demon arrives4

4It is not entirely necessary to anthro-
pomorphize the error creating process.

and, unbeknownst to us, applies an operator to one of the physical spins
in the system to try to create an error. We will start by considering the
cases where this operator is σx (section 25.4.1) or σz (section 25.4.2).
We will consider combinations of these operators in section 25.4.3, and
argue that we do not have to consider other possibilities in section ??.

25.4.1 σx Errors

Let us first consider the case where the error operator is σx. I.e., starting
in one of the code space wavefunctions, σx is applied on edge i to create
an error. This operator commutes with all the plaquette operators Pβ
but anticommutes with the vertex operators Vα which intersect that
edge. This means, if we start in the code space (all Vα = +1, all Pβ =

+1), and apply this error operator σ
(i)
x , we then end up in a situation

where the the two vertices attached to the edge i are now in the wrong
eigenstate Vα = −1. One way to see this is to realize that before σx
is applied, all of the vertices have an even number of blue edges (down
spins) coming into then. By flipping over one edge with σx we obtain
two vertices with an odd number of blue edges coming into them (one
at each end of this edge). A more formal way to see this is to realize
that in the original state |ψ〉 we have

Vα|ψ〉 = |ψ〉

meaning we start in the +1 eigenstate. We then apply the error operator
σ
(i)
x to both sides. Assuming i is one of the edges incident on the vertex
α, we have

σ(i)
x |ψ〉 = σ(i)

x Vα|ψ〉 = −Vασ(i)
x |ψ〉

or
Vα[σ

(i)
x |ψ〉] = −[σ(i)

x |ψ〉]
showing we end up in the −1 eigenstate of the vertex operator.
To show these errors graphically we will no longer draw the up and

down spins (the blue edges) but instead we just draw the σx operator
as a dark red line, and the vertices which are in the −1 eigenstate as an
orange × as shown in Fig. 25.9.

Fig. 25.9 Starting in the code space,
a σx operator applied to the red edge
(i) creates two vertices in the Vα = −1
eigenstate marked with the orange ×’s.
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Fig. 25.10 Left: When two σx errors (the red edges) are made on edges that share a vertex (the small black arrow), the
shared vertex is hit with σx twice, and thus returns to the Vα = +1 state. Only the two vertices at the end of the “string”
are in the Vα = −1 state. Middle: A longer string of errors. Note that we can only measure the endpoints of the string, not
where the errors were made, so we cannot tell if the error string goes down two steps then two steps to the right, or if goes
two steps to the right then down two steps. Right: If we detect the errors as in the middle panel and we try to correct it by
dragging the errors back together, but we choose the incorrect path for the string, we end up making a closed (red) loop of σx
operators — which acts as the identity on the code space, so we still successfully correct the error!

So it is clear what our error correction protocol must do. It must
frequently measure the state of the Vα operators. If it finds all Vα
operators in the +1 eigenstate then the system is still in the code space.
On the other hand, if it finds a pair of adjacent vertices in the in the Vα =
−1 state, we know that a σx operator has been applied on the intervening
edge by some error creating process4. Once we have identified the error
it is easy to correct it by applying σx on the same edge, thus returning
the system to its original state and to the code space.
Now suppose that the error creating demon4 is very fast and manages

to make several such σx errors very quickly. If these errors are well
separated from each other, we will easily find multiple pairs of vertices
in the V = −1 state, with the two members of each pair separated from
each other by one edge distance. These can similarly be identified by our
correction scheme and repaired, returning us to the code space again.
However, it could be the case that two errors are created on two edges

that share a single vertex, as shown on the left of Fig. 25.10. The vertex
that is shared (marked by a small black arrow in the figure) gets hit
by σx twice. The first time it is hit by σx the eigenvalue of Vα flips
from its initial state +1 to −1 but then when it is hit the second time,
this flips it back to the +1 state. Thus after the two σx operators have
been applied on the two red edges on the left of Fig. 25.10, only the two
vertices, marked with an orange ×, at the end of the red “string” are in
the Vα = −1 state and are then detectable as errors.
Nonetheless, the error correction scheme is still fairly straightforward.

One checks the state of all the vertices and when Vα = −1 is found,
one tries to find the closest other vertex with Vα = −1 to pair it with.
Then one applies a string of σx operators to correct these errors. One
can think of this as dragging the errors back together and annihilating
them with each other again.
It is important to realize that we cannot see the error operators them-

selves (which we have drawn as a red string in Fig. 25.10) by making
measurements on the system — we can only detect the endpoints of
string, the vertices, marked with an orange ×, where Vα = −1. For
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example, in the middle panel of Fig. 25.10 we cannot tell if the error
string goes down two step and then to the right, or if it goes to the right
two steps then down. We only know where the endpoints of the string
are.
Suppose now we detect the two errors shown in the middle panel of

Fig. 25.10. We may try to correct these errors by guessing where the red
string is, and applying σx along this path to bring the endpoints back
together and reannihilate them. However, it is possible that we guess
incorrectly as shown in the right panel of Fig. 25.10. In this case we
will have ended up producing a (red) closed loop of σx operators applied
to the original state. Fortunately, a product of σx operators around a
closed loop is precisely equal to the product of the plaquette operators
Pβ enclosed in the loop

∏

i around loop

σ(i)
x =

∏

β enclosed in loop

Pβ (25.13)

Since the code space is defined such that all of the plaquettes operators
are in the +1 eigenstate, this red loop of σx thus acts as the identity on
the code space, and we still successfully correct the error!
If it is not already obvious, the reason for the equality Eq. ?? can be

seen in the right of Fig. 25.10. Within the enclosed region, each edge
is acted on by two plaquette operators (marked in bright pink) each
applying σx to the edge, and since σ2

x = 1 this means there is no net
effect on the internal edges, and one is left with only σx applied to the
(red) loop bounding the region.
On the other hand, if a loop of errors occurs which extends around

a cycle, as shown in Fig. 25.11 (think of this as dragging the error, the
orange×, all the way around the cycle and re-annihilating it again) then,
although we return to the code space (there are no Vα = −1 vertices
remaining) we have changed the parity of the number of down spins
around a cycle thus scrambling the quantum information and make an
error in the logical bits. In fact what we get in this case is a transform
that switches the even and odd sectors around one cycle:

Fig. 25.11 If an error string (red)
goes all the way around a cycle, it
changes the parity of the number of
blue loops running around the cycle.
Although this wavefunction is in the
code space, it has been scrambled com-
pared to the original wavefunction with
no error string. I.e., a logical error has
occurred

Aee|ψee〉+Aeo|ψeo〉+Aoe|ψoe〉+Aoo|ψoo〉 −→
Aoe|ψee〉+Aoo|ψeo〉+ Aee|ψoe〉+Aeo|ψoo〉 (25.14)

If the red error loop had gone around the other cycle, the second index
of Aij would have flipped rather than the first index.
The powerful idea of the toric code is that by having a very large

torus, it requires a very large number of physical errors (spin flips) to
make this loop go all the way around the cycle and actually scramble
the quantum information (the logical qubits). If we are continuously
checking for Vα = −1 physical errors we can presumably correct these
errors before a logical error can arise.
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25.4.2 σz Errors

We can also consider what happens if the error operator applied to the
system is a σz operator. Much of the argument in this case is similar to
the σx case.
The σz operator on an edge anticommutes with the two adjacent pla-

quettes Pβ which each include that edge. Applying σz to a system in the
code space takes the system out of the code space and results in the two
adjacent plaquettes having eigenvalue Pβ = −1 as shown in Fig. 25.12.
To be more explicit about this, recall that in the code space each pla-
quette is in a superposition (a positive sum) of flipped and unflipped
plaquettes (See Fig. 25.5). In Fig. 25.13 we can see how applying a σz
operator to one edge results in the difference of the flipped and unflipped
plaquettes, and thus Pβ = −1.

Fig. 25.12 Starting in the code space,

a σ
(i)
z operator applied to the dark

green edge (i) creates two plaquettes in
the Pβ = −1 eigenstate marked with
the bright green ×’s.

σ(i)
z







i

+ =





−

Fig. 25.13 Starting with the sum of flipped and unflipped plaquettes Pβ = +1, we
apply σz to the edge i marked in green. This applies a minus sign to the down spin
(the blue edge) but a plus sign to the up edge. The resulting difference of flipped
and unflipped is then Pβ = −1.

Analogous to the above discussion of σx errors, our σz error correc-
tion protocol should frequently check for pairs of neighboring plaquettes
where Pβ = −1 and if these are found the protocol should correct the
error by applying σz to the intervening edge.
We next consider the case where several σz errors are created before

being corrected. Again if the errors are spatially well separated they can
be identified and corrected without regards to each other. Whenever we
find pairs of neighboring plaquettes in the Pβ = −1 state, we correct
them each individually. However, the situation is more complicated if
two such errors occur on different edges of the same plaquette.
Starting in the code space, if two σz errors are applied on two dif-

ferent edges of the same plaquette (marked in dark green in the left of
Fig. 25.14) then the Pβ eigenvalue of that plaquette (marked with an
arrow) is flipped twice. As shown in the left of Fig. 25.14 this results
in two plaquettes in the Pβ = −1 state being separated by a plaquette
(marked with the arrow) in the +1 state. In the figure we have marked
the Pβ = −1 plaquettes with bright green ×. These ×’s are connected
together with a bright green line which cuts through the dark green
edges. Sometimes we say that the bright green line is a path on the dual
lattice (meaning it goes from center of plaquette to center of plaquette).
The error correction procedure uses multiple σz operators to bring these
defects back together and reannihilate them.
If still more σz errors are created, they can form a string, as shown in

the middle of Fig. 25.14. The σz errors here are applied on dark green
edges. The bright green path on the dual lattice cuts through all of these
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Fig. 25.14 Left: When two σz operators (dark green) are applied to two different edges of the same plaquette (the one with
the arrow) then this plaquette ends up in the Pβ = +1 state. The two plaquettes with Pβ = −1 are marked with the bright
green × and are connected together by the bright green error string. Middle: A string of several σz errors. The bright green
line cuts through each of the dark green edges where σz is applied. The bright green line lives on the dual lattice, meaning it
goes from plaquette center to plaquette center. Right: A closed loop of σz errors. This is equal to the product of all of the
enclosed Vα operators. In the code space, this product is equal to +1.

dark green edges. As in the σx case, one is not able to actually detect
the bright green string (or the dark green edges), but can only see the
endpoints of the string as plaquettes where P = −1.
Analogous to the σx case, if from errors, or from an attempt to correct

errors, the σz error string forms a closed loop as illustrated as the bright
green line in the right of Fig. 25.14, this loop of σz operators is equal to
the product of the enclosed Vα operators.

∏

i around dual loop

σ(i)
z =

∏

α enclosed in dual loop

Vα (25.15)

Since within the code space, Vα = 1, a closed loop returns the system to
its original state. This means that reannihilating the defects (the bright
green ×’s) successfully correct the errors independent of the path that
we use to bring the defects back together.
Another way of seeing Eq. 25.15 is to think in terms of the blue loops

of down spins discussed above. The σz operators register −1 each time
they intersect a blue loop. On the other hand the blue loops must be
closed so the number of intersections between a blue loop and and the
loop of the blue σz error string in the figure must be even (since a blue
loop going into the region enclosed by the bright green string must also
come out), thus forcing the product of the blue σz operators to have a
value of 1.

Fig. 25.15 If a string of σz goes
around a cycle (in this case the hori-
zontal cycle), it measures the parity of
the number of blue strings going around
the opposite cycle (in this case looping
in the vertical direction). In this fig-
ure, the string of σz operators returns
an end result of −1 being that it cuts
an odd number of blue edges.

On the other hand, if the loop of σz operators goes all the way around
the cycle, it then scrambles the logical qubits. In particular, one can
see that if there is a string of σz going all the way around one cycle as
shown in Fig. 25.15, this operator then counts the parity of the number
of blue edges going around the opposite cycle, as shown in the figure.
Thus, applying the string of σz operators around the (horizontal) cycle
makes the transformation

Aee|ψee〉+Aeo|ψeo〉+Aoe|ψoe〉+Aoo|ψoo〉 −→
Aee|ψee〉+Aeo|ψeo〉 −Aoe|ψoe〉 −Aoo|ψoo〉 (25.16)

If the string of σz were to go around the opposite (vertical) cycle, the
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Fig. 25.16 Left: Both σx and σz are applied on the same edge. This results in two neighboring vertex defects (orange ×’s)
with Vα = −1 and two neighboring plaquette defects (bright green ×’s) with Pβ = −1. Middle: Additional σx operators are
applied along the red string to move the vertex defects apart, and an additional σz operator is applied on the dark green edge
to move the plaquette defects apart. Right: A closed (red) loop of σx operators is equal to the product of all of the enclosed
Pβ operators. As compared to Fig. 25.10, here there is a enclosed plaquette defect (with the bright green ×) so the value of
the loop is −1.

minus sign would be applied instead to Aeo and Aoo.

25.4.3 Combinations of σx and σz

We have discussed errors created by σx and σz , but we should also con-
sider what happens when both types of errors are created5. If we have5For example, σy = iσxσz

an error correction protocol that removes σx errors and another proto-
col that removes σz errors, and as long as these two procedures don’t
interfere with each other, we should be able to remove combinations of
the two.
To give a detailed example let us suppose, starting in the code space,

both a σx operator and a σz operators are applied to a single edge as
shown in the left of Fig. 25.16. We obtain from these error operators both
the orange ×’s at the two adjacent vertices (two vertices with Vα = −1,
from the application of σx) and the bright green ×’s on the two adjacent
plaquettes (two plaquettes with Pβ = −1 from the application of σz).
Assuming our error checking procedure finds all of these errors, it can
correct the errors by applying both a σx and a σz to this edge again.
However, we might want to be a bit more cautious if we are to consider

both σx errors (vertices with Vα = −1) and σz errors (plaquettes with
Pβ = −1) at the same time. For example, in the middle of Fig. 25.16
we imagine σz is applied to the two edges marked in dark green, thus
making Pβ = −1 for the two plaquettes marked with bright green ×’s,
and σx is applied to the six edges marked in red so that Vα = −1 at the
two orange×’s. On the right of the figure we imagine more σx operators
applied so that the orange ×’s come together and reannihilate forming a
closed red loop. As in the right of Fig. 25.10 the closed red loop is equal
to the product of Pβ for the enclosed plaquettes (Eq. 25.13). However, in
this case one of the enclosed plaquettes (the one marked with the green
×) is in the Pβ = −1 eigenstate. Thus forming the closed red loop now
gives an overall sign of −1. Similarly if we had moved the bright green
× in a loop around one of the orange ×’s and reannihilated it, as shown
in Fig. 25.17, we would also have generated a −1.

Fig. 25.17 A closed (green) loop of σz
operators (on dark green edges) is equal
to the product of all of the enclosed Vα
operators. As compared to Fig. 25.14,
here there is a enclosed vertex (with the
orange ×) so the value of the loop is−1.

We have thus uncovered an important principle: If you move a defect
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around in a loop and reannihilate it, you make a measurement of what
is contained in that loop!
From the context of our code, should we be worried about having

accumulated an overall sign? No! As mentioned in chapter 11 note
8, typically in quantum computing we are not interested in the overall
phase of a result, which is hard — if not impossible — to control anyway.
The logical qubits are protected up to an overall phase prefactor only.

25.4.4 Other Errors

We have now considered errors created by the application of σx operators
and σz operators. Futher we argued that we are not concerned about
the overall phase of the system, so application of a constant prefactor
is not something we worry about. In fact, products and sums of all
combinations of σx, σz and constants can generate all possible error
operators that could ever be applied to our system! Thus our error
correction scheme can in principle correct all possible errors!

25.5 The Toric Code on Different Lattices,

and Different Topologies

Before ending this chapter it is worth making a short detour to consider
the possibility of building the toric code with a lattice of a different
geometry. In building the toric code we could have used a triangular
lattice, a honeycomb6, or even an “irregular lattice”6. Whatever the 6Which should not be called a lattice,

although people insist on incorrectly
calling it a lattice anyway! See Simon
[2013], for example, for proper defini-
tion of a lattice!

geometry of the lattice (regular or irregular) the vertex term must assure
an even number of blue edges into each vertex (no matter how many
edges join at each vertex), and the plaquette term must flip all of the
edges of a plaquette (no matter how many edges the plaquette has). An
example of an irregular lattice is shown in Fig. 25.18.

Fig. 25.18 Part of an irregular lattice. A vertex operator with three legs is marked
in green. This operator still gives +1 or −1 if an even or odd number of down spins
are incident on the vertex. A plaquette operator with five sides is marked in bright
pink. The plaquette operators flips all of the spins along its edges.

For any lattice geometry (regular or irregular) the vertex and plaque-
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tte operators are a commuting set. Thus the code space can be described
as (Eq. 25.10) a sum of all loop configurations that can be reached from
a reference configuration by flipping plaquettes. What is crucial to the
toric code is that the topology of the system is a torus, so that we
still have four orthogonal states in the code space characterized by the
number of (blue) loops around the two cycles as shown in Fig. 25.8.
One we allow different lattice geometries, we may also ask the question

of what happens if our system has different topologies, i.e., is not a torus,
but is some general more general object.
To understand the dependence on the topology of the surface let us

consider an arbitrary two-dimensional orientable closed surface7. In two

7In fact the toric code can be defined on
a non-orientable surface such as a Klein
bottle. However, since the rest of this
book focuses on orientable manifolds,
we will do the same here for simplicity.

dimensions, all such surfaces can be fully described topologically by their
genus g, or number of handles: a sphere, g = 0, has zero handles; a torus,
g = 1, has one handle; a two-handled torus, g = 2, has two handles, and
so forth. We will make use of the famous Euler characteristic: for any
polyhedral decomposition of an orientable two manifold, we have the
beautiful formula8

8Euler noticed this in 1758 for the case
of convex polyhedra (g = 0). However,
his proof of the statement was incor-
rect. It was correctly proven by Legen-
dre in 1794.

2−2g = (Number of Vertices)−(Number of Edges)+(Number of Faces)

An example of this identity is shown in Fig. 25.19.

Fig. 25.19 Since this object is topo-
logically a sphere (g = 0), we have
Vertices−Edges+Faces= 2. This would
also be true of the triangulation of the
sphere shown in the right of Fig. 21.1.
However, the triangulation of the torus
(g = 1) shown in the left of Fig. 21.1
would have Vertices−Edges+Faces= 0.

In section 25.2.2 we counted the total number of degrees of freedom in
the system and we found that, after fixing all of the vertex and plaquette
degrees of freedom, on a torus, we were left with two qubits remaining,
and these became the protected logical qubits of our toric code. Let
us now try to figure out, for a more general surface, how many degrees
of freedom we cannot specify once we have specified all the vertex and
plaquette eigenvalues. Since there is one spin on each edge we can rewrite
Euler’s equation as

[
Number of Vertex Ops + Number of Plaquette Ops− 2

]
+ 2g

= Number of Spins (25.17)

We can read this equation as follows. The right hand side is the total
number of binary (±1 or ↑, ↓) choices we can make (number of 2-state
degrees of freedom). The brackets counts the number of these choices we
specify by fixing all of the vertex and plaquette eigenvalues: we have one
choice for each vertex operator and one for each plaquette operator, but
then we subtract two binary choices because of the constraints Eqs. 25.8
and 25.9 (Once all but one vertex is specified, the last vertex is fixed
and is not an additional degree of freedom, and similar for plaquettes).
The remaining term, 2g, is the number of binary choices (number of
qubits) that we cannot fix by specifying the vertex and plaquette oper-
ator eigenvalues. Thus, in the case of a spherical surface, there are no
qubits remaining unspecified; in the case of a torus (g = 1) there are
two qubits left (as we calculated above); in the case of a two handled
torus, g = 2, there are four qubits, and so forth.
We might have suspected that the number of qubits we could make
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out of a toric code on a g-handled torus would be related to the number
of different distinguishable loops on the surface. Indeed this turns out to
be correct! For a g = 1 genus (regular) torus, there are two independent
cycles (the longitude and the meridian). Similarly on a g-handled torus
there are 2g independent cycles9. Each qubit represents the evenness or

9The number of independent cycles (or
number of holes) in a manifold is known
as the first Betti number. For a g-
handled torus, this number is 2g. More
precisely the first Betti number is equal
to the number of closed circular cuts re-
quired to reduce the manifold to a sim-
ply connected region. Another way to
define the first Betti number is as the
number of generators in the so-called
first homology group, for those who
know homology theory.

oddness of the number of (blue) loops going around each cycle.
Shor’s original nine-bit error correcting code (Section ??) can also be

viewed as a toric code — but on a surface with singular points (See
exercise 25.3).

25.6 ZN Toric Code (Briefly)

One of the simplest generalizatons of the toric code is known as the ZN
toric code. (While this is not too complicated a generalization, it is also
not entirely crucial to the development of ideas here and can be skipped
on a first reading10). In this model instead of having a two state system 10Our presentation will be a bit faster

here with the assumption that the
reader is now familiar with the conven-
tional toric code.

(spin-up/spin-down) on each edge, we will put an N state system11 on

11A two state system is known as a
qubit. A three state system is some-
times known as a qutrit. A general
d state system is known as a a qudit.
One should not call an n state system
“qunit” though since the word “nit” is
often used for an object having e states,
with ln e = 1. (Also “nits” are lice eggs.
Yuck.)

each edge which we will write as s ∈ 0, . . . , (N − 1), instead of saying a
spin is up or down (or the edge is blue or black). It is worth noting that
it will sometimes be more natural to think of the exponential e2πis/N

which naturally has only N possible staates.
We can use a regular or irregular lattice for this model. However, now

for N > 2 we must put arrows on each edge to define a direction. The
direction chosen does not particularly matter. An irregular lattice with
arrows is shown in Fig. 25.20. Each edge i is labeled with a quantum
number si ∈ 0, . . . , N . (The N = 2 case corresponds to the regular
toric code with s = 0 corresponding to a black edge [spin up] and s = 1
corresponding to a blue edge [spin down]). We will think of this quantum
number as being some sort of fictitous ZN valued current running along
the edge in the direction of the arrow.

Fig. 25.20 An irregular lattice with
arrows assigned to the edges.

We now define an operator Qα that measures the total ZN current
sink or source at a vertex α to be12

12The term mod(N) means take the re-
mainder after dividing by N . Because
we are working mod(N) it is not possi-
ble to say whether a vertex is a current
sink or a current source since a value
Qα = m is the same as Qα = m + pN
for any integer p, positive or negative.

Qα =


 ∑

i∈edges arriving atα

si −
∑

i∈edges leavingα

si


mod(N) (25.18)

where an edge touching a vertex is denoted as “arriving” at a vertex
if its arrow is pointed at the vertex and is denoted as “leaving” if its
arrow is pointed away from the vertex. This operator has N possible
eigenvalues given by the possible charges 0, . . . , (N − 1). The sum of
charges over the entire system must be zero

∑

α

Qαmod(N) = 0

since this expression counts each edge as being a leaving vertex once
and counts each edge as being an arriving vertex once. In a form more
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analogous to the constraint Eq. 25.8 we could instead write

∏

α

e2πiQα/N = 1

We can also define another operator which changes the value of the
variables on the edges of a plaquette β

Aβ =

{
si → (si + 1)mod(N) arrow pointing clockwise around β
si → (si − 1)mod(N) arrow pointing counterclockwise around β

(25.19)
Since (Aβ)

N is the identity, there are N possible eigenvalues of this
operator which are given by e2πik/N with k = 0, . . . , (N − 1).
Each edge with a fixed arrow direction bounds two plaquettes such

that the arrow points clockwise with respect to one plaquette and coun-
terclockwise with respect to the other plaquette as shown for example
in Fig. 25.21. Applying Aβ to the plaquettes on both sides of an edge
thus leaves the edge separating the two unchanged. This immediately
implies that applying Aβ to all plaquettes in the system is the identity:

∏

β

Aβ = 1

analogous to Eq. 25.9.
A useful commutation relation (analogous to σxσz = −σzσx for the

conventional toric code) is (See exercise 25.1).

e2πisj/NAβ = e±2πi/NAβe
2πisj/N (25.20)

where sj is the operator that measures the quantum number on an edge
j on the boundary of plaquette β. The ± on the right is positive if the
arrow on the edge is going clockwise around β and is minus if the arrow
on the edge is going counterclockwise.

iβ β′

Fig. 25.21 Edge i is pointing clockwise
with respect to β′ but counterclockwise
with respect to β.

25.6.1 Code Space

Analogous to the discussion of section 25.2.1, it is easy to establish that
the operators Aβ and Qα all commute with each other (See exercise
25.1).
Our code space for this system will be the space of states such that

we have the vertex condition Qα = 0 (or to look more similar to the
regular toric code, all e2πiQα/N = 1) for all vertices and the plaquette
condition Aβ = 1 for all plaquettes.
Let us first examine the condition Qα = 0 for all vertices. This means

that there is no net current flow into or out of any vertex analogous to the
loop condition for the conventional toric code (See near Fig. 25.6). This
is very much like Kirchhoff’s first law in circuit analysis except that the
current is ZN valued, i.e., its value is periodic modulo N . In Fig. 25.22
we show two configurations of edge variables on a torus geometry that
satisfy this condition for a Z3 toric code.
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Fig. 25.22 Edge variable configuration for the Z3 toric code on a torus geometry
satisfying Qα = 0 at all vertices α, meaning the current arriving equals the current
leaving modulo 3. Opposite sides marked in orange are identified with each other
so this picture represents a torus. In going from the left figure to the right figure
the operator Aβ is applied on the marked plaquette. Note that the total current
crossing either red dashed line is unchanged before versus after the application of the
operator. It also does not matter where (horizontally) we put the vertical red dashed
line or where (vertically) we put the horizontal red dashed line. Note that the an
element of the code space is obtained by applying Aβ to all possible plaquettes in all
possible ways and summing the result.

Note that if we start with a situation where all Qα = 0, flipping a
plaquette by applying Aβ (shown in Fig. 25.22) does not change the
condition that Qα = 0 (This is equivalent to our statement that Qα and
Aβ commute). The second code space condition, Aβ = 1, is analogous
to the plaquette condition for the usual toric code. The code space
wavefunction can then be written in the usual form

|ψ〉 =
∑

all configs that can be
reached by applying Aβ
starting with a reference
config that satisfies Qα = 0

N−1/2|config〉 (25.21)

We should be a bit cautious if we define our code space as the Aβ = 1
state. As discussed in the toric code, we would want to have an error
correcting protocol that continually checks to make sure that the system
has not left the code space. Hence we might want to make continuous
measurements of Aβ . Unfortunately, Aβ is not a Hermitian operator,
so it is not directly measurable. However, we can certainly measure
1
2 (Aβ +A†

β) and
1
2i(Aβ −A†

β) which both have the same eigenvectors as

Aβ (since A†
β = A−1

β ) and this will work just as well.
As with the regular (Z2) toric code, there are multiple orthogonal

wavefunctions that one can obtain depending on the reference configu-
ration used. For each noncontractable cycle in the system, we can define
a ZN valued current flow going around that cycle. For example, in the
torus shown in Fig. 25.22 there are 2 units (mod 3) of current going
vertically, and 3 units (mod 3) going horizontally. Note that flipping a
plaquette by applying Aβ (also shown in the Figure) does not change
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Fig. 25.23 Introduction of an error string that creates two vertex defects in an example of the Z3 toric code. The error string
(red) has an arrow pointing from the Qα = −1 defect to the Qα = +1 defect. Each edge along the path is incremented one
unit if its arrow is aligned with the red string arrow and is decremented one unit if its arrow is opposed to the red string arrow.
Note that on the left, an element of the code space is obtained by applying Aβ to all possible plaquettes in all possible ways and
summing the result. If we start in the code space and apply the red error string, note that the error string is not measurable,
only the defects at the end points are.

the value of the current going around either noncontractable cycle. Thus
since a genus g surface has 2g noncontractable cycles9 we expect that
the ZN toric code should be able to store 2g N -state systems of quan-
tum information in its quantum memory. I.e, the Hilbert space of this
quantum memory has dimension N2g.

25.6.2 Errors

We can now consider what sort of error processes can occur. The first
type is a vertex error (analogous to the σx error of the conventional toric
code). Here we can consider, for example, incrementing the quantum
number (the “current” label) along one edge (mod N), to create a de-
fective vertex at either end of that edge. One of these vertices will then
have Qα = +1 and the other will have Qα = −1.
More generally we can consider moving such defects away from each

other analogous to Fig. 25.10. An example of this is illustrated in
Fig. 25.23. This generates an error string (shown red in the figure)
connecting the two defects. The error string (red) has an arrow on it,
and will increment the quantum number of any edge along its path if the
arrow of the edge is aligned with that of the string, and will decrement
the quantum number of the edge if the arrow of the edge is antialigned
with the arrow of the string. At the head of the string is a vertex defect
with Qα = +1 and at the tail is a defect with Qα = −1. Defects with
Qα = ±m can analogously be made by incrementing or decrementing
edges by m steps. Multiple strings may be introduced and the defects
may be brought together, adding together modulo N . Defects are al-
ways created in ± pairs, so that if we start in the code space, the sum
of Qα over the entire system must remain zero (mod N).
If we create a defect pair and move the Qα = +1 defect in a clockwise

circle then reannihilate it with the Qα = −1 defect, this leaves behind a
closed loop of red-string, analogous to the right of Fig. 25.10. However,
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Aβ = e2πi/N

Aβ = e−2πi/N

Fig. 25.24 Application of the operator Xj = e2πisj/N on an edge (shown as dark
green lines) multiplies the eigenvalue of Aβ on the plaquette to the left of the arrow
by e2πi/N and multiplies the eigenvalue of the plaquette on the right by e−2πi/N .
Multiple applications of these operators can move the defective plaquettes away from
each other, as shown in the Figure — only the bright green ×’s are defects. In the
figure, the two vertical dark green bonds are Xj operators and the horizontal dark
green bond is a X−1

j operator.

it is easy to see that such a clockwise oriented closed loop is equal to the
product of Aβ operators for the enclosed plaquettes.

Moving (Qα = +1) defect in

clockwise loop
=

∏

enclosedβ

Aβ (25.22)

analogous to Eq. 25.13. Moving in a counterclockwise loop will corre-
spondingly give a product of A−1

β . Analogous to the conventional toric
code, since in the code space the Aβ ’s are all in the +1 eigenstate, this
means that starting in the code space, creating two defects, moving them
around and reannihilating returns the system to the original state in the
code space. However, dragging a defect around a noncontractable cycle
(around a handle of the torus for example), and then reannihilating puts
the system in a different state of the code space and creates a logical
error for this quantum memory.
We now turn to consider plaquette defects. Here we imagine start-

ing in the code space and applying the operator Xj = e2πisj/N on edge
j (where sj is the operator that measures the quantum number on the
edge). Due to the commutation relation Eq. 25.20 the action of the oper-
ator Xj changes the eigenvalue of Aβ on the neighboring two plaquettes
multiplying the eigenvalue on the neighboring plaquette to the left of
the arrow on the edge j by e2πi/N and multiplying the other neighbor
by e−2πi/N . Correspondingly using the operator X−1

j will multiply the
eigenvalue of Aβ by the inverse phase. Starting in the code space (where
all Aβ are in the +1 eigenstate) application of Xj or X−1

j will create a
pair of neighboring defective plaquettes. Applying multiple such opera-
tors can move the defective plaquettes away from each other as shown
in Fig. 25.24 (analogous to Fig. 25.14 for the conventional N = 2 toric
code).
If, starting in the code space, a Aβ = e2πi/N defect is created and
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then moved in a clockwise loop and then reannihilated with its partner,
the system is returned to the code space. In the process a net phase is
accumulated given by

Moving (Vβ = e2πi/N ) defect in

clockwise loop
=

∏

enclosedα

e2πiQα/N (25.23)

To see this result, it is easiest to imagine a situation where all the arrows
on the (dark green in Fig. 25.24) edges point towards the center of the
loop. Moving th Aβ = e2πi/N defect in a clockwise loop then corresponds
to applying Xj operators on all the edges, thus these operators measure
the sum of all the edges entering the enclosed region which is thus the
sum of all the Qα inside the region (See Eq. 25.18). (One can then
check that reversing the orientation of the arrow on an edge does not
change this result.) As in the case of the conventional toric code, if a
plaquette defect is moved around a noncontractable cycle, a logial error
is imparted to the code space.

Further Reading

Look at Kitaev? (Laumann?)

Exercises

Exercise 25.1 Communtation of operators in the ZN toric code
(a) Show that all of the operators Aβ (Eq. 25.19) and Qα (Eq. 25.18) com-

mute.
(b) Prove Eq. 25.20

Exercise 25.2 Code Space Degeneracy of the ZN Toric Code
Generalize the Euler characteristic argument of section 25.5 to confirm that

the dimension of the code space of the ZN toric code is N2g where g is the
genus of the surface.

Exercise 25.3 Shor’s Code is a Toric Code!
Consider 9 edges assembled into three spheres in the following way. First

make a single sphere out of two vertices (put one at the north pole and one
at the south pole for simplicity), three edges connecting the two vertices,
and three plaquettes filling out the sphere. Now make three spheres in this
way. Connect these spheres together at the vertices but do not add any new
plaquettes or edges. We now have three vertices, each connected to six edges
(three on one sphere and three on another sphere). This makes a manifold
with three singular points as shown in Fig. 25.25. Consider now the toric code
applied to this system. There is one noncontractable loop in the figure which
plays the role of a qubit. There are nine plaquette operators and three vertex
operators, making a total of 12 stabilizers. Show that this system is precisely
the Shor error correcting code introduced in section ??.

Fig. 25.25 Three spheres (shown elon-
gated into bananas) connected together
at their north and south poles. Each
sphere consists of three edges, two ver-
tices, and three plaquettes.
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Easy Material

We have introduced the toric code as a way to store quantum informa-
tion. However, it is also possible to construct the toric code such that
it is a quantum phase of matter, i.e., the ground state of Hamiltonian.
As such the toric code becomes an example1 of topologically ordered 1In fact the toric code is the paradig-

matic example!quantum matter — a physical system that is described at low tem-
perature and long wavelength by a topological quantum field theory.
To recast the toric code as a phase of matter, we simply write a

Hamiltonian which is a sum of all of our vertex and plaquette operators
described in section 25.2

Htoric code = −∆v

2

∑

vertices α

Vα − ∆p

2

∑

plaquettes β

Pβ (26.1)

where here ∆v > 0 and ∆p > 0 have dimensions of energy and set
the energy scale of the problem2,3. The operators Vα and Pβ all have

2Often for simplicity one sets ∆v =
∆p = ∆. To simplify even more, set
the energy scale of the problem to unity
with ∆v = ∆p = 1.

3Since Vα and Pβ have eigenvalues ±1,
we have included a factor of 1/2 out
front so that the difference between en-
ergies of these two eigenstates is ∆v or
∆p respectively.

eigenvalues ±1, and since the operators all commute with each other
(see section 25.2.1) the lowest energy configuration (i.e., the ground
state space) is obtained by simply setting all of the Vα = 1 and Pβ = 1.
In other words, the ground state space is exactly the code space!
If the system is on a torus geometry, there will be a four-fold degener-

ate ground state corresponding to the four orthogonal wavefunctions in
the code space (Eqn. 25.11). As discussed in section 25.5 if the system
is on a genus g surface, we would instead have a 22g-fold degenerate
ground state (corresponding to the 2g qubits in the code space). The
dependence on topology strongly suggests to us that our physical system
is described by a topological quantum field theory!4

4From only this ground state degener-
acy, we can conclude that the TQFT
describing this system is abelian. See
exercise 26.1.

26.1 Excitations

If there are vertices with Vα = −1 or plaquettes where Pβ = −1, the
system is not in the ground state space. These occurrances, which we
called errors previously, in the language of topologically ordered matter
should now be considered to be particle (or quasiparticle5) excitations.

5The term “quasiparticle” is used for
objects that act as relatively weakly
interacting individual particles in low
energy theories but are emergent from
some other more complicated collective
degrees of freedom. The distinction be-
tween particle and quasiparticle is not
used consistently. We often speak of
protons, pions, electrons, etc, as parti-
cles rather than quasiparticles, but they
too are presumably just the low energy
excitations of a more complicated the-
ory.Let us list all of the types of particles we can find

(1) We always have a vacuum or identity particle (which can also be
thought of as the absence of a particle) which we call I.

(2) We can have a vertex where Vα = −1 instead of Vα = +1. The
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energy3 of each vertex defect is ∆v.

(3) We can have a plaquette where Pβ = −1 instead of Pβ = +1. The
energy3 of each plaquette defect is ∆p.

The vertex and plaquette defects are often called electric and magentic
particles respectively (e andm). The intuition for the names here is that
the vertex defect is some sort of “charge” at the vertex (hence “electric”)
and the plaquette defect is some sort of flux through the plaquette (hence
“magnetic”).

Caution: Sometimes the the vertex defect is instead called magnetic
and the plaquette defect is called electric! We will see in section 29.7
why this other labeling is sensible as well.

Fortunately, which particle is labeled e and which one m is at this
point just a convention. The TQFT which will describe the system is
actually the same independent of which one we label e and which one
we label m. See the discussion in chapter **. For the time being we will
follow the convention that the vertex defect is electric and the plaquette
defect is magnetic. Sometimes, however, it is easier to just call the
defects vertex and plaquette defects to avoid confusion, and we will try
to do this as much as possible!
Since vertex defects are produced in pairs, and can be brought back

together and annihilted in pairs, we know we must have

vertex defect× vertex defect = I

Similarly since plaquette defects m are produced in pairs, and can be
brought back together and annihilated in pairs we must also have

plaquette defect× plaquette defect = I

In the more common notation we would write

e× e = I

m×m = I .

We might then wonder what happens if we bring together a vertex and
a plaquette defect. They certainly do not annihilate! Thus

(4) We define another particle type, called f , which is the fusion of the
magnetic and the electric particles (fusion of vertex and plaquette
defect)

f = e×m

The energy of such a particle is (∆v +∆p).

Sometimes (particularly in the gauge theory literature) a particle that
is a combination of an electric and magnetic particle is called a dyon.
We have the fusion relation

f × f = I
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which we can see by associativity and commutativity of fusion

f × f = (e ×m)× (e ×m) = (e× e)× (m×m) = I × I = I

These three particle types e,m, f and the vacuum I, are the only particle
types there in this theory: First, they they form a closed set under the
fusion rules. Secondly, as we discussed in section ?? any “error” in this
system (or excitation out of the ground state) can be described in terms
of combinations of applications of σx and σz , hence all excitations are
generated by only the e and m particles. The full fusion relations are
given in Table. 26.1. There are no non-abelian fusions here (i.e., each
fusion gives a unique outcome) so we conclude we have an abelian theory.

× I e m f
I I e m f
e e I f m
m m f I e
f f m e I

Fig. 26.1 Fusion table for the toric
code. Note that the table remains cor-
rect if we switch e with m everywhere.

Note that there are exactly four particle types (including the identity),
and there are exactly four ground states on the torus, in agreement with
the general principle that the number of particle types should match the
number of ground states on the torus (See Eq. 7.3, for example).

26.2 Statistical Properties of Vertex and
Plaquette Defects

Let us first consider the vertex defect particles (we have been calling
this particle e, but for more clarity we will stick with the term “vertex
defect”). These particles are both created and moved around by apply-
ing σx operators. All of the σx operators commute with each other, so
the end result is the same independent in what order we create, move,
and annihilate the vertex defect particles with these σx operators.
There are now several “experiments” we can do to test the statistics

of these particle. For example, we can create a pair of vertex defects,
move one around in a circle and reannihilate, then compare this to what
happens if we put another vertex defect inside the loop before the ex-
periment. Since all of the creation and moving of particles is achieved
by applying σx, and all σx operators commute with each other, we see
that the presence of another vertex defect inside the loop does not alter
the phase of moving the defect around in a circle. Entirely analogously
braiding a plaquette defect particle around another plaquette defect par-
ticle accumulates no phase: the defect is both created and moved by the
σz operator and all of these σz operators commute with each other.
The experiments just described tells us that the vertex and plaquette

defects (e and m) are either bosons or fermions. It is fairly obvious
that braiding bosons around bosons never accumulates a phase. This is
less obvious for fermions: while exchanging two fermions accumulates a
−1 sign, taking a fermion in a loop all the way around another fermion
accumulates two minus signs (hence a +1 sign, or no phase) since it is
equivalent to two exchanges. Thus we have not yet determined the full
statistical properties of these particles. To do so we will need to examine
the twist factor θ for these particles (See chapter 15).
To determine the twist factor of a particle, we will make a curl in a
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world line as in Fig. 2.6 or 15.2. Consider Fig. 26.2. In the middle panel
we apply (reading right to left)

σ1
xσ

7
xσ

6
xσ

5
xσ

4
xσ

3
xσ

2
xσ

1
x. (26.2)

This just creates a pair of vertex defects, one at A and one at B,
moves the particle at B around in a simple loop (reading right to left
BGFEDCB) and brings it back to the original position and reannihi-
lates it with its partner. We can compare this to the following operation
shown in the bottom panel of Fig. 26.2

σ1
xσ

2
xσ

1
xσ

7
xσ

6
xσ

5
xσ

4
xσ

3
x. (26.3)

This instead creates a pair of vertex defects particles at positons C
and D, moves the particle at D along the path (reading right to left)
ABGFED behind the particle at position C, and finally to position A.
Finally the particle at position C is moved to B and then annihilated
with the particle at A. This process is topologically a loop with a curl,
or twist, included (compare Fig. 2.6 or 15.2). However, since the σx
operators all commute, the two processes (Eqs. 26.2 and 26.3) must be
equal. This means the twist factor is trivial, θ = 1, so we conclude that
the vertex defect particle is a boson. An entirely analogous argument
can be used to show that the plaquette defect is a boson as well (See
exercise 26.3).
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Fig. 26.2 Top: Vertices are labeled
with letters and edges with numbers.
Middle: The process shown is (read-
ing right to left) σ1xσ

7
xσ

6
xσ

5
xσ

4
xσ

3
xσ

2
xσ

1
x.

This creates an pair of vertex de-
fect particles, moves one around, and
reannihilates, making a simple loop
for its spacetime diagram (middle
right). Bottom: The process shown
is σ1xσ

2
xσ

1
xσ

7
xσ

6
xσ

5
xσ

4
xσ

3
x. This creates a

pair of vertex defect particles, makes
a curl, or twist, in the spacetime di-
agram and then reannihilates (bottom
right). Since all σx operators com-
mute these two operations must give
the same phase, implying trivial phase
for adding the twist.

26.2.1 Braiding Vertex Defect with Plaquette Defect

We now turn to determine what happens when one braids a vertex defect
particle around an plaquette defect particle (e around m in our current
notation). Much of what follows here simply recapitulates the discussion
of section 25.4.3.
Suppose we create a pair of vertex defect particles and move one

around in a circle then reannihilate the pair (as in the right panel of
Fig. 25.10). This process is created by a string of σx operators. Re-
call that, if there are no vertex defects inside the loop this process does
not accumulate a phase because the string of σx operators around the
loop is equivalent to the product of the Pβ plaquette operators enclosed
(Eq. 25.13) — and in the ground state (the code space), the Pβ operators
are in the +1 state. However, if there is one vertex defect particle inside
the loop (as in Fig. 26.3, or right panel of 25.16), this means that one
of the Pβ operators is actually in the −1 state. In this case the phase of
taking the vertex defect particle around the loop is actually −1. So there
is a phase of −1 for taking a vertex defect around a plaquette defect.
Another way to understand the braiding statistics is as follows: The

operator that takes a vertex defect particle in a loop (the red loop in
Fig. 26.3) is made of σx’s. The operator that creates a pair of plaquette
defects and pulls them apart (The bright green line in Fig. 26.3) is made
of σz ’s (the dark green lines). These two operators intersect on a single
edge (the one which has both a red line and a dark green line Fig. 26.3).
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Fig. 26.3 Left: The red loop represents a string of σx operators that take a vertex
defect particle in a loop. This operator is equal to the product of plaquette operators
enclosed, and will give −1 if there is a single plaquette defect inside the loop and
+1 if there are none. The bright green line is a dual string of σz operators (dark
green lines) that pulls two plaquette defect (bright green ×’s) apart. The red string
and the green dual string anticommute, also showing the braiding statistics. Right:

The bright green loop represents a dual string of σz operators (dark green lines) that
take an plaquette defect particle in a loop. This operator is equal to the product of
vertex operators enclosed, and will give −1 if there is a single vertex defect inside
the loop and +1 if there are none. The red line is a string of σx operators that pulls
two vertex defects (orangle ×’s) apart. The red string and the green dual string
anticommute, also showing the braiding statistics.

The σx and σz on this edge anticommute. Thus if we consider the
processes of taking a vertex defect particle in a circle and then creating
the plaquette defects and pulling them apart, and then compare it to
the process where the plaquette defects are pulled apart first and then
the vertex defect particle is taken in a circle which surrounds one of the
two plaquette defect particles (as in Fig. 26.3), these two processes must
differ by −1 due to the anticommutation of the two operators.
We can check that one accumulates exactly the same phase if we

take an plaquette defect in a circle around a vertex particle. Taking a
plaquette defect around in a loop is a process created by a string of σz
operators as shown in Fig. ?? (see also right of Fig. 25.14). If there are
no vertex defects enclosed in the loop, this process does not accumulate
a phase because the string of σz operators around the loop is equivalent
to the product of the Vα vertex operators enclosed (Eq. 25.15) — and
in the ground state (the code space), the Vα operators are in the +1
state. However, if there is one vertex defect inside the loop, this means
that one of the Vα operators is actually in the −1 state. In this case
the phase of taking the plaquette defect around the loop is actually −1.
So there is a phase of −1 for taking a plaquette defect around a vertex
defect, showing nontrivial anyonic braiding with each other.
We have thus shown that taking an electic particle around a magnetic

particle6 accumulates a phase of −1. In the language of chapter 13 we

6This statement is independent of
which defect we call electric and which
defect we call magnetic!

have just shown that
Remf Rmef = −1. (26.4)

Due to this −1 phase from taking e aroundm, orm around e, sometimes
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f

=

e m

=

e m

= −
e m

= −
f

Fig. 26.4 The f particle is a fermion since its twist factor is θf = −1. We can
derive this by using f = e×m and using the fact that e braiding around m gives a
−1 sign.

the e and m particles are called relative semions7.

7Semions are particles that accumulate
±i under exchange (see for example,
section 18.1.2) so wrapping one semion
all the way around another accumulates
a phase of −1. I personally do not like
to use the term “relative semion” since
the toric code is mostly unrelated to the
semion theory.

26.2.2 Properties of f , the fermion

Since f is made up of anm bound to an e, we can derive the properties of
f from our knowedlge of the properties of m and e. Braiding e around
f is equivalent to taking e around both e and m. Since e around e
accumulates no phase, and e around m accumulates a phase of −1, we
conclude that taking e around f accumulates a phase of −1. Similarly
taking m around f also accumulates a phase of −1. Taking f around f
is then equivalent to taking e and m both around f , and since each of
these processes accumulates a phase of −1, the braiding of f around f
accumulates a phase of +1. As discussed in the case of e and m this tells
us that f is either a boson or a fermion. To determine which one, we
must again determine the twist factor θf . Perhaps the simplest way to
determine this is via the diagrams in Fig. 26.4 which show that θf = −1,
hence f is actually a fermion (hence the notation, f for fermion). The
estute reader will realize that this manipulation is actually a special case
of the ribbon identity Eq. 15.4 (compare Eq. 26.4).

26.3 S and T matrices

We can summarize our findings about this anyon theory by stating the
modular Sij matrix, which lists the braiding result obtained by taking
particle i around particle j as shown in Fig.7.13, and the T matrix
(Eq. 17.14) which simply lists the twist factors along the diagonal.
Listing the particles in the order I, e,m, f we can write S and T as in

S =
1

D




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 T =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 (26.5)

where unitarity fixes the total quantum dimension D = 2 in agreement
also with the definition Eq. 17.11 that D2 =

∑
i d

2
i . We can also check

that the central charge (via Eq. 17.16) must be zero mod 8.
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26.4 Charge-Flux Model

We can describe the statistics of the particles in the toric code using a
charge-flux model somewhat analogous to Chern-Simons theory8. Here 8Precisely the toric code can be de-

scribed as a Chern-Simons theory with
two Chern-Simons fields aIµ with I =
1, 2 and an action which we write as

S =
1

4π

∫
d3xKIJǫ

αβγaIα∂βa
J
γ

and a purely off-diagonal coupling ma-
trix

K =

(
0 2
2 0

)

Such Chern-Simons theories with mul-
tiple fields will be discussed in more de-
tail in chapter **.

let us define

electric particle = e = particle bound to 1 unit of electric
charge

magnetic particle = m = particle bound to π units of mag-
netic flux

fermion = f = particle bound to 1 unit of electric charge and
π units of magnetic flux

It is easy to see that this charge and flux will correctly give the +1 and
−1 phases accumulated from braiding particles.

26.5 ZN Toric Code (Briefly)

To generalize the toric code Hamiltonian Eq. 26.1 to the case of the ZN
toric code discussed in section 25.6, we need to find operators analogous
to Vα and Pβ in which will favor Qα = 0 on the vertices and Aβ = 1
on the plaquettes as the ground state. We will choose to work with the
following Hamiltonian9 9This form is compatable with the

more general form used in chapter 29
below.HZN toric code = −∆v

∑

verticesα

δQα,0 −∆p

∑

plaquettesβ

P̂β (26.6)

where δ is a Kronecker delta function and

P̂β =
1

N

N−1∑

p=0

(Aβ)
p . (26.7)

The operator P̂β gives unity on a plaquette where the eigenvalue of Aβ
is 1, and gives zero otherwise (To see this recall that (Aβ)

N = 1 so the
eigenvalues of Aβ can only be e2πik/N for some integer k). Similarly the
Kronecker delta function gives unity on a vertex where Qα = 0 and gives
zero otherwise.
The N = 2 case of this Hamiltonian is not quite identitical to Eq. 26.1

for the conventional toric code. Whereas Vα and Pβ in Eq. 26.1 have
eigenvalues ±1, the terms δQα,0 and P̂β here have eigenvalues 0 and 1.
However, we do have (for the N = 2 case) that

Vα =
1

2
(δQα,0 − 1) Pβ =

1

2
(P̂β − 1)

and note that Eq. 26.1 already has the factors of 1
2 out front of each

term compared to that of 26.6. Thus we see that Eq. 26.1 and Eq. 26.6
differ only by the addition of an unimportant constant.
The ground state of the Hamiltonian Eq. 26.6 is any state where all
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Qα = 0 and all Aβ = 1. I.e., the code space of the ZN toric code. The
defect energies are ∆v for a vertex defect and ∆p for a plaquette defect.
If we move vertex defects together, their value of Qα add modulo N ,

where Qα = 0 corresponds to an unexcited vertex and all other values
of Qα are excitations (i.e., we have ZN fusion rules). Similarly if we
move plaquette defects together, their eigenvalues of Aβ = e2πik/N with
k an integer multiply with Aβ = 1 being an unexcited plaquette and all
other values being excited (again this is ZN fusion rules). We can also
construct quasiparticles that correspond to combinations of excitated
vertices and excited plaquettes. The most general particle type can
then be notated as [n, k] with n, k ∈ 0, . . . , (N − 1) by which we mean

[n, k] →
{
Qα = n

Aβ = e2πik/N
(26.8)

thus there are a total of N2 particle species. If a particle has both
nontrivial vertex quantum number and nontrivial plaquette quantum
number it is sometimes called a dyon. The fusion rules for these particles
are then given by

[n1, k1]× [n2, k2] = [ (n1 + n2)mod(N) , (k1 + k2)mod(N) ]

= [n1 + n2 , k1 + k2]

where in the second line addition is assumed to be modulo N . Note that
these fusion rules imply we have an abelian anyon theory.
Following similar arguments to section 26.2 it is easy to show that

all of the vertex defects and all of the plaquette defects are bosons —
and further, all vertex defect braid trivially with all vertex defects and
all plaquette defects braid trivially with all plaquette defects. However,
given Eqs. 25.22 and 25.23 it is clear that the vertex defects braid non-
trivially with the plaquette defects, which also gives nontrivial braiding
properties to the dyons. In particular these two equations showed that
taking a Qα = +1 charge clockwise around a Aβ = e2πi/N plaquette
give a phase of e2πi/N which we can rewrite as R-matrices1010The exponent on the right has a mi-

nus sign because the R matrix is de-
fined as the phase associated with a
counterclockwise exchange.

R
[0,1],[0,1]
[1,1] R

[1,0],[0,1]
[1,1] = e−2πi/N

and more generally we can similarly derive the phase for taking an
[n1,m1] particle counterclockwise all the way around an [n2,m2] par-
ticle

R
[n1,k1],[n2,k2]
[n1+n2,k1+k2]

R
[n2,k2],[n1,k1]
[n1+n2,k1+k2]

= e−2πi(n1k2+n2k1)/N (26.9)

where addition is assumed to be modulo N . Further, using the ribbon
identity Eq. 15.4 we obtain

θ[n,k] = e−2πink/N (26.10)

Using either Eq. 26.9 directly to evaluate the relevant diagram, or using
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Eq. 17.20, we can obtain the S-matrix for the ZN toric code

S[n′k′],[n,k] =
1

N
e2πi(nk

′+n′k)/N (26.11)

We can write a charge-flux model description for each of these particle
types by modeling the [n, k] particle as n units of electric charge bound
to 2πk/N units of magnetic flux.

Exercises

Exercise 26.1 Show Toric Code is Abelian from Ground State De-
generacies Only

Given that the ground state degeneracy for the toric code on an g-handled
torus is 22g , show that this must be an abelian TQFT with 2g particle types.
(Hint: See exercise 8.2 and (gs degen on a torus is # of particle types))

Exercise 26.2 Ground State Degeneracy of Toric Code
Starting with the fusion rules of the toric code, calculate the ground state

degeneracy of the toric code on g-handled torus using the methods of section
8.4.

Exercise 26.3 Twist of the Plaquette Defect
In section 26.2 we explicitly calculate that the twist factor for a vertex

defect particle is trivial. Use an analogous technique to show the twist factor
for the plaquette defect particle is also trivial.

Exercise 26.4 Checking the Verlinde Formula
(a) Confirm the Verlinde formula Eq. 17.13 for the toric code.
(b) Confirm the Verlinde formula Eq. 17.13 for the ZN toric code.

Exercise 26.5 Twist factor for excitations of the ZN toric code
Confirm Eq. 26.10.

Exercise 26.6 Modular group and the ZN toric code
Confirm the modular group relations (Eq. 17.17) for the ZN toric code.

(The central charge is c = 0).





Robustness of Topologically
Ordered Matter 27

Medium Material

Topologically ordered matter, matter that can be described as a TQFT,
has a remarkable property known as topological robustness — the topo-
logical properties of the phase of matter are unchanged if the Hamilto-
nian is changed a small bit (so long as the gap to making excitations
remains). While this property is very general, we will illustrate it using
the toric code, and generalization to other types of topologically ordered
matter are then fairly obvious.

27.1 Perturbed Hamiltonian

Let us start with the toric code Hamiltonian, and add some perturbing
term.

H = Htoric code + δH (27.1)

where Htoric code is the toric code Hamiltonian defined in Eq. 26.1. In
Eq. 27.1, δH is some arbitrary small perturbation Hamiltonian which is
the sum of arbitrary local terms1. The claim is that for small enough δH 1An operator is local if it acts on a finite

number of spins which are all near each
other — meaning within some fixed fi-
nite distance as we take the thermody-
namic limit in the problem. A term
which would not be local would be a
product of all of the spins in the sys-
tem, or a product of all the spins in a
string all the way around a cycle of the
torus.

(but not necessarily infinitesimally small!), the topological properties of
the phase of matter — such as the 4-fold degenerate ground state, the
types of excitations, and their braiding statistics — will remain entirely
unchanged in the large system size limit2. We will focus first on the

2This statement should become expo-
nentially more accurate as the size of
the system is made larger and larger.

ground state degeneracy, but the arguments for the other topological
properties will follow similarly.

27.1.1 Robustness of Ground State Degeneracy

Rough Argument

The general idea is as follows: When δH is turned on, it can be treated in
perturbation theory order by order. If δH is small, then higher orders in
perturbation theory are successively less important. Now at some M th

order in perturbation theory we can consider M applications of δH to
the unperturbed system. Each application of δH , which is some arbi-
trary local operator, can create, annihilate, or move some quasiparticle
excitations. The key point is that in order to break the ground state
degeneracy in any way, which is equivalent to causing a logical error in
the toric code when used as a quantum memory, a quasiparticle must be
taken all the way around a cycle of the torus. For a very large torus this
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can only happen at extremely high order in perturbation theory, and
hence any splittings are only exponentially small.

In More Detail

Let us now make this argument more rigorous. It is easiest to choose
a particularly simple form for δH to work with. However, once we
understand the physical principle, we will realize that the actual form
we choose doesn’t matter and the results hold much more generally. For
simplicity, let us choose δH to be the sum of σx over all spins

δH = J
∑

i

σ(i)
x (27.2)

where J is a parameter with dimensions of energy which is assumed to
be small compared to the excitation gap ∆ of the toric code3.3As we pointed out in section 26.1 there

are two excitation gaps ∆v for vertex
defects and ∆p for plaquette defects.
The overall excitation gap of the system
is the minimum of these two. Or for
simplicity we can just set them equal
to each other.

We treat δH in a Brillouin-Wigner perturbation expansion which “in-
tegrates out”4 excitations and leaves us with an effective Hamiltonian

4The commonly used phrase “inte-
grate out” is from field theory language
where removal of degrees of freedom is
achieved by doing functional integrals.

within the previously degenerate ground state space. (See appendix 27.3
for detailed derivation of this perturbation expansion). The new effec-
tive Hamiltonian within this previously degenerate ground state space
is given by

Heff
pn = E0 + 〈p|δH 1

1−GδH
|n〉 (27.3)

= E0 + 〈p|δH |n〉+ 〈p|δH GδH |n〉+ 〈p|δH GδH GδH |n〉+ . . .

where |p〉 and |n〉 are states in the ground state space of the unperturbed
model, and E0 is the unperturbed ground state energy. Here G is the
Green’s function

G(E) =
∑

n∈excited

|n〉〈n|
E − E0

n

and the sum is over (non-ground state) eigenstates |n〉 of the unper-
turbed model whose energies are E0

n. Note that one must plug in the
eigenenergies E of Heff into G(E) to find self-consistent solutions5.5This self-consistency requirement is

what makes Brillouin-Wigner per-
turbation theory more complicated
than the conventional Rayleigh-
Schroedinger perturbation theory
that most people learn in quantum
mechanics courses. However, the
Brillouin-Wigner approach is used
here because it allows us to derive an
effective Hamiltonian.

It is crucial to note that each factor of G has an energy denominator
on the order of the gap ∆ or larger, and each factor of δH has an energy
numerator on the order of the coupling constant J . Thus the expansion
shown in Eq. 27.3 is actually an expansion in the ratio J/∆.
Our claim is that, to very high order in this expansion, the effective

Hamiltonian within this ground state space will remain proportional to
the identity matrix. I.e., the ground state space does not split at all, as
we previously claimed. To see why this is, let us consider the lowest few
orders of the perturbation expansion. The first term is 〈p|δH |n〉. Here
|n〉 and |p〉 are states in the ground state of the unperturbed Hamil-
tonian. Each term in δH applies a σx, thus creating two vertex defect
excitations. Since δH |n〉 is an excited state and 〈p| is an unexcited state,
there is zero overlap between the two.
The next order term of the perturbation expansion is 〈p|δH GδH |n〉
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such that δH is applied twice. Two applications of δH can create two
pairs of quasiparticles in different places; or the first δH could create
one pair and the second δH could be applied to a neighboring spin to
pull the two quasiparticles further apart (as in the left of Fig. 25.10). In
either case the matrix element will still be zero since there would be no
overlap between the excited state δHGδH |n〉 and the unexcited state 〈p|.
However, there is a third process we could consider, where the first δH
acts on edge i to creates a pair of quasiparticles and then the second δH ,
acting on the same edge i, annihilates the quasiparticles. In this case we
return again to the ground state that we started in and we have a nonzero
overlap. (The value of the matrix element is J/(E − Eexcited) ∼ J/∆).
Crucially, it does not matter which of the four ground states |n〉 we
started in, we are always returned to the same ground state when the
quasiparticles are annihilated again. So the contribution to Heff

pn is just
δpnJ/(E − Eexcited), meaning this does not cause any splitting of the
ground state degeneracy.
The argument continues similarly at higher orders of perturbation

theory. Each application of δH creates, annihilates, or moves quasipar-
ticles (Considering the form of δH in Eq. 27.2, all quasiparticles are
vertex defects in this simplified argument). In order to get a nonzero
matrix element, the successive applications of the δH operators must
return the system to the ground state space at the last step — i.e., any
quasiparticles that are created must then be reannihilated. If all the
quasiparticles are reannihilated, the value of the matrix element is sim-
ply J for each application of δH with the Green’s functions contributing
energy denominators corresponding to the energies of the (necessarily)
excited intermediate states. When all of the quasiparticles are reanni-
hilated at the last step, the system returns to exactly the same ground
state it started from unless a quasiparticle has gone all the way around
the cycle of the torus, a case we will address in a moment.
If we assume that no quasiparticles have gone all the way around the

cycle of the torus then Heff must be proportional to the identity. Each
ground state returns to the same ground state, and the matrix elements
are independent of which ground state you started in. In this case the
ground state degeneracy does not split. However, if a quasiparticle does
go around a cycle of the torus (as in Fig. 25.11) then the final ground
state is different from the initial ground state, meaning that there is an
off-diagonal contribution to Heff (compare Eq. 25.14), and Heff is no
longer proportional to the identity matrix. Diagonalization of Heff then
gives a splitting of the previously degenerate ground state.
Crucially, for a torus whose (smallest) cycle length is L, it requires

at least L applications of δH to move a quasiparticle around the cycle.
This means that only at Lth order in perturbation theory will we find
off-diagonal terms in the effective Hamiltonian Heff . Since each δH is
of size J and each order in perturbation theory comes with a Green’s
function G with energy denominator on order of the gap ∆, then the size
of these off-diagonal terms is given by ∼ (J/∆)L which is exponentially
small in the size of the system, assuming J is smaller than order ∆. Thus
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the ground state degeneracy only splits an exponentially small amount,
with the splitting going to zero as the size of the system gets large6.
The argument is quite similar for other possible forms of δH . For

example, let us consider the perturbation

δH = J
∑

i

σ(i)
z (27.4)

Very similarly here each application of δH creates, annihilates, or moves
a quasiparticle; only this time the quasiparticles are plaquette defects.
Again, as long as no quasiparticles are moved around a cycle of the
torus, the resulting contributions toHeff are proportional to the identity.
However, if a plaquette quasiparticle is moved around a cycle (as in
Fig. 25.15) then there will be a contribution to Heff which is different for
the different ground state sectors (compare Eq. 25.16) thus breaking the
ground state degeneracy. As with the argument for the vertex defects,
the splitting of the ground state degeneracy only occurs at order L in
perturbation theory (with L the length of the cycle of the torus) and is
thus exponentially small in the size of the system.6

It is clear that this general argument is not specific to the particular
form of δH we have chosen. In order to have such an exponentially
protected ground state degeneracy, δH need only be local1, i.e., it can
be any sum of terms, each of which operates on a finite set of spins near
each other. In particular, we need to have a situation where the number
of applications of δH which is required to cause a quasiparticle to go
around the cycle of the torus should scale with the linear size of the
system.
It is important to realize that in the presence of the perturbation

Hamiltonian, the ground states have virtual excitations mixed into them.
(Sometimes one says that the ground state is “dressed” with virtual
excitations). If one were to measure the plaquette and vertex operators,
one would find some number of them are in the −1 state rather than
the +1 state7. However, if δH is small, the density of these virtual7For example, at first order in the per-

turbation series there is a contribution
GδH|ψ〉 to the wavefunction where |ψ〉
is in the code-space. For δH of the form
of Eq. 27.2 or 27.4 the operator δH cre-
ates exactly two defects when acting on
the code space. See Eq. 27.9 and par-
ticularly exercise 27.1.

excitations is low, and such excitations occur in local annihilatable pairs
which, in the language of error correcting codes, are easily correctable.
In the language of this Hamiltonian, these do not change the topological
properities of the phase of matter.

27.1.2 Quasiparticles

One can further ask what happens to the nature of the quasiparticles
when a perturbation is applied to the Hamiltonian. In absence of the

6One might worry about the convergence of the perturbation theory. (Rigorous perturbation arguments using a different
technique have been given by Bravyi et al. [2010]). Obviously if the perturbation is large enough that some excited states
become lower energy than the ground state, then the argument no longer makes sense. Indeed, it is generally assumed that the
perturbative expansion should hold until the point where the gap closes. However, one might also worry that the perturbative
expansion may fail to converge since, while each successive order in the expansion is reduced by (J/∆), there are also many
many more terms to consider in each higher order of perturbation theory. At least for small enough J/∆ (but not requiring
infinitessimly small J/∆) this issue does not cause trouble as discussed in exercise 27.1.
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perturbation, the quasiparticles have well-defined topological properities
— in particular they have nontrivial braiding statistics (which we worked
out for the toric code in chapter 26). We claim that, so long as we are
considering physics at long length scales, these topological properties
will remain unchanged under small perturbations.

Rough Idea

The general strategy is again to perform a perturbation expansion. We
will find that in the presence of the perturbation, the quasiparticles will
develop a surrounding cloud of virtual excitations8 (this is often called 8As mentioned at the end of the

last section, the ground state becomes
“dressed” with virtual excitations too!

a “dressing”). The quasiparticles are then no longer point particles,
but rather develop a length scale which becomes longer and longer as
the perturbation is increased. However, the braiding properties of the
quasiparticles will remain unchanged, so long as the particles remain far
enough apart that their dressing clouds do not intersect.

In More Detail

For simplicity let us focus on the perturbing Hamiltonian Eq. 27.2 which
only makes vertex defects. If the perturbing Hamiltonian is small, we
will mix into the ground state a low density of virtual excitations, most
of which will simply be two vertex defects separated by a single edge
(See exercise 27.1).
The perturbation we have chosen (Eq. 27.2) commutes with the

plaquette operators Pβ , so that the plaquette excitations can still be
described as simply a plaquette where Pβ = −1. I.e., given any eigen-
state of the system (with or without the perturbation Eq. 27.2) one may
obtain another eigenstate by applying σz to an edge which then flips the
eigenvalue of Pβ on the neighboring plaquettes. The lowest energy con-
figuration (as in the unperturbed toric code) is when all of the plaquettes
have eigenstate Pβ = +1 and we consider Pβ = −1 to be a plaquette
excitation.

Fig. 27.1 When the toric code is
weakly perturbed, there will be a low
density of pairs of defects mixed into
the ground state. However, the quasi-
particles that are separated by long dis-
tances can still be clearly identified. In
this picture we are considering only ver-
tex defects corresponding to a pertur-
bation of the form of Eq. 27.2.

Let us now start in the perturbed ground state and add a pair of pla-
quette excitations. We can create these particles and move them around
by applying σz to edges as in Fig. 25.14. As we move the plaquette exci-
tations through the system, they will cross through some of the virtually
excited red edges — i.e., in only some terms of the superposition that
make up the wavefunction does the plaquette defect cross through red
edges. These terms of the wavefunction incur a minus sign due to the
plaquette defect particle motion. We can think of these signs as being
the result of the plaquette defect swimming through the soup of pairs of
virtual vertex defect particles.
Now suppose we have added a pair of vertex quasiparticles that have

been pulled far apart from each other9. If we measure every vertex, we

9When we add a perturbing Hamilto-
nian like Eq. 27.2 we can give the quasi-
particles dynamics, allowing them to
move from their initial positions. While
there is nothing in principle wrong with
this, it does make it harder to study the
quasiparticles if they keep moving. To
avoid this problem we can imagine a
“pinning potential” to trap the quasi-
particles and prevent them from mov-
ing from whatever position we put them
at (For example, we can lower the pref-
actor of Vα in the Hamiltonian Eq. 26.1
only at one vertex which makes it ener-
getically favorable for the vertex defects
to sit at that position).

would obtain a picture like Fig. 27.1. Here the isolated quasiparticles
that are not part of a local pair can still be clearly identified. They
are connected together by a long red string. We should remember, as
discussed in section 25.4.1, that the red string is not actually measurable
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and its actual position is unknown (or we can say the position of the red
string fluctuates) — only the endpoints are measurable. Note that the
position of the endpoints may also fluctuate due to virtual excitation
pairs that may appear at the end position to extend or shorten the long
red string. This makes the quasiparticle at the end of the string look
like a cloud of finite size rather than a point particle.
Now let us repeat the experiments of creating and moving plaque-

tte defects, but having first introduced the two additional quasiparticles
separated by a long distance as in Fig. 27.1. Now as we move the pla-
quette defect, the wavefunction again picks up phases associated with
swimming through the thick soup of virtual excitations. However, now,
if it crosses over the long red line as well, this will then create a −1
braiding phase. Thus, the phase of braiding the plaquette defect around
the vertex defect quasiparticle is independent of the fact that there are
lots of pairs of virtual vertex defect particles.
We should be cautious, however, if we pass the plaquette defect close

to the end of the long red string — i.e., close to the position of the
(not-virtual) vertex defect quasiparticle. Because of the fluctuations of
the position of the quasiparticle, it may not be possible to determine if
the plaquette defect has gone around the vertex defect or not.
We could just as well have chosen the perturbation Eq. 27.4 which

would make virtual plaquette defect excitations, fluctuates the position
of the plaquette defect particle, but leave the vertex defect excitations
unchanged. The argument would be almost exactly the same. Again we
find a braiding phase of −1.
Treating the case where the perturbation creates both vertex and pla-

quette excitations is a bit harder to do rigorously, and some different
techniques become useful which we will not discuss here. However, gen-
erally the same principles apply: the quasiparticles develop some finite
size (which grows larger for larger perturbation), but as long as the
quasiparticles are braided at distances much larger than this size, the
braiding phases are unchanged by the perturbation.

27.2 Topologically Ordered Matter

27.2.1 Importance of Rigidity

The fact that the quasiparticle statistics and ground state degeneracy
are unchanged when the Hamiltonian is modified a small bit should not
be surprising to us given the ideas of rigidity we have run into in section
9.3 and 13.3: It is not possible to perturb the properties of a TQFT
a small amount and maintain a consistent TQFT. As we perturb the
Hamiltonian with any local operators10, to have any change in the long

10Perturbing the Hamiltonian with
nonlocal operators can be more compli-
cated. While the system may maintain
its topological properties under some
such perturbations, it is also possible
that even very small nonlocal operators
destroy some of the topological proper-
ties.

length scale properties of the TQFT that results, the system needs to go
through a phase transition11 In other words, the topological properties

11Note that there is a detailed discus-
sion of continuous phase transitions be-
tween different TQFTs given in chapter
23. However, it also possible that one
has a transition between a TQFT and
some completely different phase of mat-
ter which may not be topological. are a property of the entire phase of matter.
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27.2.2 The Notion of Topological Order

The type of protection from small perturbations that we have just dis-
covered, particularly in the discussion of section 27.1.1, is the basis for a
very useful definition of topological order. Let us assume we have mul-
tiple degenerate ground states on a surface with nonzero genus (i.e., a a
torus, two-handled torus, etc) which we call |ψi〉 with i = 1, . . . ,M with
M > 1 the ground state degeneracy. We often define topological order
to be the property that

〈ψi|Ô|ψj〉 = CÔ δij (27.5)

where Ô is any local operator and where CÔ is a constant depending

on the particular local operator Ô we are considering. Finite size cor-
rections to this result, if any, must be exponentially small in the in the
size of the system. In other words, the multiple ground states look just
like each other locally, but are mutually orthogonal. Note that since any
perturbation we add to the Hamiltonian is assumed local, this condi-
tion guarantees that the ground state degeneracy remains robust under
perturbations.
This definition of topological order is effectively the same as saying

that the system is described by a TQFT. While a TQFT must have
the property Eq. 27.5 it is not immediately obvious that having this
property is enough to conclude that we have a TQFT. However, there
are no systems known with this property that are not essentially TQFTs.

27.2.3 Defining a Topological Phase of Matter

The classic defintion of a phase of matter is a region of thermodynamic
parameter space where certain (or even most) physical properties of a
system are robustly unchanged. For example, water is one phase of
matter (robustly characterized as being liquid over a large range of tem-
perature and pressure, whereas another phase of matter of the same
system is ice, which is robustly characterized as being solid12. 12The example of water/ice is actually

not a particularly good example for our
purposes. All of the physics discussed
in this book is zero temperature —
phase transitions can occur as a func-
tion of some tuning parameter in the
Hamiltonian. Such zero temperature
phase transitions are known as quan-

tum phase transitions. A nice example
of a quantum phase transition is th e
zero temperature phase transition be-
tween solid Helium and liquid Helium
as a function of pressure.

For our consideration of topological quantum systems, we would like
to ask how we should best characterize different possible phases of our
systems. One obvious possibility is to characterize each topologically or-
dered phase of matter in terms of its TQFT in the long length scale limit.
Recall that the perturbed toric code only has the the same topological
properties as the unperturbed toric code (same ground state degener-
acy, same quasiparticle statistics) if we look at long length scales (large
system, excitations far apart). Indeed, characterization in terms of the
long length scale TQFT is one good way to define a topological phase
of matter.
However, there is also a more abstract (and topological!) way to

define a phase of matter, which can be invoked much more generally —
even in cases where we do not have a nontrivial TQFT. Here we use as
inspiration the perturbation theory argument in the prior section and
we note that this argument only fails when the gap to make excitation
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becomes zero. Thus we make the following definition:

Definition of a Topological Phase of Matter: Two (zero tem-
perature) gapped states of matter are in the same topological phase of
matter if and only if you can continuously deform the Hamiltonian
to get from one state to the other without closing the excitation gap.

This sort of definition can obviously be used much more generally to
distinguish different phases of matter. Further this definition fits with
our intuition about topology:

Two objects are topologically equivalent if and only if you can con-
tinuously deform one to the other.

27.3 Appendix: Brillouin-Wigner Perturbation
Theory

Here we will discuss a slight variant of Brillouin-Wigner perturbation
theory designed for the case of interest where we have a degenerate
ground state and a gap to excitations ∆.
Here we assume a Hamiltonian H = H0 + δH . The orthonormal

eigenstates of H0 are |n〉 with energies En and the eigenstates of H we
call |ñ〉 with energies Eñ. The degenerate ground state space of H0 we
call S (of some dimension d) and all other eigenstates of H0 are in the
space S̄. The energy of the ground state space of H0 is E0.
Our strategy will be to “integrate out” the excited states leaving our-

selves with an effective Hamiltonian within the ground state space S.
Projectors onto the unperturbed ground state space and unperturbed

excited state space are

P =
∑

n∈S
|n〉〈n| , Q = 1− P =

∑

n∈S̄
|n〉〈n|

As we turn on the perturbation, the d orthogonal states in the space
S will generally split in energy (although for our TQFT we expect this
splitting to be exponentially small if δH is local). Our approach re-
mains valid for perturbation strengths smaller than the point where the
splitting is on the order of the gap ∆.
Let us start with a d-dimensional basis of perturbed wavefunctions

|m̃〉 with energies Em̃ in the perturbed ground state space S. Let us
project these states into the original ground state space

P |m̃u〉 = |ψm̃〉 (27.6)

=
∑

n∈S
Cnm̃|n〉 (27.7)

We have marked the state |m̃〉 with a superscript u because we will
work with an unnormalized state on the left so that |ψm̃〉 is normalized
to unity 〈ψm̃|ψm̃〉 =∑n∈S |Cnm̃|2 = 1.
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We write the Schroedinger equation for the perturbed state as (H0 +
δH)|m̃u〉 = Em̃|m̃u〉 as

(Em̃ −H0)|m̃u〉 = δH |m̃u〉 (27.8)

Applying Q to the left and dividing through by Em̃ −H0 we obtain

Q|m̃u〉 = GδH |m̃u〉

where G is the Green’s function

G =
∑

n∈S̄

|n〉〈n|
Em̃ − En

Note that this is nonsingular as long as the energy Em̃ of the states that
were in the ground state space do not come close to the energies of the
unperturbed excited states En.
We then write

|m̃u〉 = P |m̃u〉+Q|m̃u〉 = |ψm̃〉+GδH |m̃u〉

which we can rewrite as

(1−GδH)|m̃u〉 = |ψm̃〉

or

|m̃u〉 =
1

1−GδH
|ψm̃〉 (27.9)

= |ψm̃〉+GδH |ψm̃〉+GδH GδH |ψm̃〉+ . . .

Note in particular that only the first term in the series is within the
space S, and all other terms are entirely outside of this space.
To find the energy of the state |m̃u〉 we apply an arbitrary state 〈p|

within the space S to the left of Eq. 27.8 to obtain

(Em̃ − E0)〈p|m̃u〉 = 〈p|δH |m̃u〉 = 〈p|δH 1

1−GδH
|ψm̃〉

(Em̃ − E0)Cpm̃ =
∑

n∈S
〈p|δH 1

1−GδH
|n〉Cnm̃

We recognize this as an eigenvalue/eigenvector problem within the space
S

(Em̃ − E0)Cpm̃ =
∑

n

Heff
pnCnm̃

where Heff is the effective Hermitian Hamiltonian within the low energy
subspace

Heff
pn = 〈p|δH 1

1−GδH
|n〉

Note that this is a bit more tricky than just a simple eigenvalue problem
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becauseG is implicitly dependent on Em̃. This self-consistency has a few
implications, including the fact that the eigenvectorsCnm̃ or equivalently
|ψm̃〉 are not orthogonal. It is the eigenvector |m̃〉 of the full Hamiltonian
which are orthogonal, and |ψm̃〉 are normalized projections of |m̃〉.

Further Reading

Mention Wen being the creator of the definition of topological order

Exercises

Exercise 27.1 Convergence of Perturbation Expansion
Considering a large toric code system with N edges, with the Hamiltonian

Eq. 27.1 and a simple perturbation Eq. 27.2.
(a) If all the vertices are simultaneously measured, show that, to second

order in perturbation theory, the probability of finding no defects is

P0ex =
1

1 + (N/4)[J/∆)]2

with ∆ = ∆v being the energy of a vertex defect. Show that the probabily
of exactly one edge being flipped (i.e., finding two vertex defects, separated
by one edge) is 1− P0ex. Show that to this order in perturbation theory the
probability that a given edge is flipped is

pedge,ex =
1

4
(J/∆)2

(b) Assume that the probability of a particular edge being flipped (meaning
that σx has acted on that edge) is small. In this case we can ignore the
possibility of a defect being created and then moved by one step as in the left
of Fig. 25.10. I.e., we are assuming that all appications of σx are on isolated
edges far from other defects. We can then think of the system as being N
independent uncoupled edges each of which is a two level systems. Show that
the probabity of a given edge being flipped is exactly

pedge,ex =
2 + (J/∆)2 − 2

√

1 + (J/∆)2

2 + 2(J/∆)2 − 2
√

1 + (J/∆)2
∼ 1

4
(J/∆)2 + . . .

Hint: think about a two level system!
This approximation corresponds to resumming a subset of the terms in the

perturbation expansion (out to infinite order) corresponding to isolated pairs
of vertex defects. At least for small J/∆ the neglect of other terms is justified
by the low density of defects.
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Medium Material

In section 25.5 we pointed out that we can build the toric code on any
lattice (see also Fig. 28.1). Indeed, in many respects it is easiest to
dispense with the lattice altogether. This simplifies a lot of the thinking
and allows us to generalize the model to describe more complex TQFTs
which we will do in chapter *** - ***.
The basic idea here is that the toric code can be viewed as simply a gas

of fluctuating loops or strings – without need to tie it to the underlying
lattice. The rules that describe this loop gas are planar diagrammatic
rules — the same kind of diagrammatic rules we have been using all
along! If we want to put the model back on a lattice at the end of the
day, we can do this, but in fact many of the manipulations are in fact
simpler without the burden of the lattice.
Before making the transition to the continuum, it is useful to first

work with a trivalent lattice where only three edges meet at a vertex.
For example, we could take a honeycomb as shown in the top Fig. 28.1.
This eliminates situations where four lines intersect at a corners as shown
in the bottom of Fig. 28.1. (We need not work with a a regular lattice,
see section 25.5, but it is convenient for simplicity.) The rule that all
vertices have an even number of blue edges coming into them (Rule
1 from section ??) now means that the allowed configurations in the
toric code ground state are nonintersecting loops as compared to the
intersecting loops that are allowed, for example, on a square lattice.

Fig. 28.1 The toric code loop gas can
be constructed on any lattice. It is use-
ful to choose a lattice where only three
edges meet at a vertex, such as the hon-
eycomb shown on the top. This elimi-
nates the possibility of four lines inter-
secting at a single corner as shown with
the square lattice as shown on the bot-
tom.

28.1 Toric Code as a Loop Gas

We start by abstracting the toric code to simply a gas of fluctuating
non-intersecting loops — no longer paying attention to a lattice. An
example of a loop gas configuration is shown in Fig. 28.2

Fig. 28.2 A loop gas in two dimen-
sions. Note the relationship to our loop
gas diagrams discussed in section 18.1.

We can write the toric code wavefunction (See Eq. 25.10) in the form
of

|ψ〉 ∼
∑

all loop configs that can be ob-
tained from a reference loop con-
fig via allowed moves

|loop config〉 (28.1)

where the allowed moves are inspired by the moves we can make on a
lattice. We list these allowed moves in Fig. 28.3.
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• Move 1: “Isotopy”. Meaning any smooth deformation of lines.

On the lattice:
× ⇔ ×

Off the lattice: ⇔

• Move 2: Adding and Removing Contractable Loops.

On the lattice:
× ⇔ ×

Off the lattice: ⇔
• Move 3: “Surgery”. Meaning reconnection of loops.

On the lattice: × ⇔ ×

Off the lattice: ⇔

Fig. 28.3 The moves we can make by flipping over a plaquette on the lattice, and
their interpretation in the continuum off the lattice. In the diagrams on the lattice,
each move is achieved by flipping over the plaquette marked with ×.
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The allowed moves off the lattice remind us of the diagrammatic
“skein”-like rules we have been working with, starting in chapter 2! Here
we are considering planar diagrams only (no over- or under-crossings, as
in chapter 12) and the rules can be summarized as

= 1 (28.2)

= (28.3)

where we are assuming isotopy invariant diagrams (i.e., all smooth defor-
mations of diagrams are allowed). In fact these diagrammatic rules are
exactly the d = +1 version of the Z2 fusion rule planar diagram algebra
discussed in section 18.1.1. As discussed there, the value of every valid
loop diagram is unity, and this corresponds to the fact that all wave-
functions in Eq. 28.1 are added together with the same +1 coefficient.
We should note that in the definition of the wavefunction Eq. 28.1,

we have not written a normalization constant as we did in Eq. 25.10.
This is because in a continuum model it is hard to be precise about
how many different diagrams one can write if one can deform a diagram
infinitessimily to make a new diagram. One way to understand this is to
accept that, while we draw a continuum diagram, we really mean that
the diagrams should be understood to be on a lattice (which we don’t
draw).
Another, perhaps better, way to interpret the sum in Eq. 28.1 is to

think of all the terms that can be converted into each other via the three
allowed moves to be an equivalence class of diagrams, and we never speak
of the number of different diagrams in this class.
In the language of equivalence classes of diagrams there are exactly

four equivalence class of (ground state) wavefunctions on a torus – corre-
sponding to the evenness or oddness of the number of loops going around
each cycle. Representative (or reference state) loop configurations are
shown in Fig. 28.4. These correspond to the wavefunctions described in
Eq. 25.11. Note that the parity of the number of loops going around a
given cycle is not changed by any of the moves in Fig. 28.3.

Fig. 28.4 Four representative (or reference state) loop diagrams corresponding to
the four degenerate ground states of the toric code on a torus. Each figure represents a
torus with the top and bottom edges identified and the left and right edges identified.
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28.1.1 Preview of Coming Attractions:
Generalizations of the Toric Code

We have thus found a relation between the toric code, and the planar
diagrammatic algebra that we spent so much time developing. In chapter
***-*** we will take the natural next step and, instead of using the
simple d = +1 version of the Z2 planar diagram algebra, we will use more
complicated diagram algebras. We will consider models where each edge
can be labeled, not just with two possibilities (colored or not colored) as
in the toric code, but rather with many different quantum numbers. We
will then consider planar diagram algebras described by any consistent
solution of the pentagon equation. Each diagram we draw in the plane
can then be evaluated and turned into a number W (diagram), and we
can then write ground state wavefunctions (or we can interpret them as
error correcting codes!) in the form

|ψ〉 ∼
∑

all diagrams that can be
obtained from a reference
diagram via allowed moves

W (diagram) |diagram〉 (28.4)

Using this approach we will be able to generate a very wide range of
topological phases of matter.

28.2 The Tube Algebra and Quasiparticle
Excitations

We would now like to study the properties of the quasiparticles that
occur in the toric code, but within the language of a loop gas without
reference to an underlying lattice. While we know what the answers are
here (we have classified all of the quasiparticles in chapter 26!) there is
quite a lot to be learned by trying to develop a general technique which
will work for other continuum diagrammatic models as well.

28.2.1 Operators on the Annulus

We would like to describe the quantum number of some particular region
of our system — i.e., determine the net fusion product of all of the quasi-
particles in the region. By our general locality principles (section 8.2 for
example), we should be able to determine the total quantum number
of a region only by examining a loop around that region1. As such we

1For example, if we measure only single
blue line emanating from the enclosed
region, we know that somewhere in the
enclosed region there is an end of the
blue line, hence a quasiparticle defect
of some sort.

will focus on an annulus surrounding the region of interest as shown in
Fig. 28.5. We assume that there are no quasiparticles in the annular
region (grey region), so that the annulus is in one of its possible ground
states. However, we allow for the possibility that there are quasiparticles
in the center of the annulus (inner white region of Fig. 28.5).

describes

total qp

fusion channel

in here

S
ta
te

in
th is annu

lu
s

Fig. 28.5 States of the annulus (grey
region) can determine the total fu-
sion channel of any quasiparticles sur-
rounded by the annulus (white region).

In Fig. 28.6 we show three different topologically equivalent represen-
tations of the annulus. The one on the right is a cylinder, or tube, which
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will give the name “tube algebra” to the algebra of states we develop
for the region of this annulus.

= =

Fig. 28.6 Three different representa-
tions of (things topologically equivalent
to) the annulus. In the middle figure
the two orange sides are identified with
each other.

As with our discussion of states on the torus, the possible states of
the annulus break up into sectors which cannot be converted into each
other by the three moves given in Fig. 28.3. As in that case, it will be
sufficient to describe one representative, or reference, configuration from
each equivalence class.
The four equivalence classes we consider we will notate as |n,m〉 with

n,m ∈ 0, 1. The meaning of this notation is that the diagram on the
annulus has n lines going from the inner edge of the annulus to the outer
edge, and has m lines going around the annulus. While it may appear
that we need to consider other possibilities (for example lines going
multiple times around the annulus), it will turn out that all diagrams
can be reduced to one of these four possibilities as we will see.
Strictly speaking to describe the states on the annulus we must first

describe the states on the boundary of the annulus (i.e, do any blue
lines intersect the boundary of the annulus, and if so, at which points?).
However, it turns out that we can simplify our lives by considering only
the simplest possible boundary conditions — the case where a single
quantum number (in this case either a blue line or no blue line) is emitted
from each boundary at one convenient fixed point2. Thus, in the toric

2Qualitatively we can think of this as
having grouped up all quantum num-
bers emitted from the boundary and
fused them into a single quantum num-
ber.

code case, we need only consider the cases where either a single blue
line, or no blue line, intersects each boundary3,4.

3Further, since there are no quasiparti-
cles in the (gray) annular region, the
parity of the number of blue lines is
conserved going from the inner bound-
ary to the outer boundary, so we can-
not have a case where the number of
blue lines intersecting the inner bound-
ary has a different parity from the num-
ber of blue lines intersecting the outer
boundary.

4It may seem that restricting our atten-
tion to cases with only a single quan-
tum number emitted from the edge at
one point is too drastic a simplification.
One (reasonably valid!) excuse we can
use is that if put our system back on a
lattice, our results should be indepen-
dent of the particular lattice structure,
so we can use an exceedingly simple lat-
tice. In particular, we can choose to
use a lattice which has only one edge
pointing into the inner boundary and
one edge pointing to the outer bound-
ary (I.e., we are using a minimal “skele-
ton” decomposition of the annulus). A
good (but not particularly easy) discus-
sion of this type of simplification issue,
along with a more rigourous argument,
is given by **** .

No Boundary Intersections

The first case to consider is the case where no lines intersect either
boundary. There are then two possible equivalence classes of states as
shown in Fig. 28.7. The first, we call |0, 0〉 meaning the empty state,
the second we call |0, 1〉, meaning there is a blue line going around the
annulus.

|0, 0〉 = ==

|0, 1〉 = ==

Fig. 28.7 The two equivalence classes of states on the annulus where no lines
intersect the boundary. The pictures on the left are the reference state. The picture
in the middle is the same reference state drawn on a square with the orange sides
identified. The picture on the right shows another state of the same equivalence class
that can be made into the reference state by application of the moves in Fig. 28.3.
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We might think about putting more than one loop around the cycle.
However, we can always apply the moves from Fig. 28.3 to reduce the
diagram to either zero loops or one loop around the cycle. An example
of this is shown in Fig. 28.8.

===

Fig. 28.8 Two loops around the annulus can be coverted to no loops by using the
moves in Fig. 28.3. In the first step a surgery move is used at the position of the
arrow. In the second step we have isotopy (smooth deformation). Finally in the last
step we have loop removal.

One Blue Line Intersecting Each Boundary

The only other case3 to consider is when one blue line intersects each
boundary. We will choose the intersections to be at the 6-o’clock di-
rection (south direction) of the boundary circles. There are again two
equivalence classes of diagrams, which are shown in Fig 28.9. The dia-
gram that has a single line going in the vertical direction in the square
representation of the annulus we call |1, 0〉, and the diagram which loops
around both directions we call |1, 1〉. In each figure, on the right we show
additional pictures in the same equivalence class, which can be reached
by using moves from Fig. 28.3. To see that the double-twist figure on
the far right of the first line, |1, 0〉, is the same as the figure on the far
left, one needs to perform surgery at the two points marked with the
arrow in the third picture on that line. Similarly to reach the figure on
the far right of the second line, |1, 1〉, one performs surgery at the arrow.

|1, 0〉 = = = =

|1, 1〉 = == =

Fig. 28.9 The two equivalence classes of states on the annulus where one blue line
intersects each boundary. The pictures on the left are the reference state. The picture
in the middle is the same reference state drawn on a square with the orange sides
identified. The pictures further right shows other states of the same equivalence class
that can be made into the reference state by application of the moves in Fig. 28.3.
The arrows indicate places where we make surgery moves.
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Despite the fact that |1, 0〉 and |1, 1〉 have blue lines intersecting the
boundary of the annulus, this does not imply a quasiparticle at the
boundary. If we revert back to the lattice, we still require that all vertices
are in the low energy state with an even number blue edges coming into
them, all the way up to the boundary.

28.2.2 Composition of States

We can define a type of multiplication, or composition, of states on
the annulus which corresponds to placing one annulus inside of another,
and we denote this multiplication with a ◦. (Here we are implicitly
using the fact that we can stretch the annulus since we are considering
a topological theory!). For example, if we write |1, 1〉 ◦ |1, 0〉 we mean
we should put the |1, 1〉 diagram on the inside annulus and the |1, 0〉
on the outside annulus, as shown in Fig. 28.10, and we conclude that
|1, 1〉 ◦ |1, 0〉 = |1, 1〉.

◦ = =

Fig. 28.10 Composition of annulus states. (|1, 0〉 is put on the outside and |1, 1〉 is
put on the inside. The result shows (|1, 1〉 ◦ |1, 0〉 = |1, 1〉.

It is important to note that to multiply states, they must match on
their boundaries5. Both |0, 0〉 and |0, 1〉 (Fig. 28.7) have no blue lines

5Strictly speaking we need to sum over
all possible boundary conditions that
can ocur at the boundaries that have
been joined (matching the boundary
condition from the inner to the outer
annulus). However, the excuse used in
note 4 above allows us to ignore this
complication and just work with the
one reference configuration.

intersecting the boundaries, so they can be composed with themselves
or with each other. On the other hand both |1, 0〉 and |1, 1〉 (Fig. 28.9)
have one blue line intersecting each boundary, so they can be composed
with themselves or with each other. However, one cannot compose |0, 0〉
or |0, 1〉 with |1, 0〉 or |1, 1〉.
We can build up a multiplication table for this type of composition,

which we write out in Table 28.1. We mention in particular the two most
nontrivial results. First, |0, 1〉 ◦ |0, 1〉 = |0, 0〉. This is just the statement
that two loops around the cycle can be annihilated to no loops as in
Fig. 28.8. The second, |1, 1〉 ◦ |1, 1〉 = |1, 0〉 is a bit more complicated.
We can see this in several ways: if we compose the counterclockwise
directed wrapping shown the furthest left in the lower line of Fig. 28.9
with the clockwise directed wrapping furthest right we obviously get a
result with no net wrapping which is |1, 0〉. Another way to see this is to
compose two wrappings in the same direction, which will give a diagram
like the far right of the top line of Fig.28.9 which is also |1, 0〉.

◦ |0, 0〉 |0, 1〉 |1, 0〉 |1, 1〉
|0, 0〉 |0, 0〉 |0, 1〉 • •
|0, 1〉 |0, 1〉 |0, 0〉 • •
|1, 0〉 • • |1, 0〉 |1, 1〉
|1, 1〉 • • |1, 1〉 |1, 0〉

Table 28.1 The multiplication table
for composing annuli for the toric code.
The • indicates a composition which
is not allowed due to non-matching
boundary conditions. This table is
summarized by Eq. 28.5.

A way to summarize the multiplication table is via the formula6

6The Kronecker delta assures that we
only compose states that are compat-
able on their boundaries.
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|n,m〉 ◦ |n′, p〉 = δn,n′ |n, (m+ p)mod2〉 (28.5)

It is worth quickly mentioning how compositions look if we work with
rectangular diagrams or tube diagrams. Both such diagrams are simply
stacked on top of each other to create new diagrams. An example of
composing rectangular diagrams and composing tube diagrams is given
in Fig. 28.11.

=◦ =

◦ = =

Fig. 28.11 The composition |1, 1〉 ◦ |1, 0〉 = |1, 1〉, as in Fig. 28.10 but shown using
rectangle notation (top) where the orange edges are identified, or using tube notation
(bottom).

The algebra associated with this type of composition of diagrams is
known as Ocneanu’s Tube Algebra, and although the multiplication is
fairly trivial in the case of the toric code that we are considering here,
it generalizes to much more complex algebras as we will see later in
chapters **.

28.2.3 Quasiparticle Projectors

Our intent is to develop a way to determine the total quantum number
of the quasiparticles enclosed in region. The way we now do this is
to use our tube algebra to form orthogonal projectors Oa — where we
define one projector corresponding to each quasiparticle type a. The
physical interpretation is the following. We imagine starting with a disk
which contains some some overall quasiparticles whose total quantum
number is a. If we surround this region with our annular projector Ob,
we want the projector to return zero if b 6= a, and if b = a then it
returns the same wavefunction on a slightly larger disk — i.e., leaves
the system topologically unchanged (same total quantum number, and
still topologically a disc). I.e., Oa has a value of 1 or 0 depending on
whether we are surrounding a region with quantum number a or not7.

7Here we are defining operators which
add a small annulus outside of a disk.
I.e., they take as an input a wavefunc-
tion on a disk and give an output a
wavefunction on a slightly larger disk.
It is sometimes useful to define a dif-
ferent operators which act on an annu-
lus in (perhaps the bulk of) an exist-
ing system not near any edge, without
adding any new region. We would want
such operators to project to a particu-
lar quasiparticle type inside the region.
I.e., the operator would give unity if it
detects a particular type of quasiparti-
cle inside the region and give zero oth-
erwise. We can imagine such operators
as being

∑
k |k〉〈k| where the sum over

state is only over states in a given topo-
logical class. We will not work with
such operators here because it simply
adds a bit more notational complexity. To define these projectors we want to find linear combinations of our
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annular states (n,m) such that

Oa ◦Ob = δabOa (28.6)

Recall, however, that the space of states we are considering on the
annulus breaks up into sectors with different boundary conditions, we
cannot even talk about multiplying states together with ◦ unless the
boundary conditions match (i.e, |n,m〉 can only multiply |a, b〉 if a = n).
For the case of the toric code, as discussed above in section 28.2.1,

there are two classes of boundary conditions, so we want to find a set of
orthogonal projectors within each boundary condition class. Given the
multiplication table 28.1 it is easy to construct these projectors. In the
class where no blue lines intersect the boundary we have8 8Note that if the kets |n,m〉 are nor-

malized in the usual way 〈n,m|a, b〉 =
δa,nδm,b then the Oa projectors are
also orthogonal as kets, but are not nor-
malized kets but satisfy Eq. 28.6 in-
stead.

OI =
1

2
( |0, 0〉+ |0, 1〉 ) = 1

2

(
+

)
(28.7)

Op =
1

2
( |0, 0〉 − |0, 1〉 ) = 1

2

(
−

)
(28.8)

and in the class where one blue line intersects the inner boundary and
one blue line intersects the outer boundary, we have

Ov =
1

2
( |1, 0〉+ |1, 1〉 ) = 1

2

(
+

)
(28.9)

Of =
1

2
( |1, 0〉 − |1, 1〉 ) = 1

2

(
−

)
(28.10)

It is easy enough to use the multiplication table 28.1 to check that these
satisfy Eq. 28.6.
Here, with a bit of foresight, we have labeled these projectors I, p, v,

and f corresponding to their particle types (identity, plaquette defect,
vertex defect, and fermion). Let us think a bit about how we make this
connection between projectors and particle types.
First, we realize that the vertex defect v and the f particle both involve

ends of blue strings (i.e., defects of the vertex term of the Hamiltonian)
so if one wraps an annulus around one of these particles, there will be
an (odd number) of blue strings going through the annulus. Thus the
v and f projectors should be made from the |1, 0〉 and |1, 1〉 states on
the annulus. Analogously, the ground state I and the plaquette p defect
involve no vertex defects and therefore should be made from the |0, 0〉
and |0, 1〉 states.
Let us start with the |0, 0〉 and |0, 1〉 states — those without blue

lines touching the boundary. If we think about a single plaquette, we
know from section 25.3 that the ground state is always a superposition of
flipped and unflipped plaquettes with a plus sign between the two pieces.
In fact, it is easy to argue (by considering groups of plaquettes) that the
ground state should be a superposition (with a plus sign) of flipped and
unflipped regions. Thus the positive superposition of |0, 0〉 (no loops)
and |0, 1〉 (one loop) must be a projector onto the ground state space —
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the space with no quasiparticles. This is what we called OI in Eq. 28.7.
In the language of our diagrammatic algebra (the d = +1 version of the
Z2 fusion rules from section 18.1.1), the operation of doing nothing to
the region plus the operation of putting a blue line around the region is
the same as putting a Ω̃-loop around the region (See section 17.5 and
Fig. 17.10. Here D =

√
2 since there are two particle types in Z2 fusion

rules: the trivial particle and the nontrivial particle.)
If we return to the lattice Hamiltonian Eq. 26.1, we could also make

the plaquette term of the Hamiltonian look like a Ω̃-loop in the following
way. Let us add a constant to the the plaquette term in the Hamiltonian
Eq. 26.1 (which doesnt’ change the ground state, just the ground state
energy)

Pβ → 1 + Pβ

and then we realize that this combination is also just an Ω̃-loop around
a plaquette:

1 + Pβ = unflipped + flipped ∼ Ω̃-loop ∼ OI

The principle that the ground state projector, and similarly the plaque-
tte term in the Hamiltonian, is just an Ω̃-loop is something that will
hold for all of the generalized loop gas models we will meet in chapters
***-*** as well.
Once we have determined the projector OI the other orthogonal pro-

jector within the space of |0, 0〉 and |0, 1〉 is fully defined and is given
by Eq. 28.8. However the plaquette defect projector Op can also be
understood in a way similar to the argument for OI . Recall from sec-
tion 25.4.2 that the defect on a plaquette is the difference of flipped and
unflipped. By grouping together plaquettes, it is easy to see that the
annular projector around a region with a magnetic quasiparticle must
be a superposition of |0, 0〉 (no loops) and |0, 1〉 (one loop) with a minus
sign.
We now turn to the states with blue lines touching the boundaries

—i.e., the |1, 0〉 and |1, 1〉 states. It may look a bit unexpected that
the vertex defect projector Ov needs to be a superposition of the |1, 0〉
diagram and the |1, 1〉 diagram as shown in Eq. 28.9. However, we
should think of the quasiparticle that we call the vertex defect, not only
being the vertex defect, but rather a vertex defect with the absence of
a plaquette defect, whereas the f particle is the vertex defect in the
presence of a plaquette defect. The superposition of the two diagrams
|1, 0〉 and |1, 1〉 is arranged to assure that the Ov particle does not include
a plaquette defect whereas the Of particle does. To see how this works,
note that the |1, 0〉 state can be created from the |0, 0〉 state (no blue
lines) by flipping over a string of spins connecting the inner and outer
annulus without going around the cycle, i.e., by adding the one vertical
blue line. If we perform the same operation on the |0, 1〉 state, as shown
in Fig. 28.12, we obtain the |1, 1〉 state — a line that connects the two
annuli and also goes around the cycle. Thus the superposition Ov is
the same as the superposition OI with the one string added between
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annuli, whereas the superposition Of is the same as Op with the one
string added.

Fig. 28.12 The |1, 1〉 state can be
thought of as a combination of |1, 0〉
and |0, 1〉. Consider starting from an
annulus with no blue lines then apply-
ing a string of σx operators along the
two paths to make both a |1, 0〉 string
(vertical) and an |0, 1〉 string (around
the cycle). No crossings are actually al-
lowed in the loop gas, and depending on
how the two paths cross microscopically
one will obtain either the right or left
diagram of the lower line of Fig. 28.9,
which are equivalent anyway.

It is worth recalling that the d = +1 version Z2 planar diagram algebra
(the diagram algebra we are using here!) has two possible solutions to
the hexagon equation as discussed in section 18.1.1: boson and fermion
(neither solution is modular). It is not a coincidence that the particle
types we have found arising from this diagrammatic construction are
also bosons and fermions. We will see that this is a general principle:
when we build a model based on a planar diagrammatic algebra, the
particle types that arise must include all of the possible solutions to the
hexagon equation for that planar algebra.

Quasiparticle Basis for Torus States

It is worth noting that once we have our basis for quasiparticles enclosed
in an annulus, we can also glue the two boundaries of the annulus to
each other to form a closed torus, and we have a basis for the degenerate
ground state of the torus. This basis is a rather special basis since if
you cut the handle of the torus, the boundary that you reveal has the
quantum number of the given quasiparticle type. Recall that in the
discussion of section 7.3.1 we defined exactly this basis on the surface of
a torus by stating that a quasiparticle of a given type is running around
the torus handle.

28.3 Twists and T -matrix

With the tube algebra one can determine the twist factor θ for each
particle type. To do this, we imagine deforming the local environment
of the particle around in circle by 360 degrees as depicted in the top of
Fig. 28.13. This is equivalent to the twist operation shown in the lower
part of Fig. 28.13.

θ̂ =

=θ̂

Fig. 28.13 Deforming the environ-
ment of a particle (top) implements the
twist operation. This is equivalent to
the space-time diagram shown on the
bottom (See also chapter 15)

Twist deforming either the φ state or the h state leaves the state
unchanged, so we trivially have θ̂OI = OI and θ̂Op = Op implying
trivial twist factors for the I particle and the plaquette defect particle,
θI = θp = 1. I.e, these are both bosons, as we expected.
However, twist deforming |1, 0〉 and |1, 1〉 is nontrivial as shown in

Fig. 28.14. These diagrams tell us that θ̂|1, 0〉 = |1, 1〉 and θ̂|1, 1〉 = |1, 0〉.
Note that a general formula for the twist operator on the states (n,m)
is given by

θ̂|n,m〉 = |n, (n+m)mod 2 〉 (28.11)

Using Eq. 28.9 we obtain θ̂Ov = Ov confirming that θv = 1, i.e., the
vertex defect particle is a boson. Similarly using Eq. 28.10 we obtain
θ̂Of = −Of confirming that θf = −1, the f particle is a fermion. Note
that it is a nontrivial result that the particle projectors we have found are
eigenstates of the twist operator. It isn’t obvious that this should have
to be true, although we certainly suspected it should be true considering
our understanding of the structure of anyon theories!
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θ̂|1, 0〉 = θ̂ = = |1, 1〉

θ̂|1, 1〉 = θ̂ = = = |1, 0〉

Fig. 28.14 Twist deformations of the |1, 0〉 and |1, 1〉 states. The inner boundary
is rotated counterclockwise while the outer boundary is held fixed, analogous to
the deformation shown in Fig. 28.13. In the second line we have used the surgery
equivalence as shown in Fig. 28.9.

If we connect the inside of the annulus to the outside to form a torus,
as discussed at the end of section 28.2.3 we realize that the twist trans-
formation is exactly the T transformation9 discussed in section 17.3.29The fact that we obtain exactly T̃

from this geometric transform indicates
that there is no phase factor from
Eq. 17.15. This is a feature of all
TQFTs that can be obtained from loop
gases, or generalized loop gases: the
central charge c must be zero. An ar-
gument for this the Hamiltonian is time
reversal invariant whereas c goes to −c
under time reversal.

(see Fig. 17.6) or Dehn twist as discussed in section 7.4.

28.4 S-matrix

We can also derive the modular S matrix diagrammatically by exchang-
ing the two directions of the torus as discussed in section 17.3.2 and
7.3.1 (see Fig. 17.6).
Let us abuse notation a bit and denote by |0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉 the

four basis states obtained from the annular states |0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉
by connecting the inner boundary to the outer boundary to obtain a
torus. Exchanging the two directions on the torus (making an S trans-
form as in section 17.3.2) we have transform on basis states for our torus

S|0, 0〉 = S = = |0, 0〉 (28.12)

S|0, 1〉 = S = = |1, 0〉 (28.13)

S|1, 0〉 = S = = |1, 0〉 (28.14)

S|1, 1〉 = S = = = |1, 1〉 (28.15)

where the rectangles in the diagram are meant to have their opposite
edges idenfitied to give tori, and in the last equation we have used a
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surgery for the latter equality between diagrams. We can write this
tranformation as a matrix defined as (with n,m = 0, 1)

S|n,m〉 = |m,n〉 (28.16)

since the indices n and m refer to the two different directions, which are
switched by S.
We would like to change this basis into the quasiparticle basis obtained

by connecting the inner to outer boundary of the annulus for the four
quasiparticle projectors OI , Op, Ov, Of . Making this change of basis as
specified10 in Eqs. 28.7-28.10 then applying S then changing basis back 10Eqs. 28.7-28.10 now need 1/

√
2 out

front rather than 1/2 out front to
be normalized as wavefunctions rather
than the normalized projectors that we
have been using.

to the quasiparticle basis one obtains exactly the S matrix for the toric
code given in Eq. 26.5 (See exercise 28.1). This calculation is done in a
bit more detail and more generally in section 28.6.

28.5 Direct Calculation of Braiding and Fusion

A more direct calculation of the braiding properties of the quasiparticles,
the R-matrix, is possible by considering a more complex geometry, a disk
with two holes. With this geometry, we add strings attached to holes
and around holes as in Eqns. 28.7-28.10. To calculate braiding, we need
to drag one hole around the other. As an example here we will show
that exchanging two f particles gives a minus sign. Since each f is a
superposition of two terms (|1, 0〉 and |1, 1〉 as in Eq. 28.10), our system
with two f particles (one in each hole) is now a sum of four terms, as
shown in the top line of Fig. 28.15.

1
4 [ − − + ]

⇓Exchange

1
4 [ − − + ]

Fig. 28.15 Calculation that the phase accumulated from exchanging two f particles
is −1. The upper line represents two f quasiparticles, one in each hole (Compare
Eq. 28.10). The holes are exchanged, braiding the blue lines in the process. Using
surgery and loop addition/removal (the moves of Fig. 28.3) one can show the lower
line is precisely minus the top line showing an exchange phase of −1. For example,
performing surgery on the first picture in the second line at the location of the arrow
gives exactly the second picture on the top line, but missing the minus sign.

We then braid the holes around each other, stretching the blue lines in
the process as shown in the lower line of Fig. 28.15. The resulting picture
can then be related back to the top line of the figure using surgery and
loop addition/removal (the moves of Fig. 28.3. It is an easy exercise to
show that the lower line is exactly minus the upper line of the figure,
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thus showing that the phase obtained in exchanging two f particles is
−1. (See exercise 28.2.a)
Fusion relations can also be calculated graphically with our diagram-

matic rules by essentially merging together the two holes. This is just
another way of saying that we draw an imaginary circle around both
holes and treat this imaginary circle as a single, bigger, hole. An exam-
ple of this is shown in Fig. 28.16 where we show the fusion of a vertex
defect (left) with an f particle (right) giving a plaquette defect. The top
line of this figure is the four term superposition describing the vertex
defect and f particle (see Eq. 28.9 and 28.10). Going to the second line
we have used the rules (Fig. 28.3) of our diagrammatic algebra. We then
realize that we can write this second line as a plaquette projector Op
around “something” — which guarantees that the total quantum num-
ber inside the large hole in the third line is simply that of the plaquette
defect.

1
4 [ − + − ]

=1
4 [ − + − ]

=1
2 [ ]something − something

Fig. 28.16 Calculation that (vertex defect)×f = (plaquette defect). The upper line
represents a vertex defect (left) quasiparticle and an f (right) quasiparticle (Compare
Eq. 28.9 and 28.10). In the lower line the diagrammatic moves are used. The small
blue string at the bottom is pulled off the bottom of the picture and the remaining
diagram at the bottom is a plaquette projector Op around the inner region.

28.6 Generalization to ZN Toric Code (Briefly)

The diagrammatic arguments we have used all generalize very naturally
to the case of the ZN toric code discussed in sections 25.6 and 26.5.
Instead of having simple loop diagrams we now have a ZN fusion alge-
bra. Our diagrammatic algebra now requires us to draw arrows on lines
(for N > 2) and label each line with an integer which is interpreted
modulo N . Reversing an arrow on a line takes a label j to N − j as
shown in Fig. 28.17. The label 0 plays the role of the identity, and such
lines can be added or removed from the diagram freely as in our other
diagrammmatic algebras.

j = N − j

Fig. 28.17 Reversing an arrow in a
ZN fusion diagram takes the label j to
N−j with all labels interpreted modulo
N .

1

2
3

3

2
1

3

2

1
3

Fig. 28.18 A diagram with Z4 fu-
sion rules. Each vertex has Qα =
(entering) − (leaving) = 0mod 4.

Vertices must follow the rule that the Qα at each vertex, which is the
sum of label on incoming arrows minus the sum of labels on outgoing
arrows, must be zero modulo N . An example of such a diagram is such
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a diagram is shown in Fig. 28.18.
Analogous to the three allowed moves in Fig. 28.3 we are allowed three

moves in order to manipulate diagrams into equivalence classes. These
moves are shown in Fig. 28.19.

• Move 1: “Isotopy”. Meaning any smooth deformation of lines.

j ⇔ j

• Move 2: Adding and Removing Loops. A loop with any label
can be added or removed.

⇔
j

• Move 3: Reconnecting (trivial F ) move.

p

j + k + p

j

k

j + k ⇔
p

j + k + p

j

k

j + p

Fig. 28.19 This is the caption. Compare Fig. 28.3

The first move is similar to what we had in the case of the toric code.
The second move, that we can add or remove loops, is also similar to
the case of the toric code, except that the loops have arrows as well
as labels. The third move is “new” but should look familiar from our
discussion of F -moves. However, here the F -coefficient is simply unity
— and there is no sum over states on the right hand side (compare to
Fig. 16.3). This type of F -matrix (which is not a matrix but simply a
scalar) is what we called the trivial cocycle for the ZN fusion algebra in
sections 20.1.1 and 20.4.
We would now like to build basis states for our tube algebra analogous

to what we did for in section 28.2. Let us define the tube state |n,m〉 to
be the state with quantum number n going between the inner and outer
edge of the annulus, and quantum number m going counterclockwise
around the annulus, as shown in Fig. 28.20.
Composition of these basis states is performed by placing one annulus

state inside the other as in section 28.2.2. The multiplication law is the
natural generalization of Eq. 28.5

|n,m〉 ◦ |n′, p〉 = δn,n′ |n, (m+ p)modN〉 (28.17)

which we illustrate graphically in Fig. 28.21 (See exercise 28.4.a). We
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|n,m〉 =
m

n

n

n+m

=

n

n
mm

n+m

Fig. 28.20 Basis states for the tube algebra of the ZN toric code. The quanties
n, m, and n +m are interpreted mod N . In the far right the two orange sides are
identified.

n

n
mm ◦

n′

n′
pp =

n′

n′
pp

n

n
mm

= δn,n′

n

n

m+ p︸ ︷︷ ︸m+ p︸ ︷︷ ︸

Fig. 28.21 Graphical depiction of the composition rule Eq. 28.17. All of the indices
n, n′,m, p, (m + p) are interpreted mod N .

can then define N2 projectors

Okn =
1

N

N−1∑

p=0

e2πipk/N |n, p〉 (28.18)

which satisfy (See exercise 28.4.b)

Okn ◦Oqn′ = δn,n′ δk,q O
k
n (28.19)

as desired in Eq. 28.6. These orthogonal projectors describe the quasi-
particle types of the theory. We expect that the lower index, n, which
gives the total “charge” entering the annulus should match the Qα quan-
tum number of the vertex operator for the ZN toric code that we dis-
cussed in section 26.5, whereas the upper index k should describe the
e2πik/N eigenvalue of the Aβ plaquette operator. In other words, we are
describing the quasiparticle [n, k] from Eq. 26.8.

[n, k] ↔ Okn

We can apply the twist operator to the basis states to obtain the
analog of Eq. 28.11

θ̂|n,m〉 = |n, (n+m)modN 〉 (28.20)

which we show graphically in Fig. 28.22 (See exercise Eq. 28.4). This
is the same twist transformation as shown in section 28.3 but using the
rectangular representation of an annulus. See also Fig. 17.6.
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θ̂
n

n
mm =

n

n

m =
n

n

n+m︸ ︷︷ ︸n+m︸ ︷︷ ︸

Fig. 28.22 Graphical depiction of the composition rule Eq. 28.20. All of the indices
n,m, (n+m) are interpreted mod N

Applying the twist operator Eq. 28.20 to the quasiparticle projector
Okn in Eq. 28.18 we obtain

θ̂Okn =
1

N

∑

p

e2πipk/N θ̂|n, p〉 = 1

N

∑

p

e2πipk/N |n, (p+ n)modN〉

= e−2πink/N 1

N

∑

q

e2πikq/N |n, q〉 = e−2πink/NOkn

Giving us a twist factor

θ[n,k] = e−2πink/N

In agreement with Eq. 26.10.
Finally, let us evaluate the S-matrix. Again our strategy is to ex-

change the two directions of the torus as discussed in section 17.3.2 and
7.3.1 (see Fig. 17.6). First, we should connect the inner and outer edges
of the annulus in Fig. ?? to make a torus. By doing this we construct the
basis states on a torus |n,m〉 that correspond to |n,m〉 on the annulus.
The S matrix applied to our basis states simply rotates the directions
of the torus giving

S|n, p〉 = |p,−n〉 (28.21)

as shown graphically in Fig. 28.23.

S
n

n
pp =

n

n
p

p

=
p

p
−n−n

Fig. 28.23 The S operation rotates the torus. Note in the second step we use a
single F move then reverse the quantum number on n by reversing the arrow. All
indices n, p,−n are interpreted modulo N .

We then construct the quasiparticle superpositions on the torus cor-
responding to the projectors Eq. 28.18

| [n, k] 〉 = 1√
N

N−1∑

p=0

e2πipk/N |n, p〉 (28.22)
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Note the change in normalization of this wavefunction compared to the
projector normalization used in Eq. 28.18. This is to assure the or-
thonormality

〈 [n, k] | [n, l] 〉 = δk,l

The S-matrix is then given by

S[n′,k′],[n,k] = 〈[n′, k′] |S | [n, k]〉

=
1

N

N−1∑

p,p′=0

e2πi(pk−p
′k′)/N 〈n′, p′|S|n , p〉

=
1

N

N−1∑

p,p′=0

e2πi(pk−p
′k′)/N 〈n′, p′|p,−n〉

=
1

N
e2πi(n

′k+nk′)/N

which matches Eq. 26.11.

Exercises

Exercise 28.1 Toric Code S-matrix
Derive the S-matrix of the toric code (Eq. 26.5) by using the method de-

scribed in section 28.411 (If you need help with this calculation look at the11Note that in this chapter the quasi-
particles are labeled as I, v, p, f whereas
in chapter 26 we label them as
I, e,m, f . It does not matter whether
we assign v = e and p = m or v = m
and p = e. The S-matrix comes out the
same either way.

more general calculation given in section 28.6.)

Exercise 28.2 Braiding Quasiparticles in Toric Code Loop Gas
(a) Use the technique of section 28.5 to show that exchanging two f ’s gives

a minus sign (i.e., confirm the details of the argument given there).
(b) Use similar techniques to show that exchanging two e particles gives no

sign and exhanging two m particles gives no sign.
(c) Show that braiding an e particle or an f particle all the way around an

m particle give a minus sign but braiding around the identity gives no sign.
(d) Show that braiding e all the way around f gives a minus sign.

Exercise 28.3 Fusing Quasiparticles in Toric Code Loop Gas
Use the technique of section 28.5 to deduce the full fusion table for the toric

code.

Exercise 28.4 ZN Tube Algebra
(a) Derive the final equality in Fig. 28.21 from the three allowed moves

in Fig. 28.19. You will also need to add and remove lines labeled with the
identity (which is 0 here).

(b) Confirm Eq. 28.19.
(c) Derive the final equality in Fig. 28.22.

Exercise 28.5 ZN fusion
Derive the fusion relations for the ZN toric code from the S-matrix by using

the Verlinde formula.
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Kitaev Quantum Double Model 29
Medium Material

We have already seen the generalization of the conventional toric code
to the more interesting ZN toric code. In the next few chapters we will
consider models that generalize the toric code further and in other ways.
These generalizations all share many key properties: In short, we start
with some planar diagram algebra and use that to build a Hamiltonian,
which in turn produces a TQFT as its ground state known as the quan-
tum double or Drinfel’d double of the input original diagram algebra. All
of the calculations will hinge on diagrammatic manipulations.

29.1 Defining the Model

Perhaps the simplest generalization of the toric code is the generaliza-
tion of the upspin/downspin (black/blue) assigned to each edge to group
valued variables. Indeed, the ZN toric code was just such a generaliza-
tion where the group we used was the abelian group ZN (integers mod
N under addition). This generalization to groups, which turns out to be
essentially equivalent to a lattice gauge theory as we will discuss in sec-
tion 29.7, is sometimes known as the Kitaev Model1 or more specifically 1The phrase Kitaev Model is not suf-

ficiently specific, since Kitaev has in-
troduced many models and several very
different models all go by this same
name.

the Kitaev Quantum Double Model.2

2
Caution: The presentation I give

here is on the dual lattice compared to
Kitaev [1997]. Be warned that almost
all presentations of this material follow
Kitaev’s original work, except us. We
will switch to the same presentation as
Kitaev in section 29.7. I have chosen
this approach so as to emphasize the
importance of the planar diagram alge-
bra.

We start by choosing a group G with elements g ∈ G. This group
may be abelian or nonabelian. For this model we can work with any
regular or irregular lattice3 like the one shown in Fig. 29.1 and we put

3....which should not be called a lattice.

arrows on each edge (we can fix them in arbitrary directions). Instead
of labeling each edge with spin-up or spin-down we assign each edge a
group element g as shown in the figure. The set of all possible group
elements assigned to all possible edges serves as an orthonormal and
complete basis for the Hilbert space.

g1

g2
g3

g4 g5

g6

g7

g8
g9

g10

g11

g12

g13
g14
g15

g16

g17

g18

g19

g20

g21
g22

g23

g24 g25

g26

g27

g28

g29

g30

g31
g32

g33 g34

g35

Fig. 29.1 Each edge of the (irregular3) lattice is labeled with a group element g ∈ G.
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We make a definition that reversing the arrow on an edge inverts the
element of the group, as shown in Fig. 29.2.

g = g−1

Fig. 29.2 Reversing an arrow inverts
the element of the group.

29.1.1 Vertex and Plaquette Operators

We can now define vertex operators V̂α at each vertex α as follows:

V̂α





 = δg1g2g3,e







g1

g2
g3

α

g1

g2
g3

α (29.1)

In other words, to apply V̂α at a vertex α we orient all of the arrows
on the edges so they point away from the vertex (using Fig. 29.2 if
necessary). Then we mulitply together the group elements on all of the
edges of the vertex in a clockwise order around the vertex (independent
of how many edges intersect the vertex4). If the result gives the identity4For example, for a 4-valent ver-

tex we would write δg1g2g3g4,e where
g1, . . . , g4 are ordered clockwise and all
arrows point out from the vertex.

element e of the group, then V̂α gives unity, otherwise the operator gives
zero.
A few things to note about V̂α. First of all, it does not matter

where we start multiplying around the vertex, since g1g2g3 = e im-
plies5 g2g3g1 = g3g1g2 = e. So in essence the operator is rotationally5If it is not already obvious, starting

with g1g2g3 = e, left multiply both
sides by g−1

1 and right multiply both
sides by g1 to obtain g2g3g1 = e.

invariant. Secondly, we note that V̂α is a projector, meaning

V̂ 2
α = V̂α . (29.2)

For each group element h ∈ G we now define an operator P̂β(h) on a
plaquette as follows:

P̂β(h)





 =







g1

g2

g3 g4

g5
β

hg1

hg2

hg3 hg4

hg5
β

(29.3)

In other words, we first orient the arrows around the plaquette in a
counterclockwise manner (using Fig. 29.2 if necessary). The action of
P̂ (h) is to premultiply each edge label by the group element h.

P̂β(h
′)P̂β(h) = P̂β(h

′h) (29.4)

I.e., if you premultiply by h then premulitply by h′ this is the same as
premultiplying by h′h.
We then construct the total plaquette operator for the plaquette β as

P̂β =
1

|G|
∑

h∈G
P̂β(h) (29.5)

where |G| is the number of elements in the group G.
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From Eq. 29.4 and Eq. 29.5 it is easy to show that

P̂β P̂β(h) = P̂β(h) P̂β = P̂β (29.6)

and from this we show that P̂β is a projector, meaning

P̂ 2
β = P̂β (29.7)

so that it has eigenvalues 0 and 1 only.

Commuting Operators

It is worth noting that, analogous to the case of the toric code, the
operators V̂α and P̂β all commute with each other. It should be fairly
obvious that all of the V̂α operators commute with each other. It is
perhaps a bit less obvious that the P̂β operators commute with each
other when they share an edge as in Fig. 29.3. The key here is to realize
that the edge arrow needs to be reversed to apply the plaquette operator
on the two different plaquettes. In the figure, the arrow on the shared
edge is oriented counterclockwise with respect to β so that the P̂β(h)
operator may be applied on plaquette β, turning the shared edge from g
to hg. To apply the plaquette operator P̂β′(h′) on plaquette β′ we need
to first flip the edge arrow, turning g to g−1. Then applying P̂β′(h′)
turns the edge into h′g−1, and we can then reverse the arrow again to
put it in the original position giving the edge value (h′g−1)−1 = g(h′)−1.
Thus one of the plaquette operators premultiplies the edge element and
the other plaquette operator postmultiplies the edge element — and
hence these commute with each other.

gβ β′

Fig. 29.3 Two neighboring plaquettes
share an edge.

It is also not immediately obvious that the the plaquette operators
commute with the adjacent vertex operators. Consider Fig. 29.4. To
apply the vertex operator at α, we must first reverse the arrow on the
edge labeled g1 so all edges point away from the vertex. With the re-
versed arrow, the edge is then labeled g−1

1 . The vertex operator V̂α now
measures the product g−1

1 g2g3. Now instead consider applying the pla-
quette operator P̂β(h) on the plaquette β before reversing the direction
of the arrow. This premultiplies both g1 and g2 by h, yielding hg1 and
hg2 with the arrows oriented as they are in the Figure. If we try applying
the vertex operator after the plaquette operator we would now measure
(hg−1

1 )−1 (hg2) g3 = (g−1
1 h−1)(hg2)g3 = g−1

1 g2g3 which is unchanged.
Thus we conclude that the plaquette and vertex operators commute.

g1

g2

g3β
α

Fig. 29.4 A vertex α adjacent to a
plaquette β.

29.1.2 Code Space

We can use the Kitaev model as a quantum memory (a error correct-
ing code) analogous to the toric code. For a group with |G| elements,
one need to have a |G|-state quantum system6 on each edge, instead 6A qubit is a two state quantum sys-

tem. Sometimes people call a three
state quantum system a “qutrit”. For a
d-state quantum system one often says
one has a “qudit”.

of just having a single spin- 12 two-state system on each edge as in the
conventional toric code.
Similar to the toric code, the code space for the Kitaev model will
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be the set of states where all Vα = +1 and all Pβ = +1. This code
space, analogous to the toric code, will turn out to be closely related to
a TQFT.
The Kitaev model built from a non-abelian group G has a signifi-

cant advantage over the conventional toric code: Not only can one store
quantum information, but by braiding, fusing, and measuring defects
one can also perform computation (See Kitaev [1997]; Preskill [2004],
for example).
It is interesting to note that if one builds the Kitaev model from a

group G1 and then another Kitaev model from a group G2, the product
of the code spaces of these two will be the code space of a Kitaev model
built from a group G1 ×G2.

Abelian Case: Relation to the ZN Toric Code

The ZN toric code is a special case of the Kitaev model7 where we take7And the conventional toric code is just
the N = 2 case of the ZN toric code. the group to be G = ZN (the integers modulo N with addition as the

group operation). As discussed in section 41.2, any abelian groups can
be written as G = ZN1 × ZN2 × . . . × ZNp for some number of factors
p. Thus all Kitaev models built from abelian groups are equivalent to a
product of some number of some (ZN ) toric codes.

29.1.3 Hamiltonian

Instead of thinking about the Kitaev model as an error correcting code,
we can think of it as a phase of matter analogous to our discussion in
chapter 26. We can now write simple Hamiltonian for our system

HKitaevmodel = −∆v

∑

verticesα

V̂α − ∆p

∑

plaquettesβ

P̂β (29.8)

where here ∆v > 0 and ∆p > 0. The ground state space will thus be
the space where every vertex operator V̂α and every plaquette operator
P̂β is in the +1 eigenstate. I.e., the ground state is the code space. Any
vertex or plaquette in the other eigenstate (having eigenvalue 0) then
corresponds to an excitation, and has energy cost ∆v or ∆p respectively.
The Hamiltonian Eq. 29.8 is precisely the Hamiltonian we used for

the ZN toric code in Eq. 26.6 previously.

29.2 How Kitaev Model Generalizes Toric
Code

In the case of the toric code, the condition of being in the lower energy
eigenstate of all of the vertex operators (section 25.3) was interpreted
as allowing only loop configurations (See also section ??). We can think
of the blue lines as carrying some Z2 valued in-plane “flux” that is
conserved at each vertex: if a blue line comes into the vertex another
blue line must go out of the vertex. This was generalized for the ZN toric
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code where we think of the edges as carrying ZN flus: edges have arrows
and integer (modulo N) on them, and the total of the arrow pointing in
minus out should add up to zero modulo N . Now, in the more general
Kitaev model based on a group G, we think of each arrow as carrying
some in-plane G-valued“flux” which must be conserved at each vertex
in order to satisfy the vertex condition of the code space.
In the toric code, the plaquette operator flips the quantum numbers

around a plaquette while staying within the space of loop configurations.
Similarly in the Kitaev model, the plaquette operator changes the labels
around the edges of the plaquette, but in such a way as to not disturb
the vertex operators.
Analogous to the toric code, we may write the states in the ground

state space (the code space) of the Kitaev model as

|ψ〉 = N−1/2
∑

all edge labelings that can
be obtained from a reference
edge labeling via application
of any Pβ(h)

|labeling〉 (29.9)

where N is the total number of terms in the sum. The analogy to
flipping a plaquette in the toric code is the applications of the operators
P̂β(h) for any group element h ∈ G to any plaquette β. Note that from
Eq. 29.6, that the eigenvalue of P̂β is not changed by the application of
P̂β(h), nor is the eigenvalue of any V̂α.
As with the toric code the vertex and plaquette operators will provide

just enough constraints so that the ground state on a spherical surface
is unique and the ground state on a higher genus manifold will have a
degeneracy that depends on the topology of the system, but does not
depend on the number of lattice points we use in our lattice. I.e., the
ground state space is described by a TQFT.
The TQFT that results is known as the quantum double or Drinfel’d

double of the group G. Although the detailed study of the properties
of the quantum double can get complicated (See references at the end
of the chapter) we can introduce much of the key physics with fairly
simple8 diagrammatic reasoning. 8... well, not too complicated!

29.3 Kitaev Ground State is Topological

Here we will show that the ground state of Kitaev model is topological,
that is, that it is independent of the detailed geometry of the lattice, but
depends only on the topology of the manifold. Our strategy is to show
that we can locally reconfigure the structure of the lattice (keeping the
topology fixed) and uniquely map a ground state wavefunction on one
lattice structure to a ground state wavefunction with another lattice
structure9. This will then imply that, for example, the ground state 9This mapping gives an isomorphism

between ground state spaces.degeneracy is independent of the lattice that we choose to use, depending
only on the underlying topology of the manifold.
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To restructure our lattice, we need only two restructuring moves,
which are shown in Figs. 29.5 and 29.6. Using these two moves any
lattice on a surface may be mutated into any other lattice on the sur-
face, so long as the overall topology of the surface remains unchanged
(See exercise 29.3). It is worth noting that non-contractable loops on a
surface cannot be removed by these moves.
We must determine how the ground state wavefunction is changed un-

der these two moves. First, let us consider the vertex merging/splitting
move shown in Fig. 29.5. In splitting the single vertex into two vertices
the added edge (ab in the lower part of the figure) has its quantum num-
ber completely fixed by the vertex condition. Thus in adding this edge
there is no additional degree of freedom added, thus we have a unique
mapping of the wavefunctions between the two structures.
The first move to consider is the vertex splitting/merging move shown

in Fig. 29.5. In general in such a move, two neighboring vertices with
coordination n and n′ may be moved to a single point, elimninating the
intervening edge, and creating a vertex of coordination n+ n′ − 2.

β1 β2

β4 β3

a

b

ab

c

cab⇔ β1 β2

β4 β3

a

b

c

cab⇔ β1 β2

β4 β3

a

b

ac

c

cab

Fig. 29.5 Splitting one vertex into two, or, in reverse, merging two vertices into
one. In the ground state the intervening edge (labeled ab) on the left, is not an
independent degree of freedom, but is instead fixed by the edge variables.

In a ground state, it is fairly easy to see that such a the vertex merg-
ing/splitting move does not alter any of the important physics. In par-
ticular an orthogonal basis of ground state wavefunctions before the
merging move can be mapped uniquely to another basis for the ground
state wavefunctions after the merging move. The key here is to realize
that the quantum number (the group label) on the intervening edge that
is removed in the merging process (labeled ab in the left of Fig. 29.5)
is not an independent degree of freedom in the ground state. Due to
the vertex condition, the label on this intervening edge is completely de-
termined by the labels on the other edges intersecting the two vertices.
Thus there is a trivial one-to-one mapping between the wavefunctions
before and after merging.
The second move we need to consider is the plaquette addition move

shown in Fig. 29.6. Here a vertex is inserted into an edge and “tadpole”
is added to the the new vertex. This tadpole has a stem (labeled k) and
a loop (labeled h) in the figure. The loop splits the plaquette (β) into
two plaquettes (β1 and β2 in the figure).
Again we would like to to show that the ground states of the two

lattices are in one-to-one correspondence. The fusion rules require that
the stem of the tadpole can only be labeled by the identity element, so
(although the edge is still there) diagrammatically we can ignore the
stem altogether. If |Ψ〉 is a ground state wavefunction of the entire
system on the lattice before splitting the plaquette, we thus construct a
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g

β ⇔
g g

β1
h

k

β2

Fig. 29.6 Addition or removal of a plaquette. Here the large plaquette β is split
into two plaquettes β1 and β2. The plaquette β2 is bounded by a single edge labeled
h and a single vertex.

wavefunction after splitting as

|Ψ′〉 = |Ψ〉 ⊗ 1

|G|
∑

h∈G
|h〉 (29.10)

The sum over h now assures that P̂β2 = 1, i.e., it puts β2 in the unique
ground state. Since the stem is labeled only with the identity element,
the operator P̂β1 in the right figure then acts on the outer edges of the
larger plaquette exactly the same as P̂β did in the left figure. Thus we
have an isomorphism between the ground states on the two lattices.

g

Fig. 29.7 This is the minimal lattice
decompositon of a sphere. It consists of
a single vertex, a single edge (labeled g)
and two plaquettes — one covering the
north hemisphere and one covering the
south hemisphere.

Once we have estabilished this independence of geometry, we can find
the ground state degeneracy for various topologies by using a minimal
lattice decomposition. Let us consider the case of a sphere. (We will dis-
cuss the torus case in section 29.5 below). The minimal decomposition
of a sphere is shown in Fig. 29.7. This consists of a single vertex on the
equator, a single edge running around the equator and two plaquettes
— one covering the north hemisphere and one covering the south hemi-
sphere. The edge running around the equator is labeled with g and the
vertex condition is automatically satisfied. The two plaquette operators
are both equal to

P̂βN = P̂βS =
1

|G|
∑

g∈G
P̂βN (g)

Thus the unique +1 eigenstate of this operator is given by

|Ψ〉 = 1

|G|
∑

g∈G
|g〉

and is the unique ground state of the system.

29.4 Continuum model

As with the toric code, we are not tied to any particular lattice. We
can further dispense with the lattice altogether and consider diagrams
in the absence of the lattice as shown, for example in Fig. 29.8.

b

a
ab

c

cab

d

dcab

dca

ca
f

Fig. 29.8 A diagram of group valued
lines, drawn without reference to an un-
derlying lattice. (Compare Fig. 20.3.)
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In this language we can write the wavefunction analogously as

|ψ〉 ∼
∑

all diagrams that can be ob-
tained from a reference dia-
gram via allowed moves

|diagram〉 (29.11)

(Compare this to Eq. 28.1 for the toric code.)
The “allowed moves” between such diagrams are of the three types

shown in Fig. 29.9.

• Move 1: “Isotopy”. Meaning any smooth deformation of lines.

g ⇔ g

• Move 2: Adding and Removing Contractable Loops. A con-
tractable loop with any label can be added or removed.

⇔
g

• Move 3: Reconnecting (trivial F ) move.

c

cab

a

b

ab ⇔
c

cab

a

b

ca

Fig. 29.9 Allowed diagrammatic moves in the Kitaev model. Compare Fig. 28.3

The first move is similar to what we had in the case of the toric code.
The second move, that we can add or remove loops, is also similar to the
case of the toric code, except that the loops have arrows as well sa group
valued labels. The third move is “new” but should look familiar from our
discussion of F -moves. However, here the F -coefficient is simply unity
— and there is no sum over states on the right hand side (compare to
Fig. 16.3). This type of F -matrix (which is not a matrix but simply a
scalar) is what we called the trivial cocycle in section 20.1.1.

a b =

a b

ab

a b

Fig. 29.10 This identity is a special
case of move 3. (Compare to Fig. 16.8).

In addition to these three moves one can reverse arrows by inverting
the group element (as in Fig. 29.2), and one can freely add or remove
lines labeled with the identity element of the group.
Using these moves, we can derive a number of useful (and perhaps

unsurprising) lemmas such as those shown in Fig. 29.10 and Fig. 29.11
(See exercise 29.2)

a b

c

x

ax b−1x =

a b

c

Fig. 29.11 A slightly less trivial cor-
relary of the three moves. See exercise
29.2.

It is sometimes useful to merge the language of quantum numbers on
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×

g1

g2

g3

g4
h

= ×

hg1
g1 g1

hg2
g2

g2

hg3
g3

g3

hg4

g4

g4

h h

h
h = ×

hg1

hg2

hg3

hg4

Fig. 29.12 The plaquette operator Pβ(h) can be viewed as inserting a loop labeled
h and pushing it into the edges. In going from the left to the middle we use Fig. ??
once on each edge. The in going from the middle to the right we use Fig. 29.11 once
on each corner. The × in the middle of the plaquette should be thought of as a
puncture in the plane. This prevents us from removing the loop using Move 2, but
instead forces us to merge the loop into the edges.

the lattice with the language of continuum diagrams off the lattice. A
very convinient example of this is the statement that the operator P̂β(h)
from Eq. 29.3 can be thought of as inserting a loop labeled h inside of
a plaquette and then merging it into the edge variables as shown in
Fig. 29.12.
With this notation we can write the plaquette operator diagrammat-

ically as

P̂β





 =





β Ω̃×

(29.12)

where here the purple line is an Ω̃ loop (compare Fig. 17.10) defined in
this case as

Ω̃ =
1

|G|
∑

h∈G
h (29.13)

The × in the middle of the loop in Eq. 29.12 indicates that the Ω̃
loop is not contractable to a point so that Move 2 is not allowed (we
can think of the × as being a puncture in the plane), but instead the
loop must be pushed into the edges as in Fig. 29.12 to achieve exactly
the operation defined in Eq. 29.5. This principle, that the plaquette
operator is exactly a Ω̃ loop is true of all of our generalizations of the
toric code.
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29.4.1 Brief Comments on Twisted Kitaev Theory

Once we have made the connection between the Kitaev model and a
planar diagrammatic algebra it becomes natural to ask whether we can
generalize the diagrammatic algebra and build more general topological
models. Keeping with the idea of basing the model on the properties
of a group G, we can construct other consistent planar diagram algebra
by generalizing the F -move (move 3 in Fig. 29.9). Indeed as discussed
in section 20.1.1 any so-called 3-cocycle provides a consistent scalar F -
matix for a planar diagrammatic algebra. The 3-cocycle used by the
Kitaev model is just the trivial cocycle (i.e., F , or ω in the notation
of section 20.1.1, is just unity). However, one can build a version of
the Kitaev model that uses nontrivial cocycles (nontrivial F ’s) as well.
This is known as twisting the Kitaev model (or sometimes known as
a quasi-quantum double). The word “twisting” here has nothing to do
with the twists introduced in chapter 15. The language comes from
its original usage in the context of discrete gauge theories. As we will
discuss in section 29.7, the Kitaev model is essentially a discrete gauge
theory. The twisted Kitaev model corresponds to what is known as
twisted gauge theories. The twisted Kitaev models are also equivalent
to the Dijkgraaf-Witten models introduced in section 21.4 with the un-
twisted Kitaev model corresponding to the case of the trivial cocycle.
The difference between (possibly twisted) Kitaev and Dijkgraaf-Witten
is that the Kitaev model is a two dimensional model with a Hamiltonian
and continuous time, whereas Dijkgraaf-Witten calculates an action for
a discretization of a three-dimensional space-time.

29.5 Ground State Degeneracy on a Torus

We now turn to calculate the ground state degeneracy on a torus. We
can use the minimal lattice decompositions of the torus as shown in
Fig. 29.13 with a single vertex two edges and a single plaquette. We
denote by |b, a〉 the state on the torus with the edge going around the
vertical cycle labeled by b and the edge going around the horizontal cycle
labeled by a.

a b

|b, a〉 = =

b

b

aa ∼
b

b

aa

c

Fig. 29.13 Decomposition of a torus into (left and middle) one vertex, two edges,
and one plaquette. (Right) A slightly more complicated decomposition with two
vertices, three edges, and one plaquette. This adds no additional degrees of freedom
since c is completely fixed by a and b. However, this trivalent picture fits better with
our discussion of diagrammatic algebras where vertices are always trivalent.

The vertex condition at the single vertex is bab−1a−1 = e with e the
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identity. This means that a and b must commute.
On the far right of Fig. 29.13 we show an alternative decomposition of

the torus with two vertices and three edges and a single plaquette. This
picture fits better with our continuum diagrammatic algebra where we
usually insist on vertices that are trivalent10. There is no added degree of

10It is not actually so crucial for the
diagrammatic algebra of the Kitaev
model (defined in Fig. 29.9) that we in-
sist on trivalent vertices. However, in
cases where the F move has a nontrivial
phase associated with it (such as with
twisted Kitaev models), one must in-
sist on sticking to trivalent vertices to
properly keep track of this phase.

freedom from the added edge, since the quantum number c is completely
defined by a and b. One vertex condition imposes c = ab and the other
imposes c = ba, so again a and b must commute.

P̂β(h)|b, a〉 =

b

a

h

h

h

h

=

hbh−1

hah−1 = |hbh−1, hah−1〉

Fig. 29.14 Application of the plaquette operator P̂β(h) on the single plaquette
conjugates both edge variables.

Let us now consider the plaquette operator P̂β(h) for the single pla-
quette. To apply this operator we push a loop labeled h into the edges
(analogous to Fig. 29.12) thus conjugating both edge variable by h as
shown in Fig. 29.14. Note that if a commutes with b, then hbh−1 com-
mutes with hah−1, so if the vertex condition is satisfied (if the two edges
commute) the action of P̂β(h) does not change this.
We would now like to find the ground state or code space of our system

which must be made of our basis states |b, a〉 with b and a commuting
but must be a superposition so that we obtain a +1 eigenvalue of the
plaquette operator P̂β (Eq. 29.5). Given a state |b, a〉 as above satisfying
the vertex condition (i.e., with b and a commuting) we construct the
state

|Ψb,a〉 ∝ P̂β |b, a〉 ∝
∑

h∈G
|hbh−1, hah−1〉 (29.14)

and here we do not keep track of a normalizing prefactor of the wavefunc-
tion. It is easy to check that this is indeed a +1 eigenstate of of P̂β and
is therefore a ground state. However, it is also true that not all sets of
commuting b and a generate distinct wavefunctions. In particular, if we
define the orbit of |b, a〉 to be all of the states of the form |hbh−1, hah−1〉
for any h ∈ G, we realize that each distinct orbit represents a different
orthogonal ground state wavefunction. I.e, Eq. 29.14 tells us to simply
add up all of the wavefunctions within an orbit to make a ground state
wavefunction.

Example: S3

Ψe,e = |e, e〉
ΨR,e = |R, e〉+ |R2, e〉
Ψe,R = |e,R〉 + |e,R2〉
ΨR,R = |R,R〉+ |R2, R2〉
ΨR,R2 = |R,R2〉+ |R2, R〉
Ψe,X = |e,X〉 + |e,XR〉 + |e,XR2〉
ΨX,e = |X, e〉+ |XR, e〉+ |XR2, e〉
ΨX,X =
|X,X〉+ |XR,XR〉 + |XR2,XR2〉

Table 29.1 The eight wavefunctions
generated by Eq. 29.14. Note that we
have chosen a different normalization
of these wavefunctions where we write
each ket exactly once with a coefficient
of unity.

Let us consider the nonabelian group S3, the permutation group on
three elements, also known as the symmetries of a triangle. (See section
41.2.1). This group has two generatorsX and R with the properties that
X2 = R2 = e with e the identity element and XR = R2X = R−1X .
There are a total of six elements of the group (6 = 3! permutations)
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which we list as e,R,R2, X,XR,XR2. We find eight orthogonal wave-
functions generated by Eq. 29.14 which are given in table 29.1. Note
that these wavefunctions are not properly normalized.

General Case

For general nonabelian group it may seem complicated to try to figure
out the dimension of the ground state space. In fact, there is beautiful
theorem from group theory, known as Burnside’s Lemma11 which helps11Burnside’s Lemma was not discov-

ered by Burnsides. As such it is some-
times called “The Lemma that is not
Burnside’s”. This makes it a good ex-
ample of Stigler’s law of eponymy which
says that nothing is named after the
person who discovered it — including
Stigler’s law which was first stated by
Merton.

us calculate this dimension.

Burnside’s Lemma: Given a finite group G acting12on a set X .
The number of orbits in X due to this group action is given by

number of orbits =
1

|G|
∑

h∈G

(
number of elements of X

that are left unchanged by h

)

In our case, our set is the set of of all elements |b, a〉 where b and a are
elements of G and commute, and the action of the group is conjugation
as in Fig. 29.14. I.e., h acts on |b, a〉 to give |hbh−1, hah−1〉. An element
|a, b〉 is unchanged by h if h commutes with both a and b. Thus we
obtain the following general result

ground state degeneracy of Kitaev model on torus

= number of orbits

=
1

|G|

(
Number of triples a, b, h

that all commute with each other

)
(29.15)

29.6 Quasiparticles

Being that we know the ground state degeneracy on the torus, we know
the number of quasiparticle types. In this section we will discuss the
properties of these quasiparticles. Although this is a bit more compli-
cated than what we did for the (abelian) case of the toric code, most of
the development recapitulates the discussions of chapter 28 and partic-
ularly section 28.6.
Recall in the case of the toric code, and more generally for the ZN toric

code, the vertex defect involved the ends of strings. We can examine the
system locally and determine the quantum number of this string end,
even if we do not know where the string is. In the ZN case we measure
the charge of the vertex defect (see Eq. 25.18). However in the case of
the Kitaev model with a nonabelian group, the “charge” at the end of
a string is not as easily defined. To see this, consider Fig. 29.15. On
the left we have a diagram with a string end labeled with h. Move 2
from Fig. 29.9 allows us to create the loop labeled g on the left. This
loop may then be pulled over the string-end which conjugates the label

12A group G acting on a set X here means a mapping f(g, x) with g ∈ G and x ∈ X
which gives an output in X such that f(e, x) = x and f(g, f(h, x)) = f(gh, x).
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h

g

⇔
ghg−1

g

g

Fig. 29.15 This diagram shows how a string end is conjugated by pulling a loop
over the string end.

of the string end to ghg−1. Since the wavefunction of the Kitaev model
should be in a superposition of diagrams from all allowed moves, the
wavefunction must be in a superposition of having a loop end labeled
h and ghg−1 for any possible group element g. Thus the string ends
should not be labeled by their group element, but rather by a conjugacy
class13. When we do diagrammatic manipulations, we may choose a 13To remind the reader (see section

41.2.2), the conjugacy class of h is the
set of all group elements that can be
written as ghg−1 for any g in the group.

particular representative element of the conjugacy class (such as h or
some particular value of ghg−1). However, we should remember that the
group value of the string end is actually as superposition of all elements
in the class.
With this knowledge we now would like to follow the tube algebra

approach we introduced in section 28.2 and 28.6 in order to deduce the
properties of the quasiparticles. We might start by introducing a basis of
the form shown in Fig. 29.16. In the rectangular (right) representation
of the annulus, h comes in the bottom and ghg−1 goes out the top (these
are the inner and outer edges of the annulus). Both h and ghg−1 are
in the same conjugacy class, but unlike the case of the toric code, they
may not be the same group element.

|h, g〉 =
g

h
ghg−1

=

h

ghg−1

g g

Fig. 29.16 The basis we will work with for the tube algebra of the Kitaev model.
The blue line going to the inner edge of the annulus (or off the top on the right) is
labeled ghg−1 to satisfy the vertex condition at the intersection.

We could work with the notation shown in Fig. 29.16. However, it
turns out to be more convenient to work with a different notation. For
each conjugacy class C we choose one representative element which we
call hC (it does not matter which element we choose). The remaining
elements of conjugacy class can all be written as p hC p

−1 for some14 14In fact for each element of the con-
jugacy class hi we should choose a par-
ticular pi such that hi = pi hC pi and
we should always use this value of pi to
represent hi.

element p. We can then rewrite the basis state |h, g〉 in the manner
shown in Fig. 29.17. In particular instead of writing |h, g〉 we write
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|h, g〉 =

h

ghg−1

g g =

hC

hC

z z

︸ ︷︷ ︸
h = p hC p

−1

︷ ︸︸ ︷
ghg−1 = p′ hC p′−1

}
g = p′zp−1

≡ |C, z; p′, p〉
p′

p

p′

p

Fig. 29.17 Graphically defining the |hC , z; p, p′〉 basis in terms of the |h, g〉. Here
hC is the representative element of the conjugacy class C and zhC = hCz is required
by the vertex condition.

hC1

hC1

z1 z1

p′1

p1

p′1

p1

◦

hC2

hC2

z2 z2

p′2

p2

p′2

p2

=

hC2

z2 z2

p′2

p2

p′2

p2

hC1

z1 z1

p′1

p1

p′1

p1 = δC1,C2δp1,p′2

hC1

hC1

z1z2

p′1

p2

p′1

p2

Fig. 29.18 Graphical demonstration of the composition law Eq. 29.17.

|C, z; p′, p〉 where C is a conjugacy class with representative element hC ,
and we see from the figure that

h = phCp
−1 ; ghg−1 = p′hCp

′−1 ; g = p′zp−1 (29.16)

Note crucially that the vertex condition hCzh
−1z−1 = e in the center of

the figure requires that z commutes with hC , or we say that z is in the
center of hC . I.e., z ∈ Z(hC).
Our original basis |g, h〉 had |G|2 different elements, and our new basis

|C, z; p′, p〉 also has |G|2 different elements, so we are still spanning the
same space15

15To add up the number of basis,
we have a sum over conjugacy classes
C with |Z(hC)| possibilities for z
and |C| possibiilities for each p and
|C| possibilities for p′. Thus we
want

∑
C |Z(hC)||C|2. However, us-

ing Eq. 41.3 |Z(hC)||C| = |G|, so this
becomes |G|∑C |C|, and the sum over
conjugacy classes of the number of ele-
ments in the conjugacy class is just the
number of elements in the group, thus
giving |G|2.

In terms of this new representation of the basis, the composition rule
for such basis states is similar to the case for the ZN toric code in
Eq. 28.17 and is now given by

|C1, z1; p
′
1, p1〉 ◦ |C2, z2; p

′
2, p2〉 = δC1,C2δp1,p′2 |C1, z1z2; p

′
1, p2〉 (29.17)

which we show graphically in Fig. 29.18.
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We would now like to construct projectors from these basis states
analogous to Eqs. 28.18 for the toric code. In that equation, we are
esstentially Fourier transforming to get from the basis to the projector.
Here we need the non-abelian generalization of the Fourier transform,
which is done with group representations. We write the following oper-
ator

ORC(p
′, n′; p, n) =

dR
|Z(hC)|

∑

z∈Z(hC)

ρRn′,n(z) |C, z, p′, p〉 (29.18)

where Z(hC) is the centralizer of hC , the representative element of the
conjugacy class C. (Recall that the centralizer Z(hC) is the group of
elements that commutes with hC , and it has |Z(hC)| elements). Here R
is an irreducible representation of Z(hC) of dimension dR and ρR is the
representation matrix (See section 41.2.4).
Again, our original basis |g, h〉 had |G|2 elements in it, and our new

basis ORC(p
′, n′; p, n) also has |G|2 elements in it so we are still spanning

the whole space16. 16To count the total number of ba-
sis states, we have a sum over C,
a sum over irreps R with n and n′

both taking dR values and p and p′

both taking |C| values. Thus we want∑
C,R d

2
R|C|2. However, from Eq. 41.4

we have
∑
R d

2
R = |Z(hC)| (recall that

these are reps of Z(hC)) thus leaving
us with

∑
C |Z(hC)||C|2 = |G|2 as per

margin note 15.

Using the grand orthogonality theorem Eq. 41.6 it is easy to prove
(see exercise 29.6) that these objects obey the projector law

OR1

C1
(p′1, n

′
1; p1, n1) ◦ OR2

C2
(p′2, n

′
2; p2, n2) = (29.19)

δC1,C2δR1,R2 δp1,p′2δn1,n′
2
OR1

C1
(p′1, n

′
1; p2, n2)

This is somewhat more complicated than the projector equation we had
for the toric code Eq. 28.19. Here p and n are simply additional boundary
degrees of freedom that need to match when we sew together the annuli.
The C and R degrees of freedom, however, are unchanged when we glue
annuli together, and it is these indices that describe the quasiparticle
types. Thus we have isolated the annulus states corresponding to the
different quasiparticle types in the Kitaev model.
To emphasize: A quasiparticle type is described by a conjugacy class C,

and an irreducible representation R of the centralizer of a representative
element hC of the conjugacy class.
It is conventional to call the conjugacy class the magnetic charge and

the representation R the electric charge (despite the fact that we are
here thinking of the conjugacy class as being a vertex defect!). The
origin of these names will be discussed in section 29.7 when we discuss
the relationship to gauge theory.
Note that in the case of the ZN toric code, which is just the Kitaev

model with the group G = ZN , each group element is its own conjugacy
class so there are |G| conjugacy classes, and the centralizer of any ele-
ment is the entire group. The number of irreducible representations of
the group is also |G| (number of irreps is always the number of conugacy
classes), so the total number of particle species is |G|2 in agreement with
what we found in section 28.6.



408 Kitaev Quantum Double Model

29.6.1 Quasiparticle Basis on Torus

We can use the quasiparticle annulus we just derived to construct a
quasiparticle basis on the torus. Attaching the inner and outer edge of
the annular basis states we then write torus states as17

17As per footnote 14 we should sum
over values of p such that we generate
all possible h = phCp

−1 in the con-
jugacy class once. However, summing
over the entire group is simpler and
counts each h a fixed number of times,
thus only changing the normalization.

| [C,R] 〉 ∼
dR∑

n=1

∑

p∈G
ORC(p, n; p, n)

summing over these degrees of freedom, and multiplying by a constant
we obtain our normalized torus states as

| [C,R] 〉 = 1

|Z(hC)|
√

|G|
∑

z∈Z(hC)

∑

p∈G
χR(z) |C, z; p = p′〉 (29.20)

where χR is the character of the representation, and we have p = p′ so
that we can describe states on a torus rather than an annulus (i.e,, we
connect up the inner and outer edges of the annulus, see Fig. 29.17).
Note that the prefactors here are chosen so that we have proper wave-

function orthonormalization (See exercise 29.8)

〈 [C,R] | [C′, R′] 〉 = δCC′δRR′ (29.21)

Again, in Eq. 29.20, we choose one representative value of hC from
each conjugacy class C and R is a representation of Z(hC) the group of
elements that commutes with hC . If these make a basis for the states
on a torus we must then have

ground state degeneracy of Kitaev model on torus

=
∑

C

(number of irreducible reps of Z(hC)) (29.22)

where the sum is over conjugacy classes C. It is not immediately obvi-
ous that this expression for the ground state degeneracy should match
Eq. 29.15. Indeed, these two expressions do match (with a bit of group
theory!). This is shown appendix 29.8.

Example S3 Again

Lets return to the example of the group S3 as we did in section 29.5.
The group has three conjugacy classes Ce = {e}, and CR = {R,R2},
and CX = {X,XR,XR2}. Let us choose the first element in each class
as its representative elements. These have centralizers Z(e) = S3 (the
whole group, since everything commutes with e), Z(X) = Z2 = {e,X}
and Z(R) = Z3 = {e,R,R2}. There are three irreducible representa-
tions of18 of S3 (See the table 20.1) which we call I, S, V . For Z2 and

18Recall that the number of irreducible
representations of a group matches the
number of conjugacy classes.

Z3 there are 2 and 3 irreps respectively (see Eq. 41.5). The two ir-
reps of Z2 we call {1,−1} and the three irreps of Z3 we call {1, ω, ω2}
where ω = e2πi/3. Thus there are a total of eight quasiparticle types
[e, I] , [e, S] , [e, V ] , [X,+1] , [X,−1] , [R, 1] , [R,ω] , [R,ω2] matching the
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eight ground states we found in table 29.1.
The characters of S3 are given in table 20.1 whereas the characters of

the ZN are just the one-dimensional representation matrices themselves
since the representations are scalar (See Eq. 41.5). Using Eq. 29.20 we
obtain the eight explicit ground state wavefunctions shown in Table 29.2.

|[e, I]〉 ∼ Ψee +ΨRe +ΨXe
|[e, S]〉 ∼ Ψee +ΨRe −ΨXe
|[e, S]〉 ∼ 2Ψee −ΨRe
|[X,+1]〉 ∼ ΨeX +ΨXX
|[X,−1]〉 ∼ ΨeX −ΨXX
|[R, 1]〉 ∼ ΨeR +ΨRR +ΨRR2

|[R,ω]〉 ∼ ΨeR + ωΨRR + ω2ΨRR2

|[R,ω2]〉 ∼ ΨeR + ω2ΨRR + ωΨRR2

Table 29.2 The eight wavefunctions
generated by Eq. 29.20. We have writ-
ten these using the (unnormalized) ba-
sis states given in table 29.1. Here
ω = e2πi/3. The normalization of each
wavefunction is simply a prefactor of
1/

√
6 which we have not written for

lack of margin space.

T and S matrices

We can calculate the effect of the twist operation on the basis states
(i.e., the T -matrix) analogous to Eq. 28.20 and Fig. 28.22. Giving us

θ̂|h, g〉 = |h, gh〉 (29.23)

or equivalently
θ̂|C, z; p = p′〉 = |C, zhc; p = p′〉 (29.24)

It is a very short exercise (See exercise 29.7) to then show that

θ̂ | [C,R] 〉 =
[
χR(h−1

C )

dR

]
| [C,R] 〉 (29.25)

showing that the twist factor of the particle type [C,R] is

θ[C,R] =

[
χR(h−1

C )

dR

]
(29.26)

with the factor in brackets being a unit magnitude complex phase.
We can now turn to calculating the S-matrix. Analogous to Eq. 28.21

in the ZN toric code case, the S operation simply rotates the two direc-
tions on the torus

S|h, g〉 = |g, h−1〉
The full S matrix is then given as

S[C′,R′],[C,R] = 〈 [C′, R′] |S | [C,R] 〉 (29.27)

Plugging in the value of the kets in Eq. 29.20, with a little algebra (see
Exercise 29.9) we obtain

S[C′,R′],[C,R] = (29.28)

1

|Z(hC)| |Z(hC′)|
∑

p such that

p−1hC′p ∈ Z(hC)

χR
′
(p hC p

−1)χR(p−1 hC′ p)

29.6.2 Quasiparticle Ribbon Operators on a Lattice

In the case of the toric code, we were able to create quasiparticles and
pull them apart from each other by applying operations on a “string”
of edges. For the vertex defects, we applied operations on a string of
edges connecting two defects (Fig. 25.10) whereas for the plaquette de-
fects we applied operations to a set of edges dual to a line connecting
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x1
x2

x3 x4

x5

y1 y2
y3

y4
y5

Fig. 29.19 A ribbon operator generally will operate on both the dark green edges
and the red edges, and will create defects only at its endpoints.

the defects (Fig. 25.14). These strings of operators were defined by the
fact that they were only detectable at their endpoints — the actual path
the string takes could not be measured. Further if the strings formed
contractable closed loops they act trivially on the ground state. One can
construct similar objects, known as ribbon operators for quasiparticles of
the Kitaev model as shown in Fig. 29.19. Most generally a ribbon oper-
ator will act on a string of edges on the lattice (red edges in Fig. 29.19)
and also on a string of dual edges (dark green edges in Fig. 29.19).
Let us start by considering plaquette defects, which are fairly simple.

As in the toric code case, the relevant operator will act on a string of
edges (dark green in Fig. 29.19) dual to a path (bright green) between
defects. As in the figure, we reorient all of the edges so that the arrows
point toward the neighboring red path. Consider now measuring the
ordered product of the group elements on all of these edges x1x2x3 . . ..
We write an operator

F̂ gp (path) = δg , x1x2x3...xN

which measures whether this product equals g. Here we have assumed
there are N + 1 plaquettes along the path (See Fig. 29.19 where N =
5). The subscript p here stands for plaquette. This operator clearly
commutes with the vertex operators, since both do not change the value
of the group element along any edge. In addition this operator commutes
with every plaquette operator except the plaquette at the start and the
end of the path. To see this, consider the example shown in Fig. 29.20,
where Pβ(a) is applied between to the plaquette between x1 and x2. This
takes x1 → x1a

−1 but also takes x2 → ax2 so that the product x1x2x3 . . .
remains unchanged. Thus this is a good candidate for a string operator
that only makes plaquette defects at its ends.

a

x1

x2

y3

Fig. 29.20 The measurement of
x1x2x3 . . . commutes with the applica-
tion of Pβ(h) to the shown plaquette,
since Pβ(a) takes x1 → x1a−1 and
takes x2 → ax2. Note that in this
figure we have reversed the orientation
of x3 such that all of the green ar-
rows point in the same direction with
respect to the ribbon (bright green in
Fig. 29.19.
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y1 y2
y3

y4

q1

x1

x2

h

x −11 hx
1

x −12 x −11 hx
1x

2

⇒
y1h y2h

y3x
−1
1 hx1

y4x
−1
2 x−1

1 hx1x2

q1

x1

x2

Fig. 29.21 To modify the values of the red edges, we insert a blue string labeled h
into the diagram and pull this string through the green edges as shown on the left.
As it gets pulled through the green edge x1 its value is conjugated to x−1

1 hx1 and
then when it gets pulled through x2 its value is conjugated again to x−1

2 x1
1hx1x2.

On the right, the blue line is then fused into the red lines. y1 → y1h, y2 → y2h,
y3 → y3x

−1
1 hx1, and so forth. Note that this operation commutes with all of the

vertex and plaquette operators except at the endpoints of the ribbon.

The other operator we want to consider, the analog of the vertex
defect, is a bit more complicted. As with the vertex defect string for
the toric code, the general idea will be to put a string on top of a line
(the red line) of edges. However the procedure for doing this is a bit
more complicated. Consider adding a string with quantum number h
starting in the first plaquette and ending in the last plaquette as shown
in Fig. 29.21. If we think about our diagrammatic algebra, when we pull
this string through the dark green edges, its value gets conjugated by
the value of the green edge. So for example, on the left of the figure, the
blue string starts out labeled h but after passing through x1 it is labeled
x−1
1 hx1 analogous to Fig. 29.15, and then after also passing through x2

it is labeled x−1
2 x−1

1 hx1x2 and so forth. Once we have this blue string in
the diagram, we can then fuse it into the red edges to obtain the picture
on the right of Fig. 29.21. Let us call this operator

F̂hv (path) = pull h string along path and fuse into edge

with the subscript v indicating the analog of a vertex defect (although
actually this operator can create plaquette excitations at its ends as well
as vertex excitations). We note that this operator commutes with all
vertex and plaquette operators except at the end points of the ribbon
— i.e, it does not create any defects except at the ends of the ribbon.
Let us first consider the vertex operators. As an example, examine the

vertex with q1 incoming in Fig. 29.21. On the left the vertex condition is
that q−1

1 y3x
−1
1 y−1

2 = e. On the right, after fusing the blue h-line into the
red edges the condition becomes q−1

1 (y3x
−1
1 hx1)x

−1
1 (y2h)

−1 = e which is
the same condition. It is thus easy to see that if the vertex condition is
satisfied before fusing the blue line into the edge, it is also satisfied after.
(Note that unlike the toric code, one generically does not have ribbon
operators that violate the vertices without also violating the plaquettes
as well.)
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Now let us consider the plaquette operator Pβ(g) applied to the pla-
quette between x1 and x2 (same as in Fig. 29.20). The type of edge we
need to focus on is an edge like y3 in Fig. 29.21. If we first apply F̂hv
to the path as shown in Fig. 29.21 we take y3 → y3x

−1
1 hx1. Then if we

apply Pβ(a) this edge then becomes y3x1
1hx1a

−1. On the other hand if
we apply Pβ(a) first, this edge becomes y3a

−1. But at the same time the
edge x1 becomes x1a

−1. When we then pull the h string through the
this x1a

−1 edge it becomes (x1a
−1)−1h(x1a

−1) and fusing the h string
into the y3a

−1 edge we then get y3a
−1(x1a

−1)−1h(x1a
−1) = y3x1

1hx1a
−1

which is the same result, thus showing that this operator only creates
defects at the endpoints of the string.
We have constructed two types of operators F̂ gp and F̂hv for quasipar-

ticle ribbon operators. Analogous to the case of the toric code, these
are only detectable at their endpoints, and string operators that form
contractable closed loops act trivially on the ground state.
The most general type of operator we can construct is a combination

of the two types of strings we have found

F̂ g,h(path) = F̂hv (path)F̂
g
p (path)

it does not matter which order we put the operators on the right as they
commute with each other. Thus we have |G|2 types of ribbon operators.
An appropriate linear superposition of these operators will create the
quasiparticle types that we constructed in Eq. 29.18. Indeed it is quite
simple to figure out what the correct superposition needs to be. To do
this, use the strategy of section ?? and mutate the lattice step by step.
We can take any ribbon operator between two end points and convert
it into a picture like Fig. 29.16 where g is measured around a loop and
h is applied between the inner and outer edges of the annulus. (This
requires stretching one of the xi edges in Fig. 29.19 all the way around
in a loop around the endpoint of the ribbon). We then conclude that
our quasiparticle ribbon operators can be written as

F̂
[R,C]
p,n,p′,n′(path) ∼

∑

z∈Z(hc)

ρRn′,n(z)F̂
g,h(path)

where g and h are derived from z, p, p′ and hC via Eqs. 29.16.

29.7 Relation to Gauge Theory

The Kitaev model is essentially a discrete gauge theory with gauge group
G. To see this relation, let us begin with a quick review of the basics of
gauge theory.
In chapters 4 and 5 we already worked with gauge theories. Recall that

the fundamental quantity we needed to keep track of was the Wilson loop
operator (See Eq. 5.11), which is the generalization of the Aharonov-
Bohm phase19

19We have reintroduced a factor of i
in the exponent compared to Eq. 5.11
which changes the convention of how
many factors of i are inside Aµ, but this
is just bookkeeping! This factor of i
makes the Wilson loop look more like
Aharanov-Bohm.
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Wloop = TrR

[
P

{
exp

(
i

∮

loop
dlµAµ

)}]

where P means we should path order the integral in the case where the
gauge field Aµ takes its value in a (generally nonabelian) Lie algebra.
Here the trace is taken in some representation. I.e., the value inside the
curly brackets {} is an element g of the Lie group, and one then takes
Tr[ρR(g)] where R is a representation and ρ is the representation matrix.
Let us now discretize space, introducing vertices which are connected

together by edges as in the right of Fig. 29.22. (Note crucially, this is
not going to be the same lattice as the one in the Kitaev model, but will
rather be dual to that lattice.) For a directed edge between vertex i and
j we can assign a group value

gi,j = P

[
exp

(
i

∫
rj

ri

dlµAµ

)]

Traversing the edge in the opposite direction gives the inverse group
value gj,i = g−1

i,j . A Wilson loop which visits sites i1, i2, i3, . . . iN , i1 is
then given by

Wloop = TrR
[
gi1,i2 gi2,i3 . . . giN−1,iN giN ,i1

]
. (29.29)

For a discrete gauge theory, all of the values of gij in the system are
assumed to take values in a discrete group G. We can then choose to
work with the representations of the discrete group.
Now in gauge theories we are allowed to make gauge transformations,

which change the gauge field, but leave every Wilson loop unchanged
(We can think of this as leaving the “magnetic flux” through every loop
unchanged). The way we do this on a discrete lattice is to assign a group
element ui ∈ G to each site i. The gauge transformation then takes

gij → ui gi,j u
−1
j

Compare this to the gauge transform of Eq. 5.19 which we discussed for
Chern-Simons theory, which has exactly the same structure. Once this
is plugged into Eq. 29.29, and using the cyclic invariance of the trace, it
is clear that the flux becomes gauge invariant.
We say that a gauge field configuraton is flat if the flux through any

loop is zero, or the group element in Eq. 29.29 before taking the trace,
gives the identity.
We now write a Hamiltonian using the following two physical principle:

(1) Gauge invariance is imposed energetically rather than as a strict
symmetry principle.

(2) Flat configurations should be energetically favored.

While principle (2) is typical of gauge theories (even in electromag-
netism the Hamiltonian is minimized for zero flux), principle (1) is some-
what unusual. The ground state of our system will maintain gauge in-
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variance, but excited states will break it, at some energy cost.
To impliment principle (1) in a Hamiltonian, we define a gauge trans-

form operator Ahi at site i with h ∈ G to premultiply all gi,j by h and
postmultiply all gj,i by h

−1. Thus we have for example20

20Recall we can always flip the direc-
tion of an arrow and invert the corre-
sponding group element. I.e., gi,j =
g−1
j,i .

Ahi




i

j k

l

gi,j gi,k

gi,l



=




i

j k

l

hgi,j hgi,k

hgi,l




where h ∈ G. To enforce gauge invariance we write a term in the Hamil-
tonian at each site i

Ai =
1

|G|
∑

h∈G
Ahi (29.30)

Now if the wavefunction is gauge invariant, it will be unchanged by the
application of this operator. Further, it is easy to check that AiAi = Ai,
so that Ai is a projector, having eigenvalues of 0 and 1 only: Only the
gauge-invariant part of a wavefunction survives when this operator is
applied.
To implement principle 2, that we want flat, or flux-free, configura-

tions to be energetically favorable, we define an projection operator that
acts on plaquette such that it gives the identity if plaquette is flat (I.e.,
the group element in Eq. 29.29 is the identity) and otherwise gives zero.
Such an operator acting on plaquette p would then be, for example,

Bp




p

i

k
j

l

gi,j

gj,k

gk,l

gl,i



= δ(gi,j gj,k gk,l gl,i), e




p

i

k
j

l

gi,j

gj,k

gk,l

gl,i




Obviously Bp is also a projector, that is BpBp = Bp so it has eigenvalues
of 0 and 1 only as well.
The full Hamiltonian, implementing both principles, is given by

H = −J1
∑

vertices i

Ai − J2
∑

plaquettes p

Bp (29.31)

with positive J1 and J2. The ground state space is the space where all
operators Ai and Bp have eigenvalue 1 on all vertices and plaquettes
respectively.
The Hamiltonian Eq. 29.31 is precisely the one introduced by Kitaev

[1997]. It is fairly easy to that it is also equivalent to the one we intro-
duced in Eq. 29.8, but written on the dual lattice as shown in Fig.29.22.
The operator V̂α from our earlier construction (section 29.1.1) that acts
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Fig. 29.22 Left: The lattice structure for the Hamiltonian Eq. 29.8 earlier in this chapter. We have labeled the plaquettes
with black numbers. The directed edges gi,j are labeled with i and j which are the plaquettes to the left and right of the edge
respectively (facing the direction of the arrow). Right: The lattice we introduced for the Hamiltonian Eq. 29.31 is dual to the
lattice on the left. Vertices are labeled and edges gi,j are directed from vertex i to vertex j. Middle: We have shown both the
lattice in the left panel (black) and the lattice in the right panel (blue) overlaid on each other. For simplicity we have dropeed
the edge labels and the arrows — except for a single bond which is labeled to show that when two edges of the two lattices
cross they are labeled with the same group element. A plaquette on the left becomes a vertex on the right and vice-versa.

on the vertices of the original model is identical to the operator Bp in-
troduced here which acts on the plaquettes of this model, whereas the
operator P̂β that acts on the plaquettes of the orginal model is identical
to the operator Ai which acts on the vertices here.
The plaquette defects in this model are plaquettes that violateBp (i.e.,

have eigenvalue of Bp of 0 rather than 1). These defects are plaquettes
that are not in “flat” configurations, and we can think of these plaquettes
as having “magnetic flux” through them. This lends these quasiparticles
the name “magnetic” as we mentioned in section 29.6. Correspondingly,
violations of Ai are known as “electric”. Quasiparticles that violate both
vertex and plaquette conditions are usually known as dyons.

29.8 Appendix: Two Expressions for Ground
State Degenracy on a Torus

Here we will show that Eq. 29.15 and Eq. 29.22 for the ground state
degeneracy give the same result.
First, we use Burnside’s lemma (see section 29.5) to calculate the

number of conjugacy classes of a group Z. Let the set X be the group Z
itself and the action of the group on this set is conjugation x → hxh−1

with x ∈ X = Z and h ∈ Z. The number of orbits of this action is the
number of conjugacy classes which is just
(

number of conjugacy
classes of group Z

)
=

1

|Z|
∑

h∈Z

(
number of x ∈ Z

that commute with h

)

(29.32)
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We now consider the sum in Eq. 29.22. We can write this sum over
classes as a sum over all group elements with each term in the sum
weighted by the inverse of the size of the conjugacy class.

∑

C

→
∑

g∈G

1

|Cg|

with |Cg| the number of elements in the conjugacy class of g. Then
using Eq. 29.32 along with the fact that the number of representations
of a group is equal to the number of conjugacy classes in the group (See
section 41.2.4), the sum in Eq. 29.22 may be written as

∑

g∈G

1

|Cg|
1

|Z(g)|
∑

h∈Z(g)

(
number of x ∈ Z(g)
that commute with h

)
(29.33)

Finally we use a well know theorem (Eq. 41.3) that given an element g
of a group G, the number of elements |Cg| in the conjugacy class of g
times the number of elements |Z(g)| that commute with g is equal to the
number of elements in the group |G|. I.e., |Cg| |Z(g)| = |G|. Thus since
Z(g) are the elements of G that commute with g, Eq. 29.33 becomes

1

|G|

(
number of triples g, h, x

which all commute with each other

)
(29.34)

in agreement with Eq. 29.15.

Further Reading

The original discussion of the Kiteav model is given by Kitaev [1997]
and is still a fairly good discussion.

A nice physical description of the quantum double of a group is given
by Preskill [2004]. Earlier work on the physics of the quantum double,
and the twisted quantum double, is given by de Wild Propitius [1995].
A detailed analytic discussion of the properties of the quantum double

of a group is given in Delcamp et al. [2017]; Delcamp [2017], including
a detailed discussion of the tube algebra.
A detailed discussion of the Kitaev model and how one might imple-

ment it in experiment is given by Brennen et al. [2009].
A discussion of condensations from the the Kitaev model (in the sense

of chapter 23) is given by Bombin and Martin-Delgado [2008] and also
Beigi et al. [2011]. These are also good general references about the
Kitaev model. Bais et al. [2003] describes condensations of the quantum
double of a group in a more abstract approach.
For modular data (S and T matrices) of twisted quantum doubles,

see Coste et al. [2000]. An explcit construction of a lattice model for
twisted quantum doubles is given by Hu et al. [2013a].
Some details of using the Kitaev model as an error correcting code
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are given by Cui et al. [2020].
The relationship between the Kitaev model and the Levin-Wen string

net (chapter ***) is given in Buerschaper and Aguado [2009].

The theories discussed in this chapter (discrete gauge theories) can
be generalized to 3+1 dimensions. This is discussed in some detail, in-
cluding a discussion of the higher dimensional tube algebra, by Delcamp
[2017]; Bullivant and Delcamp [2019].
Another generalization is to “higher” (or sometimes “higher-lattice”)

discrete gauge theories in 2+1 and 3+1 dimensions. In such a general-
ization, on assigns not only gauge variables on edges, but also a “higher”
gauge variable on the plaquettes. These are discussed by Bullivant et al.
[2017, 2020] and less abstractly by Huxford and Simon [2021].

Exercises

Exercise 29.1 Product of Groups
It is stated in section 29.1.2 that the code space of a Kitaev model for a

group G = G1 × G2 is the tensor product of the code spaces for a Kitaev
model built from group G1 and the code space for a Kitaev model built from
group G2. Prove this statement.

Exercise 29.2 Diagram Manipulation in the Kitaev Model

a

a

b b−1a = a

Fig. 29.23 A simple result of the three
allowed moves in Fig. 29.9. Compare to
Fig. 16.8 for example.

(a) Using the moves given in Fig. 29.9, derive the result shown in Fig. 29.23
for the Kitaev model.

(b) Derive the result shown in Fig. 29.11.
(c) Show that the value of the tetrahedral figure in Fig. 29.24 is unity if all

of the vertices are allowed, and is zero otherwise. In other words, show its
value is δdc−1,eδbc,f−1δb−1d1 ,a.

f cb

a d

e

Fig. 29.24 The value of this diagram
is δdc−1,eδbc,f−1δb−1d−1,a

Exercise 29.3 Mutating Lattices
(a) Show how to use the two moves given in Fig. 29.5 and 29.6 to achieve

the following deformation of the lattice:

gβ β′ ⇔ β ∪ β′

(b) Show that any lattice with a given topology may be mutated into any
other lattice with the same topology using the two moves given in Fig. 29.5
and 29.6. Hint: Remove edges one at a time until you are left only with
noncontractable loops.

Exercise 29.4 Kitaev Handle-Slide
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Use the diagrammatic rules to show the planar handle-slide identity shown
in Fig. 29.25 where Ω is the Kitaev Kirby-strand defined in Eq. 29.13. Note
that the × in the middle of the Ω loop should be thought of as a puncture in
the plane that prevents this loop from being contractable.

Ω̃×

g
= Ω̃×

g

Fig. 29.25 The planar handle-slide.

Exercise 29.5 Ground State Degeneracy of S3

Calculate the ground state degeneracy of the Kitaev model on a torus for
the group S3 by using Eq. 29.15.

Exercise 29.6 Kitaev Annular Projectors
Prove Eq. 29.19. Hint, use ρR(ab) = ρR(a)ρR(b) along with the grand

orthogonality theorem.

Exercise 29.7 Kitaev Model Twist Factor
Given the quasiparticle projection operator Eq. 29.18 and the twist oper-

ation on the |h, g〉 basis in Eq. 29.23, derive the twist factor in Eq. 29.26.
Why is the expression for the twist factor of unit magnitude? Hint: (i)
write the character χR as the trace of a matrix ρR as in Eq. 41.7 then use
ρR(ab) = ρR(a)ρR(b). (ii) You will also need Schur’s second lemma (see section
41.2.4).

Exercise 29.8 Kitaev Model Quasiparticle Torus Basis
Prove Eq. 29.21. You will need the grand orthogonality theorem Eq. 41.6

as well as hint (ii) from exercise 29.7

Exercise 29.9 Kitaev Model S-matrix
(a) [Easy] Using Eq. 29.28 give a simple expression for S0,0 = 1/D for

the Kitaev model for an arbitrary group G. Compare your result to that of
exercise 21.5.

(a) [Harder] Derive Eq. 29.28.

Exercise 29.10 Kitaev Model for S3

Calculate the T matrix and the S matrix for the group S3. Hint: You can
either use the explicit formulae (Eqs. 29.26 and 29.28) or you can use the
wavefunctions explicitly in Eqs. 29.23 and 29.27.

Answers:

particle [e, I ] [e, S] [e, V ] [X,+1] [X,−1] [R, 1] [R,ω] [R,ω−1]
θ 1 1 1 1 −1 1 ω−1 ω

S =
1

6

























1 1 2 3 3 2 2 2
1 1 2 −3 −3 2 2 2
2 2 4 0 0 −2 −2 −2
3 −3 0 3 −3 0 0 0
3 −3 0 −3 3 0 0 0
2 2 −2 0 0 4 −2 −2
2 2 −2 0 0 −2 −2 4
2 2 −2 0 0 −2 4 −2

























Exercise 29.11 Kitaev Model for the group Q8

[Harder] Calculate the T matrix and the S matrix for the group Q8. The
group description and the character table is given in section ??. You can make
a number of consistency checks on your answer using Eqs. 17.13, 17.20, and
17.17.
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Exercise 29.12 Modular relations for the Kitaev Model
(a) If a particle type is |[C,R]〉 for the Kitaev model as in Eq. 29.20, how

would you describe the corresponding antiparticle?
(b) Prove the modular group relations (Eq. 17.17) for the S and T matrices

of the Kitaev model. Hint: Apply these operators graphically as in Figs. 28.22
and 28.23 to the basis states |h, g〉 rather than to the basis states |[C,R]〉.





Doubled Semion Model 30
Medium Material

One of the simplest generalizations of the toric code is known as the
doubled semion model. As with the toric code, it can be considered as a
form of a quantum loop gas. However, additional signs are added to the
loop gas to twist the theory in the sense discussed in 29.4.1 (indeed, the
doubled semion model is the simplest case of a twisted Kitaev theory).
The doubled semion model is also a simple example of the Levin-Wen
string net model as we will discuss in chapter ***.
We managed to derive everything about the toric code by starting

with the skein rules (Eqs. 28.2 and 28.3) of the d = +1 version of the
Z2 fusion rule planar diagram algebra discussed in section 18.1.1. To
obtain the doubled semion model, we instead use the d = −1 version of
the Z2 fusion rule planar diagram algebra1 discussed in section 18.1.2: 1Here we are twisting (See section

29.4.1) the Z2 fusion rules by using the
nontrivial cocyle discussed in section
20.1.2.

= −1 (30.1)

= − (30.2)

The diagrammatic rules are thus changed so that each loop removal or
addition, and each surgery, incurs a minus sign. Note that these two
minus signs are consistent with each other because each surgery changes
the parity of the number of loops in the system. Note that these rules
were precisely the skein rules we used for the Kauffman invariant when
we considered semions (See section 18.1.2 for example). However, here
we are not inputting any rules about braiding, just the planar diagram
algebra.
From these rules we expect wavefunctions of the form

|ψ〉 =
∑

all loop configs that
can be obtained from
a reference loop config

(−1)number of loops |loop config〉 (30.3)

We can think of the prefactor (−1)number of loops as being the evalu-
ation of the loop diagram exactly as in Eq. 18.142.

2In the language of section 14.5 we are
performing a non-unitary evaluation of
this diagram, i.e., we are not using rule
0 which would give an additional minus
sign for each cap. We will fix this is-
sue in section 30.3 below. *** CHECK
THIS
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As with the toric code, there should be four ground states on the torus
corresponding to the different possible parities of blue strings around the
two cycles.

30.1 A microscopic model

We would like to build a microscopic model that implements this d = −1
diagrammatic algebra analogous to the way the toric code Hamiltonian
(Eq. 26.1) implements the d = +1 skein rules. We will once again work
on a honeycomb lattice3 although any trivalent graph will work just as3...which should not be called a lattice.

well. Again we put a spin on each edge, and color the edge blue if the
spin is down. Following our procedure for the toric code, we will impose
a vertex term (Eq. 25.1 in Eq. 26.1) that penalize any vertex with an
odd number of blue edges, such that any ground state wavefunction
must be made of closed loops. Again we want to have a plaquette term
which flips the state of the plaquette (analogous to Eq. 25.3), but each
flip must now come along with an appropriate number of minus signs.
To determine the sign, it is useful to look at a few cases, as shown in
Fig. 30.1.

⇔ Loop addition: Sign = −1

⇔ Isotopy (deformation): Sign = +1

⇔ Surgery: Sign = −1

⇔ Double Surgery: Sign = +1

Fig. 30.1 When flipping over a plaquette, the sign is −1 if the number of loops in
the system changes parity. A “leg” of the plaquette is one of the edges pointing out
of the plaquette, i.e., having only one end on a vertex of the plaquette (these are
drawn partially dotted in the figure). Let the number of blue legs of the plaquette
be L, which is always even as long as we have no vertex defects. The sign associated
with flipping the plaquette is −1 if L/2 is even and is +1 otherwise. This rule holds
for plaquettes with any number of sides.

As shown in the figure, there is a simple rule for determining the
sign accumulated for a plaquette flip. Given a plaquette which we want
to flip, a leg of the plaquette is an edge with only one vertex on the
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plaquette. The number of legs L that are blue is always even as long
as there are no vertex defects (loop ends) on the plaquette. The sign
associated with flipping the plaquette is −1 when L/2 is even and is +1
otherwise. Here we write this sign in several equivalent ways:

Sign = −(−1)
1
4

∑
i∈legs(1−σ(i)

z ) = −
∏

i∈legs

ei
π
4 (1−σ(i)

z )

= −(−1)
∑
j∈edges

1
4 (1−σjz)(1+σj+1

z )

noting that (1− σz) gives 0 for spin up and 2 for spin down (i.e., a blue
edge), and in the second line the edges j are counted in clockwise4 order 4We could equally well choose counter-

clockwise order.around the hexagon (and j = 6 is the same as j = 0).
With this information we can now write a plaquette operator for this

model

P ′
β =


 ∏

i∈ plaquetteβ

σ(i)
x


 ∏

i∈legs of β

ei
π
4 (1−σ(i)

z )

where the first term is the same as that of the toric code (Eq. 25.3) and
now we have included these additional signs.
The overall Hamiltonian for this model is then

Hdoubled semion = −∆v

2

∑

vertices α

Vα − ∆p

2

∑

plaquettes β

P ′
β (30.4)

which is identical to that of the toric code (Eq. 26.1) except for the
modification of the plaquette term to include the appropriate signs.

30.1.1 Magnetic String Operator

In the case of the toric code we showed how we can pull vertex (e) defects
apart from each other by successive application of a string of σx (See
section 25.4.1, and Fig. 25.10). Similarly we showed (See section 25.4.2
and Fig. 25.14)) that a (dual) string of σz operators could be used pull
plaquette operators apart from each other. Such strings are creatively
known as “string operators”. The key property of such operators is that
they only create excitations at the ends of the string, not along their
length — and indeed, the actual path that the string operator follows is
not measurable.

Fig. 30.2 In the doubled semion
model, the magnetic string operator ap-
plies σz to the dark green edges which
cut through the bright green path on
the dual lattice.

The analog of the magnetic string operator is quite straightforward.
As with the toric code, one draws a path on the dual lattice (bright green
in Fig. 30.2) and applies σz to every edge that this dual string crosses
(dark green in Fig. 30.2). Since, except at the end of the string, each
plaquette has an even number of σz ’s applied, this string operator com-
mutes with the Hamiltonian, and hence does not create any excitations
except at the string ends.
There are two more possible string operators corresponding to two

other quasiparticle types (as mentioned above, there are four ground
states on the torus, so we expect four quasiparticle types including the
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vacuum). These, however, are more complicated, and we defer their
discussion to the more general case in chapter *** below.55A particularly nice form of these string

operators is given in ?. In that work
the Hamiltonian is slightly modified so
that the ground state wavefunctions are
unchanged, but excitations are (topo-
logicallly the same but) simpler than in
most works. As such the string opera-
tors can have a lot of convenient prop-
erties.

30.2 Attempted Graphical Analysis

Let us attempt to follow the graphical methods of section 28.2-28.4 to
determine the quasiparticle types and their properties (We will discover
a complictation here!). The graphical algebra is similar to that of the
toric code, however, signs are incurred from loop addition/subtraction
and surgery. We have four basis states on the annulus, given in Figs. 30.3
and 30.4 (which are equivalent to Figs. 28.7 and 28.9 for the toric code
except for the added minus signs!).

|0, 0〉 = = − =

|0, 1〉 =

Fig. 30.3 The two equivalence classes of states on the annulus where no lines
intersect the boundary. In the top line, a minus sign is added with the loop addition
going to the middle figure, then another minus sign is obtained from the surgery
(marked by the arrow) going to the right picture.

|1, 0〉 = = − = −

|1, 1〉 = = −

Fig. 30.4 The two equivalence classes of states on the annulus where one blue line
intersects each boundary. The two equivalence classes of states on the annulus where
no lines intersect the boundary. In the top line, a minus sign is added with the loop
addition going to the middle figure, two more minus signs are obtained from two
surgeries going to the right picture at the position of the arrows. In the bottom line
a minus sign is obtained from surgery at the position of the arrow.
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We can now consider the multiplication or composition of states anal-
ogous to that discussed in section 28.2.2, that is, putting one annu-
lus inside another. The multiplication table, Table 30.1, is entirely
the same as that for the toric code (Table 28.1) except for one entry:
|1, 1〉◦ |1, 1〉 = −|1, 0〉. To understand this, we imagine putting one |1, 1〉
state inside another, and we obtain a picture like the far right of the top
line of Fig. 30.4, which now differs from |1, 0〉 by a minus sign.

◦ |0, 0〉 |0, 1〉 |1, 0〉 |1, 1〉
|0, 0〉 |0, 0〉 |0, 1〉 • •
|0, 1〉 |0, 1〉 |0, 0〉 • •
|1, 0〉 • • |1, 0〉 |1, 1〉
|1, 1〉 • • |1, 1〉 −|1, 0〉

Table 30.1 The multiplication table for
composing annuli for the doubled semion
model. The • indicates a composition
which is not allowed due to non-matching
boundary conditions.

With this multiplication table, we can construct the projectors to
determine the four quasiparticle types:

Oα =
1

2
(|0, 0〉 − |0, 1〉) = 1

2

(
−

)
(30.5)

Oβ =
1

2
(|0, 0〉+ |0, 1〉) = 1

2

(
+

)
(30.6)

Oγ =
1

2
(|1, 0〉 − i|1, 1〉) = 1

2

(
− i

)
(30.7)

Oδ =
1

2
(|1, 0〉+ i|1, 1〉) = 1

2

(
+ i

)
(30.8)

Here we have named the particle types α, β, γ, δ. Since the ground
state is a superposition of flipped and unflipped with a minus sign (since
addition of a loop includes a sign), we tentatively identify particle α
(Eq. 30.5), as the identity I. (We can also confirm this with a calculation
analogous to Fig. 28.16 see exercise 30.1). This superposition can again
be thought of as a Kirby string Ω̃ being put around the annulus6. 6There are two types of particles in the

Z2 loop gas, the vacuum and the non-
trivial particle (the blue string). We
weight each by its value of d/D2 with
D =

√
2. Here we use d rather than

|d| = d in the definition of the Kirby Ω̃
string (Fig. 17.10) because we are per-
foming a nonunitary evaluation of the
loop diagram. See note 27 of chapter
17, as well as note 2 of this chapter.

Particle β (Eq. 30.6) is the projector orthogonal to the ground state
within the space having no blue lines intersecting the boundaries of the
annulus. The two projectors with blue lines intersecting both boundaries
are γ (Eq. 30.7 and δ (Eq. 30.8).

θ̂|1, 0〉 = θ̂ = = |1, 1〉

θ̂|1, 1〉 = θ̂ = = − = −|1, 0〉

Fig. 30.5 Twist deformations of the |1, 0〉 and |1, 1〉 states. The inner boundary
is rotated counterclockwise while the outer boundary is held fixed, analogous to
the deformation shown in Fig. 28.13. In the second line we have used the surgery
equivalence as shown in Fig. 30.4.

We can proceed to calculate the twist factors for each of these parti-
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cles. As in the case of the toric code (section 28.3), the twist operator θ̂
leaves |0, 0〉 and |0, 1〉 unchanged, implying that θI = θm = 1, i.e., these
are bosons. Again as with the toric code θ̂|1, 0〉 = |1, 1〉. However, in
contrast to the bottom of Fig. ??, we have θ̂|1, 1〉 = −|1, 0〉 as shown in
Fig. 30.5.
Knowing now how θ̂ acts on |1, 0〉 and |1, 1〉 we can use this operator

onOγ and Oδ as given in Eq. 30.7 and 30.8 obtaining θγ = i and θδ = −i.
Let us now let us try to counter-clockwise exchange two γ particles as

shown in Fig. 30.6. (This is analogous to the exchange of quasiparticles
in Fig. 28.15 for the toric code.) We wrap the right γ around the left, we
then comparing the second line in Fig. 30.6 to the first line to determine
the overall braiding phase. Indeed, these two lines are equal up to a
phase. To determine the phase, let us look, for example, at the left most
picture in the second line of Fig. 30.6. Surgering where the small black
arrow points picks up a minus sign as in Eq. 30.2 and gives us a figure
precisely like the second picture on the first line. Looking now at the
prefactors we see that the second line is −i times the first line. This
tells us that the exchange phase is Rγ,γI = −i.

1
4 [ −i −i − ]

⇓Exchange

1
4 [ −i −i − ]

Fig. 30.6 Calculation of the phase accumulated from exchanging two γ particles.
The upper line represents two γ quasiparticles, one in each hole (Compare Eq. 30.7).
The holes are exchanged, braiding the blue lines in the process. Using surgery and
loop addition/removal (the moves of Eq. 30.1 and 30.2) one can show the lower line
is precisely −i times the top line showing an exchange phase of −i. For example, the
first term in the second line is equivalent to the second term in the first line times
−i.

Unfortuantely, this result tells us that there is a hidden problem. If
we compare θγ = i and Rγ,γI = −i we see that this agrees with Eqs. 15.2
and 15.3 only if we take dγ = −1 with zig-zag phase of ǫγ = +1 (we
would find similarly dδ = −1 although dβ = +1). I.e., the resulting
theory is isotopy invariant but nonunitary! We will discuss this issue
further in a moment, but first let us briefly consider a few other graphical
calculations we might try.

× α β γ δ

α α β γ δ

β β α δ γ

γ γ δ α β

δ δ γ β α

Table 30.2 The fusion rules for the
nonunitary doubled semion model.

First, we can use the graphical techniques of section 28.5 to determine
the fusion properties of the quasiparticles. Working out the details of
this is assigned as Exercise 30.1, with the result being given in Table
30.2. (This answer is actually correct and does not suffer from the fact
that we are using d < 0).
Secondly, we can attempt to calculate the S-matrix using the tech-
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nique of section 28.4. The equations Eq. 28.12-28.14 are unchanged.
However, in Eq. 28.15 there is minus sign accumulated from the surgery
(Eq. 30.2). Determining how this S now acts on the basis states (Eq. 30.5-
30.8) gives us the S-matrix (See exercise 30.3). What we find is that
SI,γ and SI,δ are both negative — this is not surprising considering that
we already established dγ = dδ = −1.
One can define a unitary (2+1) TQFT from this non-unitary theory

by implementing the cap-counting technique of section ?? (Option “B”
from section 14.2). In this case twist factors can change sign due to
the cap in the twist (Eq. 15.1), and the elements of the S-matrix also
become change sign due to the caps in loops (Eq. 17.5). In particular
we get

θunitarya = sign(da)θ
nonunitary
a

Sunitary
ab = sign(da)sign(db)S

nonunitary
ab

The fact that we obtained a nonunitary TQFT from our diagrammatic
reasoning is a reflection of the fact that we are working with negative
d, and we do not have a unitary diagram algebra. Does this mean our
original Hamiltonian is defective? No! In fact the orginal Hamiltonian
we wrote down is perfectly well behaved and the resulting ground state
is actually that of the unitary TQFT. What went wrong here is our
attempt to follow diagrammatic reasoning with a nonunitary diagram
algebra!

30.3 Gauge Choice and Unitary Diagram

Algebra

The diagrammatic d = −1 version of the Z2 loop gas that we chose to
work with (Eqs. 30.1 and 30.2) corresponds to a nonunitary quantum
theory. While this makes for a simple diagrammatic theory, the results of
our diagrammatic calculation correspond to a nonunitary TQFT which
is unacceptable. However, it turns out that the ground state (and low
energy excited states) of the Hamiltonian Eq. 30.4 are perfectly well
behaved unitary TQFTs. What did we do wrong here?
As discussed in section 16.1.3 (see also section 14.5 and 14.2) we can

convert our nonunitary diagrammatic algebra into a unitary algebra with
two simple steps:

(0’) We must break symmetry of the plane, choosing a special direction
(often up on the page) which we call “up”.7

(0) Before evaluating a diagram, count the number of (blue) caps, and
call it n. After fully evaluating the diagram (using the nonunitary
rules with d = −1) multiply the final result by (−1)n.

Here a “cap” is where a blue line experiences a maximum point (with
respect to the chosen up direction). This is shown in Fig. 30.7 and 30.8.

Fig. 30.7 To unitarize the d = −1
version of the Z2 loop gas, we assign a
minus sign to each cap. A cap is a point
where the blue line reaches a maximum
such as on the left, but not the right.

Fig. 30.8 On the honeycomb, a cap
configuration is as on the left. The right
vertex can never be a cap no matter
which edges are colored blue.
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We can thus modify our wavefunction Eq. 30.3 to the form of Eq. 30.9

|ψ〉 =
∑

all loop configs that
can be obtained from
a reference loop config

(−1)number of loops + number of caps |loop config〉

(30.9)
Comparing this to Eq. 18.15 we see that the prefactor sign of the ket is
just the unitary evaluation of the loop config diagram.
What does this change do to the ground state? Actually it is nothing

more than a gauge change! It is a local rule that associates an extra
minus sign to certain wavefunctions. This may seem odd that we are
allowed to do this, being that in section 14.2 we concluded that we cannot
generally remove minus signs from nonunitary theories with negative d
by gauge change. However, the context here is different. In section 14.2
we were concerned with theories in space-time (say, 1 + 1 dimensions or
2+1 dimension). In that case time is drawn vertically and it was crucial
that a cup (right of Fig. 30.7) is the Hermitian conjugate of a cap (left
of Fig. 30.7). This prevented us from making a gauge change of the cup
and cap independently. Here, however, we are considering wavefunctions
that live in a 2+0 dimensional plane — no direction is meant to be
time. We are thus free to associate a minus sign with the cap, but
not the cup, and this is just a gauge change on the wavefunction!8 The8More general “gauge” transforms of

this type are explored in Refs. Lin and
Levin [2014]; Lin et al. [2021].

reason we made this transformation is that we wanted to have a simpler
diagram algebra, but underneath (in a different gauge) we were actually
describing a unitary model.
We now want to consider re-doing the diagram algebra of section 30.2

only being careful to use the unitary version of this diagram algebra.
Here we have to be careful to keep track of which direction is “up” on
the page and whenever we introduce a cap, we should also include a
minus sign.
Examining Eq. 30.9 we see the ground state is now a superposition

of loops with the sign arranged such that a loop with a single cap has
a sign of +1, and each zig-zag (or cap) added to the loop incurs an
additional minus sign. Thus the ground state projector, the identity
particle type I, here should be particle type β from Eq. 30.6 rather than
particle type α as we used before. (We can again confirm this with a
calculation analogous to Fig. 28.16, only here we need to be careful with
our diagrammatic algebra to include minus signs for caps! See exercise
30.1). The α particle is then the orthogonal to the ground state in the
space having no blue lines intersecting the boundary of the annulus.
Often this particle is called “magnetic” or m.
We can continue on to calculate twist factors. Examining Fig. 30.5

we see that these twists change the parity of the number of caps. Thus
again θ̂ leaves |0, 0〉 and |0, 1〉 unchanged but now

θ̂|1, 0〉 = −|1, 1〉 θ̂|1, 1〉 = |1, 0〉 (30.10)

This allows us to evaluate the twist factors θI = θm = 1(= θβ = θα) and
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θγ = −i and θδ = +i.
The procedure of Fig. 30.6 remains correct as it is written (the braiding

procedure does not introduce any new caps) so we again have Rγ,γI = −i
(and Rδ,δI = i). This combination this Rγ,γI = θγ now agrees with
Eqs. 15.2 and 15.3 for a positive dγ which is what we should expect for
a unitary theory!
We can further go on to use techniques analogous to Fig. 28.16 to

calculate the full fusion table for this model (See exercise 30.1) with the
results given in table 30.3.

× β α γ δ

β β α γ δ

α α β δ γ

γ γ δ β α

δ δ γ α β

Table 30.3 The fusion rules for the uni-

tary doubled semion model.

In addition we can use the techniques of section 28.4 (and section
28.6) to directly calculate the S matrix (with columns ordered β, α, γ, δ)

S =
1

2




1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 1 −1 −1


 . (30.11)

which can also be derived using Eq. 17.20 along with the twist factors
and fusion relations we just derived.

30.3.1 Doubled Semions

Having worked out the details of this unitary theory we recognize the
final result as simply the direct product of a left-handed semion theory
and a right-handed semion theory. Recall from section 18.1.2 that a
right handed semion theory has particle types 0R and 1R, fusion rule
1R × 1R = 0R and R1R1R

0R
= θ1R = i and is equivalent to the Chern-

Simons theory SU(2)1 (Crucially the nontrivial particle has negative
Frobenius-Schur indicator). The left handed theory has particle types 0L
and 1L, fusion rule 1L×1L = 0L and R1L1L

0L
= θ1L = −i and is equivalent

to the Chern-Simons theory SU(2)1 = SU(2)−1. The doubled semion
theory is thus

Doubled Semion Theory = SU(2)1 × SU(2)1

The product (See section 8.5) of the two theories means that each par-
ticle from the doubled semion theory is a combination of one particle
from each of the constituent factors. Thus we have

I = β = (0R, 0L) ; δ = (1R, 0L) ; γ = (0R, 1L) ; m = α = (1R, 1L)

The fusion and braiding relations are inherited from the constituent
theories as described in sections 8.5, ??, and ??. For example, it is easy
to check that the simple 1 × 1 = 0 fusion rules of each factor gives the
given the fusion Table 30.3 for the doubled model.
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30.4 Comments

It is interesting that we used the skein rules for a model of semions (Eqs.
30.1 and 30.2) to build our loop gas, and we got out both right and left
handed semions. This is perhaps to be expected, since nowhere in our
input rules did we ever break “time-reversal” or say whether the original
theory was right or left handed — it comes out to be both!
This priniciple is very general. If we start with any anyon theory with

a braiding, then we throw away the braiding and just use it as a planar
diagram algebra to build a quantum loop (not putting in any of the
braiding relations) we will get out the doubled theory, meaning it has
both right and left handed versions of the braided theory. We will see
this in more detail in chapter 31.

Further Reading

Double Semion, first written by Levin-Wen; also Freedman et al. Also
picture TQFT paper.

Exercises

Exercise 30.1 Fusing Quasiparticles in the Doubled Semion Loop Gas
Use the technique of section 28.5 to deduce the full fusion table for the

doubled semion model.
(a) First try using the d = −1 algebra from section 30.2.
(b) Now try the unitary version of this algebra in section 30.3.

Exercise 30.2 Braiding Quasiparticles in the Doubled Semion Loop Gas
Use the technique of section 28.5 to calculate the R-matrix for the doubled

semion model.
(a) Show that wrapping an sL all the way around an sR gives no phase.
(b) Show that wrapping an m particle around either an sL or an sR gives

a phase of −1.
(c) Show that wrapping an m particle around another m particle gives no

phase.
(d) [Harder] Use the technique of section 28.5 to calculate the phase from

exchanging two sL particles and the phase for exchanging two sR particles.
In this part of this problem you will get an incorrect sign if you work with the
non-unitary theory (d < 0).

Exercise 30.3 S-Matrix of Doubled Semion Model
(a) Use graphical reasoning as in section 28.4 to calculate the S-matrix of

the (nonunitary) d = −1 loop gas. As discussed at the end of section 30.2, we
will find SI,sL and SI,sR to be negative!

(b) Use graphical reasoning as in section 28.4 to calculate the S-matrix
of the unitary doubled semion model. Here we must be particularly careful
when we convert the states on an annulus to one on the torus that we do
not mistakenly create caps. If we use a geometry where lines follow the paths
shown in Fig. 30.9, we can write basis states where we have exactly the same
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number of caps as we have on the annulus. For example, the basis state |0, 1〉
from Fig. 30.3 maps onto this torus by coloring the red and green lines blue
(and removing the black lines). This gives a blue line going around the handle
of the torus, with exactly one cap, just as in Fig. 30.3.

Fig. 30.9 Lines on a torus. If we let
our lines follow the colored paths on
the torus, our basis states will have the
same number of caps as the basis states
when written onthe annulus





Levin-Wen String Net 31
Medium Material

The theme of the last few chapters has been to build up topological
models from diagram algebras. One of the most general constructions of
this type is the Levin-Wen1 string net model. The input information for 1This very general model is quite cru-

cial to topological ideas. It was in-
troduced by Levin and Wen [2005].
Michael Levin was a graduate student
at the time. Xiao-Gang Wen is one of
the founding figures in the field of topo-
logical condensed matter physics. He
started his physics career as a student
of Ed Witten.

building this model is a (unitary) planar diagram algebra as we discussed
starting in chapter 12 and in more detail in chapter 14. More formally
we say that we input a so-called spherical tensor category. The output
of this model will be a quantum system described by a (modular) TQFT
known as the Drinfel’d double or Drinfel’d center (or sometimes just the
quantum double) of the input category.
The toric code (including the ZN toric code) and the doubled semion

model are special simple cases of the Levin-Wen string net model. The
Levin-Wen model can also be shown to be essentially equivalent to the
Kitaev model as well, after a fairly simple tranformation2 As such, this 2The connection between Levin-Wen

and Kitaev is explored in detail by
Buerschaper and Aguado [2009]. In
short, instead of describing edges by
their group elements, one makes a
transformation akin to a Fourier trans-
form to describe the edge by its rep-
resentations. The equivalence between
these two descriptions of the same
model is an example of a Morita Equiv-

alence.

chapter brings together many of the ideas we have run into since chapter
25.
In the cases where the input diagram algebra can be given a braiding,

such that resulting input theory plus the braiding is a modular anyon
theory, the Drinfel’d double of this input theory is then simply two copies
of the input modular anyon theory — one right handed copy, and one
left handed copy. We saw this in the case of the doubled semion model
in chapter 30. The planar algebra we put in could be given either a
right-handed braiding to become a right-handed semion TQFT. or a left-
handed braiding to become a left-handed semion TQFT. The Drinfel’d
double of this planar algebra, the outcome of the string net construction,
is then just the product of the left and right handed semion theories as
we saw in section 30.2.
In the case of the toric code, however, while the input Z2 planar

diagram algebra can be given two possible braidings (either bosonic or
fermionic, see section 18.1.1), neither braiding is modular. As such,
the TQFT that arises from the Drinfel’d double, i.e., the toric code,
does not factorize into a simple left-handed times right-handed theory.
However, the two possible braidings, bosonic and fermionic, are two of
the resulting particle types of the toric code.
More generally a planar diagram algebra (a spherical tensor cate-

gory) may not have any braidings at all3 (i.e., no R-matrix satisfies

3The simplest such examples are given
by Hagge and Hong [2009]. These theo-
ries have three particle types I, x, y and
fusion rules x × x = 2x + y + I and
x×y = y×x = x and y×y = I. There
are several possible solutions of the pen-
tagon equation, but none of these admit
a solution of the hexagon equation.

the hexagon equation with the given F -matrices). Nonetheless, all such
planar diagram algebras used as an input to a string-net model generate
Drinfel’d doubles that are valid modular anyon theories.
Given a planar diagram algebra, such as those described in chapters

14 or 16 we would like our ground state wavefunction to be a sum over
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all diagrams which are equivalent via the set of allowed diagrammatic
manipulations. We thus indend ground state wavefunctions of the form

|ψ〉 ∼
∑

all diagrams that can be
obtained from a reference
diagram via allowed moves

W (diagram) |diagram〉 (31.1)

where W (diagram) is the weight of the diagram, which we determine
simply by making an evaluation via the diagrammatic rules. So for
example, if we have a theory with a particle type a having quantum
dimension da, if we add a contractable loop of type a to a diagram the
weight W of the diagram is multiplied by4 da = |da| as indicated in

4Here we are assuming a unitary dia-
gram algebra so the value of a loop is
always positive (i.e. if da < 0 we apply
rule 0 from section 14.5). The construc-
tion of the doubled semion model in
chapter 30 shows us that, when we have
da < 0, we could alternately choose to
work in another gauge by not invoking
rule 0 so that the value of a loop is neg-
ative and our planar diagrammatic al-
gebra is not unitary. However, this is
actually equivalent to to working with
a unitary diagram algebra. See in par-
ticular the discussion of section 30.3.

Figs. 14.3 or 16.5.

31.1 Microscopic Hamiltonian

We would like to construct a microscopic Hamiltonian on a (regular or
irregular) lattice which will implement the diagrammatic planar algebra
– i.e., whose ground state space is described by wavefunctions of the
form of Eq. 31.1.
As usual, we here assume a trivalent lattice. For simplicity we might

often assume a honeycomb, but any trivalent lattice, even a disordered
trivalent graph, works just as well. Edges are labeled with the possible
quantum numbers of the planar diagram algebra. Unless a quantum
number a is self dual (a = ā) then the edges must be labeled with arrows
to indicate a direction. Reversing the direction of an arrow changes a to
ā as shown in Fig. 31.1. If there are fusion multiplicities N c

ab > 1 then
vertices between three edges with labels a, b, c must also carry labels
µ ∈ 1, . . . , N c

ab. For simplicity we will usually assume all N c
ab ≤ 1 so

there are no vertex indices, although it is fairly easy to extend to the
more general case.

a = ā

Fig. 31.1 Reversing an arrow on an
edge takes the particle type to its an-
tiparticle.

31.1.1 Fat Lattice Construction

As we have discussed starting with the toric code, it is often useful to
think on the continuum instead of thinking about degrees of freedom on
the lattice. We were quite cavalier about doing this, and even mixed the
lattice and continuum descriptions sometimes (such as in Fig. 29.12).
Here we will make this idea a bit more formal with a construction due
to Levin and Wen [2005], known as the “fat lattice”. Our microscopic
model will be defined on a trivalent graph, and we add an × in the
middle of each plaquette which we interpret as some sort of “puncture”
in the manifold5. We now allow ourselves to draw diagrams with particle5The construction is known as “fat lat-

tice” because we think of the entire re-
gion between two marked punctures as
being the result of taking the edge be-
tween the punctures and fattening it
until it fills all the space between the
punctures.

lines that may or may not be on the edges of the graph. To interpret
these lines for the physical system on the lattice, we deform the diagram,
using our diagrammatic rules, until all of the lines lie on the lattice. (We
sometimes say we “push” the diagram onto the lattice). In this process
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a b
=
∑
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√
dc
dadb ×

×

× ×
×
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a
a b

b

c
a b
a

aa
b

b
b

Fig. 31.2 Converting a contiuum diagram on the “fat lattice” (left) to a diagram
on the lattice (right). The lines are deformed (isotopy) to sit on the lattice edges.
For the edge marked c, we need to use the diagrammatic completeness rule (Fig. ??)
which accounts for the sum over c and the prefactor.

we use our diagrammatic equivalence rules, but we are not allowed to
cross any lines over one of the marked×’s. This procedure is well defined
in the sense that there is a unique lattice configuration corresponding
to each continuum diagram we draw. An example of this procedure is
shown in Fig. 31.2.

31.1.2 Vertex and Plaquette Operators

We introduce a vertex operator at vertex α as

V̂α





 = δ(a, b, c)







a

b
c

α
a

b
c

α (31.2)

where

δ(a, b, c) =

{
1 if (a, b, c) is an allowed vertex (Nabc = N c̄

ab > 0)
0 otherwise

Here V̂α is a projector (it has eigenvalues of 0 and 1 only).
Analogous to the plaquette term in Eq. 29.12 for the Kitaev model,

we graphically represent a plaquette operator as the introduction of an
Ω̃ loop (See Fig. 17.10).

P̂β






=







β ×Ω̃ (31.3)

In the spirit of the fat lattice construction, the × in the middle of the
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Ω̃ loop should be thought of as a puncture so that the loop may not be
contracted. To find the action of this operator of the edge variables, one
should “push” the Ω̃ strand into the edge, by using the diagram rules
to fuse it into the edge variables. While one can write an explicit form
of this operator in terms of the effect on the quantum numbers on the
edges, it is not particularly enlightening to do so at this point, so we
defer this exercise to Appendix 31.4.
Recall now the handle-slide property of the Ω̃ strand shown in Fig. 31.3,

which we originally derived in Fig. 22.10. This move allows us to quickly
show that

Ω̃×

a

= Ω̃×

a

Fig. 31.3 The handle-slide identity.
P̂ 2
β = P̂β (31.4)

since

× = =× × (31.5)

where in the first step of Eq. 31.5 we use the handleslide (Fig. 31.3 and
in the second step we use the fact that a contractable loop of Ω̃ evaluates
to unity (see Fig. 17.10). Eq. 31.4 indicates the P̂β is a projector, having
eigenvalues of 0 and 1 only.
Further because the planar diagram algebra is already known to be

self-consistent (i.e., it does not matter in which order we do moves to
evaluate a diagram) and that diagrammatic moves starting with an al-
lowed fusion diagram never generate unallowed diagrams, we can quickly
conclude that all of the V̂α and P̂β operators commute with each other.

31.1.3 Levin-Wen Hamiltonian

Our Hamiltonian is then written in a now familiar form

HLevin−Wenmodel = −∆v

∑

verticesα

V̂α − ∆p

∑

plaquettesβ

P̂β (31.6)

with ∆v and ∆p both positive. The vertex term simply enforces the
condition that all vertices have edges corresponding to allowed fusions
of the planar diagrammatic algebra. The plaquette term allows the edge
variables to fluctuate dynamically. The key here is that if we are in a
ground state of the system then P̂β = 1 for all plaquettes, so that when
we draw a diagram in the fat-lattice picture, we can surround each ×
with an Ω̃ loop. However, due to the handle-slide identity (Fig. 31.3) our
diagrammatic lines may now be freely deformed over the × punctures.
As a result we may now use our diagrammatic rules entirely freely on
the manifold ignoring the punctures entirely. This then enforces that
the ground state wavefunctions must be of the form shown in Eq. 31.1.
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β1 β2

β4 β3

b

a

d

c

e ⇔ ∑

f

F abdcef

β1 β2

β4 β3

b

a

f

c

e

Fig. 31.4 The F -move that can be performed on the lattice to change its micr-
soscopic structure while preserving the global topology. There is a (unitary) iso-
morphism between states under this transformation showing that, for example, the
ground state degeneracy depends only on the topology of the system.

a

β ⇔
a a

β1
b

c

β2

Fig. 31.5 The plaquette addition move that can be peformed on the lattice. The
stem of the tadpole must be labeled with the identity. The β2 plaquette (the h loop)
is then put into the ground state and then the β1 plaquette acts exactly as the β
plaquette on the left.

The reasoning here is subtle. We needed to puncture the plane so
that we had a mapping from continuum diagrams on the fat-lattice to
quantum numbers on the lattice. But then the plaquette operators tell
us that we can freely deform over these punctures in a ground state
wavefunction and may then apply all diagrammatic oprations to our
wavefunctions.

31.1.4 Ground State is Topological

As with the the other diagrammatic models we have encountered, the
toric code, the Kitaev model, and the doubled semion model, the ground
state of this Hamiltonian is topological — meaning that it does not de-
pend on the detailed geometry of the lattice, but only on the topology
of the underlying manifold. The proof of this statement follows very
closely the discussion of section 29.3 for the Kitaev model. We will
briefly outline the argument here; a more detailed discussion is given by
Hu et al. [2012]. The strategy here is to show that there is a simple one
to one mapping between ground state wavefunctions on one lattice struc-
ture and those on a second lattice structure which has been altered (or
“mutated”) locally without changing the overall topology of the surface.
The elementary moves we need to consider are shown in Figs. 31.4

and 31.5. Fig. 31.4 is simply an F -move (compare Fig. 16.3). Note that
here we are not just changing the quantum numbers on the edge, but we
are also restructuring the underlying lattice. Nonetheless it provides a
unitary transformation between states on the left and right of the figure.
Fig. 31.5 is the splitting of a plaquette β into two plaquettes β1 and β2.

Unsurprisingly the stem of the tadpole (labeled k) can only be labeled
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with the identity or the plaquette operator P̂β2 will vanish. The unique
ground state of P̂β2 is then simply a Ω̃ loop around the edge labeled b.
The Ω̃ loop in the operator P̂β1 can then be handleslid over the Ω̃ loop
of P̂β2 to be become exactly like the operator P̂β thus showing that the
ground state on the right of Fig. 31.5 is the same as that on the left
multiplied by the trivial Ω̃ loop around β2 (analogous to Eq. 29.10).

Ground State on a Sphere

We can then establish, analogous to the case of the Kitaev model, that
the ground state on a sphere is nondegenerate. To do this we choose the
simplest lattice decomposition of the sphere (See Fig. 29.7 with a single
vertex, a single edge forming the equator (connected to the single vertex
at each end) and two plaquettes — one covering the north hemisphere
and one covering the south hemisphere. The vertex condition is always
satisfied (having the same quantum number going out as coming in)
and the two plaquette operators are identitical to each other. Thus
the ground state is the unique state given by the +1 eigenstate of the
plaquette operator which is just ∼∑s ds|s〉. I.e., the wavefunction is a
Ω̃ loop around the single edge.6

6The doubter might object that we
have used a vertex with only two
edges meeting it whereas we defined
the model to have only trivalent ver-
tices. If we want to be not cheat,
we could use a decomposition of the
sphere with two (trivalent) vertices,
three edges, and three plaquettes. By
using F moves if necessary, this can
be restructured into two connected tad-
poles living on the surfact of the sphere,

The connecting line in the middle must
be labled with the identity, leaving us
just a bunch of Ω loops for the plaque-
ttes, which have unique ground states.

31.2 Braidings of the Input Category and
String Operators of the Double

The general construction of quasiparticles for the Levin-Wen model can
be quite complicated. However, in cases where the input category has a
solution to the hexagon equation (i.e., has a braiding), certain quasipar-
ticle string operators can be deduced trivially. Further in cases where
the input category is modular all of the quaisparticle string operators
can be deduced.
Recall that the definition of string operator is an operator that can

be detected only at its ends — i.e., when operating on the ground state,
it creates no defects except at its ends.
Let us suppose there exists a solution to the hexagon equation for

the input category. This means we can give a diagrammatic meaning
to over- and under-crossings. We construct a string operator graphi-
cally by imagining that we add a string from the input category either
over or under the plane of the system. Then we operate on the edges
of the physical system by fusing this string into the edge variables of
lattice using the diagrammatic rules. An explict example of turning this
diagrammatic prescription into an operation on the lattice is given in
Appendix 31.4.2. Here it is crucial to realize that the operator we are
considering acts entirely on the two dimensional system – the diagram
of a string above or below the lattice is simply a way to encode what
operations we perform on the lattice variables.

a b

Fig. 31.6 Quasiparticle string opera-
tors represented as being strings in di-
agrams that go either above or below
the plane of the system.

Since the diagrammatic rules (including the braiding rules) are self-
consistent, we are allowed to make diagrammatic transformations with-
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out changing the value of the diagram. In particular we can freely de-
form the figure, by sliding the string around the lattice. This means
it cannot cause any defects to either the vertex or plaquette operators
along its length (This is the very definition of a string-operator – that
it does not create defects except at its ends). A string operator that
forms a closed contractable loop can be shrunk down to a very small
loop and removed with the usual diagrmmatic rule (Fig. 16.5), thus the
closed loop acts trivially on the ground state (except possibly giving a
constant depending on how we normalize the operator).
For a string operator which is a strand with ends, we must have a

violation of the diagrammatic rules at the ends of the string. Recall
that in diagrams if a particular quantum number comes into a region,
that quantum number must also leave the region. (See for example, the
locality constraint in Fig. 8.7). A string that comes to an abrupt end
must violate this condition. Thus we expect that the system will locally
not be in the ground state at the position of a string end.
We will now consider two examples of such string operators that we

have already seen (albeit in different language).

31.2.1 Toric Code

In the toric code (section 28.1) the planar diagram algebra is the Z2

loop gas with d = +1. There are two possible solutions of the hexagon,
worked out in section 18.1.1, the boson and the fermion. It is not a
coincidence that the quasiparticle types of the toric code include a boson
and a fermion!

Fig. 31.7 The blue string above the
lattice is a string operator that we will
fuse into the lattice at the position of
the red line. If we choose the blue string
to have bosonic braiding statistics then
it simply flips the spins along the red
line, creating vertex defects at the ends
of the red line. If we choose the blue
string to have fermionic braiding statis-
tics, then it measures the spins along
the green lines before flipping the spins
along the red line. The measurement
of the green spins creates plaquette de-
fects, whereas the flipping of spins cre-
ates vertex defects. The combination of
these two is a fermionic quasiparticle.

Let us consider the bosonic solution first. The boson braids trivially
(R11

0 = 1 in section 18.1.1) so we only need to think about fusing this
string operator into the lattice In Fig. 31.7 we show such a string oper-
ator (blue) above7 the toric code lattice (chosen to be a square lattice

7In this case it does not matter whether
we think of the blue line as being above
or below the lattice plane.

here for simplicity). Fusing this blue line into the lattice at the position
of the red path, simply flips the spins along this red path. This is exactly
the string operator for the (bosonic!) vertex defects that we introduced
in section 25.4.1.
We can also consider the fermionic solution of the hexagon. The

fermion has braiding R11
0 = −1 meaning that we accumulate a minus

sign every time the string (blue in Fig. 31.7) crosses over an edge of
the lattice which itself is colored blue (meaning the spin on that edge
is pointing down in the notation of chapter 25). Thus before fusing the
blue string into the red path, we measure the state of the edges marked
green in Fig. 31.7 and get a minus sign for each green edges where the
spin is in the down position. This is precisely the action of the string
operator that creates the plaquette defects that we introduced in section
25.4.2. One we have introduced the appropriate minus signs we must
also fuse the string into the red path, which then flips the spins along
this line. Thus the net effect of string operator is the product of the
plaquette defect string and the vertex defect string, which we recall is
the fermionic quasiparticle!



440 Levin-Wen String Net

Thus the bosonic string operator corresponds to the vertex defect
boson, and the fermionic string operator corresponds to the fermionic
quasiparticle. The fusion of these two quasiparticles together would give
the plaquette defects (only measuring the spins on the green horizontal
edges). We have thus reconstructed all of the quasiparticle types of the
toric code with this graphical construction.

31.2.2 Doubled Semion

For the doubled semion model (chapter 30) the planar diagram algebra
is the Z2 loop gas with d = +1. There are two possible solutions of
the hexagon, worked out in section 18.1.2, corresponding to right and
left handed semions. Correspondingly, the quasiparticle types of the
doubled semion model include both a right and left handed semion.
Let us consider the case of R11

0 = i, the right-handed semion model.
We imagine placing a string of this type (drawn blue) either over or
under the lattice, as shown in Fig. 31.8. We would like to fuse this blue
line into the red marked path

Fig. 31.8 This is the caption. Blah
Blah.

31.2.3 More Generally

31.3 Detailed Example: Doubled Fibonacci

It is worth working through one nontrivial example of a Levin-Wen
model in some detail to see how the Drinfel’d double arises. The simplest
examples, the toric code and the doubled semion model, were based on
the two possible Z2 planar fusion algebras as discussed in section 18.1
(in another language, these are the two possible cocycles, see section
20.1.2). However, these two are both abelian fusion rules so they are
perhaps a bit too simple to see what happens more generally.
Here, we will consider the Fibonacci planar diagram algebra (which

we ran into as far back as section 8.2.1) as an input to our Levin-Wen
model. This model is perhaps the simplest example with nonabelian
fusion rules, so it presents a good example for demonstrating how this
construction works. Note, however, that the Fibonacci planar diagram
algebra can be given a braiding, and the resulting theory is then modular.
As discussed above we then claim that the content of the Drinfel’d double
will be simply the product of a left and right handed copy of the modular
Fibonacci anyon theory.

Doubled Fib = (Fib Anyons)L × (Fib Anyons)R

We will study modular theories more generally in section *** below.
However, it is still useful to work through this example explicitly to get
a feel for how these models work.
Recall that in the Fibonacci planar diagram algebra there is one non-

trivial particle type, which we usually call τ , and the nontrivial fusion
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rule is
τ × τ = I + τ .

Diagrams for such a model can be represented as a branching loop gas
as shown in Fig. 31.9. In such diagrams lines, drawn without arrows,
are allowed to branch at trivalent vertices, but cannot have endpoints.

Fig. 31.9 A Fibonacci branching loop
diagram allows branching of loops but
no endpoints.

The (unique unitary) diagrammatic algebra for these fusion rules are
derived in section 18.2. We summarize the important rules here:

= φ−1 + φ−1/2 (31.7)

= φ−1/2 − φ−1 (31.8)

= φ (31.9)

= 0 (31.10)

with with φ being the golden mean

φ =
1 +

√
5

2

We recognize the first two lines (Eqs. 31.7 and 31.8) as being simply the
Fibonacci F -move (compare Fig. 18.8). Eq. 31.9 gives a loop the value
of the quantum dimension, and EQ. 31.10 is the usual locality principle
(See Fig. 16.7). From these equations along with the assumption of full
isotopy invariance (any diagram may be smoothly deformed in any way
in the plane without changing its value) these diagrams fully define the
planar diagrammatic algebra for the Fibonacci model.
From these principles it is easy to derive a few very useful additional

lemmas including (See exercise 31.1.)

= φ1/2 (31.11)
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= −φ−1/2 (31.12)

31.3.1 Excitations

As with the double-semion model we should be able to determine the
quasiparticle eigenstates by looking at how a single line can end in a
defect. We claim that all possible line endings can be reduced, by F -
moves, to one of the three possible endings shown in Fig. 31.10 Just

Fig. 31.10 Possible string endings in
the doubled Fibonacci string net model.

as an example, consider the ending shown on the left of Fig. 31.11. By
using an F -move, it is reduced to a combination of the three presented
above.

Fig. 31.11 An example of reducing a more complicated string ending into one fo
the three endings shown in Fig. 31.10.

As in the case of the toric code and the double semion model, we
can figure out the twist factors by rotating these diagrams as shown in
Fig. 31.12 and then using F -matrices to reduce the result back to linear
combinations of the same three possible endings.
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Fig. 31.12 The rotation operator Θ̂ applied to the possible string endings. Then
using F matrices we reduce the results to linear combinations of the same endings.

We can write these diagrammatic equations more algebraically by

Θ̂




a
b
c


 =




0 φ−1 φ−1/2

1 0 0

0 φ−1/2 −φ−1






a
b
c




The eigenvectors of this matrix are the particle types with definite twist
factrors given by their eigenvalues under rotation.
With a bit of algebra it can be shown that the eigenvalues of this

matrix are given by

θ = eiπ4/5, e−iπ4/5, 1,

The first two correspond to the expected spin factors for a right-handed
Fibonacci anyon τ or left-handed Fibonacci anyon τ∗ (recall that we
worked out the spin factor using the hexagon equation earlier. See 13.3.).
The final possibility represents the fusion of these two objects τ×τ∗. In-
deed, these are all of the possible particle types in the doubled-Fibonacci
theory. Since the theory was based on a full anyon theory with braiding
fully defined, we expected to get both a right- and left-handed copy of
the Fibonacci model and indeed we did. (We never broke time rever-
sal in the definition of the model so we should get both hands of the
theory!).

31.3.2 Ground State Degeneracy

It is a bit tricky to figure out the ground state degeneracy here. Using
the above skein rules, any configuration can be reduced to a linear com-
bination of four simple configuation – corresponding to the possibilities
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g′ a

j′

g

s j = F aj̄g
s̄g′ j̄′

√
djds
dj′

g′ a

j′

Fig. 31.14 Collapsing a triangular bubble. This is derived in exercise ??.

of having a loop, or not having a loop, around each handle. An example
of reducing two loops around a handle to a linear combination of zero
and one loop is given in Fig. 31.13

Fig. 31.13 Reducing two loops around a handle to a linear combination of one loops
and zero loops.

31.4 Appendix: Explicit Form of Operators

s g =
∑

g′

√
dg′

dsdg
g′

s g

s g

Fig. 31.15 The completeness relation-
ship. See Fig. 16.8

For simplicity here we will assume an isotopy invariant diagram algebra
as in chapter 16 although the generalization to the more general case is
not difficult (See for example Hahn and Wolf [2020]).
In this derivation we will use the identities shown in Fig. 31.15. and

Fig. 31.14.

31.4.1 Plaquette Operator

Let us now define an operator P̂β(s) (shown in Fig. 31.16) that merges
in a loop labeled s (drawn red in this figure for clarity) into a plaquette
β.
In going from the first line to the second, we use Fig. 31.15 one time

for each edge of the polygon (four times in this case). In going from the
second line to the third, we use the triangle collapsing rule Fig. 31.14
one time for each corner and we cancel factors of

√
d.

Since the Ω̃ strand (Fig. 17.10) is just a weighted sum of all of the



31.4 Appendix: Explicit Form of Operators 445

b

c

d

ag

h

i

j =P̂β(s) ×

b

c

d

ag

h

i

j
s

=

×

b

c

d

a
g′g g

h′

h

h

i′
i

i

j′

j

j

s s

s
s=

∑

g′,h′,i′,j′

√
dg′dh′di′dj′

d4sdgdhdidj

b

c

d

ag

h

i

j=
∑

g′,h′,i′,j′

F aj̄g
s̄g′ j̄′

F aḡh
s̄h′ḡ′

F ah̄is̄i′h̄′F
aīj
s̄j′ ī′

Fig. 31.16 Expressing the plaquette operator as the merging of an s-loop (red) into
the edges of the plaquette.

particle types the full plaquette operator defined in Eq. 31.3 is given by

P̂β =
∑

s

ds

D2
P̂β(s) (31.13)

31.4.2 String Operator Example

Here we give an example of fusing a string operator into the lattice. The
string operator is
We start with the figure on the left, with a string operator under the

lattice (drawn red for clarity)
This pushing of the string into the edge is quite similar to what we did

for the plaquette operator in section 31.4.1. The triangular bubbles can
be collapsed using Fig. 31.14. The upper triangular bubble with edges
i, j, s gives a factor of F cij̄

sj̄′i′

√
dids/di′ . The lower triangular bubble

including with edges g, h, s gives a factor of F agh̄
sh̄′g′

√
dgds/dg′ .

Let us now focus on the part of the diagram with the undercrossing
as shown in Fig. 31.19. Using the uncrossing rule shown in Fig. 31.18
we can then evaluate the remaining diagram on the right of Fig. 31.19
using the same triangle collapse law Fig. 31.14. The upper triangle
including i, b, s gives a factor of Fhb̄i

s̄i′z

√
dbds/dz and then we collapse a

lower triangle with edges h, z, s to give F īhzsbh′

√
dhds/dh′

s b

=
∑

z

√
dz

dsdb
[Rsbz ]−1

s b

b s

z

Fig. 31.18 The uncrossing rule. See
Fig. 16.19
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g

a
h

bi

c
j s

=
∑

g′,h′,i′,j′

√
dg′dh′di′dj′

d4sdgdhdidj

g′
g

g

a

h
h′
h

bi
i′
i

c j
j′
j

s

s
s

s

s

Fig. 31.17 The string operator is drawn (red) as a string running under the lattice
(blue). To determine the action of this operator, we use the diagrammaticrules to
fuse the red string into the blue lattice. The first step is shown here.

h
h′

bi
i′ s

=
∑

z

√
dz
dsdb

[Rsbz ]−1
h

h′

bz

b
i

i′ s

s

Fig. 31.19 Using the undercrossing rule (Fig. 31.18).

Combining together all of these factor The final result can be written
as Fig. 31.20 where the prefactor is given by

g

a
h

bi

c
j s

=
∑

g′,h′,i′,j′,z

Ks;g,h,i,j;g′,h′,i′,j′,z
a,b,c

g′
g

a
h′

bi′

c

j′
j

s

s

Fig. 31.20 Final result of absorbing a string under the lattice into the lattice.

Ks;g,h,i,j;g′,h′,i′,j′,z
a,b,c = F cij̄

sj̄′i′
F agh̄
sh̄′g′

Fhb̄is̄i′zF
īhz
sbh′ [Rsbz ]−1

√
dj′

djds
(31.14)

This formula itself is not really that interesting. However, by working
through how the red string is pushed into the edges, hopefully we have
made the method clear!

31.5 Appendix: S-matrix for Fibonacci Anyons

Without doing much work, we can figure out the S-matrix for Fibonacci
anyons. There are only 2 particles in the theory I and τ . Further we
know that the quantum dimension of τ is φ = (1 +

√
5)/2. Thus, the

total quantum dimension is D2 = 1+φ2 = 2+φ and the S matrix must
be of the form

S =
1

D

(
1 φ
φ y

)
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where the constraint of unitarity immediately fixes y = −1.
We can check this by using F and R matrices to determine the value

of two linked rings explicitly as shown in Fig. 31.21

Fig. 31.21 Calculating the nontrivial element of the Fibonacci anyon S-matrix.

Exercises

Exercise 31.1 Fibonacci Diagram Algebra
Use Eqs. 31.7 - 31.10 to derive the identities Eq. 31.11 and Eq. 31.12.

Exercise 31.2 Double Fibonacci String Net
(a) As discussed in lecture, the double Fibonacci model ground state can

be viewed as a branching string net with graphical rules given by Fig. 31.22
(Compare to the problem on Fibonacci pentagon relation) where φ−1 = (

√
5−

1)/2. In the ground state no endpoints of strings are allowed, but branching
is allowed.

To complete the graphical rules we must also use the rules shown in Fig. 31.23
for some values of the variables, d, X and T .

(a) Show that the consistent solutions is d = φ with X = φ1/2 and T = 0.
We did much of this in lecture. What was left out is proving that any T 6= 0
solution is not self-consistent. Hint: Try evaluating a circle with three legs
coming out of it. That should enable you to derive a useful identity. Then see
if you can use this identity to derive a contradiction when T 6= 0.

(b) Consider quasiparticles which are the ends of strings. The general form
of a quasiparticle is as shown in Fig 31.24 with coefficients a, b, c that need
to be determined. Find the eigenvalues/eigenvectors of the rotation operator
to determine the quasiparticle types and their spins. (We did most of this in
lecture except the explicit evaluation of the eigenvalue problem!) Compare
your result to the result of the problem “Fibonacci Hexagon Equation”.
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Fig. 31.22 String net rules for the doubled Fibonacci model

Fig. 31.23 Additionnal string net rules for the doubled Fibonacci model

Fig. 31.24 Combination of defect types for the doubled Fibonacci model
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Anyon Permuting Symmetry 32
Medium Material

Some TQFTs have a symmetry under permutation of anyons. This
situation is not generic, but when it does happen, the corresponding
TQFT has some special properties that are worth discussing.
Conveniently, the toric code provides an excellent example of anyon

permuting symmetry. In fact this symmetry is mentioned back in chap-
ter 26. In the fusion table given in Fig. 26.1 it is noted that you can
exchange all m’s for e’s and the fusion table would remain correct. Fur-
ther, looking at Eq. 26.5 which gives the S- and T -matrices for the toric
code, the second column and second row refer to the e particle whereas
the third column and third row refer to the m particle. One can switch
the second and third columns and rows of both matrices and the ma-
trices remain unchanged. This shows that the toric code has a precise
symmetry under permutation of e with m. I.e., it does not matter which
one we call e and which one we call m.
More generally we say we have an anyon permuting symmetry when-

ever there is a permutation matrix P such that1 1A matrix P is a permutation matrix

if PTP = PPT = 1 and each row
and each column of P has only a sin-
gle nonzero entry which is unity and all
other entries are zero

PSPT = S PTPT = T (32.1)

where S and T are the modular S- and T -matrices (see chapter 17) and
the superscript T means transpose. It may be the case that for a given
TQFT there are multiple matrices P that satisfy Eq. 32.1. Generally
the set of such all P ’s (including the identity matrix, which trivially
satisfies Eq. 32.1) form a group known as the anyon permutation group
(See exercise 32.2).
The fact that the toric code has an anyon permuting symmetry might

seem like simply an odd feature of this particular model. However, we
might view it as not being a coincidence at all. In section 23.4 we saw
that the toric code could be generated from a more complicated parent
theory (Ising × Ising) by condensing a particular boson. In this proce-
dure we found that a particle type from the parent theory had to split
into two particle types and the result is necessarily symmetric between
these two resulting pieces. In fact this statement is very general. First,
if a boson condenses from a parent theory and if a splitting occurs, there
the resulting theory after the condensation will have an anyon permut-
ing symmetry. Moreover, whenever a theory has an anyon permuting
symmetry, it is always possible to view this theory as the result of a
condensation process with a splitting.
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32.1 The Idea of a Symmetry Defect

When an anyon permuting symmetry exists, this opens the possibility
that a theory can contain so-called “symmetry defects”. A symmetry
defect is a point in a 2 dimensional system (thinking of 2+1 D systems,
as we usually do) where the identity of a particle is changed (by one
of the above described permutation matrices) if the particle is dragged
around that point. For example, for the toric, an m particle could be
changed into an e particle and vice versa, as shown in Fig. 32.1. We
say that the e and m particles have been “permuted”. Note that this
means while the two different types of excitations can be distinguished
locally, globally they cannot be distinguished as one can be turned into
the other by going around the defect.

×

me

Fig. 32.1 In the toric code (in 2D), if
an m particle moves around a symme-
try defect (notated as the the red ×) it
is converted into an e particle.

Symmetry defects are not contained in the structure of TQFTs, but
rather in a mathematical structure known as a G-crossed extension of
a TQFT (here G represents the anyon permuting symmetry group).
Rather interestingly these defects themselves can be treated as having
certain anyon-like properties. While this more detailed mathematical
structure is beyond our current discussion, interested readers can refer
to the work of Barkeshli et al. [2019] for details (see also references at
the end of the chapter).
Microscopic models with anyon permuting symmetries and symmetry

defects have been constructed in several ways. We will introduce here
a particularly simple way to see the anyon permuting symmetry in the
toric code.

32.2 Symmetric Form of the Toric Code

Let us try to make the toric code anyon permuting symmetry a bit
more explicit, and a bit more physical. Recall from chapters 25 and 26
that the terms of the Hamiltonian for the toric code phase of matter
(the “stabilizers” if we think of the toric code as actually being a code
rather than a phase of matter) are the vertex operator (drawn as a green
cross in the left of Fig. 32.2), and the plaquette operator (drawn as a
pink square in the left of Fig. 32.2). To remind the reader, the vertex
operator (originally defined in Eq. 25.1) is a product of four σz operators
adjacent to a give vertex, and the plaquette operatore (originally defined
in Eq. 25.3), is a product of four σx operators around a plaquette.

Vα =
∏

i∈vertexα

σ(i)
z Pβ =

∏

i∈plaquetteβ

σ(i)
x

Violations of the vertex terms (if Vα is not in its +1 eigenstate) were the
particles that we previously called “electric” or e and violations of the
plaquette terms (if Pβ is not in its +1 eigenstate) we previously called
“magnetic” or m.
In the left of Fig. 32.2 these two types of terms look fairly different

from each other. However, with nothing more than a notational change,
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⇒

Fig. 32.2 Left: In our prior formulation of the toric code, the vertex operators acted
on crosses (green), and the plaquette operators acted on squares (pink). By simply
drawing the reference lines diagonally, both types of operators act on a diamond
plaquette — the vertex operators acting on the green diamonds and the plaquette
operators acting on the pink diamonds.

we can draw the same system as on the right of Fig. 32.2. Here we simply
draw the reference lines diagonally (not changing any of the physical
spins, or any of the terms in the Hamiltonian) so that the system now
looks like it is a tiling of diamonds. In this case both vertex and plaquette
operators now act on a diamond shaped plaquette, and this starts to
look a bit more symmetric between the electric and magnetic particles.
However still the Vα operators, which act on the green diamonds is a
product of four σz ’s whereas the Pβ operators, which act on the pink
diamonds is a product of four σx’s.
We can make a further slight transformation on the model to make

it look even more symmetric between the two types of terms in the
Hamiltonian. Let us make a unitary transformation on all the spins that
are on the east and west corners of the green diamonds. The unitary
transformation we choose is to pre- and post-multiply each spin by σy .
Such a transformation converts

σx → σz

σz → σx

σy → σy

As a result, what we previously called the vertex operator (a product of
four σz operators around a green diamond) is now a product of two σz
operators on the north and south of the green diamond times a product
of two σx operators on the east and west of the green diamond. Similarly
what we previously called the plaquette operator (a product of four σx
operators around a pink diamond) is now a product of two σx opertaors
on the east and west of the pink diamond times a product of two σz
operators on the north and south of the pink diamond. So after this
unitary transformation all of the operators on all of the diamonds have
exactly the same form, as shown in Fig. 32.3. In this form, the toric
code Hamiltonian can be written as2

2This form of the toric code Hamilto-
nian was introduced by Wen [2003].
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Htoric code = −∆

2

∑

diamonds q

σqNz σqEx σqSz σqWx (32.2)

where here qN indicates the spin in the north corner of diamond q

σz

σz

σx σx

N

S

W E

Fig. 32.3 The terms in the Hamilto-
nian, Eq. 32.2, on every diamond (di-
amonds of either color in the right of
Fig. 32.2) are a product of σz on the
north and south vertices, and σx on the
east and west vertices.

(and analogously for qS , qE and qW ). This Hamiltonian is physically
identical to that of Eq. 26.1 where we have set ∆v = ∆p = ∆ (we have
done nothing more than make a unitary transformation on some of the
spins). It is easy to check that all the terms in the Hamiltonian commute
with each other as in the usual toric code.
As mentioned above, in the original formulation of the toric code

we had two different types of terms, the vertices, whose violations we
called e and the plaquettes, whose violations we called m. Now we have
transformed both vertex and plaquette terms of the original toric code
Hamiltonian to all look like identical diamonds. Nonetheless, some of
these diamonds (those in green in Fig. 32.2) correspond to the e particles,
whereas some of the diamonds (those in pink in Fig. 32.2) corresponds
to the m particles. As in the original toric code the e particles can
be created or annihilated in pairs, and the m particles can be created
or destroyed in pairs3. However, in this new formulation of the toric

3Starting in the ground state, if you ap-
ply a σx operator on a vertex this cre-
ates a pair of excitations on the neigh-
boring diamonds to the north and south
of that vertex, whereas applying σz to a
vertex creates excitations on the neigh-
boring diamonds to the east and west.
σy = iσxσz does both. code, since all diamonds look identical, it is clearly just a convention

which set of diamonds we call e and which we call m. Nonetheless, there
will always be two species of excitations that live on different sublattices
(the pink diamonds versus the green diamonds), and they can move only
on this sublattice — being created or annihilated on two diamonds of
the same color that share a single vertex, or similarly moving from one
diamond to another of the same color that shares a single vertex with
it. Even if there is no particular reason to label one e and one m, it is
clear they are different, as they live on different sublattices and cannot
annihilate each other4.
.

32.3 Symmetry Defects in the Toric Code

Presenting the toric code in this more symmetric form allows one to nat-
urally consider symmetry defects. In this picture, the symmetry defect
is realized by a lattice dislocation5. In Fig. 32.4 we show two disloca-

5The discovery that dislocations create
symmetry defects, and the investiga-
tion of the implications was made by
Bombin [2010].

tions (marked with red dots). We imagine moving an excitation around
dislocation. As mentioned above, the excitation must jump between
diamonds that share exactly a single vertex. Thus we can follow the
path of the green arrows marked in the figure: north two steps, east two
steps, south two steps, and west two steps. At the end of this procedure

4If one generates this diamond model by starting with a conventional toric code and coverting it to diamonds as in Fig. 32.2
one always obtains a model where walking around a cycle along edges requires an even number of steps. However, one can
generalize the model by removing a single row of spins, such that one obtains an odd number of steps around a cycle (and a
model that cannot be obtained from a conventional toric code as in the mapping of Fig. 32.2). In such a model, when one
goes around the cycle with an odd number of steps, one switches sublattices, so there is then no global distinction between the
pink sublattice and the green sublattice. This is similar to what happens in section 32.3. Correspondingly, the ground state
degeneracy becomes two rather than four.
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•

•

Fig. 32.4 Lattice dislocations are marked with the red dots. Walking around a
dislocation, one comes back to the opposite sublattice. As shown in the figure, two
steps north, two steps east, two steps south, and two steps west does not return to the
same point, but rather returns to a neighboring diamond on the opposite sublattice.

we have returned to the opposite sublattice (with sublattices defined lo-
cally). Hence if we had started with an e particle we now have an m
particle and vice-versa. Thus we have implemented anyon permutation
— the dislocation is a symmetry defect! σx

σx

σz

σz

σy
•

Fig. 32.5 A closeup of one of the dislo-
cations in Fig. 32.4. For the 5-sided pla-
quette, the 3-valent vertex is assigned
σy whereas the north,east,south, and
west vertices are assigned σz , σx, σz , σx
as in all of the four-sided plaquettes.

The careful reader will notice from Fig. 32.4 that at the position of
the defect the plaquette has five vertices rather than four. In the Hamil-
tonian our rule was that the operator for each plaquette has σz for the
north and south vertices and σx for the east and west vertices. For the
5-vertex plaquette we maintain this rule, but we also add the rule that
for the additional vertex (the one that is 3-valent rather than 4-valent)
we will include a factor of σy. This is shown in Fig. 32.5. The operator
we will use for this plaquette will then be

−∆

2
σNz σ

E
x σ

S
z σ

W
x σ3−valent

y

It is easy to check that this operator has eigenvalues ±1 and commutes
with all of the other plaquette operators from Eq. 32.2. Thus we still
have a commuting projector model which is easily solved analytically.
We may then consider a system, say, on a torus, with some number

of regular plaquettes and some number of dislocations. As we did in
Section 25.3, we can count up the number of degrees of freedom to de-
termine the ground state degeneracy. First, we notice that the product
of all plaquette terms over the entire lattice is always +1. This is anal-
ogous to the constraints in Eq. 25.8 and Eq. 25.9. For a lattice with
no dislocations, the two sublattices (green and pink) in Fig. 32.2 gener-
ate two different constraints. However, with dislocations there are not
two distinct sublattices (since going around the dislocation takes you
from one local sublattice to the other), and thus there is only a single
constraint.
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Let the number of spins be N , and the total number of plaquettes be
Np. It is not too hard an exercise (see Exercise ***) to show that the
number n of dislocations must be

n/2 = N −Np (32.3)

showing that the number of dislocations must be even.
Let us now count degrees of freedom. We start with N qubits. There

are Np − 1 independent plaquette operators (the single constraint men-
tioned above accounts for the −1). Thus putting all of the plaquettes
in the ground state leaves n/2 + 1 qubits still undetermined. If there
are no-dislocations, this means the system can store a single qubit of
information — or there is a ground state degeneracy of 2. For each pair
of dislocations, there is one more qubit unassigned, or the ground state
degeneracy doubles. This means that each dislocation is associated with
half of a qubit.
How can it happen that a dislocation is associated with half of a

qubit? Each dislocation traps a Majorana zero mode! We have run into
Majorana zero modes before in our study of Ising anyons (See Exercise
3.3,9.7, 10.2 and the comments in section 8.2.2). In short these are lo-
calized operators, two of which constitute a qubit. Thus the dislocations
themselves have anyon-like properties!

32.3.1 More General Symmetry Defects

While the lattice dislocation provides a particularly vivid example of a
symmetry defect, there are other models that can also generate sym-
metry defects, and one does not have tie the physics to an underlying
lattice in general. One can think of these symmetry defects in the ab-
stractBarkeshli et al. [2019], or one can construct explicit toy models
which have such symmetry defects even without lattice defects (as in
Heinrich et al. [2016] for example). This is a bit more complicated than
we have discussed here, but not too much more!

Further Reading

• The original paper by Bombin [2010] gives a much more detailed
study of the properties of the dislocations in the toric code model.

• You and Wen [2012] Originated the degrees-of-freedom argument
at the end of this chapter. This paper also extended the work to
Zp toric codes.

• See Burnell [2018] for discussion of the relation between symmetry,
condensation, and splitting.



Exercises 457

Exercises

Exercise 32.1 Permutation Symmetry of the Toric Code
[Easy] What is the permutation matrix for Eq. 32.1 for the symmetry of

the toric code.

Exercise 32.2 Permutation Symmetry Group
[Easy] If two different permutation matrices P1 and P2 both satisfy Eq. 32.1,

show that the product P1P2 also satisfies Eq. 32.1. Hence conclude that the
set of possible permutation matrices form a group.

Exercise 32.3 Counting Degrees of Freedom
[Easy] Consider a lattice on a torus like that of Fig. 32.4, with some number

of dislocations inserted into the lattice. Each normal plaquette has four sides,
and each dislocation plaquette has five sides. Prove Eq. 32.3. Hint: use the
Euler characteristic for a torus, faces+vertices=edges.

Exercise 32.4 ZN Toric Code Symmetry Defects
[Hard] The entire construction performed in sections ?? and 32.3 can be

extended to the ZN toric code introduced in section 25.6 and 26.5. Show
that each pair of dislocations harbors an N state system. We say that each
dislocation is associated with a ZN parafermion. (Note: These are not the
same type of parafermion as discussed in chapter ****. This is an unfortunate
over-use of the same name).





Topological Entanglement 33
Medium Material

We might wonder what is special about the ground states of the models
we have been studying. What is it that makes them topological? An-
other way of asking the same question is: how is it that anyons can arise
from simple degrees of freedom such as a system of simple spin-1/2 (like
we have for the toric code). One interesting answer to these questions is
that TQFT ground states are special because they have a special type of
long ranged quantum entanglement1. To understand this, we will study 1Over the last two decades, the con-

densed matter community has increas-
ingly used tools of quantum informa-
tion to study the properties of differ-
ent phases of matter. See for example,
Zeng et al. [2015]; Cirac et al. [2020]

entanglement in topological systems.
First, let us review the idea of entanglement. Consider a Hilbert space

H for some quantum mechanical system of interest. We then partition
this Hilbert space into two pieces

H = HA ⊗HB

If the overall system is in a pure state with normalized wavefunction,
|ψ〉, this wavefunction can always be written as a so-called Schmidt
decomposition

|ψ〉 =
∑

n

λn |ψAn 〉 ⊗ |ψBn 〉 (33.1)

where on the right-hand side, the wavefunctions |ψAn 〉 are an orthonormal
set of wavefunctions spanning the Hilbert space HA and the wavefunc-
tions |ψBn 〉 are an orthonormal set of wavefunctions spanning the Hilbert
space HB. The so-called “Schmidt weights”, λn, are non-negative real
numbers2 such that we have

2Often these Schmidt weights are writ-

ten as λn = e−ξn/2 with the values
ξn called the entanglement energies.
If one divides a D-dimensional system
spatially into two pieces, under fairly
general conditions these entanglement
energies look like the spectrum of an ef-
fective Hamiltonian that lives along the
(D − 1)-dimensional cut. See for ex-
ample, Li and Haldane [2008]; Qi et al.
[2012]; Dubail et al. [2012]; Swingle and
Senthil [2012].

∑

n

|λn|2 = 1

when the wavefunction |ψ〉 is properly normalized. If more than one
Schmidt weight is nonzero, we say that |ψ〉 is entangled between sub-
systems A and B. The canonical example of entanglement is a singlet
made of two spin-half particles3 3The fact that there is a minus sign

here might seem troubling, but we sim-
ply can redefine the sign of the ket | ↓R〉
as a gauge choice. After this redefini-
tion the wavefunction fits the form of
Eq. 33.1.

|ψ〉 = 1√
2
| ↑L〉 ⊗ | ↓R〉 −

1√
2
| ↓L〉 ⊗ | ↑R〉

This wavefunction fundamentally entangles the left and right spins with
each other — there is no way to describe the state of one spin indepen-
dently of the state of the other. This is not troubling when the spins are
near each other but leads to endless philosophiscal consternation when
the two spins become highly separated, resulting in famous quantum-
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mechanical paradoxes such as that proposed by Einstein, Podolsky, and
Rosen (Einstein et al. [1935]).
A quantitative measure of the entanglement is given in terms of the

Schmidt weights by the von Neumann4 entanglement entropy5

4There are other measures of entan-
glement entropy that can be consid-
ered, such as the Renyi entanglement
entropy SαA,B = 1

1−α log(
∑
n |λn|2α)

which matches the von Neumann en-
tropy in the limit α → 1. As far
as topological properties are concerned,
Renyi entropies behave similarly to the
von Neumann entropy. See for exam-
ple, Flammia et al. [2009].

SA,B = SB,A = −
∑

n

|λn|2 log(|λn|2) (33.3)

We are usually concerned with studying cases where the subsystems
A and B are spatially local6. I.e., Hilbert space HA describes degrees of

6Recall that locality is always impor-
tant in the context of TQFTs.

freedom in region A and Hilbert space HB describes degrees of freedom
in region B such that the regions A and B partition a larger system, as
suggested in Fig. 33.1.

region A

region B

Fig. 33.1 Partititoning a system into
two regions.

It is reasonable to expect that there will be some entanglement be-
tween regions A and B that is proportional to the length of the boundary
— some degrees of freedom near the boundary on the A side interact
with some degrees of freedom near the boundary on the B side, and
some entanglement develops between them. This type of entanglement
is known as “short-ranged” since it occurs between degrees of freedom
that are not physically far apart from each other. However, topologi-
cally ordered phases of matter have an additional piece of entanglement
that is not short-ranged, and occurs only due to their special topological
properites. To illustrate this so-called topological entanglement entropy7,7Topological entanglement entropy was

discovered by Levin and Wen [2006]
and Kitaev and Preskill [2006].

we will consider the toric code as an example although the results gen-
eralize to any topologically ordered matter.

33.1 Entanglement in the Toric Code

region A

region B

Fig. 33.2 In a loop gas the number
of blue lines that cross the boundary of
a simply connected region (such as the
orange boundary between region A and
B) must be even, since if a loop enters
the region, it must also exit the region.

Recall from chapters 25-28 that the ground state of the toric code can be
thought of as a superposition of loop gas wavefunctions. Let us consider
a particular loop gas configuration as in Fig. 33.2. The correlations
(and hence the entanglement) for such a loop gas are non-local. To
see this note that the number of blue lines that cross the boundary of
a simply connected region (such as the orange boundary in the figure)
must always be even — since if a blue line enters the region, it must
also exit the region. Since the entry and exit may be very far apart from
each other, this correlation is generally non-local. This correlation is
essentially the origin of the non-local topological entanglement entropy.
Now let us try to evaluate the entanglement for the toric code more

precisely. We will return to the lattice as in Fig. 33.3 instead of having

5An equivalent, but more general definition is given in terms of the density matrix ρ of the full system. We can also write

SA,B = −Tr[ρA log ρA] = −Tr[ρB log ρB ] (33.2)

where ρA and ρB are the so-called reduced density matrices of the subsystems, given by tracing out the degrees of freedom of
the opposite subsystem

ρA = TrB [ρ] ρB = TrA[ρ]

where for example TrB means to trace out the degrees of freedom in subsystem B only. This definition is more general since
than Eqs. 33.1 and 33.2 since it can be applied when the full system is not in a pure state.



33.1 Entanglement in the Toric Code 461

abstract loops as in Fig. 33.2. Again the boundary between regions A
and B is marked with an orange loop. Recall Eq. 25.10 that the total
wavefunction is given by a sum over all loop configurations

|ψ〉 =
∑

all loop configs

N−1/2|loop config〉 (33.4)

where N is the total number of loop configs being summed over. For
simplicity here, we have assumed that we are working on a spherical sys-
tem so there is no ground state degeneracy (this will imply that some of
our plaquettes are not square, but as discussed in section 25.5, this does
not change any of the important physics). Note that the normalization
is given by

N = 2P−1

where P is the number of plaquettes in the system, since flipping any
plaquette gives a new loop configuration (hence 2P ), but flipping all of
the plaquettes in the entire system (for a closed manifold) returns you
to the original loop configuration (hence we have P − 1 rather than P ).
We would now like to put Eq. 33.4 into the Schmidt form of Eq. 33.1

so that we may calculate the entanglement between the two regions. Let
us cheat a bit here and first divide the system into three regions. We
draw an orange line (not intersecting any vertices) to separate the system
into two simply connected regions as shown in Fig. 33.3. Let region A
be those edges that are entirely inside the orange line, and region B be
those edges that are entirely outside of the orange line8. Here we also 8The observant reader will note that on

a sphere there is no well-defined “in-
side” or “outside”, so one arbitrarily
defines one region to be called “inside’.
It doesn’t matter which one.

define a third region which we call the boundary region. The boundary
region includes all of those edges that the orange line crosses through.
Let the configuration of spins on this these boundary edges be called |α〉,
the boundary state. If there are M boundary edges, each edge can take
2 possible states, so there are then 2M possible boundary states |α〉.

region A

region B

Fig. 33.3 The boundary edges are the
ones cut by the orange line. Region A
includes all edges entirely inside the or-
ange line. Region B includes all edges
entirely outside of the orange line.

Let us further consider the ground state wavefunction in region A,
given that the state of the boundary edges is given by the boundary
state |α〉. We denote such a state of the region A as |ψAα 〉, and similarly
we denote the ground state wavefunction in region B, having boundary
state |α〉 as |ψBα 〉. We can write these explicitly as

|ψAα 〉 = NA
−1/2

∑

loop configs in region A
with boundary state α

|loop config〉A,α

where NA = 2PA the number of terms in the sum where PA is the
number of plaquettes entirely enclosed in region A. The sum over loop
configurations means that the blue lines can end only at the boundary
of the region, and not in the interior (i.e., there should be no vertex
defect in the interior of the region). We similarly write a wavefunction
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for region B

|ψBα 〉 = NB
−1/2

∑

loop configs in region B
with boundary state α

|loop config〉B,α

with NB = 2PB the number of terms in the sum where PB is the number
of plaquettes entirely enclosed in region B.
We can then write the full wavefunction as

|ψ〉 = N−1/2
allowed

∑

allowed boundary
states α

|ψAα 〉 ⊗ |α〉 ⊗ |ψBα 〉 (33.5)

where Nallowed is the number of terms in the sum, which is the number
of different boundary states.
Eq. 33.5 is almost exactly the Schmidt decomposition form (Eq. 33.1)

we would like, except that we have divided the degrees of freedom into
three pieces rather than two (region A, region B and the boundary
edges). It is just a matter of bookeeping to fix this. Let us define the
region B̃ to include both B and the boundary region (all the boundary
edges), we then define

|ψB̃α 〉 = |α〉 ⊗ |ψBα 〉

Region A and B̃ now properly partition the system into two parts. The
Schmidt decomposition of the wavefunction on the entire system can
then be written as

|ψ〉 = N−1/2
allowed

∑

allowed boundary
states α

|ψAα 〉 ⊗ |ψB̃α 〉 (33.6)

where Nallowed is the number of terms in the sum, which is the number
of different boundary states.
To calculate the entanglement entropy (now between regions A and B̃

which partition the full system) we need to know how many boundary
states are in thes sum. As mentioned above, if there are M spins in the
boundary region, there are 2M possible boundary states. However, only
half of these boundary states are allowed in the ground state! Again,
since the ground state consists of closed loops only, we can only have an
even number of blue edges in the boundary region when the full system
is in the ground state. So in fact the number of terms in the sum is
actually

Nallowed = 2M−1

Plugging this result into Eq. 33.3 gives us the final result for the von
Neumann entanglement entropy between the two regions99Here we have dropped the tilde from

B. It is implied in this formula that the
union of region A and region B includes
all the spins in the system.

SA,B = (M − 1) log 2 (33.7)
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As we might have predicted, the entanglement between the two regions
is proportional to the length of the cut (proportional to the number of
edges in the boundary region). The interesting part of this result is that
the result is M − 1 rather than M . It is this subleading term (the −1)
that reflects the topological properites of the state — the fact that it is
comprised of a loop gas and there is therefore a long-ranged constraint
on the state of the boundary.

region A

region B

region B

Fig. 33.4 Partititoning a system into
two regions. In this case region A is the
shaded region andB is the unshaded re-
gion (which is split between inside and
outside).

It is worth noting that if region A has two boundaries as in Fig. 33.4
we will get instead

SA,B = (M − 2) log 2

where M is now the total number of spins on both boundaries put to-
gether. The point here is that there are now two constraints, one on the
outer boundary and one on the inner boundary.

33.1.1 Generalizing To Arbitrary TQFTs

This technique of counting possible boundary states (Levin and Wen
[2006]) can be generalized to more general lattice models, such as the
Kitaev quantum double (chapter 29) or the Levin-Wen model (chapter
31). Since all of these models are some sort of generalized loop gas, we
expect that there will be similar long range correlations of the boundary
states, and hence analogous topological entanglement entropy.
For any type of topological matter, if we have a smooth boundary of

length L between two regions A and B, we should generically have an
entanglement entropy of

SA,B = αL− γ + . . . (33.8)

for some constant α where γ is the topological contributions10. For 10The . . . represents small contribu-
tions to SA,B that vanish in the limit of
large regions and smooth boundaries.

example, in Eq. 33.7 we have γ = log 2. More generally we will obtain

γ = logD (33.9)

where D is the total quantum dimension of the TQFT (Eq. 17.11)

D2 =
∑

i

d
2
i

with the sum over all particle species.
This is a rather remarkable result: If you are given the wavefunction of

a system, by simply splitting the system into pieces and calculating the
entanglement between the two pieces, you can deduce the topological
properties of the system.
Two rather different proofs of the general result Eq. 33.9 are given by

Levin and Wen [2006]; Kitaev and Preskill [2006]. We refer the reader
to these works for the proofs.
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33.2 Topological Entanglement Entropy is

Robust

One might worry that the entanglement entropy we have found for the
toric code is simply a particular property of the special toric code Hamil-
tonian we have used. Indeed, the entanglement (Eq. 33.7) will certainly
change if we perturb the toric code Hamiltonian with some additional
terms that change the local correlations between spins, thereby changing
the prefactor α in Eq. 33.8. We might also wonder if, with a more gen-
eral Hamiltonian, the details of the shape of the boundary (whether it is
a rectangle or instead has many corners) may matter in addition to just
the number of edges we cut. As emphasized in chapter 27 the topologi-
cal properties of the ground state of a system should remain unchanged
when the Hamiltonian is perturbed a little bit (so long as the excitation
gap does not close), and this is true for the topological entanglement
entropy as well. The long-ranged correlations that we discovered do re-
main robust and are encoded into the ground state although they are a
bit more tricky to see. We will now follow the procedure laid out by ?
that described how to isolate the topological term in the entanglement
entropy.
Let us divide our sphere into four regions11 as shown in Fig. 33.5. We11Here we use the argument and geom-

etry of Kitaev and Preskill [2006]. A
different geometry was used by Levin
and Wen [2006].

use the notation that AB means the union of the regions A and B, and
ABC is the union of regions A, B, and C and so forth. Now let us define
the quantity

Stop = (SA,BCD + SB,ACD + SC,ABD + SD,ABC)
−(SAB,CD + SAC,BD + SAD.BC) (33.10)

This looks a bit complicated, but actually it is easy to remember. The
first line is the entanglements of each of the four regions A,B,C,D with
their respective complementary regions (i.e., with the remainder of the
sphere). The second line, added with a minus sign, are the entanglements
of the union of two of these regions with the remaining two in all three
possible combinations.

BA

C

D

Fig. 33.5 Partititoning a sphere into
four regions. The region D includes the
remainder of the sphere (i.e., the “point
at infinity” for the stereographic pro-
jection to the plane.

This combination of entanglement entropies is constructed so as to
isolate only the topological term. We will find that

Stop = −γ

BA

C

D

Fig. 33.6 Making the partition be-
tween regions A and B wiggly.

To see this let us first naively use Eq. 33.8 to calculate Stop. Each time
we calculate some SP,Q we must calculate the length of the boundary
between region P and Q to plug into Eq. 33.8. Looking at Fig. 33.5
there are six segments in this figure: the three straight segements point-
ing radially from the center (call their length Lstraight and the three
curved segments bounding region D (call their length Lcurved). So us-
ing Eq. 33.8 we then have

SA,BCD = SB,ACD = SC,ABD = α(Lcurved + 2Lstraight)− γ + . . .
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SD,ABC = α(3Lcurved)− γ + . . .

SAB,CD = SAC,BD = SAD,BC = α(2Lcurved + 2Lstraight)− γ + . . .

Plugging these quantities into Eq. 33.10 yields Stop = −γ as expected.
All of the leading terms proportional to the length of the boundaries
have cancelled. As we will see in a moment, this cancellation is extremely
robust.
What happens if we alter the geometry? For example, suppose we

add some wiggles in the middle of the segment forming the boundary
between region A and region B as shown in Fig. 33.6. This change has
no effect on regions C and D, or any of the triple intersections. The
change in Stop can be written as

∆Stop = (∆SA,BCD −∆SAD,BC) + (∆SB,ACD −∆SAC,BD) (33.11)

It is not expected that SD,ABC or SC,ABD or SAB,CD should change at
all since in none of these cases is the entanglement measured across the
AB boundary. In Eq. 33.11 each term in parthenthesis should be zero.
For example, in the first term we are comparing SA,BCD to ∆SAD,BC .
These differ by whether D is attached to BC or attached to A. However,
since D is far away from the part of the AB boundary that has been
modified, the changes to the entanglement should be the same in both
cases. Thus the total ∆Stop is zero.

BA

C

D

Fig. 33.7 Changing the region near
the triple intersection of A, B, and C.
The other three triple intersections are
assumed to be unchanged, as are all
boundaries with region D.

We might worry that some problem could occur at the triple intersec-
tions of the three regions. However, we can argue similarly that deforma-
tion of this intersection cannot change Stop as defined in Eq. 33.10. For
example, suppose we change the geometry to that of Fig. 33.7. Again the
boundaries with D and the other three triple intersections are assumed
to be unchanged. The total change in Stop can be written as

∆Stop = (∆SA,BCD −∆SAD,BC) + (∆SB,ACD −∆SAC,BD)
+(∆SC,ABD −∆SAB,CD)

Again the two terms in each parethesis differ from each other only by
how region D is attached, and this should not at all be changed by any
deformation to boundaries between A, B, and C.
One can further argue that Stop does not depend on the details of the

Hamiltonian (so long as we remain in the ground state and do not close
the gap to making excitations). If we change the Hamiltonian locally,
this can only matter if we happen to be near a boundary. However, we
just showed that we are free to move the boundaries. So we can move the
boundary, change the Hamiltonian locally, and then move the boundary
back to its original position, and Stop must remain unchanged.
Thus the topological entanglement entropy is a robust property of

a topologically ordered phase of matter which reflects its topological
properties.
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Exercises

Exercise 33.1 Entanglement Entropy
(a) Confirm that for a system in a pure state, the expression for the en-

tanglement entropy SAB = −Tr[ρA log ρA] given in footnote 5 agrees with
Eq. 33.3.

(b) Confirm that for a system in a pure state, the expression for the Renyi
entanglement entropy given in footnote 4 matches the von Neumann entropy
in the limit that α→ 1.

Exercise 33.2 Renyi Entropy of the Toric Code
Calculate the Renyi entanglement entropy for the toric code.

Exercise 33.3 Entanglement Entropy of the Zn Toric Code
Generalize the calculation of section 33.1 to the case of the Zn toric code.

Confirm Eq. 33.9



Phases of Matter from/with
Symmetry 34

Medium Material

In chapter 33 we explained that all topologically ordered systems have
long-ranged topological entanglement. Gapped gtates of matter that do
not have long ranged entanglement are (creatively) called short-ranged
entangled states.
Recall that in section 27.2.3 we gave a rather general (and topolog-

ically motivated) definition of a topological phase of matter which we
will repeat here:

Definition of a Topological Phase of Matter: Two (zero tem-
perature) gapped states of matter are in the same topological phase of
matter if and only if you can continuously deform the Hamiltonian
to get from one state to the other without closing the excitation gap.

All (gapped) short-ranged entangled states are in the same topological
phase of matter – they can all be deformed into each other without clos-
ing the excitation gap. In particular, they call all be deformed into the
trivial state — a system with completely uncoupled degrees of freedom
(say, spins) on each site. One might think that this makes short-ranged
entangled states completely uninteresting. But in fact, the short-ranged
entangled states have a beautiful connection to topology which becomes
apparent once we generalize the above definition to include another as-
pect — symmetry.

34.1 Symmetry Protection

For nearly a century, symmetry has been the primary tool that physi-
cists use to distinguish one type of matter from another. Introduced by
Lev Landau1 (Landau [1937]), this approach has become known as the

1Landau was one of the most promi-
nent physicists ever to live. Most physi-
cists know of many of Landau’s impor-
tant contributions, and due to modern
specialization among fields, any given
physicist is probably familiar with only
a fraction of his very important works.
As with so many of the greats, he was
also a colorful, and difficult to control,
character. Many have heard tale of how
Landau crossed the Soviet establish-
ment and ended up in prison. Fewer,
perhaps, have heard that he espoused
“free-love” rather than monogamy —
something his wife was not so keen on.
He was brilliant, but apparently a bit
of a jerk.

Landau Paradigm.
While it is too much of a digression to introduce Landau theory in

detail, it is probably worth mentioning a canonical case: The ferromag-
net/paramagnet transition. For example, consider a so-called “Heisen-
berg” magnet2. In the paramagnetic phase there is no net magnetiza-

2The Heisenberg Hamiltonian is

H = −
∑

i,j

JijSi · Sj

with Si the spin vector for site i. Here
we take, say, Jij > 0 for neighboring
spins i and j so that the energy is lower
if two neighboring spins are aligned
and we take Jij = 0 otherwise, . In
three dimensions there will be a finite
temperature phase transition between a
paramagnetic, high temperature, phase
(where spins point randomly in ev-
ery direction) and a ferromagnetic, low
temperature, phase (where spins are
mostly aligned).

tion, whereas in the ferromagnetic phase, there is a nonzero magnetiza-
tion vector. The symmetry of the system is different in the two cases: In
the paramagentic phase all directions of space are equivalent, whereas in
the ferromagnetic phase there is one special direction set by the magne-
tization vector — we have broken the symmetry between all directions in
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space by choosing this one direction. Perhaps the most important char-
acterization of a phase of matter is given by stating what symmetries it
preserves and which symmetries it breaks.
The above definition of “Topological Phase of Matter” gives a method

of classifying phases of matter, but unfortunately is blind to symmetries.
An important generalization of the above definition is the idea of a
symmetry protected topological phase of matter or “SPT” phase. Here
we specify that a symmetry is present, and further when we deform our
Hamiltponian (as in the above definition) we insit that this symmetry is
never broken. This leads to a more refined classification of matter that
conisders both topology and symmetry

Definition of a Symmetry Protected Topological (SPT)
Phase: Two (zero temperature) gapped states of matter are in the
same symmetry protected topological phase of matter if and only if
you can continuously deform the Hamiltonian to get from one state
to the other without closing the excitation gap or breaking the given
symmetry.

Note that once we specify a particular symmetry we would like to con-
sider, that two different symmetry protected topological phases (for this
symmetry) typically can be smoothly deformed into each other without
closing the gap if one is allowed to break the symmetry in the process.
As mentioned above, as topological phases of matter, all short-ranged

entangled states are trivial (they are topologically equivalent to, or can
be deformed into, the trivial state). However, once we consider symme-
try protection the classification becomes more refined. There are many
short-ranged entangled states that are non-trivial, i.e., that cannot be
deformed into the trivial state. The cases that are non-trivial are known
as SPT states, and have various interesting properties — particularly
including protected edge modes that are either gapless or degenerate.

34.1.1 On-Site Symmetries

There are many types of symmetries one might be concerned with (and
for each symmetry there is classification of phases of matter into symme-
try protected topological phases). In chapter ** below, we will briefly
discuss time-reversal symmetry, which is perhaps the most important
example experimentally.
In this chapter instead we will consider so-called on-site symmetry.

We imagine an N -state Hilbert spce on each site (a N -state qudit). We
can write the states in the Hilbert space at site i as

|m〉i for m ∈ 1 . . .N

We can then consider unitary operations on each site

Û (i) =
∑

nm

|m〉iUmn〈n|i (34.1)
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A global unitary symmetry operation is given by appling the same Û (i)

at every site in the system

Ûglobal =
∏

j

Û (i)

If the ground state wave function is unchanged after application of this
global unitary symmetry operation, then we say that Û is a member
of the symmetry group. Obviously if there are two different unitaries
Û and Û ′ in the symmetry group, then their product is also in the
symmetry group (hence we use the mathematical term “group” here).
The U matrices in Eq. 34.1 are formally representation matrices for a
group which we will call G.

34.2 Example: Ising Symmetry

Let us consider the simplest possible example: Ising symmetry3. Recall 3Caution: this has essentially nothing
to do with the Ising TQFT.that the Ising model is a model where spins are allowed to point either

up or down only. Ising symmetry means a system is unchaged if you flip
all up spins to down and all down spins to up. We will here consider the
possible SPT phases of a system with Ising symmetry.

Fig. 34.1 A triangular lattice. Here
we consider a spin-1/2 at each vertex
(marked with a dot).

Consider a triangular lattice with a spin-1/2 at each vertex as shown

in Fig. 34.1. Using Pauli spin operators, σ
(i)
x flips over the spin at site

i. We can thus consider our global symmetry operation to be

Ûglobal =
∏

i

σ(i)
x

This is the only symmetry we want to consider for the Ising case. If
you square Ûglobal you get the identity, so the symmetry group here is
actually Z2.
We claim there are exactly two SPT phases possible that obey this

Ising symmetry.

Z2 Trivial Paramagnet

Consider a Hamiltonians given

Htrivial = −
∑

i

σ(i)
x

The (gapped) ground state of this Hamiltonian is simply every spin on
every site pointing in the x̂ direction. We can write the many body
wavefunction simply as

|ψ〉 ∼
∏

i

(| ↑i〉+ | ↓i〉)

Obviously this is symmetric under flipping all up spins to down spins.
Further (not proven here) any local unitary transform on this state which
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respects the symmetry represents the same phase of matter.
We call this state “trivial paramagnet” since it can be written as a

(unentangled) direct product of states on different, noninteracting, sites.
A nice way to describe this state is to multiply out all the terms on the

right hand side, and what we get is an equal superposition of all possible
combinations of some spins pointing up and the other spins pointing
down (and every term in the superposition has the same prefactor).



Part VIII

Introduction to Quantum Hall Ef-
fects





Introduction to Quantum Hall
— The Integer Effect 35

Medium Material

The fractional quantum Hall effect is the best studied of all topologically
ordered states of matter. In fact it is the only system which is extremely
convincingly observed to be topologically ordered in experiment1. We 1There are a good number of other

contenders now. Probably the most
convincing other case is 3HeA phase
2d films. Although very few experi-
ments have actually been done on this.
Other strong contenders include Majo-
rana wires, certain exotic superconduc-
tors, and a few frustrated quantum spin
systems.

will thus spend quite a bit of time discussing quantum Hall effects in
detail. Before we can discuss fractional quantum Hall effect we need to
discuss the basics, i.e., the integer quantum Hall effect.

35.1 Classical Hall Effect

In 1879 Edwin Hall discovered that when a current is run perpendicular
to a magenetic field, a voltage is generated perpendicular to both field
and current, and proportional to both (See Fig. 35.1). This voltage is
now known as the Hall voltage. Drude theory, treating a metal as a gas
of electrons, explains the Hall voltage as being a simple result of the
Lorentz force on electrons.

Fig. 35.1 Hall voltage VH perpendicular to both magnetic field and current, and
proportional to both. Also one measures a longitudinal voltage in the same direction
as the current, roughly independent of magnetic field.

35.2 Two-Dimensional Electrons

In the late 1960s and early 70s semiconductor technology made it possi-
ble to do experiments with electrons that live in two dimensions. First
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MOSFETs2 and later quantum wells were used to provide a confining2Metal Oxide Semiconductor Field Ef-
fect Transistors potential for electrons in one direction3, leaving motion only in the two
3More recently people have been able
to produce materials like graphene
which are literally one atom thick!

remaining dimensions. As an example we will consider a quantum well
structure, which is layered in the ẑ direction as shown in Fig. 35.2.

Fig. 35.2 Top A quantum well structure is a quasi-two-dimensional layer of one
semiconductor sandwiched between two other semiconductors. Bottom The po-
tential felt by an electron is like a particle in a box. If the energy is low enough,
the electron is stuck in the lowest particle-in-box wavefunction ϕ0(z) giving a total
wavefunction Ψ = ϕ0(z)ψ(x, y) and having strictly two dimensional motion.

The electron moving in the z-direction experiences a strong confine-
ment, such as the particle-in-box confinement shown in Fig. 35.2. The
wavefunction of the electron then takes the form ϕ(z) in the z-direction.
If the energy (i.e. the temperature and coulomb interaction) is very
low compared to the gap between the particle-in-box states, then the
electron is frozen in the lowest particle-in-box state ϕ0(z) and the total
wavefunction of the electron is Ψ(x, y, z) = ϕ0(z)ψ(x, y) leaving only the
x and y degrees of freedom. Thus we have a strictly two dimensional
electron.
More recently two dimensional electronic systems have also been ob-

served in single-layer atomic systems such as graphene. (Although even
then, the same argument needs to be used — that the motion of the
electron is “frozen” in the z-direction and only has freedom to move in
x and y).
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35.3 Phenomenology of Integer Quantum Hall

Effect

In 1980 Klaus von Klitzing, having just left a postdoctoral position at
Oxford, went to a new job at Grenoble carrying some new high mobility4

two dimensional electron samples grown by (now Sir) Michael Pepper at
Cambridge. He put them in high magnetic field and cooled them down
to a few degrees Kelvin temperature where he discovered something very
different from what Hall had seen a hundred years earlier. An example
of this type of experiment is shown in Fig. 35.3.

Fig. 35.3 An example of an Integer Quantum Hall experiment. The plateaus in

VH are such that VH = (1/i)(h/e2)I with i the integer displayed over the plateau
— where h is Planck’s constant and e is the electron charge. At the same magnetic
field where a plateau occurs in VH the longitudinal voltage drops to zero. Note
that at very low field, the Hall voltage is linear in B and the longitudinal voltage is
independent of B, as would be predicted by Drude theory.

At low magnetic field, the longitudinal voltage is relatively constant
whereas the Hall voltage is linear in magnetic field — both of these are
precisely what would be predicted by Drude theory. However, at high
magnetic field, plateaus form in the Hall voltage with concomitant zeros
of the longitudinal voltages. The plateaus have precisely the value

VH =
1

i

h

e2
I

4Meaning very clean
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where I is the current, h is Planck’s constant and e is the electron charge.
Here i is an integer as shown in the figure. Or equivalently we have

RH =
1

i

h

e2
= 1/GH (35.1)

with RH the Hall resistance where GH the Hall conductance. Where
we have plateaus in the Hall voltage, we have zeros in the longitudinal
voltage and resitstance

RL = 0

which implies we have a dissipationless state — similar to a superfluid.
These statements become increasingly precise as the temperature is low-
ered.
We should remember that conductivity and resistivities are both 2

by 2 matrices and are inverses of each other5. In this quantum Hall5These are 2 by 2 matrices because they
relate the vector electric field E to the
vector current j

state, these matrices are both purely off-diagonal. Thus we have the
interesting situation that both the diagonal part of the conductivity (the
longtidinal conductivity) is zero, and the diagonal part of the resistivity
(the longitudinal resistivity) is also zero.
The plateau RH = (1/i)(h/e2) occurs near the magnetic field such

that the so-called filling fraction ratio

ν =
nφ0
B

is roughly the integer i. Here n is the 2d electron density and φ0 is the
quantum of magnetic flux

φ0 = h/e

When von Klitzing discovered this effect he noticed mainly that the
plateaus in the Hall resistance are extremely precisely given by Eq. 35.1
and the plateaus are extremely flat. He submitted his manuscript to
PRL claiming that this would be a useful way to make a new resis-
tance standard6,7. In fact the result has been shown to be precise and6The referee mentioned that at the

time they already had resistance stan-
dards which were better than his ini-
tial measurement of one part in 106,
but proposed would be a uniquely good
measurement of the ratio h/e2. The pa-
per was resubmitted proposing to use
the effect as a precise measurement of
the fine structure constant. The paper
was accepted and the Nobel Prize for
von Klitzing followed in 1985.

7The quantum Hall effect is used as a
metrological resistance standard, and it
is proposed that the Ohm will soon be
defined in terms of the result of quan-
tum Hall experiments.

reproducible to better than a part in 1010. This is like measuring the
distance from London to Los Angeles to within a fraction of a millimeter.
This accuracy should be extremely surprising. The samples are dirty,
the electrical contacts are soldered on with big blobs of metal, and the
shape of the sample is not very precisely defined.

35.4 Transport in Zero Disorder

In strictly zero disorder it is easy to show that the longitudinal resistance
is zero and the Hall resistance is precisely linear in the magnetic field.
This is a simple result of Galilean/Lorentz invariance. Suppose we have
a two dimensional disorder-free system of electrons in the x, y plane and
a magnetic field B = Bẑ in the ẑ-direction perpendicular to the plane.
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The Lorentz force on an electron will be

F = −e (E+ v ×B)

If we then boost into a moving frame where

v =
E× ẑ

|B|

in this new frame we obtain F = 0, so the ground state must be station-
ary in this frame.
Then we boost back into the lab frame, and we obtain a current

j = −env =
−enE× ẑ

|B|

thus giving us

RL = 0

RH =
B

ne

which is exactly the prediction that Drude would have made for a dis-
order free system.
While this calculation is rigorous even with the effects of quantum

mechanics and interactions, it relies on having strictly zero disorder.

35.5 The Landau Problem

In order to understand quantum Hall effect, we should start by under-
standing the physics of a charge particle in a Magnetic field — a prob-
lem first studied by Landau. For simplicity we assume our electrons are
spinless (indeed, the spins tend to be polarized by the magnetic field
anyway.) We will consider an electron in the x, y plane, with a magnetic
field of magnitude B in the z direction. We will assume the system is
periodic in the y direction with length Ly, but opern in the x direction,
with length Ly (i.e., we are working on a cylinder actually). We will
eventually consider a small amount of disorder (as we showed above this
is crucial!), but for now let us assume the system has no disorder.
The Hamiltonian is

H0 =
(p+ eA)2

2m

where e and m are the electron charge and mass, and A is the vector po-
tential. We then have to choose a particular gauge to work in. Later on
we will want to work in symmetric gauge (there is a homework problem
on this!) For now we will work in the so-called “Landau” gauge

A = Bxŷ
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which does indeed satisfy

B = ∇×A = Bẑ

as desired. The Hamiltonian is thus

H0 =
1

2m

(
(p2x + (py + eBx)2

)

where pj = −i~∂j.
The Hamiltonian is then translationally invarient in the ŷ direction,

so we can write the wavefunction as

ψ(x, y) = φky (x)e
ikyy

and due to the periodicity in the y-direction, we have

ky =
2πn

Ly

for some integer n. Plugging in this form gives a familiar Schroedinger
equation

(
p2x
2m

+
1

2
mω2

c (kyℓ
2 + x)2

)
φky (x) = Eφky (x) (35.2)

where ℓ is the so-called magentic length

ℓ =
√
~/(eB)

and ωc is the cyclotron frequency

ωc = eB/m.

We recognize this Schroedinger equation as being just a harmonic oscil-
lator where the center of the harmonic potential is shifted to x = −kyℓ2.
Thus the eigenenergies are of the usual harmonic oscillator form

Ep = ~ωc

(
p+

1

2

)
(35.3)

where p is an integer. These quantized energy states are known as Lan-
dau levels. The form of the wavefunction will be harmonic oscillator on
the x direction and plane-wave in the y-direction as shown in Fig. 35.4.
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Fig. 35.4 The shape of the wavefunction of an electron in a magnetic field using
Landau gauge. The form of the wavefunction will be harmonic oscillator on the x
direction and plane-wave in the y-direction

Fixing the energy by fixing p in Eq. 35.3, the value of ky is quantized
in units of 2π/Ly. Further, the position x ranges over Lx, meaning that
ky ranges over Lx/ℓ

2. Thus the total number of possible values of ky is

Number of states in a Landau level =
LxLy
2πℓ2

=
Area B

φ0

where
φ0 = h/e

is the magnetic flux quantum. Thus, the number of states in a Landau
level is equal to the number of magnetic flux quanta of magnetic field
incident on the plane.
We can plot the density of states for electrons in a magnetic field, as

shown in Fig. 35.5

Fig. 35.5 The density of states for
spin-polarized (or spinless) electrons in
a magnetic field. At energies equal
to half-odd integer multiples of the
cyclotron frequency, there is a spike
of degenerate states, with degeneracy
Area B

φ0 .

When there are multiple electrons present, we define the filling frac-
tion to be the number of these Landau levels which are completely filled
with electrons.

ν =
nφ0
B

where n is the density of electrons. Or equivalently we can write a
relationship between the number of electrons in the system, Ne and the
number of magnetic flux Nφ

Ne = νNφ

Incompressility of Integer Number of Filled Landau Levels:

When some integer number of Landau levels is filled, the chemical poten-
tial lies in the middle of the gap between the filled and unfilled states —
analogous to a band insulator. In this case the the system is incompress-
ible. This means there is a finite energy gap to creating any excitations
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— i.e., all excitations must involve removing an electron from a filled
Landau level, promoting it above the energy gap to place it in an empty
state. In particular excitations which change the density (compressions)
are gapped. Further, at this precise integer filling fraction, the longi-
tudinal conductivity is zero, and the Hall conductivity is precisely the
quantized value RH = ne/B = (1/i)(h/e2).
If we were to control the chemical potential in the experiment, we

would have our answer as to why the Hall conductivity shows plateaus
— for any value of the chemical potential, except for the special values
µ = (~ωc)(p + 1/2) with integer p, the electron number is pinned to
N = Nφ/i where i is an integer, precisely i Landau levels are filled,
there is a gap to excitations, and the Hall conductivity would be precisely
quantized. However, in real experiments, it is actually the density that
is fixed — which means that generically the chemical potential does
sit in the degenerate band µ = (~ωc)(p + 1/2) for some integer p and
generically the filling fraction is tuned continuously and is not quantized.
Thus the incompressible state is very fine tuned. It occurs only for a

very precise (integer) value of the filling fraction —for all other values
of the filling fraction, some Landau level is partially filled and (at least
neglecting interactions) the system would be extremely compressible, as
there are many zero energy excitations corresponding to rearrangements
of the electrons (which orbitals are filled and which are empty) within
the partially filled Landau level.
While the system does have a gap under fine tuning, we will need

something that will preserve the special properties of the fine tuned state
even when we move away from the filling fraction which is precisely an
integer. What does this is actually disorder — it will provide a reservoir
for excess electrons (or holes) added (or subtracted) from the integer
filled state. With disorder, the special properties of the quantized state
are made robust.

What Does Disorder Do?

As mentioned above, we will need to add disorder to the system in order
to achieved quantized Hall effect. What is the effect of this disorder?
Disorder will spread out the energies in the band by having some regions
where the potential is higher than average and some regions where the
potential is lower than average. This spreads the sharp peak in the
density of states into a broader band, as shown in Fig. 35.6.

Fig. 35.6 The density of states for
spin-polarized (or spinless) electrons in
a magnetic field with disoder. The
Landau bands are spread out, with lo-
calized eigenstates in the tails and ex-
tended eigenstates near the middle.

Since current tends to flow perpendicular to potential gradients (i.e., it
is hall current), eigenstates tend to follow contours of constant potential.
Thus many of the eigenstates at high and low energy will be trapped in
local minima or maxima — isolated in a hill or valley and circling the
peak or bottom. The result is that the eigenstates in the edge of the
band experience localization, whereas (at least some) eigenstates near
the center of the band as shown in Fig. 35.6.
When the chemical potential is anywhere in the localized states, then

at low enough temperature, the electrons cannot move at all. Although
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there are states at this energy, they are all localized and electrons cannot
jump between them. Hence we expect in this case that the DC dissipi-
tave conductance goes to zero. (For dissipitive conductance to occur, an
electron has to be excited up to the next delocalized band.) The state
remains incompressible for filling fractions even away from the precise
integer value of ν.
What is not obvious is (a) that the Hall conductance should be pre-

cisely quantized, and (b) that we should have Hall conductance at all.

35.6 Laughlin’s Quantization Argument

In 1981, shortly after von Klitzing’s discovery of quantum Hall effect,
Bob Laughlin8 presented an argument as to why the Hall conductance 8Laughlin would later go on to win a

Nobel Prize for his explanation of frac-
tional quantum Hall effect, which we
will start discussing in chapter ***.

must be precisely quantized. The argument relies on gauge invariance.
We first need to present a key theorem which comes from gauge invari-
ance.

35.6.1 Byers and Yang Theorem

Consider any system (made of electrons and protons and neutrons) with
a hole cut in it, as in Fig. 35.7. Now put some magnetic flux Φ through

Fig. 35.7 The Byers-Yang theorem
states that threading any integer num-
ber of flux quanta through a hole in
a system leaves the eigenspectrum un-
changed.

the hole in such a way that the flux does not touch any piece of the
system, but just goes through the hole. By the Aharanov-Bohm effect,
the charged particles in the system cannot detect the flux if it is an
integer multiple of the flux quantum φ0. In fact the statement can be
made stronger: The eigenspectrum of the system is precisely the same
when an integer number of flux is inserted through the hole. This result
is known as the Byers9-Yang10 theorem (1961).

9Nina Byers was just starting as an
assistant professor at UCLA when she
proved this theorem. In the late 60s
and early 70s she oscillated between
Oxford (Somerville college) and UCLA,
but eventually converged to UCLA. She
told me personally that she regretted
leaving Oxford. She passed away in
2014.
10Yang is C.N.Yang, who won a No-
bel Prize in 1957 along with T. D.
Lee for his prediction of parity non-
conservation of the weak interaction.

To prove this theorem we use gauge invariance. One is always free to
make a gauge transformation

A′(r) = A(r) + (~/e)∇χ(r)

Ψ′(r1, . . . rN ) =



N∏

j=1

eiχ(rj)


Ψ(r1, . . . rN )

which leave the physical electromagentic field completely unchanged and
changes the gauge of the wavefunction. The meaning of gauge invariance
is that if we have a solution to the Schroedinger equation for Ψ and A
at energy E, then we also have a solution at the same energy E for Ψ′

and A′.
When the physical geometry we are concerned with is non-simply

connected, we can make gauge transforms which are non-single-valued,
such as

χ(r) = mθ(r)

wnere θ is the angle around the center. Making this gauge transform
leaves the eigenspectrum of the system unchanged. However, the flux
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enclosed

Φ′ =
∮

A′ · dl =
∮

A · dl+ 2πm~/e = Φ+mφ0

has changed by an integer number of flux quanta.

35.6.2 Quantization of Hall Conductance

Laughlin’s argument applys the Byers-Yang theorem to the Quantum
Hall case. Consider a two dimensional electron system cut in an annu-
lus11 as shown in Fig. 35.8. Here we put the entire system in a uniform

11For studying current flow in mag-
netic fields, the annulus is knowni
as ”Corbino” geometry, after O. M.
Corbino, who studied this in 1911.

magnetic field (so that we have Landau levels) and we arrange such that
the chemical potential is in the localized part of the band so that at low
enough temperature the longitudinal (dissipitive) conductivity is zero.
We then adiabatically insert an additional flux Φ(t) through the center

of the annulus and turn it on slowly from zero to one flux quantum. Due
to the Faraday’s law, an EMF is generated around the annulus

E = −dΦ
dt

=

∮
dl · E

If there is a Hall conductance, GH then this generates a radial current

J = GHE

Fig. 35.8 Insertion of Flux Φ(t)
through the center of an annulus of
two-dimensional electrons in a uniform
magnetic field. Adiabatically increas-
ing the flux creates an electric field in
the annular direction which then, by
the Hall conductivity, creates current in
the radial direction.

As we slowly increase the flux by an amount ∆Φ we have a total
charge ∆Q moved from the inside to the outside of the annulus given by

∆Q =

∫
dtJ(t) = GH

∫
dt E(t) = −GH

∫
dt
dΦ(t)

dt
= −GH∆Φ

Now the key to the argument is the Byers-Yang theorem. If we choose
∆Φ = φ0 a single flux quantum, then the final eigenstates of the sys-
tem must be precisely the same as the initial eigenstates of the system.
Since we have changed the system adiabatically (and there is a gap to
excitations when the states at the chemical potential are localized due
to disorder) the system must stay in the ground state12 and the inser-

12There is a subtlely here. With disor-
der, there are actually low energy ex-
citations, but they require very long
range hops of localized electrons which
cannot be made. So the system is “lo-
cally” gapped.

tion of the flux quantum must take us from the ground state back to
the very same ground state. The only thing that might have changed
during this process is that an integer number p of electrons may have
been transferred from the inside of the annulus to the outside. Thus we
have

−pe = ∆Q = −GH∆Φ = −GHφ0 = −GH(h/e)

Thus we obtain the quantized Hall conductance

GH = p(e2/h)

with p an integer!
Thus we see that the Hall conductance experiment is really some sort
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of ”spectroscopy” to measure the charge on the electron! (hence the
precision of the effect).
Although we have shown the the Hall conductance must be quantized,

what we have not shown is that it must be nonzero! Afterall, since the
chemical potential is in a localized band, it looks like electrons simply
can’t move at all. We will return to this issue in section 35.8 below.

35.7 Edge States

The bulk of a quantum Hall system is gapped, but on a finite system
there are always low energy modes on the edges. (This is always true
for any chiral topological system. Although achiral systems can have
fully gapped edges). Even though the bulk is incompressible, the shape
of the edge can be deformed as suggested in Fig. 35.9. Now let us

Fig. 35.9 A deformation of the edge
is a low energy edge excitation which
moves along the edge due to E×B drift.

think about the dynamics of a bump on the edge. On the edge of the
system we always have an electric field (this is the potential that holds
the electrons in the system— otherwise they would just leak out!). Since
we have E × B, we expect a drift velocity for all the electrons on the
edge. Thus we expect edge dynamics to be basically just movement of
charge along the edge.

35.7.1 Landau Gauge Edge Picture for Integer
Quantum Hall

Recall in Landau gauge (See section 35.5) the wavefunctions are plane
waves in the y direction, but are harmonic oscillator states in the x
direction. We now impose an additional confining potential in the x
direction near the edges of the system as shown in Fig. 35.10.

Fig. 35.10 Low energy edge excitations

The addition of the confining potential V (x) simply adds this poten-
tial to the 1-d schroedinger equation 35.2. If the confining potential
is fairly smooth, it simply increases the energy of the eigenstates when
the position x = −kyℓ2 gets near the edge of the system as shown in
Fig. 35.10.
In the case of the integer quantum Hall effect, all of the eigenstates of
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some particular Landau level (the lowest Landau level in the figure) are
filled within the bulk. At some point near the edge, the Landau level
crosses through the chemical potential and this defines the position of
the edge. Since the eigenstates are labeled by the quantum number ky
it is possible to create a low energy excitation by moving an electron
from a filled state near the edge just below the chemical potential to
an emtpy state near the edge just above the chemical potential. The
excitation will have momentum ~∆ky. 13 We thus have a 1-d system
of fermions filled up to a chemical potential and they flow only in one
direction along each edge — i.e., they are chiral fermions.

35.8 The Halperin Refinement of Laughlin’s

Argument

A more careful version of Laughlin’s argument was made by Halperin
immediately after Laughlin’s initial work. The key here is to think of a
geometry where much of the system is free of disoder. In particular we
consider the geometry shown in Fig. 35.11.

13The change in energy will be

∆E =
∂V

∂x
∆x =

∂V

∂x
ℓ2∆ky

Thus the edge velocity is given by

v =
1

~

∂E

∂k
=

1

~

∂V

∂x
ℓ2

If the chemical potential along the one edge is raised by ∆µ, a range of k-states

∆k =
∆µ

ℓ2 ∂V
∂x

will be filled. Since the spacing between adjacent k states is 2π/Ly this corresponds
to an increase in electrons per unit length along the edge of

∆n1d =
2π∆µ

ℓ2 ∂V
∂x

These then carry a net 1d electron current density

j = −ev∆n1d = −e( 1
~

∂V

∂x
ℓ2)

2π∆µ

ℓ2 ∂V
∂x

= −(e/h)∆µ

which is precisely the expected quantized Hall current flowing along the edge. (∆µ =
−e∆V ).
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Fig. 35.11 The Halperin geometry. The same as the Laughlin annulus geometry,
except here we add disorder only in part of the annulus. We have also shown (dark
blue) a single particle eigenstate in the clean region, which forms a circle (with a
small gaussian cross-section).

Here, the disorder is confined to only part of the annulus, the inner-
most and outer-most regions of the annulus being disorder-free. Within
the clean regions we can solve for the eigenstates using symmetric gauge
(this is a homework problem, but we will also discuss further in the next
chapter). The eigenstates are indexed by their angular momentum m,
and in the Lowest Landau level, for example, they are given by

ϕm ∼ zme−|z|2/(4ℓ2)

where z = x+ iy is the complex representation of the position. A radial
cut of one of these eigenstates gives a gaussian wavepacket14 at radius 14Just find the maximum of |ψm|2.
ℓ
√
2m— very similar to what we had in Landau gauge, but now these

eigenstates are indexed by angular momenta instead of linear momenta,
and they go around in circle instead of going straight.
Let us imagine the chemical potential above the middle of a Landau

level (say above the middle of the lowest Landau level) until it sits in a
localized piece (at least within the disordered region the wavefunctions
are localized). Since this is above the middle of the Landau level, the
Landau level is completely filled in the clean region. The only low energy
excitations are the edge states!
Now, let us track what happens to the eigenstates as we change the

flux through the hole. If the flux through the hole is an integer (in
units of the flux quantum φ0), then the angular momentum is also an
integer. However, if the flux through the hole is an integer plus some
fraction α, then the angular momentum quantum number must also be
an integer plus α. Thus, as we adiabatically increase the flux by one
flux quantum, we adiabatically turn each m eigenstate to m+ 1. Thus
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we are continuously pushing out electrons to the next further out radial
wavefunction.
Now when we are in the disordered region of the annulus, we do not

know any details of the shape of the eigenstates. All we know is that
after insertion of a full flux quantum we must get back to the same many
body eigenstate that we started with. However, we also know that an
additional electron is being pushed into the disordered region from the
clean region on the inside, whereas an electron is also being extracted
into the clean region on the outside. Thus the disordered region must
also convey exactly one electron (per Landau level) when a flux quantum
is inserted adiabatically. An electron state is moved from one edge state
on the inside to an edge state on the outside.
This argument pins down that the Hall conductance is not zero, but

is h/e2 times the number of Landau levels that are filled (in the clean
regions).

Exercises

Exercise 35.1 Quantum Hall Conductivity vs Conductance

Fig. 35.12 A 2D electron gas of arbitrary shape with contacts 1,2,3,4 attached on
its perimeter in clockwise order

Consider a two dimensional electron gas (2DEG) of arbitrary shape in the
plane with four contacts (1,2,3,4) attached at its perimeter in a clockwise order
as shown in Fig. 35.12. The conductivity tensor σij relates the electric field
to the current via

ji = σijEj (35.4)

where indices i and j take values x̂ and ŷ (and sum over j is implied). Assume
that this is a quantized hall system with quantized hall conductance s. In
other words, assume that

σ =

(

0 s
−s 0

)

(35.5)

Show that the following two statements are true independent of the shape of
the sample.

(a) Suppose current I is run from contact 1 to contact 2, show that the
voltage measured between contact 3 and 4 is zero.

(b) Suppose current I is run from contact 1 to contact 3, show that the
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voltage measured between contact 2 and 4 is V = I/s.
Note: The physical measurements proposed here measure the conductance

of the sample, the microscopic quantity σ is the conductivity.

Exercise 35.2 About the Lowest Landau Level
If you have never before actually solved the problem of an electron in two

dimensions in a magnetic field, it is worth doing. Even if you have done it
before, it is worth doing again.

Consider a two dimensional plane with a perpendicular magnetic field ~B.
Work in symmetric gauge ~A = 1

2
~r × ~B.

(a) (This is the hard part, see below for hints if you need them.) Show that
the single electron Hamiltonian can be rewritten as

H = ~ωc(a
†a +

1

2
) (35.6)

where ωc = eB/m and

a =
√
2ℓ

(

∂̄ +
1

4ℓ2
z

)

(35.7)

with z = x+ iy and ∂̄ = ∂/∂z̄ with the overbar meaning complex conjugation.
Here ℓ is the magnetic length ℓ =

√

~/eB.
(b) Confirm that

[a, a†] = 1 (35.8)

and therefore that the energy spectrum is that of the harmonic oscillator

En = ~ωc(n+
1

2
) (35.9)

(c) Once you obtain Eq. 35.6, show that any wavefunction

ψ = f(z)e−|z|2/4ℓ2 (35.10)

with f any analytic function is an eigenstate with energy E0 = 1
2
~ωc. Show

that an orthogonal basis of wavefunctions in the lowest Landau level (i.e., with
eigenenergy E0) is given by

ψm = Nmz
me−|z|2/4ℓ2 (35.11)

where Nm is a normalization constant. Show that the maximum amplitude
of the wavefunction ψm is a ring of radius |z| = ℓ

√
2m and calculate roughly

how the amplitude of the wavefunction decays as the radius is changed away
from this value.

(d) Defining further

b =
√
2ℓ

(

∂ +
1

4ℓ2
z̄

)

(35.12)

with ∂ = ∂/∂z, Show that the operator b also has canonical commutations

[b, b†] = 1 (35.13)

but both b and b† commute with a and a†. Conclude that applying b or b† to
a wavefunction does not change the energy of the wavefunction.

(e) show that the ẑ component of angular momentum (angular momentum
perpendicular to the plane) is given by

L = ẑ · (~r × ~p) = ~(b†b − a†a ) (35.14)
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Conclude that applying b or b† to a wavefunction changes its angular momen-
tum, but not its energy.

(f) [Harder] Let us write an arbitrary wavefunction (not necessarily lowest
Landau level) as a polynomial in z and z̄, times the usual gaussian factor.
Show that projection of this wavefunction to the lowest Landau level can be
performed by moving all of the z̄ factors all the way to the left and replacing
each z̄ with 2ℓ2∂z.

Hints to part a: First, define the antisymmetric tensor ǫij , so that the vector
potential may be written as Ai =

1
2
Bǫijrj . We have variables pi and ri that

have canonical commutations (four scalar variables total). It is useful to work
with a new basis of variables. Consider the coordinates

π
(α)
i = pi + α

~
2ℓ2

ǫijri (35.15)

=
~
ℓ2
ǫijξj (35.16)

defined for α = ±1. Here α = +1 gives the canonical momentum. Show that

[

π
(α)
i , π

(β)
j

]

= iαǫijδαβ
~2

ℓ2
(35.17)

The Hamiltonian

H =
1

2m
(pi + eAi)(pi + eAi) (35.18)

can then be rewritten as

H =
1

2m
π
(+1)
i π

(+1)
i (35.19)

with a sum on i = x̂, ŷ implied. Finally use

a = (−π(+1)
y + iπ(+1)

x )
ℓ√
2~

(35.20)

b = (π(−1)
y + iπ(−1)

x )
ℓ√
2~

(35.21)

to confirm that a and b are given by Eqs. 35.7 and 35.12 respectively. Finally
confirm Eq. 35.6 by rewriting Eq. 35.19 using Eqs. 35.20 and 35.21.

A typical Place to get confused is the definition of ∂. Note that

∂z = ∂̄z̄ = 1 (35.22)

∂̄z = ∂z̄ = 0 (35.23)

Hints to part f: Rewrite the operators a, a†, b, b† such that they operate on
polynomials, but not on the Gaussian factor. Construct z̄ in terms of these
operators. Then project.



Aside: A Rapid Introduction to
Topological Insulators 36

Medium Material

The integer quantum Hall effect is one of the simplest examples of what
is now called a “topological insulator”. To explain what this is, and why
it is interesting, let us review some basic facts about band structure and
non-interacting electrons.1 1In this chapter we are thinking about

non-interacting electrons in periodic
potentials!

36.1 Topological Phases of Matter

We will consider systems of electrons in some periodic environment —
which is what an electron would experience in a real material crystal2. 2Some of the ideas discussed here do

not depend too much on the system be-
ing precisely periodic.

We can thus describe our system as some single electron kinetic energy
and some periodic potential — or equivalently as some tight-binding
model. Bloch’s theorem tells us that the eigenstates of such a periodic
Hamiltonian can be written in the form

|Ψαk〉 = eik·r|uαk〉

where α is the band index, and uα
k
(x) is a function periodic in the unit

cell.
The eigen-spectrum breaks up into bands of electron states. If a (va-

lence) band is completely filled and there is a gap to next (conduction)
band which is empty, we generally call the system a band insulator. The
conventional wisdom in most solid state physics books is that such band
insulators carry no current. This wisdom, however, is not correct. A
prime example of this is the integer quantum hall effect! As we have
just seen for the integer quantum Hall effect we have a filled band and
a gap in the single electron spectrum. And while such a system carries
no longitudinal current (and correspondingly has σxx = 0) it does carry
Hall current with σxy = ne2/h.
One might object that the integer quantum Hall effect is not really a

valid example, because it does not have a periodic potential. However,
it is certainly possible to add a very weak periodic potential to the
quantum Hall system and maintain the gap.
It turns out that there is a topological distinction in the wavefunctions

for the quantum Hall effect versus what we think of as a traditional band
insulator. One way to describe this is to think of the band structure as
being a mapping from the Brillouin zone (inequivalent values of k) to
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the space of possible wavefunctions

k → uα
k
(x). (36.1)

Once we have such a mapping we can ask about whether there are topo-
logically different mappings, or whether one mapping can be continu-
ously deformed to another.
An analogy is to consider a mapping from a circle S1 to a circle S1,

eiθ → eif(θ)

Here, one can topologically classify the mapping by its winding number.
One such mapping cannot be continuously deformed into another if the
two mappings have different winding numbers.
Similarly we can define a “winding number” (known as a “Chern”

number) of the band structure map Eq. 36.1 for two dimensional systems.
This integer topological quantity turns out to be precisely the quantized
Hall conductance in units of e2/h. We give an explicit expression for
this quantity in section *** below. Similar topological definitions of
“winding numbers” of the map Eq. 36.1 can be given in any dimension.
If we imagine continously changing the physical Hamiltonian, this

Chern number, which must be an integer, cannot change continously.
It can only change by making it impossible to define a Chern number.
This happens when if the system becomes a metal — i.e, if the gap be-
tween the filled and empty state closes. Thus we cannot deform between
different topological classes without closing the gap.
Indeed, this general picture gives us a simple rule for topological clas-

sification:

Definition of Topological Phase: Two gapped states of matter
are in the same topological phase of matter if and only if you can
continuously deform the Hamiltonian to get from one state to the
other without closing the excitation gap.

Although in this chapter we are concerned with non-interacting electrons
only, this sort of definition can obviously be used much more generally
to distinguish different phases of matter. Further this definition fits with
our intuition about topology

Two objects are topologically equivalent if and only if you can con-
tinuously deform one to the other.

In the context of noninteracting electron band structure, one can de-
fine topologically “trivial” phases of matter to be those that can be
continuously deformed without closing the gap into individual atomic
sites with electrons that do not hop between sites. (A ”trivial” band
structure). Phases of matter that cannot be continuously deformed to
this trivial band structure without closing a gap are known as topologi-
cally nontrivial.
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36.1.1 Gapless Edges

The existence of gapless edge states on the edge of integer quantum Hall
samples is one of the fundamental properties of topologically nontrivial
phases of matter (at least when one is considering topological properties
of noninteracting electron band structure). We can give a rough argu-
ment about why edge states always come with topologically nontrivial
phases.
Suppose we have a Hamiltonian that is almost periodic, but the poten-

tial is a very function of position, say in the x-direction. In other words
if we move very far in the x-direction the Hamiltonian changes smoothly
from H(x1) to H(x2), but locally both of these look like simple periodic
Hamiltonians. If H(x1) and H(x2) are not in the same topological phase
of matter, than for some x between x1 and x2, we have H(x) describing
some gapless system — i.e., an edge state between the two phases.
For example, in the case of the integer quantum Hall effect, we can

think of H(x1) as being the Hamiltonian of the system in the bulk which
has nonzero Chern number, and H(x2) as being the Hamiltonian outside
of the system, or the vacuum, which is topologically trivial and has zero
Chern number. Somewhere between the two, the gap must close to give
a metal where the Chern number changes. This is the edge state.

36.2 Curvature and Chern Number

The Gauss-Bonnet theorem give an beautiful connection exists between
topology and geometry. The statement of the theorem is that for any
closed two dimensional orientable surface the integral of the Gaussian
curvature K over the surface gives 2π(2− 2g) where g is the number of
handles of the surface. Or mathematically3 3The definition of Gaussian curvature

K at a point is 1/K = ±rmaxrmin
where rmax and rmin are the maximum
and minimum radii of curvatures of the
surface at that point. The sign of K
is taken to be negative if the surface
is saddle-like at that point rather than
dome-like.

2π(2− 2g) =

∫

M

KdS

One can check, for example, with a sphere of radius R we haveK = 1/R2

and g = 0, so that both sides give 4π independent of R. The interesting
point here is that if you dent the sphere, you increase the curvature at
some points, but you decrease it at other points such that the integral
of the curvature over the surface remains the same. The only way to
change this quantity is to rip the surface and add a handle!
It turns out that we can define a similar curvature that describes the

topological index (the Chern-number) of the band structure. Let us
define what is known as the Berry curvature of the αth band

Fα(k) = ǫij〈∂kiuαk|∂kjuαk〉

The topological Chern-number of the αth filled band is then given by
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the integral of the Berry curvature over the Brillouin zone,

Cα =
1

2π

∫

BZ

dk Fα(k)

which is analogously quantized to be an integer.
In appendix *** we use the Kubo formula to calculate the Hall con-

ductivity and we find that it is related to the Chern number by4

4The realization that the Hall conduc-
tance is the topological Chern number
in 1982 was made in a famous paper
known as TKNN. This is one of key
contributions that earned a Nobel Prize
for David Thouless in 2016.

σxy =
e2

h

∑

filled bands α

Cα

Considering Laughlin’s proof that the Hall conductance is quantized,
this might be considered a sufficient proof that the Chern number must
be quantized as well. To see how this occurs mathematically, see ap-
pendix ***.

36.3 Symmetry Protection

Symmetry is one of the most fundamental ideas in modern physics. We
often think about how physics changes when a symmetry is forced on a
system. Considering the above definition of topological phases of matter
in section 36.1, one may generalize this idea to systems with symmetry.

Definition of Symmetry Protected Topological Phase: Two
gapped states of matter are in the same symmetry protected topo-
logical phase of matter if and only if you can continuously deform
the Hamiltonian to get from one state to the other without closing
the excitation gap or breaking the given symmetry.

The most interesting example of this is time reversal symmetry. Sys-
tems without magnetism and without magnetic impurities are time-
reversal symmetric. In three dimensions, it turns out that there are no
band structures that satisfy the above definition of a nontrivial topolog-
ical phase of matter. In other words, all gapped periodic single-electron
Hamiltonians can be deformd to a trivial Hamiltonian without closing
the gap. However, if we enforce time reversal invariance, it turns out
that there are band structures that cannot be deformed into the trivial
band structure without closing the gap or breaking symmetry. These are
known as “topological insulators” and are formally symmetry protected
topological phases, where the symmetry is time reversal.

36.4 Appendix: Chern Number is Hall
Conductivity

Here we calculate the Hall conductivity by simple time dependent per-
turbation theory and demonstrate that it is the same as the Chern num-
ber.
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The general rule of time dependent perturbation theory is that if a
system is exposed to a perturbation δH(t) the expectation of an operator
O at some later time is given by

〈O(t)〉 = i

~

∫ t

−∞
dt′〈[O(t), H(t′)]〉

If we consider an electric field at frequency ω we write this in terms of
the vector potential. Applying a perturbing vector potential we have

δH =

∫
dxA(x, t) · j(x, t)

From perturbation theory we then have

〈ja(x, t)〉 =
i

~

∫ t

−∞
dt′
∫
dx′〈[ja(x, t), jb(x′, t′)]Ab(x′, t′)





Introduction to Fractional
Quantum Hall Effect 37

Medium Material

Having determined that the quantum Hall effect is some sort of spec-
troscopy on the charge of the electron, it was particularly surprising
in 1982 when Dan Tsui and Horst Stormer1 discovered quantum Hall 1Stormer had recently invented the

idea of “modulation doping” semicon-
ductors, which is a technique to obtain
extremely clean two dimensional elec-
tron systems — a prerequisite for ob-
serving fractional quantum Hall effect.

plateaus at fractional values of the filling fraction

ν = p/q

with Hall resistance

RH =
h

e2
q

p

with p and q small integers. This effect is appropriately called the Frac-
tional quantum Hall effect.
The first plateau observed was the ν = 1/3 plateau2 , but soon there- 2The legend is that Tsui very pre-

sciently looked at the data the moment
it was taken and said “quarks!” realiz-
ing that the fractional plateau implied
charge fractionalization!

after many more plateaus were discovered3. The Nobel Prize for this

3Over 60 different fractional quantum
Hall plateaus have been discovered!

discovery was awarded in 1998.
Given our prior gauge invariance argument that quantum Hall effect is

measuring the charge of the electron — and that this is enforced by the
principle of gauge invariance, it is hard to understand how the fractional
effect can get around our prior calculation.
Two things must be true in order to have quantized Hall effect

(a) Charge must fractionalize into quasiparticles with
charge e∗ = e/q, for example in the case of ν = 1/q.

(b) The ground state on an annulus must be degenerate,
with q different ground states (in the case of ν = 1/q)
which cycle into each other by flux insertion through the
annulus.

We should not lose sight of the fact that these things are surprising
— even though the idea of degenerate ground states, and possibly even
fractionalized charges, is something we have perhaps gotten used to in
our studies of topological systems.
Given the Laughlin argument that inserting a flux though the annulus

pumps an integer number of electrons from one side to the other, it is
perhaps not surprising that fractional quantization of the Hall conduc-
tance must imply that a fractional charge has been pumped from one
side of the annulus to the other (hence point (a) above). The way we
get around the gauge invariance argument that implies the charge must
be an integer is by having multiple degenerate ground states. In our
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argument for the Integer quantum hall effect we used adiabaticity, and
the existence of a gap, to argue that we must stay in the ground state.
However when there are multiple ground states (point (b) above) we
can only argue that we must always be in some ground state. Thus, for
example, in the case of ν = 1/3 where there are three ground states, the
cycle of inserting flux is

insert φ0−→ |GS1〉 insert φ0−→ |GS2〉 insert φ0−→ |GS3〉 insert φ0−→ |GS1〉 insert φ0−→

where GS here means ground state. Each insertion of flux pumps
e∗ = e/3 charge from one side to the other. After three fractionally
charged particles move from one side to the other, this amounts to a
single electron being moved from one side to the other, and we return
to exactly the same ground state as we started with.
So now we need only figure out how it is that this unusual situation of

fractionalized charges, and multiple ground states (indeed, this situation
of a topological quantum field theory!) comes about.

Want an incompressible state: Ignore disorder for now

We need to understand how we have an incompressible state when a
Landau level is partially filled. As with the integer case, disorder will
be important in allowing us to have plateaus of finite width, but the
fundamental physics of the fracitonal quantum Hall effect comes from the
fact that we have a gapped incompressible systems at a particular filling
fraction. We can thus choose to consider a system free from disorder
with the understanding that localization of excitations will be crucial to
actually observe a plateau.

Why This is a Hard Problem: Massive Degeneracy

We restrict our attention to a clean system with a partially filled (say,
1/3 filled) Landau level. If there are Ne electrons in the system, there
3Ne available single electron orbitals in which to place these electrons.
Thus in the absence of disorder, and in the absence of interaction, there
are (

3Ne
Ne

)
∼ (27/4)Ne

multiparticle states to choose from — and all of these states have the
same energy! In the thermodynamic limit this is an insanely enormous
degeneracy4. This enormous degeneracy is broken by the interaction

4For example, if our system of size 1

square cm has a typically 1011 electrons
in it, the number of degenerate states at
ν = 1/3 is roughly 10 to the 100 billion
power! Way way way more than the
number of atoms in the universe.

between the electrons, which will pick out a very small ground state
manifold (in this case being just 3 degenerate ground states), and will
leave the rest of this enormous Hilbert space with higher energy.
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37.0.1 Our Model Hamiltonian

Since we are to neglect disorder, we can write the Hamiltonian for our
system of interacting electrons as

H =
∑

i

(pi + eA(ri))
2

2m
+
∑

i<j

V (ri − rj)

where the first term is just the kinetic energy of the electrons in the
magnetic field, as discussed in Section 35.5, and the second term is
the interaction beween the electrons, which we might take to be of 1/r
Coulomb form, or perhaps a modified Coulomb form depending on the
physical situation we are concerned with5. 5For example, we could have a screened

Coulomb potential if there are polariz-
able electrons nearby. The finite width
of the quantum well also alters the ef-
fective Coulomb interaction.

Now we have already analyzed the first term in this Hamiltonian back
in Eq. 35.5, resulting in the structure of Landau levels. If we further
assume that the cyclotron energy ~ωc (the energy gap between Landau
levels) is very large compared to the interacton energy scale V , then
we can assume that there is very little effect of higher Landau levels
— the interaction simply breaks the massive degeneracy of the par-
tially filled Landau level without mixing in the higher Landau levels (or
putting holes in any completely filled Landau levels below the chemical
potential). Another way to say this is that we are pursuing degenerate
perturbation theory. The kinetic energy is completely determined (we
just fill up Landau levels from the bottom up) and interaction only plays
a role to break the degeneracy of the partially filled level.
The effective Hamiltonian is then just

H =
∑

i<j

V (ri − rj) (37.1)

where the Hilbert state is now restricted to a single partially filled Lan-
dau level. But here it might look like we are completely stuck. We
have an enormously degenerate Hilbert space — and we have no small
parameter for any sort of expansion.
Laughlin’s insight was to simply guess the correct wavefunction for

the system!6. In order to describe this wavefunction we need to have

6Decades of experience doing compli-
cated perturbation theory led many
people off on the wrong path — towards
complicated calculations — when they
should have been looking for something
simple!a bit more elementary information about wavefunctions in a magnetic

field (some of this is a homework problem!).

37.1 Landau Level Wavefunctions in
Symmetric Gauge

We will now work in the symmetric gauge where the vector potential is
written as

A =
1

2
r×B

where the magnetic field is perpendicular to the plane of the sample.
(We can check that this gives ∇×A = B.
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In this gauge, lowest Landau level wavefunctions (as mentioned before
in section 35.8) take the form7 7We will ignore

dom as before.

ϕm(z) = Cmz
me−|z|2/(4ℓ2) (37.2)

where
z = x+ iy = reiθ

is the complex representation of the particle coordinate, ℓ =
√
~/eB is

the magnetic length, Cm is a normaliztion constant and here m ≥ 0 is
an integer. The most general lowest Landau level wavefunction for a
single particle would be f(z) times the gaussian factor for any analytic
function f .
Note that the higher Landau level wavefunctions can all be obtained

by application of a raising operator (which involve some prefactors of z∗)
to the lowest Landau level wavefunctions. This algebra is discussed in a
homework problem, so we will not belabor it here. A key point is that
all Landau levels are effectively equivalent and any partially filled higher
Landau level is equivalent to a partially filled lowest Landau level with
an appropriately modified interaction. As such, we will focus exclusively
on the lowest Landau level from here on.
Let us take a close look at the structure of the wavefunctions in

Eq. 37.2. First we note that ϕm is an eigenstate of the angular mo-
mentum operator L̂ (centered around the point z = 0)

L̂ ϕm = ~mϕm

Secondly we should examine the spatial structure of ϕm. Writing |φm|2 ∼
r2m exp(−r2/(2ℓ2)) and differentiating with respect to r we find that the
maximum of this function is at radius

r = ℓ
√
2m

Thus the function roughly forms a gaussian ring at this radius. The
area enclosed by this ring is πr2 = 2πmℓ2 = mφ0/B, which contains
precisely m quanta of magentic flux.

37.1.1 What We Want in a Trial Wavefunction

In building a trial wavefunction for fractional quantum Hall effect, sev-
eral rules will be important to follow

(1) Analytic Wavefunction: The wavefunction in the lowest Lan-
dau level should be comprised of single particle wavefunctions ϕm —
that is, it must be a polynomial in z (with no z∗’s) times the gaussian
factors. In other words we should have88The polynomial can also be chosen so

as to have all real coefficients. This
is becuase the Hamiltonian, once pro-
jected to a single Landau level, i.e.,
Eq. 37.1, is time reversal symmetric.

Ψ(r1, . . . , rN ) = (Polynomial in z1, . . . zN)
N∏

i=1

e−|zi|2/(4ℓ2)
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(2) Homogeneous in Degree: Since the Hamiltonian is rotationally
invariant, we can expect that the eigenstates will be angular momentum
eigenstates. Since the L̂ operator counts powers of z, this means that
the (Polynomial in z1, . . . zN ) part of the wavefunction must be homo-
geneous of degree.

(3) Maximum Power of zi is Nφ = Ne/ν: Since the radius of
the wavefunction is set by the exponent of zm, the full radius of the
quantum Hall droplet is given by the largest power of any z that occurs
in the wavefunction. Since the area enclosed by the wavefunction should
correspond to Nφ fluxes, this should be the maximum power.

(4) Symmetry: The wavefunction should be fully antisymmetric due
to Fermi statistics, assuming we are considering fractional quantum Hall
effect of electrons. It is actually very useful theoretically (and does
not seem out of the question experimentally!9) to consider fractional 9While no one has yet produced frac-

tional quantum Hall effect of bosons in
the laboratory, proposals for how to do
this with cold atoms or interacting pho-
tons are plentiful, and it seems very
likely that this will be achieved in the
next few years.

quantum Hall effect of bosons as well — in which case the wavefunction
should be fully symmetric.

Even given these conditions we still have an enormous freedom in
what wavefunction we might write down. In principle this wavefunc-
tion should depend on the particular interaction V (r) that we put in
our Hamiltonian. The miracle here is that, in fact, the details of the
interaction often do not matter that much!

37.2 Laughlin’s Ansatz

Laughlin simply guessed that a good wavefunction would be of the
form10 10Note that this wavefunction is not

normalized in any sense. The issue of
normalization becomes important later
in ***.

Ψ
(m)
Laughlin =

∏

i<j

(zi − zj)
m

N∏

i=1

e−|zi|2/(4ℓ2)

The proposed wavefunction is properly analytic and homogeneous in
degree. The maximum power of the wavefunction is

Nφ = m(N − 1)

thus corresponding to a filling fraction

ν = N/Nφ → 1/m in large N limit

And the wavefunction is properly antisymmetric for m odd, and is sym-
metric for m even.
It is worth noting that for m = 1 the Laughlin wavefunction corre-

sponds to a filled Landau level — that is, a single slater determinant
filling all of the orbitals from m = 0 to m = Nφ = N − 1. (This is a
homework problem!)
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It is also worth noting that the density of the Laughlin wavefunction
is completely constant in a disk up to its radius (and then the density
falls quickly to zero). This constancy of density is proven by plasma
analogy (which is another homework problem)11.
Why should we think this wavefunction is particularly good? As two

particles approach each other, the wavefunction vanishes as m powers.
This means that the particles have low probability of coming close to
each other — thus keeping the interaction energy low.
Being that the polynomial in each variable is of fixed degree Nφ, the

polynomial has a fixed number of analytic zeros. For the Laughlin wave-
function all of these zeros are on the positions of the other particles —
thus the wavefunction arranges that the particles stay as far away from
each other as possible in some sense.

37.2.1 Exact statements about Laughlin
Wavefunction

It turns out that the Laughlin wavefunciton is actually the exact ground
state of a special inter-particle interaction12.12This was discovered by Haldane in

1983, then again by Trugman and
Kivelson and also Pokrovski and Ta-
lapov in 1985. Bosons at ν = 1/2

Consider a system of bosons with the interparticle interaction given by1313Actually this is a very realistic inter-
action for cold atom bosonic quantum
Hall effect, should it be produced in the
future.

V = V0
∑

i<j

δ(ri − rj)

with V0 > 0. This is a non-negative definite interaction.
It is clear that the ν = 1/2 Laughlin state of bosons Ψ

(m=2)
Laughlin has

zero energy for this interaction, since there is zero amplitude of any two
particles coming to the same point. Further, however, the Laughlin state
is the highest density wavefunction (lowest degree polynomial) that has
this property14. For example, the Laughlin state times any polynomial14Although with some thought this fact

seems obvious, proving it rigorously is
tricky.

is also a zero energy state of this interaction, but since it has been mul-
tiplied by a polynomial, the total degree of the wavefunction is higher,
meaning the wavefunction extends to higher radius, making the system

11Roughly the story is as follows. The probability |Ψ(z1, . . . , zN )| of finding particles
at position z1, . . . , zN can be phrased as a classical stat mech problem of a one-
component 2d coulomb plasma in a background charge, by writing

|Ψ|2 = e−βU(z1,...,zN )

with β = 2/m and

U = −m2
∑

i<j

log(|zi − zj |) +
m

4

∑

i

|zi|2

where the first term is the coulomb interaction in 2d, and the second term is a
background charge — which happens to be the charge associated with a uniform
positve background (an easy thing to check using gauss’s law). Assuming this plasma
screens the background charge, it will be of uniform density up to a constant radius.
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less dense. A schematic of the ground state energy as a function of filling
fraction for this case is shown in Fig. 37.1.

Fig. 37.1 Schematic of the ground state energy as a function of filling fraction for
bosons with delta function interaction.

The key point is that the ground state energy has a cusp, which means
there is a jump in the chemical potential

µ =
∂E

∂N

This is precisely the same “incompressibility” as we have in the case of
noninteracting electrons — where the chemical potential jumps between
Landau levels! As in that case we presume that the presence of a cusp
in the free energy, in the absence of disorder, will be enough to give us
a plateau when disorder is added back in.
Now while we can easily show that there is a change of behavior at

ν = 1/2 in this plot, it is somewhat more difficult to be convincing that
the slope coming from the right is finite — i.e., that the gap is actually
finite. In order to do that, we would need to think about the elementary
excitations, or resort to numerics.

Fermions at ν = 1/3

The arguments given for bosons at ν = 1/2 can be easily generalized to
the case of fermions (i..e, electrons) at ν = 1/3 (and more generally to
any ν = 1/m.) Obviously a δ-function interaction will no longer do the
job, since for fermions Pauli exclusion prevents any two fermions from
coming to the same point already. However, consider an interaction of
the form

V = V0
∑

i<j

∇2δ(ri − rj)
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Given a wavefunction Ψ(r1, . . . , rN ) the interaction energy will be

E =
∑

i<j

∫
dr1 . . .drN |Ψ|2 ∇2δ(ri − rj)

Writing

Ψ(dr1 . . .drN ) = φ(z1 . . . zN )

N∏

i=1

e−|zi|2/(4ℓ2) (37.3)

with φ meaing the analytic polynomial part, for fermionic wavefunctions
(that must vanish when ri = rj) the expression for the energy can be
integrated by parts15 using ∇2 = 4∂z∂z∗ to give15Generally one would expect deriva-

tives of the gaussian part as well when
we integrate by parts. However, be-
cause the polynomial is antisymmetric,
the derivitive must act on the poly-
nomial part to prevent the wavefunc-
tion from vanishing when particle coor-
dinates coincide.

E =
∑

i<j

∫
dr1 . . .drN |∂ziφ|2 δ(ri − rj)

N∏

i=1

e−|zi|2/(2ℓ2)

Thus we have a non-negative definite interaction. Further, if the
wavefunction vanishes as a single power when two particles come to-
gether, then ∂zφ will be nonzero and we will get a postive result (Since
∂zi(zi − zj) is nonzero). However, if the wavefunction vanishes as three
powers ∂zφ will remain zero (since ∂zi(zi − zj)

3 goes to zero when
zi = zj)

16.16Note that by antisymmetry the wave-
function must vanish as an odd number
of powers as two particle positions ap-
proach each other.

Thus, entirely analously to the above case of ν = 1/2 with the δ-
function interaction, the Laughlin m = 3 (ν = 1/3) wavefunction is the
exact ground state (unique highest density zero energy wavefunction)
of the ∇2δ-function interaction. With similar ideas, one can construct
interactions for which any ν = 1/m Laughlin wavefunction is exact.

37.2.2 Real Interactions

Obviously electrons do not interact via a ∇2δ interaction. They inter-
act via a Coulomb interaction17 What is perhaps surprising is that the17In higher Landau levels, although the

interaction is Coulomb, when the single
Landau level problem is mapped to a
single partly filled lowest Landau level
(See the comments after Eq. 37.2), the
interaction gets modified – this mainly
effects the short range behavior.

Laughlin wavefunction is an almost perfect representation of the actual
ground state. This statement comes from numerical tests. For exam-
ple, for 9 electrons (on a spherical geometry to remove edge effects) the
dimension of the fully symmetry reduced Hilbert space18 is 84, and yet

18The full Hilbert space is 45207 di-
mensional!

the Laughlin trial wavefunction has an overlap squared of .988 with the
exact ground state of the Coulomb interaction. This is absurdly accu-
rate! The energy of the Laughlin wavefunction differs from the energy of
the exact Coulomb ground state by less than a part in two thousand19.

37.3 Quasiparticles

The Laughlin quantum hall ground state is a uniform density fluid (we
will actually show this as a homework problem). Density perturbations
are made in discrete units of charge known as quasiparticles. Positively

19I need to recheck this number***.
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charged bumps of charge (opposite the charge of the electron) are known
as quasiholes and negatively charged bumps of charge (same charge of
the electron) are quasielectrons.

37.3.1 Quasiholes

For the quasiholes, it is fairly easy to guess their wavefunction (and
indeed this was done by Laughlin). We start by considering adding a
quasihole at postion 0. This leaves the system rotationally invariant.
We guess the solution

Ψqh(0) =

[
N∏

i=1

zi

]
ΨLaughlin

where 0 indicates we have put the quasihole at position 0. Here the
degree of the polynomial is increased by one for every variable, so each
filled orbital gets pushed out to the next orbital. This leaves precisly one
empty orbtial open at positon 0. Since our wavefunction has filling frac-
tion ν, this means that on average a fraction ν of the orbitals are filled.
Thus leaving the orbital at the center completely empty corresponds to
a positive charge of +ν, and our quasihole has a positive charge

e∗ = νe.

Another way to think about the same wavefunction is to imagine
adiabatically inserting a quantum of flux φ0 at positon 0. Analogous
to the Laughlin argument for integer quantum Hall effect, This creates
an azimuthal EMF. Since the system has quantized Hall conductance
σxy = νe2/h, the total charge created is νe = σxyφ0. Then once we
have inserted the flux, the flux quantum can be gauged away leaving
only the quasihole behind.
One can make quasiholes at any location w analogously,

Ψqh(w) =

[
N∏

i=1

(zi − w)

]
ΨLaughlin

although this is no longer an angular momentum eigenstate. We can
similarly consider multiple quasiholes the same way

Ψqhs(w1, . . . , wM ) =

[
M∏

α=1

N∏

i=1

(zi − wα)

]
ΨLaughlin

Several interesting comments at this point:

(1) While the z’s are physical electron coordinates, the w parameters
are simply parameters of the wavefunction and can be chosen and fixed
to any value we like. The wavefunction Ψ(w1, . . . wM ; z1, . . . zN) is then
the wavefunction of electrons z in the presence of quasiholes at fixed w
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positions.

(2) Note that the phase of the wavefunction wraps by 2π when any
electron moves around the position of a quasihole.

(3) For the special ultra-short-range wavefunctions for which the Laugh-
lin ground state is an exact zero energy eigenstate, then this Laughlin
quasihole is also an exact zero energy eigenstate (albeit one with lower
density than the ground state since a hole has been inserted). Take for
example the case of ν = 1/2. With a δ-function interaction, the energy is
zero because no two particles come to the same point. Multiplying this
wavefunction by any polynomial (as we have done to insert quasiholes)
maintains this property and we still have a zero energy eigenstate. As
is the case for the Laughlin ground state, the quasihole is not exact for
the Coulomb interaction, but is extremely accurate numerically.

(4) At ν = 1/m, if we insert m quasiholes at the same point w, then
the wavefunction is just the same as if we were to have an electron e at
the point w (although the electron is not there). Thus we expect that
“fusing” m quasiholes together should precisely make an anti-electron
(or a real hole).

37.3.2 Quasielectrons

The quasi-electron is a bump of negative charge (i.e, same charge as the
electron). Unlike the case of quasiholes, there are no exact wavefunctions
that we know of for quasi-electrons (not even for special short range
interactions).
Whereas the quasi-hole increases the total degree of the polynomial

wavefunction (thereby decreasing the density of the system) the quasi-
electron should decrease the total degree of the wavefunction. Again,
Laughlin made a very good guess of what the wavefunction for the quasi-
electron should be. Considering a quasi-electron at the origin, we can
write

Ψqe(0) =

([
N∏

i=1

∂

∂zi

]
φ

)
N∏

i=1

e−|zi|2/(4ℓ2)

where as in Eq. 37.3 we have written the Laughlin wavefunction as the
polynomial part φ times the gaussian factors. Obviously the derivative
correctly reduces the degree of the polynomial by one in each varaible z,
thus reducing the net angular momentum of each paricle by one. Each
particle moves to lower radius by one orbital, thus giving a pile-up of
charge of e∗ = −eν at the origin.
In analogy to (but opposite that of) the quasihole, we might have

looked for a quasi-electron where electrons accumulate a phase of −2π
when an electron moves around the quasiparticle. One might think of
the operator z∗, but this operator does not live in the lowest Landau
level. However, the projection of this operator to the lowet Landau level
is given by

PLLLz
∗ = 2ℓ2

∂

∂z
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(This is a homework assignment!).
As mentioned above, the Laughlin quasi-electron is not exact for any

known system. However, it is a fairly good trial wavefunction numeri-
cally for the Coulomb interaction. Note however, that other forms for
the quasi-electron wavefunction have been found to be somewhat more
accurate.
One can move the quasielectron to any position in a similar way as

for quasiholes giving a wavefunction of the form

Ψqes(w) =

([
N∏

i=1

(
2ℓ2

∂

∂zi
− w∗

)]
φ

)
N∏

i=1

e−|zi|2/(4ℓ2)

37.3.3 Fractional Charge and Statistics?

The quasiparticles of the Laughlin state thus have fractional charge.
One should not lose sight of how surprising this is — that particles can
emerge that are a fraction of the “elementary” particles of the system.
If we lived at very low energy, we would experience these quasiparticles
as the fundamental particles of the system and would not know of the
existence of the underlying electron.
Once one accepts fractionalized charge, it is perhaps not surprising

to discover that they also have fractional statistics. Proving this state-
ment is nontrivial, and we will do it in several ways. Note that since
the quasiparticles are charged, moving them around in a magentic field
incurs phases. We would like thus like to compare the phase of moving
a particle in a loop versus moving a particle in a loop when another
particle might be inside the loop, see fig. 37.2

Fig. 37.2 To find the statistical phase, we compare moving a particle in a loop
versus moving it in the same loop when another particle is inside the loop.

We shall perform this comparison next after we introduce Berry’s
phase, which is the effect which produces the statistical phase we are
interested in.

37.4 Digression on Berry’s Phase

The Berry phase20 is one of the most fundamental ideas of modern 20Berry’s work on Berry Phase in 1984
had a number of precursors, most no-
tably the work of Pancharatnam in
1956.

physics. We recall the adiabatic theorem. If you start in an eigenstate
and change a Hamiltonian sufficiently slowly, and there are no level
crossings, then the system will just track the eigenstate as it slowly
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changes — i.e., it remains in the instantaneous eigenstate. However,
during this process it takes a bit of thought to figure out what happens
to the phase of the wavefunction.
To see how this correction arises, let us consider a Hamiltonian H(R)

which is a function of some general parameters which we will summarize
as the vector R. In our case these parameters are going to represent the
quasiparticle position — we will insert this information into the Hamilto-
nian by having some trapping potential which induces the quasiparticle
at the point R and we can then move around the trapping potential in
order to move the particle. Let us write the instantaneous (here nor-
malized!) eigenstate as |ψ(R)〉. So we have

H(R)|ψ(R)〉 = E(R)|ψ(R)〉

Now let us write the full, time dependent wavefucntion as

|Ψ(t)〉 = eiγ(t) |ψ(R(t))〉

so we are allowing for an additional phase out front of the instantaneous
eigenstate. The time dependent Schroedinger equation is

i~
∂

∂t
|Ψ(t)〉 = H(R(t))|Ψ(t)〉

[
−~γ̇ + i~

∂

∂t

]
|ψ(R(t))〉 = E(R(t))|ψ(R(t))〉

Projecting this equation onto the bra 〈ψ(R)| we obtain

γ̇ = −E(R(t))/~− i

〈
ψ(R(t))

∣∣∣∣
∂

∂t

∣∣∣∣ψ(R(t))

〉

Integrating over some path R(t) from some initial time ti to some final
time tf gives

γ(tf )− γ(ti) = − 1

~

∫ tf

ti

E(R(t))dt − i

∫
Rf

Ri

dR · 〈ψ(R) |∇R|ψ(R)〉

The first term is the expected dynamical phase — just accumulating a
phase with time proportional to the energy. The second term on the right
is the Berry phase contribution — a line integral along the particular
path that R(t) takes. Note that this term depends only on the geometry
of the path and not on how long one takes to move through this path.
In this sense is it s a geometric phase.

37.5 Arovas-Schrieffer-Wilczek Calculation of

Fractional Statistics

This section follows the approach of Arovas, Schrieffer and Wilczek21.21Wilczek won a Nobel for his work on
assymptotic freedom. Schrieffer won a
Nobel for his work on BCS theory of
superconductivity. Arovas was a grad
student at the time.
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Let us consider a ν = 1/m wavefunction for a quasihole

Ψ(w) = N (|w|)
[
N∏

i=1

(zi − w)

]
Ψ

(m)
Laughlin

and we will imagine moving around the position w in a circle of con-
stant radius as shown in the right of Fig. 37.2. Here we have inserted a
normalization constant out front, which can be shown to be a function
of radius only. (This is argued by plasma analogy, which is part of the
homework). We will then parameterize22 the position of the particle by 22On can choose a more general path

for the particle but we will then need
the detailed form of N (w). See the dis-
cussion below in section ***

the angle θ and w = |w|eiθ .
The Berry phase from moving the particle in a loop will then be

∆γ = −i
∫ 2π

0

dθ 〈Ψ(θ)|∂θ|Ψ(θ)〉

where we have written |Ψ(θ)〉 to mean |Ψ(|w|eiθ)〉. We then have

∂θ|Ψ(θ)〉 = ∂w

∂θ

(
∑

i

−1

zi − w

)
|Ψ(θ)〉

Thus we have

〈Ψ(θ)|∂θ|Ψ(θ)〉 = ∂w

∂θ

∑

i

〈
Ψ(θ)

∣∣∣∣
−1

zi − w

∣∣∣∣Ψ(θ)

〉

Thus from taking w around in a circle we obtain the Berry phase23

∆γ = −i
∮
dθ 〈Ψ(θ)|∂θ |Ψ(θ)〉

= −i
∮
dw
∑

i

〈
Ψ(w)

∣∣∣∣
−1

zi − w

∣∣∣∣Ψ(w)

〉

Now the integral around the loop of 1/(z − w) accumulates 2πi if and
only if zi is inside the loop. Thus we obtain the phase

∆γ = 2π 〈number of electrons in loop〉
= 2π(1/m)Φ/φ0 = γAB

where Φ is the flux enclosed by the loop and φ0 is the flux quantum (and
here we have used ν = 1/m). This is precisely the expected Aharonov-
Bohm phase that we should expect for moving a charge e/m around a
flux Φ.
Now we consider putting another quasiparticle in the center of the

loop as shown in the left of Fig. 37.2. Using a normalization factor that
is again a function of |w| only, the same calculation holds, but now the

23The way this is written it is obviously a bit nonsense. Please fix it. I wrote this
footnote, but now I don’t see what is wrong with what I have here! ***
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number of electrons enclosed has changed by one quasiparticle charge
e/m. Thus the phase is now

∆γ = γAB + γstatistical

where the additional phase for having gone around another quasihole is
given by

γstatistical = 2π/m

or in other words we have fractional statistics! For example, for the
Laughlin state at ν = 1/2, we have semionic statistics.
A more detailed version of this calculation (we will do this below)

shows that the path of the particle does not matter —- the total phase
is always the Aharanov-Bohm phase for taking a particle around flux,
added to the statiscal phase of taking it around another quasiparticle.

Comment on the Fusion/Braiding Rules, and Chern-Simons
theory

For the ν = 1/m Laughlin state thus we have a situation where the
elementary quasi-holes have statistics θ = 2π/m. We can assume that
their antiparticles will have the same statistics (both opposite “charge”
and “flux” in a charge-flux model). We also have that the fusion of m
elementary quasi-electrons or quasi-holes forms an an electron or anti-
electron.
In the case where m is even, the underlying “electron” is a boson, in

which case we can think of this electron as being identical to the vacuum
— it has trivial braiding with all particles and it is essentially condensed
into the ground state as some sort of background superfluid. Thus we
have a simple anyon theory with m particle types.
On the other hand, when m is odd, we have the situation (discussed

in our “charge-flux composite” section ***) where the fusion of m ele-
mentary anyons forms a fermion — and so there are actually 2m par-
ticle types — the fermion full-braids trivially with everything, but has
fermionic statistics with itself. This situtation is “non-modular” — it
does not have as many ground states as it has particle types. There are
only m ground states, despite 2m particle types.

37.6 Gauge Choice and Monodromy

The Laughlin wavefunction with M quasiholes takes the form

Ψ(w1, . . . , wM ; z1, . . . , zN) = (37.4)

N (w1, . . . , wN )

[
M∏

α=1

N∏

i=1

(zi − wα)

]
Ψ

(m)
Laughlin(z1, . . . , zN)

where N is a normalizing factor.
By using a plasma analogy (this is a homework assignment) we find
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that the normalization must be of the form

|N (w1, . . . , wM )| = C
∏

α<β

|wα − wβ |1/m
M∏

α=1

e−|wα|2/(4ℓ∗2)

where C is some constant and

ℓ∗ =

√
~

e∗B

is the effective magnetic length for a particle of charge e∗ = e/m. This
choice of normalization assures that

〈Ψ(w1, . . . , wM )|Ψ(w1, . . . , wM )〉

independent of the position of the quasiholes.
Now, we can choose the phase of the factor N arbitrarily — this

is essentially a gauge choice. In the above Arovas, Schrieffer, Wilczek
calculation above, we chose the phase to be real. However, this is just a
convention. An intersting different convention is to choose

N (w1, . . . , wN ) = C
∏

α<β

(wα − wβ)
1/m

M∏

α=1

e−|wα|2/(4ℓ∗2) (37.5)

which is known as holomorphic or “fractional statistics” gauge – here
the fractional statistics of the quasiparticles are put explicitly into the
wavefunction! Note here that this function is not single valued in the
w-coordinates. In this gauge, we see that the wavefunction has branch
cuts and can be thought of as having Riemann sheets. This may look
problematic, but it is not. While a wavefunction must be single-valued
in the physical electron coordinates, the w’s are just parameters of the
wavefunction, and we are allowed to choose wavefunctions’ phase con-
ventions in any way we like – even in non-single-valued ways as we have
done here.
What we would want to confirm is that the physical phase accumu-

lated in moving one quasihole around another is independent of our
gauge choice. To this end we note that the total phase accumulated
can be decomposed into two pieces, the so-called monodromy and the
Berry phase. The monodromy is the phase explicitly accumulated by
the wavefunction when one coordinate is moved around another.

Total Phase = Monodromy+ Berry Phase

In the above Arovas-Schrieffer-Wilczek calculation, we chose the phase
of the normalization to be everywhere real. So there is no monodromy
— no explicit phase as we move one particle around another. However,
in fractional statistics gauge we see a phase of 2π/m for each particle
which travels counterclockwise around another. In both gauges the total
phase should be the same, so in the holomorphic gauge, the statistical
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part of the phase should be absent. Let us see how this happens.

37.6.1 Fractional Statistics Calculation: Redux

Let us consider the case of two quasi-holes and repeat the argument
of Arovas-Schrieffer-Wilczek but in holomorphic gauge. Putting one
quasihole at postition w and another at position w′ the wavefunction is

Ψ(w) = C(w − w′)1/me−(|w|2+|w′|2)/(4ℓ∗2) ×∏

i

(zi − w)(zi − w′)
∏

i<j

(zi − zj)
∏

i

e−|zi|2/(4ℓ2)

with C chosen so that Ψ is normalized independent of the quasihole
coordinates.24 Let us parameterize the path of a quasiparticle as w(τ).

24Strictly speaking the wavefunction is
normalized in this form only if w and
w′ are not too close together — keep-
ing them a few magnetic lengths apart
is sufficient. This all comes from the
plasma analogy calculation.

We can write the Berry phase as

∆γ = −i
∮
dτ〈Ψ(τ)|∂τ |Ψ(τ)〉

We write
∂

∂τ
=
∂w

∂τ

∂

∂w
+
∂w∗

∂τ

∂

∂w∗ (37.6)

Now, because we are using holomorphic gauge of the wavefunction the
∂/∂w∗ only hits the gaussian factor, so we have

〈Ψ(w)|∂w∗|Ψ(w)〉 = − w

4ℓ∗2
〈Ψ(w)|Ψ(w)〉 = − w

4ℓ∗2

To evaluate the derivative ∂/∂w we integrate by parts so that it acts
on the bra rather than the ket. Now since the bra is completely anti-
holomorphic in w except the gaussian, the derivative acts only on the
gaussian again to give

〈Ψ(w)|∂w |Ψ(w)〉 = ∂w [〈Ψ(w)|Ψ(w)〉] − [∂w〈Ψ(w)|] |Ψ(w)〉
=

w∗

4ℓ∗2
〈Ψ(w)|Ψ(w)〉 = w∗

4ℓ∗2

Note that the derivative on 〈Ψ|Ψ〉 here is zero because the wavefunction
is assumed normalized to unity for every value of w.
We then have the Berry phase given by

∆γ = −i
∮
dτ〈Ψ(τ)|∂τ |Ψ(τ)〉 = −i 1

4ℓ∗2

∮
(dww∗ − dw∗w)

where we have used Eq. 37.6. We now use the complex version of Stokes
theorem25 to obtain25The complex version of Stokes is as

follows. Using w = x+ iy
∫

∂A
(Fdw −Gdw∗)

= 2i

∫

A
(∂w∗F + ∂wG)dxdy

∆γ =
Area

ℓ∗2
= 2π(1/m)Φ/φ0

which is the Aharanov-Bohm phase corresponding to the flux enclosed
in the path – without giving the fractional statistical phase which has
now been moved to the monodromy!
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The key point here, which we emphasize, is that if we work with nor-
malized holomorphic wavefunctions (i.e., holomorphic gauge), then the
fractional statitics are fully explicit in the monodromy of the wavefunc-
tion — we can read the statistics off from the wavefunction without
doing any work!

37.7 Appendix: Building an Effective

(Chern-Simons) Field Theory

We can consider writing an effective field theory for this ν = 1/m quan-
tum Hall system. First let us think about how it responds to an exter-
nally applied electromagnetic field. It should have its density locked to
the magnetic field, so we should have a change of electron density (In
this section we set ~ = e = 1 for simplicity)

δn = j0 =
1

2πm
δB

Similarly we should expect a quantized Hall conductance, here with j
being the current of electrons

ji = − 1

2πm
ǫijEj

Both of these can be summarized as the response to a perturbing vector
potential

jµ =
−1

2πm
ǫµνλ∂νδAλ (37.7)

We must, of course have charge conservation as well. This is easy to
enforce by writing the current in the form

jµ =
1

2π
ǫµνλ∂νaλ (37.8)

which then automatically satisfies

∂µj
µ = 0

In this language, the effective Lagrangian that produces Eq. 37.7 as an
equation of motion is then

L =
−m
4π

ǫµνλaµ∂νaλ +
1

2π
ǫµνλAµ∂νaλ + jµq aµ

where jq is the quasiparticle current. Note that without the Aµ term,
this is the same Chern-Simons theory we used for describing fractional
statistics particles (now the quasiparticles).
To see the coupling to the external vector potential, note that the

general (Noether) current associcated with the local gauge symmetry
will be

jµ =
∂L
∂Aµ
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which matches the expression from Eq. 37.8. By differentiating the La-
grangian with respect to aµ we generate the equations of motion Eq. 37.7.
More here

37.8 Appendix: Quantum Hall Hierarchy

Good reference is https://arxiv.org/abs/1601.01697
Shortly after the discovery of the Laughlin ν = 1/3 state additional

fractional quantum Hall plateaus were discovered at filling fractions such
as ν = 2/3, 2/5, 3/7 and so forth. By now over 60 different plateaus have
been observed in experiment!
The Laughlin theory only describes filling fractions ν = 1/m but it

contains in it the right ideas to build possible theories for many of these
fractions.
There are several approaches to building a hierarchy of quantum Hall

states, however perhaps the most intuition comes from the original ap-
proaches by Haldane and Halperin in 1983.
The general idea is to begin with a Laughlin wavefunction for N elec-

trons with coordinates zi for ν = 1/m then change the magnetic field to
add a large number M of quasiparticles (say in the form of 37.4, in the
case of quasiholes) at coordinates wα. Thus our wavefunction we write
as

Ψ(w1, . . . wM ; z1, . . . zN )

as written in Eq. 37.4. We then write a pseudowavefunction to describe
some dynamics of the quasiholes which we write as

φ(w1, . . . , wM )

An electron wavefunction is generated by integrating out the quasihole
coordinates. Thus we have

Ψ̃(z1, . . . zN ) =

∫
dw1, . . .dwM φ∗(w1, . . . , wM )Ψ(w1, . . . wM ; z1, . . . zN )

The general idea of this scheme is that the pseudo-wavefunction can itself
be of the form of a Laughlin wavefunction. In the original Laughlin
argument we wrote down wavefunctions for both boson and fermion
particles. Here, the particles w are anyons, so we need to write a slightly
different form of a wavefunction. We expect

φ(w1, . . . , wM ) =
∏

α<β

(wα − wβ)
1
m

+p

with p an even integer. The fractional power accounts for the fact
that the anyon wavefunction must be multi-valued as one particle moves
around another. The factor p is to include a “Laughlin” factor repelling
these anyons from each other without further changing the statistics.
The condensation of these quasi-particles into a Laughlin state gener-
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ates a wavefunction for the filling fraction

ν =
1

m± 1/p

with the ± corresponding to whether we are condensing quasiparticles
or quasiholes. One can continue the argument starting with these new
fractions and generating further daughter states and so forth. At the
next level for example, we have

ν =
1

m± 1
p± 1

q

By repeating the procedure, any odd denominator fraction ν = p/q can
be obtained.
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Exercises

Exercise 37.1 Filled Lowest Landau Level
Show that the filled Lowest Landau level of non-interacting electrons (a

single slater determinant) can be written as

Ψ0
m = N

∏

1≤i<j≤N
(zi − zj)

1
∏

1≤i≤N
e−|zi|2/4ℓ2 (37.9)

with N some normalization constant. I.e, this is the Laughlin wavefunction
with exponent m = 1.

Exercise 37.2 Laughlin Plasma Analogy
Consider the Laughlin wavefunction for N electrons at positions zi

Ψ0
m = N

∏

1≤i<j≤N
(zi − zj)

m
∏

1≤i≤N
e−|z|2/4ℓ2 (37.10)

with N a normalization constant. The probability of finding particles at po-
sitions {z1, . . . , zN} is given by |Ψm(z1, . . . zN)|2.

Consider now N classical particles at temperature β = 1
kbT

in a plane
interacting with logarithmic interactions v(~ri − ~rj) such that

βv(~ri − ~rj) = −2m log(|~ri − ~rj |) (37.11)

in the presence of a background potential u such that

βu(|~r|) = |~r|2/(2ℓ2) (37.12)

Note that this log interaction is “Coulombic” in 2d (i.e., ∇2v(~r) ∝ δ(~r)).
(a) Show that the probability that these classical particles will take po-

sitions {~r1, . . . , ~rN} is given by |Ψ0
m(z1, . . . zN)|2 where zj = xj + iyj is the

complex representation of position ~ri. Argue that the mean particle density
is constant up to a radius of roughly 2ℓ

√
Nm. (Hint: Note that u is a neu-

tralizing background. What configuration of charge would fully screen this
background?)

(b) Now consider the same Laughlin wavefunction, but now with M quasi-
holes inserted at positions w1, . . . , wM .

Ψm = N (w1, . . . , wM )





∏

1≤i≤N

∏

1≤α≤M
(zi − wα)



Ψ0
m (37.13)

where N is a normalization constant which may now depend on the positions
of the quasiholes. Using the plasma analogy, show that the w−z factor may be
obtained by adding additional logarithmically interacting charges at positions
wi,with 1/m of the charge of each of the z particles

(c) Note that in this wavefunction the z’s are physical parameters (and the
wavefunction must be single-valued in z’s), but the w’s are just parameters of
the wavefunction – and so the function N could be arbitrary — and is only
fixed by normalization. Argue using the plasma analogy that in order for the
wavefunction to remain normalized (with respect to integration over the z’s)
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as the w’s are varied, we must have

|N (w1, . . . , wM )| = K
∏

1≤α<γ≤M
|wα −wγ |1/m

∏

1≤α≤M
e−|wα|2/(4mℓ2) (37.14)

with K a constant so long as the w′s are not too close to each other. (Hint: a
plasma will screen a charge).





Fractional Quantum Hall Edges 38
Medium Material

38.1 Parabolic Confinement

For studying fractional quantum Hall edge states, it is perhaps most
useful to consider a parabolic confinement potential. Considering the
simple particle Hamiltonian, and adding this confining potential to the
kinetic energy we have

Hconfined = H0 + γr2

where H0 is the single particle Hamiltonian in the asence of the confine-
ment.
Since the confinement is rotationally symmetric, we can still classify

all eigenstates by their angular momemtum quantum numbers. Using
symmetric gauge we can still write the single particle eigenstates as1 1Note that the parabolic confinement

modifies the magnetic length.

ϕm ∼ zme−|z|2/(4ℓ2)

where m is the eigenvalue of the angular momentum2 operator L̂. Since 2We drop the ~ from the angular mo-
mentum operator so its eigenvalues are
just numbers.

the radius of these states is r ≈ ℓ
√
2m it is not surprising that the

confinement energy γr2 of each eigenstate is proportional to m. We
thus have

Hconfined = H0 + αL̂

for some constant α.
For integer filling, the edge excitations are very much like the edge

excitations we discussed above in Landau gauge. A round quantum Hall
droplet fills m states up to a chemical potential along the edge. One
can add a small amount of angular momentum to the edge by exciting
a filled state from an m just below the chemical potential to an empty
state just above the chemical potential.

38.2 Edges of The Laughlin State

We now consider adding an interaction term so as to produce a fractional
quantum Hall state. It is convenient to think about the limit where the
cyclotron energy is huge (so we are restricted to the lowest Landau level),
the interaction energy is large, so we have a very well formed quantum
Hall state, and finally, the edge confinement is weak.
In particular if we choose to consider the special ultra-short range

interaction potentials (such as δ function for bosons at ν = 1/2) we still
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have the ground state given exactly by the Laughlin state

Ψ
(m)
Laughlin =

∏

i<j

(zi − zj)
m

N∏

i=1

e−|zi|2/(4ℓ2)

such that it has zero interaction energy. The angular momentum of the
Laughlin ground state is just the total degree of the polynomial

Lground = m
N(N − 1)

2

with confinement energy

Eground = αm
N(N − 1)

2

While the Laughlin state has zero interaction energy it is also the case
that any polynomial times the Laughlin state also has zero interaction
energy since multipying by a polynomial does not ruin the fact that the
wavefunction vanishes as m or more powers as two particles approach
each other. Thus we can consider all possible wavefunctions of the form

Ψ = (Any Symmetric Polynomial)Ψ
(m)
Laughlin

where we insist that the polynomial is symmetric such that the symmetry
of the wavefunction remains the same (i.e, antisymmetric for fermions
and symmetric for bosons).
If the degree of the symmetric polynomial is ∆L, then we have

L = Lground +∆L

E = Eground + α∆L

We can organize the possible excitations by their value of ∆L. We thus
only need to ennumerate all possible symmetric polynomials that we can
write in N variables of some given degree ∆L.
We thus need some facts from the theory of symmetric polynomials.

The symmetric polynomials on the N variables z1, . . . , zN form a so-
called “ring” (this means you can add and multiply them). A set of
generators for this ring is given by the functions

pm =

N∑

i=1

zmi

This means that any symmetric function on N variables can be written
as sums of products of these functions3. Thus it is extremely easy to3In fact because the interaction Hamil-

tonian that we are studying is purely
real when written in the ϕm basis, we
can take the coefficients in the polyno-
mials to be entirely real too. See foot-
note ****

count symmetric functions. Of degree 1, we have only p1. At degree 2,
we have p21 and also p2. Thus the vector space of symmetric polynomials
of degree two (with real coefficients) is two dimensional. We can build
a corresponding table as shown in Table 38.1.
Thus the number of edge excitations at a given angular momentum
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L− Lground dimension basis functions Energy
1 1 p1 α
2 2 p2, p1p1 2α
3 3 p3, p2p1, p1p1p1 3α
4 5 p4, p3p1, p2p1p1, p1p1p1p1 4α
5 7 p5, p4p1, p3p2, p3p1p1, p2p2p1, p2p1p1p1, p1p1p1p1p1 5α

Table 38.1 Table of Symmetric Polynomials

follows a pattern, 1, 2, 3, 5, 7, . . . with energy increasing linearly with the
added angular momentum. Note that this result holds also for the ν = 1
Laughlin state (i.e., for the integer quantum Hall effect), and matches
the counting for excitations of a chiral fermion (try this exercise!4 )

38.2.1 Edge Mode Field Theory: Chiral Boson

An equivalent description of the edge modes is given by the Hamiltonian

H =
∑

m>0

(αm)b†mbm

where the b†m are boson creation operators satisfying the usual commu-
tations

[bm, b
†
n] = δnm

and we think of these boson creation operators b†m as creating an el-
emetary excitation of angular momentum m on the ground state which
we will call |0〉 for now. We can build a table describing all of the states
in fock space of this Hamiltonian, ordered by their angular momentum as
shown in Table 38.2. We see the fock space is precisely equivalent to the
above table of polynomials. In fact the analogy is extremely precise. In
the thermodynamic limit, up to a known normalization constant, appli-
cation of b†m is precisely equivalent to multiplication of the wavefunction
by pm.
These operators describe a chiral boson – chiral because they only have

4To get you started, consider filled states in a line filled up to the chemical potential.
We can think of these as dots in a row. For example, let the ground state be

. . . • • • • • • ◦ ◦ ◦ ◦ . . .
where • means a filled single particle eigenstate and ◦ means empty. Now if we add
one unit of (angular) momentum, we have the unique state

. . . • • • • • ◦ • ◦ ◦ ◦ . . .
adding two units can be done in two ways

. . . • • • • • ◦ ◦ • ◦ ◦ . . .
and

. . . • • • • ◦ • • ◦ ◦ ◦ . . .
thus starting the series 1, 2, 3, 5, 7 . . ..
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L− Lground dimension basis fock states Energy

1 1 b†1|0〉 α

2 2 b†2|0〉, b†1b
†
1|0〉 2α

3 3 b†3|0〉, b†2b
†
1|0〉, b†1b

†
1b

†
1|0〉 3α

4 5 b†4|0〉, b†3b
†
1|0〉, b†2b

†
1b

†
1|0〉, b†1b

†
1b

†
1b

†
1|0〉 4α

Table 38.2 Fock Space for Chiral Bosons

positive angular momentum m > 0 not negative angular momentum.5

38.3 Appendix: Edges and Chern-Simons

theory

The existence of the edge theory could have been predicted from the ef-
fective Chern-Simons Lagrangian of the bulk. As mentioned previously,
the Abelian Chern-Simons action is gauge invariant on a closed mani-
fold. However, for a manifold with boundary, the action is not gauge
invariant. This is what is known as an anomaly. The solution to this
problem is that the action becomes gauge invariant only once it is added
to an action for the low energy edge theory! We will not go through the
detailed argument for this here.

5An achiral bose field on a circle requires both positive and negative angular mo-
mentum modes).



Conformal Field Theory
Approach to Fractional
Quantum Hall Effect 39

Medium Material

In the last chapter we saw that we have an edge theory which is a chiral
boson — a 1+1 dimensional dynamical theory. We can think of this
theory as being a 2 dimensional cut out of a 3 dimensional space-time
manifold. Now in a well-behaved topological theory, it should not matter
too much how we cut our 3-dimensional space-time manifold. Thus we
expect that the same chiral bose theory should somehow also be able to
describe our 2+0 dimensional wavefunction. Since all chiral topological
theories have gapless edges, this approach can be quite general.
1+1 dimensional gapless theories can all be described by conformal

field theories (CFTs) possibly perturbed by irrelevant operators. And
conformal field theories in 1+1 dimension are particularly powerful in
that they are exactly solvable models, which can be used to describe
either the dynamics of 1+1 dimensional systems or classical statistical
mechanical models in 2 dimensions.
While we cannot provide a complete introduction to CFT here (see

Ginsparg’s lectures, Fendley’s notes, or for a much more complete dis-
cussion, see the Big Yellow Book), it turns out that we need very little of
the machinery to proceed. Furthermore, a large fraction of this machin-
ery will look extremely familiar from our prior study of TQFTs. Indeed,
there is an extremely intimite connection between CFTs and TQFTs —
and much of what we know about TQFTs has grown out of the study
of CFTs.
We will begin by seeing how this works for the chiral boson, which is

perhaps the simplest of all 1+1d CFTs. Below we will show how the
scheme works in more detail in the context of quantum Hall physics.
This approach, first described by Moore and Read, has been extremely
influential in the development of TQFTs and their relationship to the
quantum Hall effect.

39.1 The Chiral Boson and The Laughlin

State

An interesting feature of theories in 1+1d is that they can often be
decomposed (mostly1) cleanly into right moving and left moving pieces.

1There may be issues with the decom-
position, for example, in the case of
the boson, there is a complication as-
sociated with the so-called zero-mode,
which we will ignore for simplicity.

So for example, if we take the simplest possible 1+1 d system, a free
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boson, we can write an achiral Lagrangian density for a field Φ(x, t) as

L ∝ (∂µΦ)(∂
µΦ)

This can be decomposed into right and left moving pieces as

Φ(x, t) = φ(x− vt) + φ̄(x+ vt)

where φ is right-moving and φ̄ is left-moving and these are two different
fields. For simplicity we will set the velocity v = 1.
In the previous chapter we deduced that the edge theory of the Laugh-

lin state could be described by a chiral boson Hamiltonian

H =
∑

m>0

(αm)a†mam

Quantizing the boson lagrangian we find that22We have dropped the zero mode here.

φ(x) =
∑

m>0

i√
m
e2πimx/La†m + h.c. (39.1)

where L is the (periodic) length of the system.
We will often work in complex coordinates x and τ = it, so we have

we write Φ(z, z∗) where z = x+ iτ and z∗ = x− iτ correspond to right
(holomorphic) and left-moving (antiholomorphic) coordinates.
As free bose fields, we can use Wick’s theorem on the fields φ and all

we need to know is the single two point correlator3

3Perhaps the easiest way to see this is
to calculate directly from Eq. 39.1. See
exercise ***. Another way to obtain
this is to aim for the achiral result

〈Φ(z, z∗)Φ(z′, z′∗)〉 = − log(|z − z′|2)
To see where this comes from, it is eas-
iest to think about a 2d classical model
where the action is

S = (8π)−1
∫
dxdy|∇Φ|2

With a partition function

Z =

∫
DΦ e−S[Φ]

It is then quite easy to calculate the cor-
relator 〈ΦkΦk′〉 = δk+k′ |k|−2. Fourier
transforming this then gives the result.

〈φ(z)φ(z′)〉 = − log(z − z′)

Note that we think of this correlation function as a correlation in a 1+1d
theory even though we are working with complex z.
From this chiral φ operator we construct the so-called vertex operators

Vα(z) =: eiαφ(z) :

where : : means normal ordering4 A straightforward exercise (assigned4The usual understanding of normal or-
dering is that when we decompose a
field into creation and annihilation op-
erators, we can normal order by mov-
ing all the annihilation operators to the
right. Another way to understand it
is that when we expand the exponent
eiαφ(z) = 1+ iαφ(z) + (iα)2φ(z)φ(z) +
. . .. There will be many terms where
φ(z) occurs to some high power and
that looks like a divergence because the
correlator of two φ fields at the same
position looks log divergent. Normal
ordering is the same as throwing out
these divergences.

as homework!) using Wick’s theorem then shows that

〈Vα1 (z1)Vα2(z2) . . . VαN (zN )〉 = e−
∑
i<j αiαj〈φ(zi)φ(zj)〉

=
∏

i<j

(zi − zj)
αiαj (39.2)

so long as ∑

i

αi = 0 (39.3)

(otherwise the correlator vanishes).
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39.1.1 Writing the Laughlin Wavefunction

We then define an “electron operator” to be

ψe(z) = Vα(z)

where we will choose
α =

√
m

This then enables us to write the holomorphic part of the Laughlin
wavefunction as

Ψ
(m)
Laughlin = 〈ψe(z1)ψe(z2) . . . ψe(zN )Q̂〉 =

∏

i<j

(zi − zj)
m

The index α must be chosen such that α2 is an integer such that the
wavefucntion is single valued in the electron coordinates. Note that here
although the correlator means a 1+1d theory, we are constructing a
wavefunction for a 2d system at fixed time!
Here, the operator Q̂ can be chosen in two different ways. One pos-

sibility is to choose Q̂ = V−Nα, i.e., a neutralizing charge at infinity
such that Eq. 39.3 is satisfied and the correlator does not vanish. This
approach is often used if one is only concerned with keeping track of the
holomorphic part of the wavefunction (which we often do). A more phys-
ical (but somewhat more complicated) approach is to smear this charge
uniformly over the system. In this case, the neutralizing charge, almost
magically, reproduces precisely the gaussian factors that we want!5. 5To see how this works, we divide

the background charge into very small
pieces (call them β) to obtain a corre-
lator of the form

em
∑
i<j log(zi−zj)−ǫ

√
m

∑
i,β log(zi−zβ)

the term with ǫ2 we throw away as we
will take the limit of small ǫ. Now here
we realize that we are going to have a
problem with branch cuts around these
small charges — which we can handle
if we work in a funny gauge. Changing
gauge to get rid of the branch cuts we
then get only the real part of the second
term. The second term is then of the
form
∑

i,β

log(|zi − zβ |) →
∫
d2r log(|z − r|)

where we have taken the limit of in-
creasing number of smaller and smaller
charges. We define this integral to be
f(z). It is then easy to check that
f(z) ∼ |z|2 which is most easily done
by taking ∇2f(z) and noting that log is
the coulomb potential in 2d so Gauss’s
law just gives the total charge enclosed.

Thus we obtain e−|z|2 as desired. A
more careful calculation gives the con-
stant correctly as well.

39.1.2 Quasiholes

Let us now look for quasihole operators. We can define another vertex
operator

ψqh(w) = Vβ(w)

and now insert this into the correlator as well to obtain

Ψqh(w) = 〈ψqh(w)ψe(z1)ψe(z2) . . . ψe(zN)Q̂〉 (39.4)

=

[
∏

i

(zi − w)β
√
m

]
Ψ

(m)
Laughlin

Since we must insist that the wavefunction is single valued in the z
coordinates, we must choose

β = p/
√
m

for some positive integer p, where the minimally charged quasiparticle
is then obviously p = 1. (Negative p is not allowed as it would create
poles in the wavefunction).
Further, using this value of the the charge β, along with the smeared

out background charge, we correctly obtain the normalizing gaussian



524 Conformal Field Theory Approach to Fractional Quantum Hall Effect

factor for the quasiparticle

e−|w|2/(4mℓ2)

This is the correct gaussian factor, with an exponent 1/m times as big
because the charge V1/

√
m is 1/m times as big as that of the electron

charge V√m.
If we are now to add multiple quasiholes, we obtain the wavefunction

Ψ(w1, . . . , wM ) = 〈ψqh(w1) . . . ψqh(wM )ψe(z1) . . . ψe(zN )Q〉 (39.5)

= C
∏

α<β

(wα − wβ)
1/m

M∏

α=1

e−|wα|2/(4ℓ∗2)
[
M∏

α=1

N∏

i=1

(zi − wα)

]
Ψ

(m)
Laughlin

which is properly normalized

〈Ψ(w1, . . . wM )|Ψ(w1, . . . wM )〉 = Constant

and is in holomorphic gauge. As discussed previously in chapter ***
with a normalized holomorphic wavefunction we can simply read off the
fractional statistics as the explicit monodromy.
Note that we can consider fusion of several quasiparticles

V1/
√
m × V1/

√
m → V2/

√
m (39.6)

Fusion of m of these elementary quasiholes produces precisely one elec-
tron operator V√m. Since the electrons are “condensed” into the ground
state, we view them as being essentially the identity operator, at least in
the case of m even, which means we are considering a Laughlin state of
bosons. Thus there are m species of particle in this theory. In the case
of m odd, we run into the situation mentioned in chapter *** where the
electron is a fermion, so really there are 2m species of particles in the
theory.
The idea is that by using conformal field theory vertex operators we

automatically obtain normalized holomorphic wavefunctions and we can
determine the statistics of quasiparticles straightforwarldy. This is a key
feature of the Moore-Read approach. While there is no general proof
that this will always be true (that the resulting wavefunctions will be
properly normalized) it appears to hold up in many important cases.
We hope now to generalize this construction by using more com-

plicated conformal field theories. This then generates more compli-
cated fractional quantum Hall wavefunctions corresponding to more
complcated TQFTs.
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39.2 What We Need to Know About

Conformal Field Theory

I can’t possibly explain CFT in a few pages. (See the big yellow book.
Ginsparg’s lectures are nice for introduction. So are Fendley’s notes),
but given what we already know about TQFTs many of the rules are
going to seem very natural. Indeed, much of the math of TQFTs arose
via CFTs.
CFTs are quantum theories in 1+1 dimension6. They are generically

6We will restrict our attention to uni-
tary CFTs so that these are well be-
haved 1+1 d theories. Although certain
2 dimensional stat mech models can be
related to non-unitary CFTs, these do
not correspond to well behaved TQFTs.highly interacting theories, and most often it is impossible to write an

explicit Lagrangian for the theory, but due to the special properties
of being in 1+1 and having conformal invariance (guaranteed by being
gapless in 1+1 d) these models are exactly solvable.
A particular CFT is defined by certain information known as con-

formal data, which basically mimics the defining features of a TQFT:

(1) There will be a finite set7 of so-called primary fields, which we 7A nonrational CFT may have an infi-
nite number of particle types, but these
are badly behaved and do not appear to
correspond to nice TQFTs.

might call φi(z) (or we may use other notation). These are analogous
to the particle types in a TQFT. Every CFT has an identity field often
called I (which isn’t really a function of position). Correlators of these
fields

〈φj1 (z1) . . . φjN (zN )〉
are always holomorphic functions of the z arguments, although there
may be branch cuts.

(2) Each primary field has a scaling dimension8 or conformal
weight or conformal spin, which we call hi. The scaling dimension of
I is hI = 0. We have see these quantities before when we discussed twists
in world lines. Often we will only be interested in h modulo 1, since the
twist factor is e2πih. Each primary field has descendant fields which are
like derivatives of the primary and they have scaling dimensions hi plus
an integer (we will typically not need these, but for example, ∂zφi has
scaling dimension hi + 1).

(3) Fusion relations exist for these fields, which are associative and
commutative

φi × φj =
∑

k

Nk
ijφk

where fusion with the identity is trivial

I × φj = φj

8In CFT we have the powerful relation that if we make a coordinate transform w(z)
then any correlator of primary fields transforms as

〈φi1 (w1) . . . φiN (wN )〉 =
[(

∂w1

∂z1

)−hi1
. . .

(
∂wN

∂zN

)−hiN
]
〈φi1 (z1) . . . φiN (zN )〉

However, we will not need this relationship anywhere for our discussion!
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As with TQFTs, each particle type has a unique antiparticle. We will
give a clearer meaning to these fusion relations in a moment when we
discuss operator product expansion.

The expectation of any correlator in the theory is zero unless all the
fields inside the correlator fuse to the identity. For example, if we have a
Z3 theory where it requires three ψ particles fuse to the identity, then we
would have 〈ψ(z)ψ(w)〉 = 0. We saw this law previously in the neutrality
condition for the chiral boson. The expectation of the identity I is unity.

The fundamental theorem we need, which is beyond the simple anal-
ogy with TQFT is the idea of an operator product expansion. The
idea is that if you take two field operators in a conformal field theory
and you put them close together, the product of the two fields can be
expanded as sum of resulting fields

lim
w→z

φi(w)φj(z) =
∑

k

Ckij(w − z)hk−hi−hjφk(z) + . . .

Here the Ckij are coefficients which crucially are zero when Nk
ij is zero.

In other words, when two fields are taken close together, the result looks
like a sum of all the possible fusion products of these field. On the right
hand side note that by looking at the scaling dimensions of the fields,
we obtain explicit factors of (w − z). The . . . terms are terms that are
smaller (less singular) than the terms shown and are made of descendant
fields and higher powers of (w − z). Crucially, no new types of branch
cuts are introduced except those that differ by integers powers from (and
are less singlar than) those we write explicitly.
The convenient thing about the operator product expansion (or “OPE”)

is that it can be used inside expectation values of a correlator. So for
example

lim
w→z

〈ψa(w)ψb(z) ψc(y1)ψd(y2) . . . ψn(ym)〉 =
∑

k

Ckab(w − z)hk−ha−hb〈ψk(z) ψc(y1)ψd(y2) . . . ψn(ym)〉

39.2.1 Example: Chiral Boson

The free boson vertex Vα has scaling dimension

hα =
α2

2

The fusion rules are
VαVβ = Vα+β

corresponding to the simple addition of “charges”. The resulting oper-
ator product expansion is then

Vα(w)Vβ(z) ∼ (w − z)αβVα+β(z)
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where we have used the notation ∼ to mean in the limit where w goes
to z, and where the exponent is here given as

hα+β − hα − hβ =
(α+ β)2

2
− α2

2
− β2

2
= αβ

Note that this fusion law for the chiral boson gives more precise meaning
to the fusion law we wrote in Eq. 39.6. ***(clean this up)**

39.2.2 Example: Ising CFT

The Ising CFT is actually the CFT corresponding to a 1+1 d free
fermion, so it is particularly simple. The theory has three fields, I, σ, ψ
with scaling dimensions

hI = 0

hσ = 1/16

hψ = 1/2

The fact that hψ = 1/2 is an indication that it is a fermion. The
nontrivial fusion rules are (exactly as in the Ising TQFT *** previously)

ψ × ψ = I

ψ × σ = σ

σ × σ = I + ψ

As in the case of TQFTs, it is the multiple terms on the right hand side
that make a theory nonabelian.
We can write the operator product expansion

ψ(w)ψ(z) ∼ (w − z)hI−hψ−hψI + . . .

∼ I

w − z
+ . . .

The antisymmetry on the right hand side is precisely the behavior one
should expect from fermions. It is crucial to note that within the . . . all
terms are similarly antisymmetric (and are less singular). Similarly, we
have

ψ(w)σ(z) ∼ (w − z)hσ−hσ−hψ σ(z) + . . .

∼ (w − z)−1/2 σ(z) + . . .

where again the . . . indicates terms which have the same branch cut
structure but are less singular . In other words, wrapping w around z
should incur a minus sign for all terms on the right.
Finally we have the most interesing OPE9 9Remember these exponents of 1/8 and

3/8 from the Ising anyon homework
problems? ***σ(w)σ(z) ∼ CIσσ(w − z)−1/8I + Cψσσ(w − z)3/8ψ(z) + . . . (39.7)

where all terms in the . . . must have branch cuts that match one of the
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two leading terms.
Let us consider calculating a correlator,

lim
w→z

〈σ(w)σ(z)〉

Since from rule (4) above, the two fields must fuse to the identity, we
must choose the identity fusion channel only from the OPE. We then
obtain

lim
w→z

〈σ(w)σ(z)〉 ∼ (w − z)−1/8 (39.8)

On the other hand, calculating

lim
w→z

〈σ(w)σ(z)ψ(y)〉

in order to fuse to the identity, we must choose the ψ fusion of the two σ
fields such that this ψ can fuse with ψ(y) to give the identity. We thus
have

lim
w→z

〈σ(w)σ(z)ψ(y)〉 ∼ (w − z)3/8 (39.9)

Similarly one can see that fusion of two σ’s in the presence of any even
number of ψ fields will be similar to Eq. 39.8, whereas in the presence
of any odd number of ψ fields it will be like Eq. 39.9.
Since the Ising CFT is actually a free fermion theory, we can use

Wick’s (fermionic) theorem for correlators of the ψ fermi fields with the
added information that10,1110Insert footnote or appendix that de-

rives this. See Yellow Book for now!
11Add footnote on wick’s theorem?*** 〈ψ(z)ψ(w)〉 = 1

z − w

which is exactly true, not only in the OPE sense. However, we cannot
use Wick’s theorem on correlators of the σ fields which are sometimes
known as “twist” fields — we can think of these as altering the boundary
conditions

39.3 Quantum Hall Wavefunction Based on
Ising CFT: The Moore-Read State

Let us try to build a quantum Hall wavefunction based on the Ising CFT.
We must first choose a field which will represent our electron. One might
guess that we should use the fermion field. However, when two ψ fields
come together the correlator (and hence our wavefunction) diverges, so
this cannot be acceptable. Instead, let us construct an electron field
which is a combination of the Ising ψ field and a chiral bose vertex Vα

ψe(z) = ψ(z)Vα(z)

These two fields are from completely different 1+1d theories and are
simply multiplied together.
We then look at the operator product expansion to see what happens
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when two electrons approach each other

ψe(z)ψe(w) ∼
[

I

z − w

] [
(z − w)α

2

V2α

]

where the first bracket is from the Ising part of the theory and the second
bracket is from the bose part of the theory. In order for this to not be
singular, we must have α2 be a positive integer. If we choose

α2 = m

withm odd we have an overall bosonic operator (ψe(z)ψe(w) = ψe(w)ψe(z))
whereas if we choosem even we have an overall fermionic operator. How-
ever, we cannot choose m = 0 since that leaves a singularity. Thus we
have the electron operator of the form

ψe(z) = ψ(z)V√m(z)

with m ≥ 1. Using this proposed electron operator we build the multi-
particle wavefunction

Ψ = 〈ψe(z1)ψe(z2) . . . ψe(zN )Q〉

where Q is the background charge for the bose field. Since the Ising and
bose fields are completely separate theories we can take the expectation
for the bose field to give

Ψ = 〈ψ(z1)ψ(z2) . . . ψ(zN)〉
∏

i<j

(zi − zj)
m

N∏

i=1

e−|zi|2/(4ℓ2)

where the correlator is now in the Ising theory alone.
Now the Ising correlator must be zero unless there are an even number

of ψ fields (since we need them to fuse to the identity). If the number
of fermi fields is indeed even, then we can use the fact that ψ is a free
fermi field and we can invoke Wick’s theorem to obtain

〈ψ(z1)ψ(z2) . . . ψ(zN )〉 = A
[

1

z1 − z2

1

z3 − z4
. . .

1

zN−1 − zN

]

≡ Pf

(
1

zi − zj

)
(39.10)

Here A means antisymmetrize over all reordering of the z’s. Here we
have written the usual notation for this antisymmetrized sum Pf which
stands for “Pfaffian”12. Thus we obtain the trial wavefunction based on 12Several interesting facts about the

Pfaffian: A BCS wavefunction for a
spinless superconductor can be written
as Pf[g(ri − rj)] where g is the wave-
function for a pair of particles. Any
antisymmetric matrix Mij has a Pfaf-
fian

Pf[M ] = A[M12M34...].

Also it is useful to know that
(Pf[M ])2 = detM .

the Ising CFT

Ψ = Pf

(
1

zi − zj

)∏

i<j

(zi − zj)
m

N∏

i=1

e−|zi|2/(4ℓ2)

which is known as the Moore-Read wavefunction. For m odd this is a
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wavefunction for bosons and form even it is a wavefunction for fermions.
To figure out the filling fraction, we note that the Pfaffian prefactor
only removes a single power in each variable. Thus the filling fraction
is determined entirely by the power m, and is given (like Laughlin) by
ν = 1/m.

39.3.1 Some Exact Statements About the
Moore-Read Wavefunction

For simplicity, let us consider the m = 1 case ν = 1 for bosons, which
is the easiest to think about analytically. The wavefunction does not
vanish when two particles come to the same point, since the zero of
the (z1 − z2) can be canceled by the pole of the Pfaffian. However, it
is easy to see that the wavefunction must vanish (quadratically) when
three particles come to the same point (three factors from (z − z)1 but
then one factor in the denominator of the Pfaffian).
Note that, even were we to not have an explicit expression for the

Moore-Read wavefunction we would still be able to use the operator
product expansion to demonstrate that the wavefunction (for m = 1)
must vanish quadratically when three particles come to the same point13.13To see this, note that taking the first

two particles to the same point gives

lim
z2→z1

ψe(z1)ψe(z2) ∼ IV2(z1)

Then fusing the third particle

lim
z3→z1

ψe(z3)V2(z1) ∼ (z3−z1)2ψV3(z1)

Analogous to the case of the Laughlin wavefunction, it turns out that
the Moore-Read wavefunction (for m = 1) is the exact (highest density)
zero energy ground state of a three-body delta function interacton

V = V0
∑

i<j<k

δ(ri − rj)δ(ri − rk)

Similarly one can construct a potential for fermions such that the
ν = 1/2 Moore-Read state (m = 2) is the highest density zero energy
state. This is quite analogous to what we did for the Laughlin state:

V = V0
∑

i<j<k

[∇2δ(ri − rj)]δ(ri − rk)

Non-Exact Statements

Although the Coulomb interaction looks nothing like the three body
interaction for which the Moore-Read Pfaffian is exact, it turns out that
ν = 1/2 Moore-Read Pfaffian m = 2 is an extremely good trial state1414Here we have used a mapping be-

tween Landau levels, that any par-
tially filled higher Landau level can be
mapped to a partially filled lowest Lan-
dau level at the price of modifying the
inter-electron interaction. This map-
ping is exact to the extent that there is
no Landau level mixing. I.e., that the
spacing between Landau levels is very
large.

for electrons at ν = 5/2 interacting with the usual Coulomb interaction.
This is very suggestive that the ν = 5/2 is topologically equivalent to
the Moore-Read Pfaffian wavefunction (i.e., they are in the same phase
of matter)15 Further, the most natural interaction for bosons, the simple

15There is one slight glitch here. It
turns out that with a half-filled Landau
level, the wavefunction and its charge-
conjugate (replace electrons by holes in
the Landau level) are inequivalent! The
breaking of the particle-hole symmetry
is very weak and involves Landau-level
mixing. From numerics it appears that
the ν = 5/2 state is actually in the
phase of matter defined by the conju-
gate of the Moore-Read state. *** add
refs

two-body delta function interaction has a ground state at ν = 1 which
is extremely close to the Moore-Read m = 2 Pfaffian.
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39.4 Quasiholes of the Moore-Read state

We now try to construct quasiholes for the Moore-Read Pfaffian wave-
function. As we did in Eq. 39.4, we want to write

Ψqh(w) = 〈ψqh(w)ψe(z1)ψe(z2) . . . ψe(zN)Q̂〉

but we need to figure out what the proper quasihole operator ψqh is.

Laughlin Quasihole

One obvious thing to try would be to write a simple vertex operator

ψLqh(w) = Vβ(w)

Looking at the OPE we have (***include fields on the right? ***)

ψLqh(w)ψe(z) ∼ (w − z)β
√
mψ(z)

In order to have the correlator be single valued in z (i.e., no branch cuts)
we must choose β = p/

√
m for some integer p (the smallest quasihole of

this type corresponding to p = 1 then). This generates the wavefunction

ΨLqh(w) = 〈ψLqh(w)ψe(z1)ψe(z2) . . . ψe(zN )Q̂〉 (39.11)

=

[
N∏

i=1

(zi − w)

]
Ψ

(m)
Moore−Read

which is just a regular Laughlin quasihole factor. By the same argu-
ments, the charge of this quasihole is e∗ = eν.

Minimal quasihole

However, the Laughlin quasihole is not the minimal quasihole that can
be made. Let us try using an operator from the Ising theory as part of
the quasihole operator. Suppose

ψqh(w) = σ(w)Vβ(w)

We then have the operator product expansion

ψqh(w)ψe(z) ∼ [σ(w)ψ(z)]
[
Vβ(w)V√m(z)

]
∼ (w − z)−1/2(w − z)β

√
m

In order for the wavefunction not to have any branch cuts for the physical
electron z coordinates, we must choose β = (p + 1/2)/

√
m for p ≥ 0,

with the minimal quasihole corresponding to p = 0. Thus we have the
minimal quasihole operator of the form

ψqh(w) = σ(w)V 1
2
√
m
(w)
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Note that when we consider correlators, by the general rule (4) from
section 39.2, the operators must fuse to the identity in order to give a
nonzero result. Thus, we must always have an even number of σ fields16.16Like the Sith, they come in pairs.

We thus consider the wavefunction of the form

Ψqh(w,w
′) = 〈ψqh(w)ψqh(w′)ψe(z1)ψe(z2) . . . ψe(zN)Q̂〉 (39.12)

= (w − w′)
1

4m e−(|w|2+|w′|2)/4ℓ∗2
N∏

i=1

(w − zi)
1/2(w′ − zi)

1/2 (39.13)

× 〈σ(w)σ(w′)ψ(z1)ψ(z2) . . . ψ(zN)〉
∏

i<j

(zi − zj)
m

N∏

i=1

e−|zi|2/(4ℓ2)

Several comments are in order here. First of all, from the first line
of Eq. 39.13 it looks like there are branch cuts with respect to the z
coordinates. However, these fractional powers are precisely canceled by
branch cuts in the correlator on the second line. Secondly the charge of
the quasihole is determined entirely by the power of the (z − w) factor,
since it tells us how much the electrons are pushed away from the hole.
(The correlator does not give an extensive number of zeros, similar to the
Pfaffian of Eq. 39.10). If the exponent of (z − w) were one, this would
be a regular Laughlin quasihole with charge eν, thus here we have a
quasihole charge of

e∗ = eν/2.

I.e., the Laughlin quasihole has fractionalized into two pieces! This
charge is reflected in the effective magnetic length ℓ∗ =

√
~/e∗B.

Note that this wavefunction is still an exact zero energy state of the
special interaction discussed above for which the Moore-Read wavefunc-
tion is the exact highest density zero energy state (the wavefunction here
is higher degree and thus less dense, as we would expect given that we
have added quasiholes). We can demonstrate the current wavefunction
is still zero energy by bringing together three electrons to the same point
and examining how the wavefunction vanishes. Since this can be fully
determined by the operator product expansion, it does not matter if we
add quasiholes to the wavefunction, the vanishing property of the wave-
function remains the same, and thus this is an exact zero energy state
of the special interaction.

A Crucial Assumption

The wavefunction here is single valued in all electron coorrdinates (as
it should be) and is holomorphic in all coordinates (all z’s and w’s) ex-
cept for the gaussian exponential factors. In this holomorphic gauge, as
discussed above, we can read off the fractional statistics of the quasipar-
ticles given the assumption that the wavefunction is properly normalized.
This is a crucial assumption and it is not a simple result of CFT, but
always requires an assumption about some sort of plasma being in a
screening phase — and often the mapping to a plasma is highly non-
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trivial17. Nonetheless, from extensive numerical work, it appears that 17See work by Bonderson et al ***.

physics is kind to us and that these wavefunctions do indeed come out
to be properly normalized!

Fusion and Braiding of Two Quasiholes in Identity Channel
(even number of electrons)

Let us assume that the number of electrons is even. In this case the
two σ’s of the quasiholes fuse to the identity as in Eq. 39.8. As the
two quasiholes approach each other we then have18 (** insert also h-h-h 18Strictly speaking on the right hand

side we should also write the identity
operator I for the Ising theory and
V1/

√
m for the boson sector.

derivation of R? **)

ψqh(w)ψqh(w
′) ∼ (w − w′)

1
4m− 1

8

where the 1
4m is written expliclty in the first line of Eq. 39.13 and the

− 1
8 is from the operator product expansion Eq. 39.8. Invoking now the

crucial assumption that the wavefunctions are normalized, since they
are obviously holomorphic, we simply read off the statistical phase (the
monodromy) we get for wrapping one quasihole around another!
One might object that the operator product expansion only tells us

the behavior of the correlator as w and w′ come close to each other.
However, we are guaranteed that there are no other branch cuts in the
system — the only branch cut in the wavefunction for w is when it
approaches w′. Thus, no matter how far w is from w′, when w circles
w′ it must always accumulate the same monodromy! In the notation
we defined in earlier chapters we have ***(move I downstairs here to fit
with our conventions?, change notation ”I” to 2qh-I?)***

[R“I”
qh−qh]

2 = e2πi(
1

4m− 1
8 )

Recall that if a × b → c we should have [Rcab]
2 = e2πi(hc−ha−hb). Here,

the total scaling dimension of the quasihole is hqh = 1/16 + 1/(8m)
with the second piece from the bose vertex operator V1/2

√
m. The fusion

product “I” = V1/
√
m has quantum dimension h“I” = 1/2m.

Fusion and Braiding of Two Quasiholes in ψ Channel (odd
number of electrons)

Let us now assume that the number of electrons is odd. In this case the
two σ’s of the quasiholes fuse to ψ as in Eq. 39.9. As the two quasiholes
approach each other we then have19

19Strictly speaking on the right hand
side we should also write the operator
ψ for the Ising theory and V1/

√
m for

the boson sector.

ψqh(w)ψqh(w
′) ∼ (w − w′)

1
4m+ 3

8

where the 1
4m is written expliclty in the first line of Eq. 39.13 and the

3
8 is from the operator product expansion Eq. 39.9. Again we just read
off the monodromy from this OPE. Thus, one obtains a different phase
depending on the fusion channel of the two quasiholes. In the notation
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we defined in earlier chapters we have

[R“ψ”
qh−qh]

2 = e2πi(
1

4m+ 3
8 )

39.5 Multiple Fusion Channels and Conformal
Blocks

We will next address the issue of what happens when we have more
than two quasiholes. It is clear what will happen here, we will obtain
a correlator (like that in Eq. 39.13) but now it will have more σ fields.
We will thus have to figure out how to make sense of correlators with
many (nonabelian) σ fields. As an example to show how this works, let
us get rid of the ψ fields for a moment and consider a correlator

G(w1, w2, w3, w4) = 〈σ(w1)σ(w2)σ(w3)σ(w4)〉 (39.14)

Let us imagine that we will bring w1 close to w2 and w3 close to w4.
Now in order for the correlator to give a nonzero value, the four fields
have to fuse to unity (rule (4) from section 39.2). There are two different
ways in which this can happen

σ(w1)σ(w2) → I

σ(w3)σ(w4) → I

OR we could have

σ(w1)σ(w2) → ψ

σ(w3)σ(w4) → ψ

and the two ψ fields could then fuse to the identity.
So which one is right? In fact both happen at the same time! To

understand this we should think back to what we know about a 2d
systems with nonabelian quasiparticles in them — they are described
by a vector space. In order to know which particular wavefunction we
have in a vector space we need some sort of initial condition or space-
time history. Nowhere in the correlator have we specified any space-
time history, so we should be getting a vector space rather than a single
wavefunction. The multiple wavefunctions in the vector space arise from
choosing different roots of the branch cuts of the holomorphic functions.
To see a detailed example of this let us write out the explict form of
the correlator in Eq. 39.14. We note that the calculation that leads to
this requires some substantial knowledge of conformal field theory and
will not be presented here. However many of these sorts of results have
simply been tabulated in books and can be looked up when necessary.
For simplicity we take the four coordinates of the z variables to be at
convenient points so that the correlator looks as simple as possible20.20In fact due to conformal invariance,

knowing the correlator for any fixed
three points and one point z free, we
can determine the correlator for any
other four points, but this is beyond the
scope of the current discussion!
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lim
w→∞

〈σ(0)σ(z)σ(1)σ(w)〉 = a+G+(z) + a−G−(z) (39.15)

where

G± = (wz(1 − z))−1/8

√
1±

√
1− z (39.16)

are known as conformal blocks and here a+ and a− are arbitrary com-
plex coefficients (usually with some normalization condition implied).
I.e, the correlator itself represents not a function, but a vector space
(with basis vectors being conformal blocks) with arbitrary coefficients
yet to be determined by the history of the system!
Let us analyze some limits to see which fusion channels we have here.

Taking the limit of z → 0 we find that

lim
z→0

G+ ∼ z−1/8 (σ(0)σ(z) → I)

lim
z→0

G− ∼ z3/8 (σ(0)σ(z) → ψ)

Thus (comparing to Eqs. 39.8 and 39.9) we see that G+ has σ(0) and
σ(z) fusing to I whereas G− has them fusing to ψ. Since the four σ’s
must fuse to the identity, this tells us also the fusion channel for σ(1)
and σ(w).
The most general wavefunction is some linear combination (a+ and

a−) of the two possible fusion channels. This is what we expect, the
state of a system can be any superposition within this degenerate space.
Now consider what happens as we adiabatically take the coordinate

z in a circle around the coordinate 1. Looking at Eq. 39.16 we see that
we accumulate a phase of e−2πi/8 from the factor of (1− z)−1/8 outside
the square-root. In addition, however, the

√
1− z inside the square root

comes back to minus itself when z wraps around 1, thus turning G+ to
G− and vice versa! The effect of monodromy (taking z around 1) is then

(
a+
a−

)
−→ e−2πi/8

(
0 1
1 0

)(
a+
a−

)

(This result should be somewhat familiar from the homework exercise
on Ising anyons!)
We thus see that in this language, the multiple fusion channels are

just different choices of which Riemann sheet we are considering, and
the fact that braiding (monodromy) changes the fusion channel is simply
the fact that moving coordinates around on a Riemann surface, you can
move from one Riemann sheet to another!
So long as we can assume that the conformal blocks are orthonormal

(see comment above on “crucial assumption” about normalization of
wavefunctions. Orthonormality, is now adding a further assumption21) 21As with the discussion above, this

assumption appears to be true, but
“proofs” of it always boil down to some
statement about some exotic plasma
being in a screening phase, which is
hard to prove. *** myabe move bon-
derson ref here?

then we can continue to read off the result of physically braiding the
particles around each other by simply looking at the branch cuts in the
wavefunction.
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F-matrix

We have seen how to describe the fusion of σ(0) and σ(z). What if
now we instead take z close to 1 such that we can perform an operator
product expansion of σ(z)σ(1). Taking this limit of Eq 39.16 it naively
looks like both

lim
z→1

G+ ∼ (1 − z)−1/8

lim
z→1

G− ∼ (1 − z)−1/8

But examining this a bit more closely we realize we can construct the
linear combinations

G̃+ =
1√
2
(G+ +G−)

G̃− =
1√
2
(G+ −G−)

where here we have inserted the prefactor of 1/
√
2 such that the new

basis G̃± is orthonormal given that the old basis G± was. With this new
basis we now have the limits

lim
z→1

G̃+ ∼ (1− z)−1/8

lim
z→1

G̃− ∼ (1− z)−1/8

[√
1 +

√
1− z −

√
1−

√
1− z

]

∼ (1− z)−1/8(1− z)1/2 ∼ (1 − z)3/8

Thus we see that in this twiddle basis (G̃±) we have in this limit that
G̃+ is the fusion of σ(z) and σ(1) to identity and G̃− is the fusion to ψ.
The transformation between the two bases G± and G̃± is precisely

the F -matrix transformation.
(
G̃+

G̃−

)
=

1√
2

(
1 1
1 −1

)(
G+

G−

)

which should look familiar to anyone who did the homework! (We
also got the same result from writing the ising theory in terms of ca-
bled Kauffman strings). Diagrammatically this transform is shown in
Fig. 39.1
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Fig. 39.1 The F -matrix transforms between the two fusion channels depicted here.

39.6 More Comments on Moore-Read State

with Many Quasiholes

Although we have presented this discussion about multiple fusion chan-
nels and braiding in terms of σ operators, the situation is extremely
similar once we use quasihole operators (σ(z)Vβ(z)) and we put them
in a wavefunction as in Eq. 39.13 but possibly with more quasihole op-
erators. As we might expect just from looking at the fusion rules, the
number of fusion channels (the number of Riemann sheets!) is 2M/2−1

where M is the number of quasiholes, and the -1 arises because the
overall fusion channel must be the identity. Further, the F -matrices and
braiding properties all follow very much in a similar manner. The only
slightly problematic piece is that we must continue to assume that the
conformal blocks form an orthonormal basis — which is hard to prove,
but appears to be true.

39.7 Generalizing to Other CFTs

The principles we used for buidling a quantum Hall state from the Ising
CFT can be generalized to build quantum Hall states from other CFTs
as well. The general principles are as follows:

(1) Construct an electron field which gives a ground state which is
single valued in the electron coordinates. This is done bystarting with
an abelian field from the CFT (one that does not have multiple fusion
channels) and combining it with a chiral bose vertex operator. The filling
fraction is determined entirely by the charge on the vertex operator.

(2) Identify all of the possible quasiholes by looking at all the fields in
the CFT and fusing them with a chiral bose vertex operator and enforc-
ing the condition that the electron coordinates must not have branch
cuts. The charge of the quasihole is determined by the charge on the
vertex operator (and the charge on the electron vertex operator).

(3) Some of the braiding properties can be determined immediately
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from the operator product expansion while others require more detailed
information about the form of the CFT.

39.7.1 Z3 Parafermions (briefly)

As an example, let us consider the Z3 Parafermion CFT. Its primary
fields and fusion rules are given by

h

ψ1 2/3
ψ2 2/3
σ1 1/15
σ2 1/15
ǫ 2/5

× ψ1 ψ2 σ1 σ2 ǫ

ψ1 ψ2

ψ2 I ψ1

σ1 ǫ σ2 σ2 + ψ1

σ2 σ1 ǫ I + ǫ σ1 + ψ2

ǫ σ2 σ1 σ1 + ψ2 σ2 + ψ1 I + ǫ

These fusion rules might look very complicated, but in fact they can
be thought of as an abelian Z3 theory (with fields I, ψ1, ψ2 = ψ̄1) fused
with a Fibonacci theory (with fields I and τ). We then have

σ1 = ψ2τ

σ2 = ψ1τ

ǫ = τ

and using the Fibonacci fusions τ×τ = I+τ and the Z3 fusions ψi×ψj =
ψ(i+j)mod3 with ψ0 being the identity, we recover the full fusion table22.22Note that the scaling dimensions h

also work out modulo 1. The τ field has
hτ = 2/5 If you add this to h = 2/3 for
the ψ field you get h = 2/5 + 2/3 =
1 + 1/15.

Let us propose an electron field

ψe(z) = ψ1(z)V√m+ 2
3

(z)

where m is a nonnegative integer (even for bosons, odd for fermions). It
is easy to check from the OPE that

ψe(z)ψe(w) ∼ (z − w)mψ2(z)V2
√
m+ 2

3

(z)

The resulting wavefunction is then

Ψ = 〈ψe(z1)ψe(z2) . . . ψe(zN )Q〉

which is known as the Read-Rezayi Z3 parafermion wavefunction.
The filling fraction of the wavefunction is determined by the vertex

operator and is given by

ν =
1

m+ 2
3

For the m = 0 case this is ν = 3/2 bosons, while for the m = 1 case this
is ν = 3/5 fermions.
For the case of m = 0 it is easy to check that the wavefunction does

not vanish when two particles come to the same point, nor does it vanish
when three particles come to the same point, but it does vanish when
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four particles come to the same point. Thus the wavefunction is an exact
(densest) zero energy ground state of a four particle delta function.
While there are 4-particle interactions for these systems for which

wavefunctions are the exact ground state, it turns out that there are
physically relevant cases where the Read-Rezayi Z3 parafermion wave-
function is an extremely good trial wavefunction. For bosons interacting
with a simple two body δ-function potential potential at filling fraction
ν = 3/2,the Z3 parafermion wavefunction is extremely good. For elec-
trons interacting with simple coulomb interaction (in realistic quantum
well samples), it turns out that the wavefunction is extremely good for
ν = 2+2/5, which we need to particle-hole conjugate in the partly filled
Landau level to get a ν = 3/5 wavefunction. (** add cites **)
To construct a quasihole we can try building a quasihole from any of

the primary field operators. It turns out the one with the lowest charge
is constructed from σ1

ψqh(z) = σ1(z)Vβ(z)

Using the OPE we have

σ1(w)ψ1(z) ∼ (z − w)−1/3ǫ(z)

We thus choose
β =

p

3
√
m+ 2

3

with the smallest charge quasihole then being p = 1. With this choice,
for a quasihole at position w we generate a factor of

∏

i

(z − w)1/3

meaning the charge of the quasihole is

e∗ = eν/3
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Exercises

Exercise 39.1 Bose Vertex Operators
In lecture we needed the following identity

〈Vα1(z1)Vα2(z2) . . . VαN (zN )〉 =
∏

i<j

(zi − zj)
αiαj (39.17)

where
∑

i

αi = 0 (39.18)

where the vertex operators are defined by

Vα(z) =: eiαφ(z) : (39.19)

with φ a chiral bose field and colons meaning normal ordering.
(a) To get to this result, let us first show that for a bose operator a, such

that [a, a†] = 1, we have

eαaeβa
†
= eβa

†
eαaeαβ (39.20)

(b) Thus derive

〈VA1VA2 . . . VAN 〉 = e
∑
i<j〈AiAj〉 (39.21)

where
Ai = uia

† + via (39.22)

and
VAi =: eAi := euia

†
evia (39.23)

with the colons meaning normal ordering (all daggers moved to the left).
(c) Show that Eq. 39.21 remains true for any operators Ai that are sums of

different bose modes ak, i.e., if

Ai =
∑

k

[ui(k)a
†
k + vi(k)ak] (39.24)

Set Ai = iαiφ(zi) such that VAi = Vα(zi). If φ is a free massless chiral bose
field which can be written as the sum of fourier modes of bose operators such
that

〈φ(z)φ(w)〉 = − ln(z −w) (39.25)

conclude that Eq. 39.17 holds.
Note: This result is not quite correct, as it fails to find the constraint

Eq. 39.18 properly. The reason it fails is a subtlety which involves how one
separates a bose field into two chiral components. (More detailed calculations
that get this part right are given in the Big Yellow CFT book (P. Di Francesco,
P. Mathieu, and D. Senechal) and in a different language in A. Tsvelik’s book.)

There is, however, a quick way to see that the constraint must be true.
Note that the lagrangian of a massless chiral bose field is

L =
1

2π
∂xφ(∂x + v∂t)φ (39.26)
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which clearly must be invariant under the global transformation φ→ φ+ b.
(d)Show that the correlator Eq. 39.17 (with Eq. 39.19) cannot be invariant

under this transformation unless Eq. 39.18 is satisfied, or unless the value of
the correlator is zero.

Exercise 39.2 Z4 Quantum Hall State
In this problem we intend to construct a quantum hall state from the the

Z4 parafermion conformal field theory (Details of the CFT can be found in A.
B. Zamolodchikov and V. A. Fateev, Soviet Physics JETP 62, 216 (1985), but
we will not need too many of the details here).

The wavefunction we construct is known as the Z4 Read-Rezayi wavefunc-
tion (N. Read and E. Rezayi, Phys. Rev. B 59, 8084 (1999) ).

The Z4 parafermion conformal field theory has 10 fields with corresponding
conformal weights (scaling dimension)

field 1 ψ1 ψ2 ψ3 σ+ σ− ǫ ρ χ+ χ−

weight h 0 3
4

1 3
4

1
16

1
16

1
3

1
12

9
16

9
16

and the fusion table is given by

× 1 ψ1 ψ2 ψ3 σ+ σ− ǫ ρ χ+ χ−

1 1 ψ1 ψ2 ψ3 σ+ σ− ǫ ρ χ+ χ−
ψ1 ψ1 ψ2 ψ3 1 χ− σ+ ρ ǫ σ− χ+

ψ2 ψ2 ψ3 1 ψ1 χ+ χ− ǫ ρ σ+ σ−
ψ3 ψ3 1 ψ1 ψ2 σ− χ+ ρ ǫ χ− σ+

σ+ σ+ χ− χ+ σ− ψ1 + ρ 1+ ǫ σ+ + χ+ σ− + χ− ψ3 + ρ ψ2 + ǫ

σ− σ− σ+ χ− χ+ 1+ ǫ ψ3 + ρ σ− + χ− σ+ + χ+ ψ2 + ǫ ψ1 + ρ

ǫ ǫ ρ ǫ ρ σ+ + χ+ σ− + χ− 1+ ψ2 + ǫ ψ1 + ψ3 + ρ σ+ + χ+ σ− + χ−
ρ ρ ǫ ρ ǫ σ− + χ− σ+ + χ+ ψ1 + ψ3 + ρ 1+ ψ2 + ǫ σ− + χ− σ+ + χ+

χ+ χ+ σ− σ+ χ− ψ3 + ρ ψ2 + ǫ σ+ + χ+ σ− + χ− ψ1 + ρ 1+ ǫ

χ− χ− χ+ σ− σ+ ψ2 + ǫ ψ1 + ρ σ− + χ− σ+ + χ+ 1+ ǫ ψ3 + ρ

If I have not made any mistake in typing this table, the fusion rules should
be associative

(a× b)× c = a× (b× c) (39.27)

Note of interest: These fusion rules may look mysterious, but in fact they
are very closely related to the fusion rules of SU(2) appropriately truncated
(i.e., this is the SU(2)4 WZW model). We can write each field as a young
tableau with no more than 2 (for SU(2)) columns and no more than 4−1 = 3
rows

field 1 ψ1 ψ2 ψ3 σ+ σ− ǫ ρ χ+ χ−

tableau empty

The fusion rules are just a slight modification of the usual young tableau
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manipulations for SU(2) where columns are removed if they have 4 boxes.
(See the big yellow book for details).

Using the techniques discussed in lecture:

(a) Use the operator product expansion (dimension counting) to find the
singularity as two ψ1 fields come close together. I.e, find the exponent α in
the relation

lim
z′→z

ψ1(z
′)ψ1(z) ∼ (z′ − z)α ψ2(z) (39.28)

(b) Construct all possible “electron” fields by making a product of the ψ1

field and a chiral bose vertex operator of the form

ψe(z) = ψ1(z)e
iβφ(z) (39.29)

that give a single-valued and nonsingular wavefunction for the electron. (See
Eq. 39.17, but ignore the sum condition Eq. 39.18) I.e., find all acceptable
values of β. Consider both the case where the “electron” is a boson or a
fermion. What filling fractions do these correspond to? (There are multi-
ple allowable solutions for both bosons and fermions). Consider among the
bosonic solution, the one solution of the highest density. The ground state
wavefunction in this case is the highest density zero energy state of a 5-point
delta function interaction. Show that the wavefunction does not vanish when
4 particles come to the same point, but does indeed vanish as 5 particles come
to the same point.

(c) Given a choice of the electron field, construct all possible quasihole
operators from all fields ϕ in the above table

φqh(w) = ϕ(w)eiκφ(w) (39.30)

For each case, fix the values of κ by insisting that the wavefunction remain
single-valued in the electron coordinates. Determine the quasihole with the
lowest possible (nonzero) electric charge. What is this charge?

(d) Two such quasiholes can fuse together in two possible fusion channels.
What is the monodromy in each of these channels. I.e, what phase is accumu-
lated when the two quasiholes are transported around each other (assuming
the Berry matrix is zero – which is a statement about wavefunctions being
properly orthonormal – which we usually assume is true).

(e) Draw a Bratteli diagram (a tree) describing the possible fusion channels
for many of these elementary particles. Label the number of paths in the
diagram for up to 10 quasiholes. If there are 8 quasiparticles and the number
of electrons is divisible by 4, what is the degeneracy of the ground state? If
there are 4 quasiparticles and the number of electrons is 4m + 2 what is the
degeneracy of the ground state?

(f) Construct a 5 by 5 transfer matrix and show how to calculate the ground
state degeneracy in the presence of any number of quasiholes. Finding the
largest eigenvalue of this matrix allows you to calculate the “quantum dimen-
sion” d which is the scaling

Degeneracy ∼ d[Number of Quasiholes] (39.31)

in the limit of large number of quasiholes. While diagonalizing a 5 by 5 matrix
seems horrid, this one can be solved in several easy ways (look for a trick or
a nice factorization of the characteristic polynomial).
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(g) Consider instead constructing a wavefunction from the ψ2 field

ψe(z) = ψ2(z)e
iβφ(z) (39.32)

What filling fraction does this correspond to (for bosons or fermions). In the
highest density case, what are the properties of this wavefunction (how does
it vanish as how many many electrons come to the same point).
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Medium Material

Working out the details of a TQFT is an often tedious task and except
in the simplest cases, one does not want to go through the pain of doing
this. At the end of this chapter we list a number of resources for finding
details of many TQFTs.
Perhaps the most useful single resource I have found for obtaining

data about TQFTs is a computer program called Kac written by A.
N. Schellekens. The complicated part of the algorithm is described by
Fuchs et al. [1996]. More details are given on the project webpage.
The progam can be downloaded from the webpage

https://www.nikhef.nl/~t58/Site/Kac.html

While the program has many capabilities (and I encourage you to
RTFM1), it is probably useful to give here an annotated example of how 1Read the Frikkin Manual

it works. Note that the program uses Dynkin diagram (Cartan) notation
for describing Lie algebras. The correspondence is given by

Ar = su(r + 1)

Br = so(2r + 1)

Cr = sp(2r)

Dr = so(2r) (40.1)

One can also use the E6, E7, E8, F4 and G2 Lie algebras.
Here we present some annotated sessions with Kac.

MYLINUXBOX$Kac

Kac (on MYLINUXBOX), version 8.05468, compiled on Sep 1 2016, at 16:27:29

Started Sun 30 Aug 05:19:53 BST 2020

Non-interactive mode; Assuming default answer: OK

> tensor

The tensor command tells the program that we might be tensoring
together multiple theories.

> g a 1 2

This inputs the group (g for group) with the Cartan notation a 1, or
A1 which is su(2) as given by the correspondence Eq. 40.1 above, and
the 2 indicates level 2. So we are asking it to compute information about
SU(2)2.
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> display

CFT {A1:2}; 3 primaries (2 simple currents)

Lbl Comb. Weights Wts. F.l. F.m.

0 {0} 0.0000000 0 - 1

1 {1} 0.5000000 1/2 - 1

2 {2} 0.1875000 3/16 - 1

The fields are numbered 0,1,2, and we see their corresponding weights
h = 0, 1/2, 3/16. The simple currents are always listed first. Recall that
twist factors are given by θ = e2πih. Note also that the weights are only
correct modulo one. We can then ask for quantities like the fusion rules,
or the S-matrix, the Frobenius-Schur indicator, or the central charge

> fusion

(0) x (0) = (0)

(0) x (1) = (1)

(0) x (2) = (2)

(1) x (1) = (0)

(1) x (2) = (2)

(2) x (2) = (0) + (1)

> S

S(0,0) = 0.50000000

S(0,1) = 0.50000000

S(0,2) = 0.70710678

S(1,1) = 0.50000000

S(1,2) = -0.70710678

S(2,2) = 0.00000000

> Get Schur 2

-1

> Browse Central

Central charge 1.500000000000000

If we had wanted to look at the opposite chirality theory, we use h

rather than g. To wipe the memory of the program and return to tensor
mode we use reset tensor. So for example, we have
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> reset tensor

> h a 1 2

> display

CFT {A1:2}; 3 primaries (2 simple currents)

Lbl Comb. Weights Wts. F.l. F.m.

0 {0} 0.0000000 (mod 1) 0 - 1

1 {1} 0.5000000 (mod 1) 1/2 (mod 1) - 1

2 {2} 0.8125000 (mod 1) 13/16 (mod 1) - 1

Note that the weight of the 2 field is 13/16 = −3/16 mod 1 so this is
the opposite chirality version of SU(2)2 which we write as SU(2)2.
The program can also handle U(1) Chern-Simons theory, and accepts

a parameter for so-called “radius” of the boson (which substitutes for
the level of the Chern-Simons theory). Since there is some disagreement
in the literature as to how you label the level of a U(1) Chern-Simons
theory, and as to how you label the radius, it is worth stating expliclty
that in the convention used by this program, the theory with radius R
has R different fields. In the convention we use in section 20.4.2 we
have U(1)N/2 corresponding to radius N for N even. We produce these
theories using the code g u followed by the radius as follows.

> reset tensor

> g u 4

> display

CFT {U4:0}; 4 primaries (4 simple currents)

Lbl Comb. Weights Wts. F.l. F.m.

0 {0} 0.0000000 0 - 1

1 {1} 0.1250000 1/8 - 1

2 {2} 0.5000000 1/2 - 1

3 {3} 0.1250000 1/8 - 1

The program can handle condensation, as well as splitting. Let us
consider the example used in section 23.4 of SU(2)4. We first produce
the SU(2)4 theory

> reset tensor

> g a 1 4

> display

CFT {A1:4}; 5 primaries (2 simple currents)

Lbl Comb. Weights Wts. F.l. F.m.

0 {0} 0.0000000 0 - 1

1 {1} 1.0000000 1 - 1

2 {2} 0.1250000 1/8 - 1

3 {3} 0.6250000 5/8 - 1

4 {4} 0.3333333 1/3 - 1

Note that one of the simple currents is a boson (integer weight). To
condense it we issue the command current and the name of the field
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we want to condense.

> current 1

> display

CFT {A1:4}; 3 primaries

Lbl Comb. Weights Wts. F.l. F.m.

0 {0} 0.0000000 0 - 1

1 {4} 0.3333333 1/3 0 1

2 {4} 0.3333333 1/3 1 1

> fusion

(0) x (0) = (0)

(0) x (1) = (1)

(0) x (2) = (2)

(1) x (1) = (2)

(1) x (2) = (0)

(2) x (2) = (1)

Which correctly splits the 4-particle as we discussed in section 23.4.
To generate product theories, we just input several theories in a row.

For example, to look at a product theory, SU(2)2 × SU(2)1 × SU(2)1
we write

> reset tensor

> g a 1 2

> h a 1 1

> h a 1 1

> display

CFT {A1:2_A1:1_A1:1}; 12 primaries (8 simple currents)

Lbl Comb. Weights Wts. F.l. F.m.

0 {0,0,0} 0.0000000 (mod 1) 0 - 1

1 {0,0,1} 0.7500000 (mod 1) 3/4 (mod 1) - 1

2 {0,1,0} 0.7500000 (mod 1) 3/4 (mod 1) - 1

3 {0,1,1} 0.5000000 (mod 1) 1/2 (mod 1) - 1

4 {1,0,0} 0.5000000 (mod 1) 1/2 (mod 1) - 1

5 {1,0,1} 0.2500000 (mod 1) 1/4 (mod 1) - 1

6 {1,1,0} 0.2500000 (mod 1) 1/4 (mod 1) - 1

7 {1,1,1} 0.0000000 (mod 1) 0 (mod 1) - 1

8 {2,0,0} 0.1875000 (mod 1) 3/16 (mod 1) - 1

9 {2,0,1} 0.9375000 (mod 1) 15/16 (mod 1) - 1

10 {2,1,0} 0.9375000 (mod 1) 15/16 (mod 1) - 1

11 {2,1,1} 0.6875000 (mod 1) 11/16 (mod 1) - 1

Since SU(2)2 has 3 fields, and each SU(2)1 has 2 fields, the product
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of these three theories has 12 fields. The second column of the output
shows how each field is constructed from the constituent factors. For
example, the output field labeled 9 in the far left column comes from
the 2 field of SU(2), the 0 field from the first SU(2)1 and the 1 field
from the second SU(2)1.
Let us now construct the coset SU(2)2/(SU(2)1 × SU(2)1). Recall

from section 23.6 that one can construct this coset by starting with
SU(2)2 × SU(2)1 × SU(2)1 and condensing all possible simple current
bosons. Notice in the above output that there are 8 simple currents, and
the one labeled 7 or {1,1,1} is a boson. We thus issue the command

> current 1 1 1

> display

CFT {A1:2_A1:1_A1:1}; 3 primaries (2 simple currents)

Lbl Comb. Weights Wts. F.l. F.m.

0 {0,0,0} 0.0000000 (mod 1) 0 - 1

1 {0,1,1} 0.5000000 (mod 1) 1/2 (mod 1) - 1

2 {2,0,1} 0.9375000 (mod 1) 15/16 (mod 1) - 1

Giving us the result that this coset is actually Ising.

Further Reading

Note that many of the following references give only the so-called “modu-
lar data” for TQFTs — meaning the S-matrices (which imply the fusion
rules via the Verlinde formula, Eq. 17.13) and the twist factors θa. How-
ever, it has recently been established that there can be cases where more
than one modular TQFT can share the same modular data (Mignard
and Schauenburg [2017]2). However the simplest such case known where 2See also Bonderson et al. [2019] and

Delaney and Tran [2018] for discussion
of what additional data might be added
to make the TQFT unique

the modular data does not uniquely define the TQFT has 49 different
particle types and for all simple TQFTs the modular data is, at least in
principle, full information.

• A useful reference on conformal field theory, including WZW the-
ories (which give you the content of the corresponding Chern-
Simons theory) is given by Di Francesco et al. [1997].

• Many details of the simplest few modular tensor categories on the
periodic table are given by Rowell et al. [2009]; A discussion for
fermionic models is given by Bruillard et al. [2017, 2020].

• Some nice data for some simple categories is given by Bonderson
[2007]. This includes, for example, the F -matrices for SU(2)k and
a number of other simple theories.

• F -matrices for many more complicated theories are given by Ar-
donne and Slingerland [2010].

• Online databases of vertex algebras, modular categories, fusion
rings etc are given at

https://www.math.ksu.edu/~gerald/voas/
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http://www.thphys.nuim.ie/AnyonWiki/index.php/Main_Page

• An online database of modular data for (twisted and untwisted)
gauge theories (i.e., quantum doubles and twisted quantum dou-
bles) is given by

https://tqft.net/web/research/students/AngusGruen/

Just to make the rest of us feel bad, this was a bachelor’s thesis!
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Medium Material

Many undergraduates (and even many graduates) do not get any proper
education in advanced mathematics. As such I am including a very short
exposition of most of what you need to know in order to read this book.
For much of the book, you won’t even need to know this much! If you
have even a little background in mathematics you will probably know
most of this already.

41.1 Manifolds

We sometimes write R to denote the real line, i.e., it is a space where
a point is indexed by a real number x. We can write Rn to denote n-
dimensional (real) space — a space where a point is indexed by n-real
numbers (x1, . . . , xn). Sometimes people call these spaces “Euclidean”
space.

Definition 41.1 A Manifold is a space that locally looks like a Eu-
clidean space.

If a manifold is bounded, contains all its limit points, and has no
boundary we call it closed.

41.1.1 Some Simple Examples: Euclidean Spaces
and Spheres

• Rn is obviously a manifold (it is not bounded, so therefore not
closed).

• The circle S1, also known as a 1-sphere (hence the notation, the
index 1 meaning it is a 1-dimensional object) is defined as as all
points in a plane equidistant from a central point. Locally this
looks like a line since position is indexed by a single variable (the
“curvature” of the circle is not important locally). Globally, one
discovers that the circle is not the same as a real line, as position
is periodic (if you walk far enough in one direction you come back
to where you start). We sometimes define a circle as a real number
from 0 to 2π which specifies the angle around the circle.

• The 2-sphere S2 is what we usually call (the surface of) a sphere
in our regular life. We can define this similarly as all points in R3

equidistant from a central point.

• One can generally define the n-sphere, Sn, as points equidistant
from a central point in Rn+1.
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Often when we discuss a manifold, we will be interested in its topolog-
ical properties only. In other words, we will not care if a circle is dented
as shown in Fig. 41.1, it is still topologically S1. Mathematicians say

Fig. 41.1 This object is topologically
a circle, S1.

that two objects that can be smoothly deformed into each other are
homeomorphic, although we will not use this language often.
It is sometimes convenient to view the circle S1 as being just the real

line R1 with a single point added “at infinity” — think about joining
up +∞ with −∞ to make a circle. We can do the same thing with the
sphere S2 and R2 — this is like taking a big flat sheet and pulling the
boundary together to a point to make it into a bag and closing up the
top (which gives a sphere S2). Obviously the idea generalizes: S3 is the
same as R3 “compactified” with a point at infinity, and so forth.

Orientability

We say a manifold is orientable if we can consistently define a vector nor-
mal to the manifold at all points. Another way of defining orientability
(that does not rely on embedding the manifold in a higher dimension)
is that we should be able to consistently define an orientation of the
coordinate axes at all points on the manifold. Throughout this book we
will almost always assume that all manifolds are orientable.

Fig. 41.2 A Möbius strip is a nonori-
entable manifold (with boundary). If
we move the coordinate axes around
the strip, when they come back to the
same position, the normal vector will
be pointing downwards instead of up-
wards.

Fig. 41.3 A two handled torus is
an orientable two-dimensional manifold
without boundary. Because it has two
holes we say it has genus two. Two di-
mensional manifolds without boundary
are classified by their genus.

An example of a nonorientable manifold is the Möbius strip shown
in Fig. 41.2. If we smoothy move the coordinate axes around the strip,
when we come back to the same point, the upward pointing normal will
have transformed into a downward facing normal.
There is a very simple classification of orientable closed (bounded and

without boundary) two dimensional manifolds by the number of ”holes”
which is known as its “genus”, g. A sphere (g = 0) has no holes, a torus
(g = 1) has one hole, a two handled torus (g = 2) has two holes, and so
forth. See Fig. 41.3.

41.1.2 Unions of Manifolds M1 ∪M2

We can take a “disjoint” union of manifolds, using the notation ∪. For
example, S1 ∪ S1 is two circles (not connected in any way). If we think
of this as being a single manifold, it is a manifold made of two disjoint
pieces (or a disconnected manifold). Locally it still looks like a Euclidean
space.

41.1.3 Products of Manifolds: M3 = M1 ×M2

One can take the product of two manifolds, or “cross” them together,
using the notation ×. We write M3 = M1 ×M2. This means that a
point in M3 is given by one point in M1 and one point in M2. This
multiplication is often called the direct or Cartesian product.

• R2 = R1 × R1. Here, a point in R1 is specified by a single real
number. Crossing two of these together, a point in R2 is specified
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by two real numbers (one in the first R1 and one in the second
R1).

• T 2 = S1 × S1. The 2-torus T 2, or surface of a doughnut1 is the 1Alternatively spelled “donut” if you
are from the states and you like coffee.product of two circles. To see this note that a point on a torus is

specified by two angles, and the torus is periodic in both directions.
Similarly we can build higher dimensional tori (tori is the plural
of torus) by crossing S1’s together any number of times.

41.1.4 Manifolds with Boundary:

One can also have manifolds with boundary. A boundary of a manifold
locally looks like an n-dimensional half-Euclidean space. The interior
of a manifold with boundary looks like a Euclidean space, and near
the boundary it looks like a half-space, or space with boundary . For
example, a half-plane is a 2-manifold with boundary. An example is
useful:

• The n-dimensional ball, denoted Bn is defined as the set of points
in n dimensional space such that the distance to a central point
is less than or equal to some fixed radius r. Note: Often the
ball is called a disk and is denoted by Dn (so Dn = Bn). The
nomenclature makes good sense in two dimensions, where what
we usually call a disk is D2. The one-dimensional ball is just an
interval (one-dimensional segment) which is sometimes denoted
I = D1 = B1.

Note that a boundary of a manifold may have disconnected parts. For
example, the boundary of an interval (segment) in 1-dimension I = B1

is two disconnected points at its two ends2. 2In the notation of Section 41.1.5 be-
low, ∂I = pt ∪ pt where pt means a
point and here ∪ means the union of
the two objects as described above in
41.1.2.

One can take cartesian products of manifolds with boundaries too. For
example, consider the interval (or 1-ball) I = B1 which we can think of
as all the points on a line with |x| ≤ 1. The cartesian product I × I is
described by two coordinates (x, y) where |x| ≤ 1 and |y| ≤ 1. This is
a square including its interior. However, in topology we are only ever
concerned with topological properties, and a square-with-interior can
be continuously deformed into a circle-with-interior, or a 2-ball (2-disc),
B2.

• The same reasoning gives us the general topological law Bn×Bm =
Bn+m.

• The cylinder (hollow tube) is expressed as S1×I (two coordinates,
one periodic, one bounded on both sides).

• The solid donut is expressed as D2 × S1 (= B2 × S1), a 2-disk
crossed with a circle.
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41.1.5 Boundaries of Manifolds: M1 = ∂M2.

The notation for boundary is ∂, so if M1 is the boundary of M2 we
write M1 = ∂M2. The boundary ∂M has dimension one less than that
of M.

• The boundary of D2, the 2-dimensional disk is the one dimensional
circle S1.

• More generally, the boundary of Bn (also written as Dn) is Sn−1.

It is an interesting topological principle that the boundary of a mani-
fold is always a manifold without boundary. Or equivalently, the bound-
ary of a boundary is the empty set. We sometimes write ∂2 = 0 or
∂(∂M) = ∅ where ∅ means the empty set.

• The boundary of the 3-dimensional ball B3 is the sphere S2. The
sphere S2 is a 2-manifold without boundary.

The operation of taking a boundary obeys the Leibnitz rule analogous
to taking derivatives

∂(M1 ×M2) = (∂M1)×M2 ∪ M1 × (∂M2)

Lets see some examples of this:

• Consider the cylinder S1 × I. Using the above formula with find
its boundary

∂(S1 × I) = (∂S1)× I ∪ S1 × ∂I = S1 ∪ S1

To see how we get the final result here, start by examining the
first term, (∂S1) × I. Here, S1 has no boundary so ∂S1 = ∅ and
therefore everything before the ∪ symbol is just the empty set. In
the second term the boundary of the interval is just two points
∂I = pt ∪ pt. Thus the second term gives the final result S1 ∪ S1,
the union of two circles.

• Consider writing the disk (topologically) as the product of two
intervals B2 = I × I. It is best to think of this cartesian product
as forming a filled-in square. Using the above formula we get

∂B2 = ∂(I × I) = (pt ∪ pt)× I ∪ I × (pt ∪ pt)

= (I ∪ I) ∪ (I ∪ I) = top ∪ bottom ∪ left ∪ right

= square (edges only) = S1

The formula gives the union of four segments denoting the edges
of the square.
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41.2 Groups

A group G is a set of elements g ∈ G along with an operation that we
think of as multiplication. The set must be closed under this multipli-
cation. So if g1, g2 ∈ G then g3 ∈ G where

g3 = g1g2

where by writing g1g2 we mean multiply g1 by g2. Note: g1g2 is not
necessarily the same as g2g1. If the group is always commutative (i.e.,
if g1g2 = g2g1 for all g1, g2 ∈ G), then we call the group abelian3. If 3Named after Abel, the Norwegian

mathematician who studied such
groups in the early 1800s despite living
in poverty and perishing at the young
age of 26 from tuberculosis. The word
“abelian” is usually not capitalized due
to its ubiquitous use. There are a few
similar words in English which are not
capitalized despite being named after
people, such as “galvanic”.

there are at least some elements in the group where g1g2 6= g2g1 then
the group is called nonabelian4.

4Apparently named after someone
named Nonabel.

A group must always be associative

g1(g2g3) = (g1g2)g3 = g1g2g3

Within the group there must exist an identity element which is some-
times5 called e or I or 0 or 1. The identity element satisifies

5It may seem inconvenient that the
identity has several names. However,
it is sometimes convenient. If we are
thinking of the group of integers and
the operation of addition, we want to
use 0 as the identity. If we are think-
ing about the group {1,−1} with the
operation of usual multiplication, then
it is convenient to write the identity as
1. For more abstract groups, e or I is
often most natural.

ge = eg = g

for all elements g ∈ G. Each element of the group must also have an
inverse which we write as g−1 with the property that

gg−1 = g−1g = e

We often write |G| to mean the number of elements in the group G.

41.2.1 Some Examples of Groups

• The group of integers Z with the operation being addition. The
identity element is 0. This group is abelian.

• The group {1,−1} with the operation being the usual multiplica-
tion. This is also called the group Z2. The identity element is 1.
We could have also written this group as {0, 1} with the operation
being the usual addition modulo 2, where here the identity is 0.
This group is abelian.

• The group ZN which is the set of complex numbers e2πip/N with
p an integer (which can be chosen between 1 and N inclusive) and
the operation being multiplication. This is equivalent to the set of
integers modulo N with the operation being addition. This group
is abelian.

• The group of permutations of N elements, which we write as SN
(known as the permutation group, or symmetric group). This
group is nonabelian. There are N ! elements in the group. Think
of the elements of the group as being a one-to-one mapping from
the set of the first N integers into itself.
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• The simplest nonabelian group is S3. In S3, one of the elements is

x =





1 → 2
2 → 1
3 → 3

Another element is

r =





1 → 2
2 → 3
3 → 1

where x stands for exchange (exchanges 1 and 2) and r stands
for rotate. The multiplication operation xr is meant to mean,
do r first, then do x (you should be careful to make sure your
convention of ordering is correct. Here we choose a convention that
we do the operation written furthest right first. You can choose
either convention, but then you must stick to it! You will see both
orderings in the literature!) So, if we start with the element 1,
when we do r the element 1 gets moved to 2. Then when we do
x the element 2 gets moved to 1. So in the product xr we have 1
getting moved back to position 1. In the end we have

xr =





1 → 1
2 → 3
3 → 1

Note that if we multiply the elements in the opposite order we get
a different result (hence this group is nonabelian)

rx =





1 → 3
2 → 2
3 → 1

It is easy to check that

x2 = r3 = e (41.1)

and further we have
xr = r2x (41.2)

There are a total of 6=3! elements in the group which we can list
as e, r, r2, x, xr, xr2. All other products can be reduced to one of
these 6 posibilities using Eqs. 41.1 and 41.2.

Product of Groups

Two groups G and H can be multiplied to form G × H in an obvious
way. An element of G ×H is a pair (g, h) with g ∈ G and h ∈ H . The
multiplication in G×H is given by (g1, h1)(g2, h2) = (g1g2, h1h2).
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All Abelian Groups

The so-called fundamental theorem of finite abelian groups6 tells us that 6This results was more or less known by
Gauss in some form in 1801. It is also
often credited to Kronecker in 1870 —
he did more than invent the Kronecker
delta!

any abelian groups can be written as

ZN1 × ZN2 × . . .× ZNp

for some number of factors p.

41.2.2 More Features of Groups

A subgroup is a subset of elements of a group which themselves form a
group. For example, the integers under addition form a group. The even
integers under addition are a subgroup of the integers under addition.
The centralizer of an element g ∈ G often written as Z(g) is the set

of all elements of the group G that commute with g. I.e., h ∈ Z(g) iff
hg = gh. Note that this set forms a subgroup (proof is easy!). For an
abelian group G the centralizer of any element is the entire group G.
A conjugacy class of an element g ∈ G is defined as the set of

elements g′ ∈ G such that g′ = hgh−1 for some element h ∈ G. We
sometimes write Cg for the conjugacy class of g, and |Cg| is the number
of elements in the conjugacy class.
A useful result of group theory is that the number of elements in the

conjugacy class of an element times the centralizer of the element gives
the total number of elements in the group7 7Often this theorem is stated as a

simple result of the so-called orbit-
stabilizer theorem — which is very
closely related to Burnside’s lemma
(See section 29.5). However, it is ac-
tually fairly easy to prove the theorem
directly as well: For any given y ∈ Cg
let us define p(y) to be a given par-
ticular choice of a group element such
that p(y) g p(y)−1 = y. Then given any
h ∈ G we can uniquely write h = p(y)z
for some y = hgh−1 ∈ Cg and some
z ∈ Z(g).

|Z(g)| |Cg| = |G| (41.3)

Example: S3 Above we listed some of the properties of the group
S3. S3 has several subgroups:

• The group containing the identity element e alone

• The group containing {e, x}
• The group containing {e, r, r2}
• The group S3 itself (which is not a so-called “proper” subgroup)

The centralizer is just the identity element Z(S3) = e, since it is the
only element of the group S3 that commutes with all elements of the
group. The group has three conjugacy classes

• The identity element e

• The rotations {r, r2}
• The reflections {x, xr, xr2}

We can check that conjugating any element in any class gives another
element within the same class. For example, consider the element x and
conjugate it with the element r. We have rxr−1 = (xr2)r−1 = xr (see
Eq. 41.2) which is in the same conjugacy class as x.
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41.2.3 Lie Groups and Lie Algebras

A Lie group8 is a group which is also a manifold. Roughly, a group with8Pronounced “Lee”, named after So-
phus Lie, also a Norwegian Mathemati-
cian of the 1800s. Like Ski-Jumping,
Norway seems to punch above its
weight in the theory of groups.

a continuous (rather than discrete) set of elements. Examples include:

• The group of invertible n×n complex matrices. We call this group
GL(n,C). Here GL stands for “general linear”. The identity is the
usual identity matrix. By definition all elements of the group are
invertable.

• The group of invertible n × n real matrices. We call this group
GL(n,R).

• The group, SU(2), the set of 2 by 2 unitary matrices with unit
determinant. In this case the fact that this is also a manifold can
be made particularly obvious. We can write all SU(2) matrices as

(
x1 + ix2 −x3 + ix4
x3 + ix4 x1 − ix2

)

with all xj any real numbers with the constraint that x21 + x22 +
x23 + x24 = 1. Obviously the set of four coordinates (x1, x2, x3, x4)
with the unit magnitude constraint describes the manifold S3.

• SU(N), the group of unitary N by N matrices of determinant one
is a Lie group

• SO(N), the group of real rotation matrices in N dimensions is a
Lie group.

• The vector space Rn with the operation being addition of vectors,
is a Lie group.

Note that certain Lie groups are known as “simple” because as man-
ifolds they have no boundaries and no nontrivial limit points (For ex-
ample, GL(n) is not simple because there is a nontrivial limit — you
can continuously approach matrices which have determinant zero (or
are not invertable) and are therefore not part of the group. The set of
simple Lie groups (including, SU(N) and SO(N) and just a few others)
is extremely highly studied.
A Lie Algebra is the algebra generated by elements infinitesimally

close to the identity in a Lie group9. For matrix valued Lie groups G,9A slightly more rigorous definition is
that a Lie algebra is an algebra of el-
ements u, v, w... which can be added
with coefficients a, b, c to give X =
au+bv+cw+ . . . where we have a com-
mutator [·, ·] which satisfies [X,X] = 0
for all X as well as bilinearity [au +
bv,X] = a[u,X] + b[v,X] and simi-
larly [X,au + bv] = a[X,u] + b[X, v]
for all X,a, b, u, v, and finally we must
have the Jacobi identity [[X,Y ], Z] +
[[Y,Z],X] + [[Z,X], Y ] = 0.

we can write any element g ∈ G as

g = eX = 1+X + (X)2/2 + . . .

where X is an element of the corresponding Lie algebra (make it have
small amplitude such that g is infinitesimally close to the identity). Con-
ventionally if a Lie group is denoted as G the corresponding Lie algebra
is denoted g.

• For the Lie group SU(2), we know that a general element can be
written as g = exp(in · σ) where n is a real three-dimensional
vector and σ are the Pauli matrices. In this case iσx, iσy and iσz
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are the three generators of the Lie algebra su(2) (in the, so-called,
fundamental representation).

• For the Lie group GL(n,R) the corresponding Lie algebra gl(n,R)
is just the algebra of n× n real matrices.

Add something about Lie Algebra?

41.2.4 Representations of Groups:

A representation is a group homomorphism. This means it is a map-
ping from one group to another which preserves multiplication. We will
be concerned with the most common type of representation, which is
a homomorphism into the general linear group, ie, the group of ma-
trices. Almost always we will work with complex matrices. Thus an
n-dimensional representation is a mapping ρ to n-dimensional complex
matrices

ρ : G→ GL(n,C)

preserving multiplication. I.e.,

ρ(g1)ρ(g2) = ρ(g1g2)

for all g1, g2 ∈ G.
Typically in quantum mechanics we are concerned with representa-

tions which are unitary, i.e., ρ(g) is a complex unitary matrix of some
dimension. (In case you don’t remember, a unitary matrix U has the
property that UU † = U †U = 1).
A representation is reducible if the representing matrices decomposes

into block diagonal form. I.e., ρ is reducible if ρ = ρ1 ⊕ ρ2 for two
representations ρ1 and ρ2. An irreducible representation is one that
cannot be reduced.
The dimensions of the irreducible representations follow the law

∑

R

dim(R)2 = |G| (41.4)

where |G| is the number of elements in the group and the sum is over
irreducible representations.
An amazing fact from representation theory of discrete groups is that

the number of irreducible representations of a group is equal to the
number of distinct conjugacy classes.
Schur’s Second Lemma is a very useful result stating that if a

matrix A commutes with every ρR(g) for all elements g in the group for
an irreducible representation R, then A is proportional the unit matrix.
In particular this means that any element h that commutes with all
elements of the group has ρR(h) a complex phase times the identity. A
corollary of this is that all of the irreducible representations of abelian
groups are one dimensional.
Following from Shur’s lemma we can, for example, write all the irre-

ducible representations of the group ZN in the following way. Let the
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group ZN be written as g = 0, . . . , (N − 1) with the operation of addi-
tion. Let ω = e2πi/N . There are exactly N irreps of this group which
we label as ωp for p = 0, . . . , (N − 1). These irreps are given by

ρp : g → (ωp)g (41.5)

Orthogonality and Characters

Irreducible unitary representations matrices satisfy a beautiful orthog-
onality relationship known as the grand orthogonality theorem (or
Schur orthogonality)

∑

g∈G
[ρR(g−1)]mn[ρ

R′
(g)]pq =

∑

g∈G
[ ρR(g) ]∗nm [ρR

′
(g)]pq =

δnpδmqδRR′ |G|
dim(R)

(41.6)

where the superscript R indicates a particular irreducible representa-
tion, the subscript are the matrix elements of the ρ matrix, dim(R) is
the dimension of the representation R, and |G| is the total number of
elements in the group.
A character is the trace of a representation matrix.

χR(g) = Tr[ρR(g)] (41.7)

where the superscript R indicates we are consisdering a particular repre-
sentation R. Because of the cyclic property of the trace Tr[ab] = Tr[ba]
the character is the same for all elements of a conjugacy class. One can
find tables of characters for different groups in any book on group theory
or on the web.
Representation theory of groups is a huge subject, but we won’t dis-

cuss it further here!

41.3 Fundamental Group Π1(M)

A powerful tool of topology is the idea of the fundamental group of a
manifold M which is often called the first homotopy group, or Π1(M).
This is essentially the group of topologically different paths through the
manifold starting and ending at the same point.
First, we choose a point in the manifold. Then we consider a path

through the manifold that starts and ends at the same point. Any other
path that can be continuously deformed into this path (without changing
the starting point or ending point) is deemed to be topologically equiva-
lent (or homeomorphic, or in the same equivalence class). We only want
to keep one representative of each class of topologically distinct paths.
These topologically distinct paths form a group. As one might expect,

the inverse of a path (always starting and ending at the same point) is
given by following the same path in a backward direction. Multiplication
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of two paths is achieved by following one path and then following the
other to make a longer path.

41.3.1 Examples of Fundamental Groups

• If the manifold is a circle S1 the topologically distinct paths (start-
ing and ending at the same point) can be described by the number
n of clockwise wrappings the path makes around the circle before
coming back to its starting point (note n can be 0 or negative as
well). Thus the elements of the fundamental group are indexed by
a single integer. We write Π1(S

1) = Z.

• If the manifold is a torus S1 the topologically distinct paths can
be described by two integers indicating the number of times the
path winds around each handle. We write Π1(S

1 × S1) = Z× Z.

It is in fact, easy to prove that Π1(M1 ×M2) = Π1(M1)×Π1(M2).

• A fact known to most physicists is that the the group of rotations
of three dimensional space SO(3) is not simply connected — a 2π
rotation (which seems trivial) cannot be continuously deformed
to the trivial rotation, whereas a 4π rotation can be continuously
deformed to the trivial rotation.10 Correspondingly the fundama- 10This is the origin of half-odd integer

angular momenta.mental group is the group with two elements Π1(SO(3)) = Z2.

Chapter summary

Some mathematical ideas introduced in this chapter:

• Manifolds are locally like Euclidean space: Examples include
sphere S2, circle S1, torus surface T 2 = S1 × S1, etc. Manifolds
can also have boundaries, like a two dimensional disk B2 (or D2)
bounded by a circle.

• Groups are mathematical sets with an operation, and identity
and an inverse: Important examples include, Z the integers under
addition, ZN the integers mod N under addition, the symmetric
(or permutation group) on N elements SN , and Lie groups such as
SU(2) which are also manifolds at the same time as being groups.

• The Fundamental Group of a manifold is the group of topolog-
ically different paths through the manifold starting and ending at
the same point.

• Isotopy is the topological equivalence of knot diagrams (what can
be deformed to what without cutting).

• Writhe and Linking Number characterize pictures of oriented
knots and links.
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Further Reading

For background on more advanced mathematics used by physicists, in-
cluding some topological ideas, see:

• M. Nakahara, Geometry, Topology, and Physics, 2ed, (2003), Tay-
lor and Francis.

• M. Stone and P. Goldbart, Mathematics for Physics, Cambridge
(2009). Free pdf prepublication version available online.

For further information on mathematics of knots, isotopy, and Rie-
dermeister moves, writhe, and linking, see

• Louis Kauffman, Knots and Physics, World Scientific, (2001), 3ed.

Something on group theory
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Medium Material

(1) A general reference which should be useful for much of the book
is the review article by Nayak, Simon, et alNayak et al. [2008].

(2) A wonderful little book which is really fun to read that introduces
the Kauffman invariant and many other ideas of knot theory is
the book Knots and Physics by KauffmanKauffman [2001], now
in its 3rd edition. This book really inspired me when I was a
grad student. It appears to be available online in several places
(not certain which, if any, are legal). Although the whole book is
fun; and much of it is written at a very introductory level, mainly
the end of part 1 is the most relevant part where he explains the
connection of Kauffman invariant to Chern-Simons theory (and
pieces get to be well beyond introductory). There is a lot in here
, the deep parts are easy to gloss over.

(3) A very nice introduction to non abelian anyons and topological
quantum computation is given in John Preskill’s lecture notes,
available online (Preskill [2004]).

(4) Frank Wilczek has two books which both discuss Berry phase and
abelian anyons?Wilczek [1990]. Both have mainly reprints in them
with some commentary by Wilczek. Often it is enough to read the
commentary!

(5) If you need a refresher on path integrals, consider the first 15 pages
of Fabian Essler’s notes?. Also consider the nice article by Richard
MacKenzie?. MacKenzie includes some useful applications such as
Aharanov-Bohm effect. Look mainly at the first 22 pages.

(6) The classic paper by Ed Witten which launched the field is Witten
[1989]. This is a tremendously deep paper which introduces a lot
of brilliant ideas. I find something new every time I read it. I find
it to be tough reading in some places and easy in others.

(7) From a more mathematial viewpoint several articles by Sir Michael
Atiya are very usefulAtiyah [1988, 1997]. These are both introduc-
tions to topological quantum field theories. There is also a more
detailed book by the same authorAtiyah [1990a]. The full book
might be hard to read unless you have a very strong maths back-
ground.

(8) There are several nice references on the structure of topological
quantum field theories and diagrammatic calculus,
Parsa Bonderson’s thesis: http://thesis.library.caltech.edu/2447/2/thesis.pdf
This is a more detailed version of the long article by Kitaev (“Anyons
in exactly solvable models”) which I mention below. Note there is
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some slight change of convention between the two articles.
Also a good reference is the book on Topological Quantum Com-
putation by Zhenghan Wang
“Topological Quantum Computation”, Conference Board of the
Mathematical Sciences, Regional Conference Series in Mathemat-
ics, American Mathematical Society, (Providence, Rhode Island),
Number 112, 2008.
If you are more mathematical, you might like the thesis of Bruce
Bartlett available online here
https://arxiv.org/abs/math/0512103

(9) The monumental work “Anyons in an exactly solved model and
beyond” by Alexei Kitaev, Annals of Physics 321 (2006) 2–111
available online here
https://arxiv.org/abs/cond-mat/0506438
This brings the ideas of topological quantum field theory into the
condensed matter arena. This is not easy reading, but a ton of
great ideas are buried in this paper.
Another work by Kitaev, “Fault-tolerant quantum computation by
anyons”, Annals Phys. 303 (2003) 2-30.
available online here
https://arxiv.org/abs/quant-ph/9707021
introduces the famous toric code, discusses quantum error correc-
tion, and generalizes the toric code model to arbitrary non-abelian
groups.
Kitaev’s work on the quantum wire (which we might get to at the
end of the course) is here.
https://arxiv.org/abs/cond-mat/0010440
A brief digest of some of the many ideas introduced in these three
papers is given by notes taken by Laumann of Kitaev’s lectures,
available here.
https://arxiv.org/abs/0904.2771
Loop gases are introduced in this paper by Freedman et al. It has
a lot of sections which are hard to parse.
http://stationq.cnsi.ucsb.edu/ freedman/Publications/83.pdf
The double-fibonacci string-net is discussed in some detail in this
work by Fidkowski et al,
https://arxiv.org/abs/cond-mat/0610583
The classic paper on string - nets very generally is this by Levin
and Wen.
https://arxiv.org/abs/cond-mat/0404617
The standard reference on introductory quantum hall effect is the
classic book, ”The Quantum Hall Effect”, edited by Prange and
Girvin, published by Springer. The first chapter, and the chapters
by Laughlin and Haldane are probably the best. The experimental
chapters are good for context too.
Another decent reference quantum Hall physics is T. Chakraborty
and P. Piettilainen, ”The Quantum Hall Effects: Integral and Frac-
tional,” (Springer 1995).
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A short review article by Macdonald is pretty nice and is available
here.
https://arxiv.org/pdf/cond-mat/9410047v1.pdf
The article that introduced the ideas of conformal field theory into
the field of quantum Hall effect is by Moore and Read, available
online here.
http://www.physics.rutgers.edu/ gmoore/MooreReadNonabelions.pdf
A recent review article on Fractional quantum Hall hierarchies
(and also discusses nonabelian quantum Hall and conformal field
theory) is online here.
https://arxiv.org/abs/1601.01697

A few random digressions:

(10) If you are interested in 2+1 D quantum gravity, see this article .
I can’t vouch for it, but the introduction is interesting;
https://link.springer.com/article/10.12942/lrr-2005-1
This is the article by Witten explaining how 2+1 D gravity is ”ex-
actly solvable.” More from Witten here. There is reconsideration
many years later, again by Witten, see here .
http://www.sciencedirect.com/science/article/pii/0550321389905919

(11) I’ve been told the book by Jiannis Pachos on topological quantum
computation is a good resource.

(12) If you are interested in the topology of manifolds in 3 and 4 di-
mensions, there are several good books. One by Kirby is online
here.
https://math.berkeley.edu/ kirby/papers/Kirby
There is a book by Gompf and Stipcitz ”4-manifolds and Kirby
Calculus” which is nice. Note that parts of this book are online
free if you google them.
https://www.amazon.co.uk/4-Manifolds-Calculus-Graduate-Studies-
Mathematics/dp/0821809946

(13) For more information on conformal field theory. The standard
reference is the Big yellow book (Conformal Field Theory Authors:
Philippe Di Francesco, Pierre Mathieu, David Sénéchal) . The first
part of this book (up to chapter 12) is excellent, but even that
much is a lot of reading. There is a short set of lectures from les
Houches by Ginsparg .
https://arxiv.org/abs/hep-th/9108028
I also like the short set of notes by Fendley .
http://galileo.phys.virginia.edu/ pf7a/msmCFT.pdf
For even shorter introduction of what you need to apply CFT to
quantum Hall, see the appendix of Ref. 1 above, or the appendix
of ***.
The book by Kauffman and Lins gives more details of constructing
a full anyon theory from the kauffman invariant.
http://press.princeton.edu/titles/5528.html
Neilsen and Chuang for quantum computation in general, although
there are plenty of other refs.
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