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Comments About This draft

This is a set of course notes hoping to someday be a book.

Unfortunately, there is a huge difference between course notes and a
book. This is why I need everyone’s help. If there are parts that you
think are unclear – please let me know. If there are errors — please let
me know (even if they are small and subtle). If the figures are unclear
— please let me know. If there are mistakes in grammar — please let
me know.
If you don’t get the jokes... well, that is your problem. Seriously

though, I need help if this is eventually going to arrive at the Nirvana
that is bookdom. Give me feedback please. It will be good for your
Karma. ⌣̈





Some thoughts about this book

This book originated as part of a lecture course given at Oxford in the
fall of 2016 and then again in 2017, 2018, 2019, 2020, . . . and this kept
going until I finished the book, which seemed like forever.
The idea of this book is to give a general introduction to topological

quantum ideas. This includes topological quantum field theories, topo-
logical quantum memories, topological quantum computing, topological
matter and topological order — with emphasis given to the examples of
toric code, loop gases, string nets, and particularly quantum Hall effects.
The book is aimed at a physics audience (i.e., we avoid the language of
category theory like the plague!), although some mathematicians may
also find the perspectives presented here to be useful.

How to read this book

The book was originally written to be read roughly sequentially. How-
ever, you may be able to jump around quite a bit depending on your
interests. When the toric code is introduced, it is quite independent of
the prior chapters on the general structure of TQFTs. In the course I
teach, I am certainly not assigning all of the chapters — I’m not a sadist!
I should also mention that chapter 33 introduces some basic mathe-

matics that many people may know but I thought should be included
for completeness.
There are often small hitches and caveats that are swept under the

rug in the name of simplifying the discussion. I try to footnote these
caveats when they occur. Many technical details are pushed to chapter
appendices — often these can be skipped on a first reading.
In a margin note of my previous book, I said that my next book (i.e.,

this one) would be about two dimensional electron systems. This topic
is covered in the section on fractional quantum Hall effect1.

1I also suggested that I might write a
thriller about physicists defeating drug
smugglers. For those who are inter-
ested, I’m still working on it, but I dis-
covered that writing a novel is pretty
hard.

A list of useful references is given etc.
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Introduction: History of
Topology, Knots, Peter Tait and
Lord Kelvin 1

Very Easy Material

The field of quantum topology inhabits a beautiful nexus between math-
ematics, computer science, and physics. Within the field of physics, it
has been fundamental to a number of subfields. On the one hand, topol-
ogy and topological matter are key concepts of modern condensed matter
physics1. Similarly, in the field of quantum information and quantum 1The 2016 Nobel Prize was awarded

to Kosterlitz, Thouless, and Haldane
for the introduction of topological ideas
into condensed matter physics. The
topic of this book is a great-grand-
daughter of some of those ideas. In
chapters 28 and 27 we will discuss some
of the key works that this Nobel Prize
honored.

computation, topological ideas are extremely prominent2. At the same

2We will see this starting in chapter 24
below.

time much of our modern study of topological matter is rooted in ideas of
topological quantum field theories that developed from the high energy
physics, quantum gravity3, and string theory community starting in the

3See chapter 6.

1980s. These earlier works have even earlier precedents in physics and
mathematics. Indeed, the historical roots of topology in physics date all
the way back to the 1800s which is where we will begin our story.

Fig. 1.1 A smoke ring or vortex loop
is an invisible ring in space where the
fluid flows around the invisible ring as
shown by the arrows. The whole thing
moves out of the plane of the page at
you as the fluid circulates.

In 1867 Lord Kelvin4 and his close friend Peter Tait were interested
in a phenomenon of fluid flow known as a smoke ring5, configurations of

5Even in 1867, a talented smoker could
produce a smoke ring from their mouth.

fluid flow where lines of vorticity form closed loops as shown in Fig. 1.1.
Peter Tait built a machine that could produce smoke rings, and showed
it to Kelvin who had several simultaneous epiphanies. First, he realized
that there should be a theorem (now known as Kelvin’s circulation theo-
rem) stating that in a perfectly dissipationless fluid, lines of vorticity are
conserved quantities, and the vortex loop configurations should persist
for all time. Unfortunately, few dissipationless fluids exist — and the
ones we know of now, such as superfluid helium at very low tempera-
tures, were not discovered until the next century6. However, at the time,

6In fact Helium was not even discov-
ered yet in 1867!

scientists incorrectly believed that the entire universe was filled with a
perfect dissipationless fluid, known as Luminiferous Aether, and Kelvin
wondered whether one could have vortex loops in the Aether.
At the same time, one of the biggest mysteries in all of science was

the discreteness and immutability of the chemical elements. Inspired by
Tait’s smoke ring demonstration, Kelvin proposed that different atoms
corresponded to different knotting configurations of vortex lines in the
Aether. This theory of “vortex atoms” was appealing in that it gave a

4Actually, in 1867 he was just William Thomson, but he would later be elevated to
the peerage and take the name Lord Kelvin after the River Kelvin that flowed by his
laboratory.



2 Introduction and Ancient History

reason why atoms are discrete and immutable — on the one hand there
are only so many different knots that one can make. (See for example,
the list of the simplest few knots you can form from one piece of string
shown in Fig. 1.2.) On the other hand, by Kelvin’s circulation theorem,
the knotting of the vortices in a dissipationless fluid (the Aether) should
be conserved for all time. Thus, the particular knot could correspond to
a particular chemical element, and this element should never change to
another one. Hence the atoms should be discrete and immutable!

Fig. 1.2 The simplest few knots made
from one strand of string. The top
knot, a simple loop, is known as the
“unknot”, and corresponds to the sim-
ple smoke ring in Fig. 1.1. The second
knot from the top, known as the trefoil,
is not the same as its mirror image (see
exercise 2.1)

For several years the vortex theory of the atom was quite popular,
attracting the interest of other great scientists such as Maxwell, Kirch-
hoff, and J. J. Thomson (no relation). However after further research
and failed attempts to extract predictions from this theory, the idea of
the vortex atom lost popularity.
Although initially quite skeptical of the idea, Tait eventually came

to believe that by building a table of all possible knots (knotted con-
figuration of strands such that there are no loose ends) he would gain
some insight into the periodic table of the elements, and in a remarkable
series of papers he built a catalogue of all knots with up to 7 crossings
(the first few entries of the table being shown in Fig. 1.2). From his
studies of knots, Tait is viewed as the father of the mathematical theory
of knots, which has been quite a rich field of study since that time (and
particularly during the last fifty years).
During his attempt to build his “periodic table of knots”, Tait posed

what has become perhaps the fundamental question in mathematical
knot theory: how do you know if two pictures of knots are topologically
identical or topologically different. In other words, can two knots be
smoothly deformed into each other without cutting any of the strands.
Although this is still considered to be a difficult mathematical problem,
a powerful tool that helps answer this question is the idea of a “knot
invariant” which we will study in the next chapter. Shortly, it will
become clear how this idea is related to physics.
Although Tait invented a huge amount of mathematics of the theory

of knots7 and developed a very extensive table of knots, he got no closer
to understanding anything about the periodic table of the atoms. In
his later life he became quite frustrated with his lack of progress in this
direction and he began to realize that understanding atoms was probably
unrelated to understanding knots. Tait died8 in 1901 not realizing that
his work on the theory of knots would be important in physics, albeit
for entirely different reasons.

7Some of his conjectures were way ahead of their time — some being proven only in
the 1980s or later! See Stoimenow [2008] for a review of the Tait conjectures proven
after 1985.
8Peter Tait was also a huge fan of golf and wrote some beautiful papers on the
trajectory of golf balls. His son, Freddie Tait, was a champion amateur golfer, being
the top amateur finisher in the British Open six times and placing as high as third
overall twice. Freddie died very young, at age 30, in the Boer wars in 1900. This
tragedy sent Peter into a deep depression from which he never recovered.
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Further Reading

• Daniel S. Silver, “Knot Theory’s Odd Origins”, American Scien-
tist, Volume 94, 2006.





Kauffman Bracket Invariant and
Relation to Physics 2

Easy Material

The purpose of this chapter is to introduce you to a few of the key ideas
and get you interested in the subject!

2.1 The Idea of a Knot Invariant

Topological equivalence. We say two knots are topologically equiva-
lent if they can be deformed smoothly into each other without cutting1.
For example, the picture of a knot (or more properly, the picture of the
link of two strings) on the left of Fig. 2.1 is topologically equivalent to
the picture on the right of Fig. 2.1.

=

Fig. 2.1 Topological equivalence of
two knots. The knot on the left can be
deformed continuously into the knot on
the right without cutting any strands.

It may appear easy to determine whether two simple knots are topo-
logically equivalent and when they are not. However, for complicated
knots, it becomes extremely difficult to determine whether two knots are
equivalent or inequivalent. It is thus useful to introduce a mathematical
tool known as a knot invariant that can help us establish when two knots
are topologically inequivalent.
A Knot Invariant is a mapping from a knot (or a picture of a knot)

to an output via a set of rules which are cooked up in such a way that
two topologically equivalent knots must give the same output. (See
Fig. 2.2.) So if we put two knots into the set of rules and we get two
different outputs, we know immediately that the two knots cannot be
continuously deformed into each other without cutting. ❄

Rules

Such that
topologically
equivalent
knots give the
same output

Output

Knot

Fig. 2.2 Schematic description of a
knot invariant as a set of rules taking an
input knot to some mathematical out-
put such that topologically equivalent
knots give the same output.

To demonstrate how knot invariants work, we will use the example of
the Kauffman bracket invariant2,3 (See Kauffman [1987]). The Kauff-

3The term “bracket” is due to a com-
mon notation where one draws a pic-
ture of a knot inside brackets to indi-
cate that one is supposed to evaluate
this invariant. We will not draw these
brackets.

1A few pieces of fine print here. (1) I am not precise about knot versus link. Strictly
speaking a knot is a single strand, and a link is more generally made of multiple
strands. Physicists call them all knots. In either case no dangling ends are al-
lowed. A knot can be defined as a particular embedding of a circle (S1) into a
three dimensional reference manifold such as R3 (regular 3-dimensional space) with
no self-intersections. A link is an embedding of several circles into the three dimen-
sional manifold with no intersections. (2) When I say “topologically equivalent” here
I mean the concept of regular isotopy (See section 2.2.1 and 2.6.1). Two knots are
isotopic if there is a continuous smooth family of knots between the initial knot and
the final knot — however to be more precise, as we will see below in section 2.2.1,
we should think of the knots as being thickened to ribbons and we want a smooth
family of ribbons.
2Be warned: there are multiple things named after Kauffman. The particular nor-
malization of the bracket invariant that we use has been named the topological bracket
by Kauffman. The more common definition of the bracket is our definition divided
by d.



6 Kauffman Bracket Invariant and Relation to Physics

man bracket invariant was essentially invented by Vaughan Jones who
won the Fields medal for his work on knot theory[Jones, 1985]. Kauff-
man’s important contribution to this story (among his many other con-
tributions in the field of knot theory) was to explain Jones’ work in very
simple terms.
To define the Kauffman Bracket Invariant, we start with a scalar

variable A. For now, leave it just a variable, although later we may
give it a value. There are then just two rules to the Kauffman bracket
invariant. First, a simple loop of string (with nothing going through it)
can be removed from the diagram and replaced with the number454We will eventually see that d stands

for “dimension”.
5There is a hidden assumption that an
empty diagram has value 1. This means
that the overall value of a diagram with
a single loop is d, the overall value of
a diagram of two unlinked loops is d2,
and so forth.

d = −A2 −A−2
. (2.1)

The second rule replaces a diagram that has a crossing of strings by a
sum of two diagrams where these strings don’t cross — where the two
possible uncrossings are weighted by A and A−1 respectively as shown
in Fig. 2.3. This type of replacement rule is known as a skein rule.66The word “skein” is an infrequently

used English word meaning loosely
coiled yarn, or sometimes meaning an
element that forms part of a compli-
cated whole (probably both of these are
implied for our mathematical usage).
“Skein” also means geese in flight, but
I suspect this is unrelated.

= −A2 − A−2 = d

= A + A−1

= A + A−1

Fig. 2.3 Rules for evaluating the Kauffman bracket invariant. The
third line is exactly the same as the middle line except that all the
diagrams are rotated by 90 degrees, so it is not an independent rule.
However, it is convenient to draw the rule twice to make it easier to
compare to other diagrams.

The general scheme is to use the second (and third) rule of Fig. 2.3
to remove all crossings of a diagram. In so doing, one generates a sum
of many diagrams with various coefficients. Then once all crossings are
removed, one is just left with simple loops, and each loop can just be
replaced by a factor of d.
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= A + A−1

= A





A + A−1





+ A−1





A + A−1





= A2d2 + d + d3 + A−2d2

−d3

= d

Fig. 2.4 Example of evaluation of the Kauffman bracket invariant for the simple twisted loop in the
upper left. The light dotted red circle is meant to draw attention to where we apply the Kauffman
crossing rule (the middle line in Fig. 2.3) to get the two diagrams on the right hand side. After
applying the Kauffman rules again (the final line in Fig. 2.3), we have removed all crossings and we
are left only with simple loops, which each get the value d. In the penultimate line we have used
the definition of d to replace A2 + A−2 = −d. The fact that we get d in the end of the calculation
is expected since we know that the original knot is just a simple loop (the so-called “unknot”) and
the Kauffman rules tell us that a loop gets a value d.
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To give an example of how these rules work we show evaluation of
the Kauffman bracket invariant for the simple knot in the upper left of
Fig. 2.4. The output of the calculation is that the Kauffman invariant
of this knot comes out to be d. This result is expected since we know
that the original knot (in the upper left of the figure) is just a simple
loop (the so-called “unknot”) and the Kauffman rules tell us that a loop
gets a value d. We could have folded over this knot many many times77To a mathematician the Kauffman in-

variant is an invariant of regular isotopy
— see Section 2.2.1 below.

and still the outcome of the Kauffman evaluation would be d.
The idea of a knot invariant seems like a great tool for distinguishing

knots from each other. If you have two complicated knots and you do
not know if they are topologically equivalent, you just plug them into
the Kauffman machinery and if they don’t give the same output then
you know immediately that they cannot be deformed into each other
without cutting8. However, a bit of thought indicates that things still

8The converse is not true. If two knots
give the same output, they are not nec-
essarily topologically equivalent. It is
an open question whether there are any
knots besides the simple unknot (a sim-
ple loop) which has Kauffman invariant
d. It is also an open challenge to find
out whether any combinatoric knot in-
variants similar to Kauffman can dis-
tinguish all topologically inequivalent
knots from each other.

get rapidly difficult for complicated knots. In the example of Fig. 2.4 we
have two crossings, and we ended up with 4 diagrams. If we had a knot
with N crossings we would have gotten 2N diagrams, which can be huge!
While it is very easy to draw a knot with 100 crossings, even the world’s
largest computer would not be able to evaluate the Kauffman bracket
invariant of this knot! So one might then think that this Kauffman
bracket invariant is actually not so useful for complicated knots. We
will return to this issue later in Section 2.4.

2.2 Relation to Physics

There is a fascinating relationship between knot invariants and quantum
physics. For certain types of so-called “topological quantum systems”
the amplitudes of space-time processes can be directly calculated via
knot invariants such as the Kauffman bracket invariant.
We should first comment that most of what we will discuss in this

book corresponds to 2 dimensional systems plus 1 dimension of time.
There are topological systems in 3+1 dimension (and higher dimensions
as well!) but more is known about 2+1 D and we will focus on that at
least for now.9

9There is also some discussion of “topo-
logical” systems in 1+1 D in chapter 12
for example.

Figure 2.5 shows a particular space-time process of particle world lines.
At the bottom of the figure is shown the shaded 2 dimensional system
(a disk). At some early time there is a pair creation event — a particle-
antiparticle appear from the vacuum, then another pair creation event;
then one particle walks around another, and the pairs come back to-
gether to try to reannihilate. At the end of the process, it is possible
that the particles do reannihilate to the vacuum (as shown in the di-
agram), but it is also possible that (with some probability amplitude)
the particle-antiparticle pairs form bound states that do not annihilate
back to the vacuum.

ti
m
e

Fig. 2.5 A space-time process show-
ing world lines of particles for a
2+1 dimensional system (shown as the
shaded disk at the bottom). The X’s
mark the points in space-time where
particles-anti-particle pairs are either
pair-created or pair-annihilated.

In a topological theory, the quantum amplitude for these processes
depends on the topology of the world lines, and not on the detailed
geometry (I.e., the probability that the particles reannihilate versus form
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bound states). In other words, as long as the topology of the world lines
looks like two linked rings, it will have the same quantum amplitude as
that shown in Fig. 2.5. It should surprise us that systems exist where
amplitudes depend only on topology, as we are used to the idea that
amplitudes depend on details of things, like details of the Hamiltonian,
how fast the particles move, and how close they come together. But in
a topological theory, none of these things matter. What matters is the
topology of the space-time paths.
What should be obvious here is that the quantum amplitude of a

process is a knot invariant. It is a mapping from a knot (made by the
world lines) to an output (the amplitude) which depends only on the
topology of the knot. This connection between quantum systems and
knot invariants was made famously by Ed Witten, one of the world’s
leading string theorists [Witten, 1989]. He won the Fields medal along
with Vaughan Jones for this work.
Such topological theories were first considered as an abstract possi-

bility, mainly coming from researchers in quantum gravity (see chapter
6). However, now several systems are known in condensed matter which
actually behave like this. While not all topological theories are related
to the Kauffman bracket invariant, many of them are (There are other
knot invariants that occur in physical systems as well — including the so-
called HOMFLY invariant[Freyd et al., 1985]. See exercise 31.) A brief
table of some of the physical systems that are believed to be related to
nontrivial knot invariants is given in Table 2.1.
In addition there are a host of complicated systems that could in

principle be engineered but are much too hard for current technology to
contemplate. There are many other quantum hall states that are also
topological, but have corresponding knot invariants are fairly trivial, as
we will later see in chapter ***.
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(1) SU(2)2 class. For these, the Kauffman bracket invariant
gives the quantum amplitude of a process by using the
value A = ie−iπ/(2(2+2)) = i3/4. This is also known as
“Ising” anyons10. Possibly physical realizations include

• ν = 5/2 Fractional Quantum Hall Effect (2D elec-
trons at low temperature in high magnetic field). See
chapters ***.

• 2D p-wave superconductors.

• 2D Films of 3HeA superfluid11.

• A host of “engineered” structures that are designed
to have these interesting topological properties. Typ-
ically these have a combination of spin-orbit coupling,
superconductivity, and magnetism of some sort. Re-
cent experiments have been quite promising. See
chapter ***?

(2) SU(2)3 class. For this, the Kauffman bracket invariant
gives the quantum amplitude of a process by using the
value A = ie−iπ/(2(2+3)) = i4/5. The only physical system
known in this class is the ν = 12/5 fractional quantum hall
effect.

(3) SU(2)4 class. For this, the Kauffman bracket invariant
gives the quantum amplitude of a process by using the
value A = ie−iπ/(2(2+4)) = i5/6. It is possible that ν =
2 + 2/3 Fractional quantum hall effect is in this class.

(4) SU(2)1 class Also known as semions. These are proposed
to be realized in rotating boson fractional quantum Hall
effect (See comments in chapter 31). This corresponds to
a fairly trivial knot invariant as we will see later in section
***.

(5) SU(3)2 class. This corresponds to a case of the HOMFLY
knot invariant rather than the Kauffman bracket invariant.
It is possible that the unpolarized ν = 4/7 fractional quan-
tum hall effect is in this class.

10The Ising conformal field theory, de-
scribes the critical point of the 2D
classical Ising model. We will dis-
cuss the relationship between confor-
mal field theory and topological theo-
ries in chapter 31.

11Two Nobel Prizes have been given for
work on Helium-3 superfluidity.

Table 2.1 Table of some interesting topological systems related to knot invariants.
Note that these are closely related to, but not precisely the same as SU(2)k Chern-
Simons theory (which we discuss in chapter 5). The slight differences are related to
extra phases that appear in braiding. See also chapter ****. See end of chapter for
references ***
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2.2.1 Twist and Spin-Statistics

Before moving on, let us do some more careful examination of the Kauff-
man bracket invariant. To this end, let us examine a small loop in a piece
of string (as shown in Fig. 2.6) and try to evaluate its Kauffman bracket
invariant.

+A−1= A

=

(
A [−A2 − A−2] + A−1

)
= −A3

Fig. 2.6 Evaluation of a twist loop in a string. The dotted lines
going off the top and bottom of the diagrams mean that the string
will be connected up with itself, but we are not concerned with any
part of the knot except for piece shown. The result of this calculation
is that removal of the little twist in the loop incurs a factor of −A3.

We see from the calculation, that the little loop in the string has value
of −A3 compared to a straight string. But this seems to contradict what
we said earlier! We claimed earlier that any two knots that can be de-
formed into each other without cutting should have the same Kauffman
bracket invariant, but they don’t!
The issue here is that the unlooped string on the right and the looped

string on the left are, in fact, not topologically equivalent12. To see this

12In mathematics we say they are am-
bient isotopic but not regular isotopic!
(See section 2.6.1)

we should think of the string as not being infinitely thin, but instead
having some width, like a garden hose, or a “ribbon”13. If we imagine

13We should thus think of our knots as
not just being a simple embedding of a
circle S1 into a three manifold R3, but
rather an embedding of a ribbon. This
is equivalent to specifying an orthog-
onal vector at each point along knot
which gives the orientation of the rib-
bon cross section at each point. When
one draws a knot as a line, one must
have a convention as to what this means
for the orientation of the ribbon. See
comment on blackboard framing at the
end of this section.

straightening a thick string (not an infinitely thin string) we realize that
pulling it straight gives a twisted string (see fig 2.7) — anyone who has
tried to straighten a garden hose will realize this!14

14If you have not had this experience
with a garden hose, you are not paying
enough attention to your garden!

So the looped string is equivalent to a string with a self-twist, and this
is then related to a straight string by the factor of −A3. In fact, this is a
result we should expect in quantum theory. The string with a self-twist
represents a particle that stays in place but rotates around an axis. In
quantum theory, if a particle has a spin, it should accumulate a phase
when it does a 2π rotation, and indeed this factor of −A3 is precisely
such a phase in any well defined quantum theory.



12 Kauffman Bracket Invariant and Relation to Physics

pull tight
= −A3

Fig. 2.7 Pulling straight a small loop introduces a twist in the

string. This twist can be replaced with a factor of −A3.

In fact, Fig. 2.7 is a very slick proof of the famous spin statistics the-
orem. In the left picture with the loop, we have two identical particles
that change places. When we pull this straight, we have a single particle
that rotates around its own axis. In quantum theory, the phases accu-
mulated by these two processes must be identical. As we will see below
in chapter 3, in 2+1 D this phase can be arbitrary (not just +1, or -1),
but the exchange phase (statistical phase) and the twist phase (the spin
phase) must be the same15.

15In the most interesting case of non-
abelian statistics, there may be mul-
tiple possible exchange phases for two
particles, although this does not effect
the equivalence of diagrams stated here.
We will discuss this more in chapter 3.

As a side comment, one can easily construct a knot invariant that
treats the looped string on the left of Fig. 2.6 as being the same as
the straight piece of string. One just calculates the Kauffman bracket
invariant and removes a factor of −A3 for each self twist that occurs16.16To properly count the self twists,

one calculates the so-called “writhe”
of the knot (See section 2.6.2). Give
the string an orientation (a direction to
walk along the string) and count +1
for each positive crossing and -1 for
each negative crossing where a positive
crossing is when, traveling in the direc-
tion of the string that crosses over, one
would have to turn left to switch to the
string that crosses under. If we orient
the twisted string on the left of Fig. 2.6
as up-going it then has a negative cross-
ing by this definition.

This gives the famed Jones Polynomial knot invariant. See exercise 2.4.

Blackboard Framing

Since it is important to specify when a strand of string has a self-twist
(as in the middle of Fig. 2.7) it is a useful convention to use so-called
blackboard framing. With this convention we always imagine that the
string really represents a ribbon and the ribbon always lies in the plane
of the blackboard. An example of this is shown in Fig. 2.8. If we intend
a strand to have a self twist, we draw it as a loop as in the left of Fig. 2.7
or the left of Fig. 2.6.

⇒

Fig. 2.8 Blackboard framing. The knot drawn on the left represents the ribbon on
the right, where the ribbon always lies flat in the plane of the page (i.e., the plane of
the blackboard).
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2.3 Bras and Kets

For many topological theories (the so-called nonabelian theories) the
physical systems have an interesting, and very unusual property. Imag-
ine we start in a ground state (or vacuum) of some systems and create
two particle-hole pairs, and imagine we tell you everything that you
can locally measure about these particles (their positions, if their spin,
etc etc). For most gapped systems (insulators, superconductors, charge
density waves) once you know all of the locally measurable quantities,
you know the full wavefunction of the system. But this is not true for
topological systems.17 As an example, see Fig. 2.9. 17Particles in topological systems seem

to “remember” their space-time his-
tory. The reason for this, as we will
see in chapter 4 and thereafter, is that
this historical information becomes en-
coded in the properties of the vacuum;
i.e., the regions away from the particles.

|1〉 =|0〉 =

ti
m
e

Fig. 2.9 Two linearly independent quantum states that look iden-
tical locally but have different space-time history. The horizontal
plane is a space-time slice at fixed time, and the diagrams are all
oriented so time runs vertically.

〈1| =〈0| = ti
m
e

Fig. 2.10 Kets are turned into bras by reversing time.

To demonstrate that these two different space-time histories are lin-
early independent quantum states, we simply take inner products as
shown in Fig. 2.11 by gluing together a ket with a bra. Since 〈0|0〉 =
〈1|1〉 = d2 but 〈0|1〉 = d, we see that |0〉 and |1〉 must be linearly in-
dependent, at least for |d| 6= 1. (We also see that the kets here are
not properly normalized, we should multiply each bra and ket by 1/d in
order that we have normalized states.)
We can think of the |0〉 and |1〉 states as being particular operators

that produce particle-hole pairs from the vacuum, and (up to the issue
of having properly normalized states) the inner product produced by
graphical gluing a bra to a ket is precisely the inner product of these
two resulting states. So for example, the inner product 〈0|1〉 as shown in
the bottom of Fig. 2.11 can be reinterpreted as starting from the vacuum,
time evolving with the operator that gives |0〉 then time evolving with
the inverse of the operator that produces |1〉 to return us to the vacuum.
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〈0|0〉 = = = d2

〈1|1〉 = = = d2

〈0|1〉 = = = d

Fig. 2.11 Showing that the kets |0〉 and |1〉 are linearly indepen-
dent. For |d| 6= 1 the inner products show they must be linearly
independent quantities.

Suppose now we insert a braid between the bra and the ket as shown in
Fig. 2.12. The braid makes a unitary operation on the two dimensional
vector space spanned by |0〉 and |1〉. We can once again evaluate this
matrix element by calculating the Kauffman bracket invariant of the
resulting knot.

|0〉 =

〈0| =

= 〈0|Braid|0〉

Fig. 2.12 Inserting a braid between the bra and the ket. The braid
performs a unitary operation on the two dimensional vector space
spanned by |0〉 and |1〉
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2.4 Quantum Computation with Knots

Why do we care so much about topological systems and knot invariants?
A hint is from the fact that we wrote states above as |0〉 and |1〉. This
notation suggests the idea of qubits18, and indeed this is one very good 18One of my favorite quotes is “Any id-

iot with a two state system thinks they
have a quantum computer.” The objec-
tive here is to show that we are not
just any idiot — that quantum com-
puting this way is actually a good idea!
We will discuss quantum computation
more in chapter 11.

reason to be interested.
It turns out that many topological quantum systems can compute

quanitites efficiently that classical computers cannot. To prove this,
suppose you wanted to calculate the Kauffman invariant of a very com-
plicated knot, say with 100 crossings. As mentioned above, a classical
computer would have to evaluate 2100 diagrams, which is so enormous,
that it could never be done. However, suppose you have a topological
system of Kauffman type in your laboratory. You could actually arrange
to physically measure the Kauffman bracket invariant19. The way we do
this is to start with a system in the vacuum state, arrange to “pull”
particle-hole (particle-antiparticle) pairs out of the vacuum, then drag
the particles around in order to form the desired knot, and bring them
back together to reannihilate. Some of the particles will reannihilate,
and others will refuse to go back to the vacuum (forming bound states
instead). The probability that they all reannihilate is (up to a normaliza-
tion20) given by the absolute square of the Kauffman bracket invariant

20If we pull a single particle-hole pair
from the vacuum and immediately
bring them back together, the proba-
bility that they reannihilate is 1. How-
ever, the spacetime diagram of this is a
single loop, and the Kauffman bracket
invariant is d. The proper normaliza-
tion is that each pair pulled from the
vacuum and then returned to the vac-
uum introduces a 1/

√
d factor in front

of the Kauffman bracket invariant.of the knot (since amplitudes are the Kauffman bracket invariant, the
square of the Kauffman bracket invaraint is the probability). Even esti-
mation of the Kauffman bracket invariant of a large knot is essentially
impossible for a classical computer, for almost all values of A. However,
this is an easy task if you happen to have a topological quantum system
in your lab!21 Thus the topological quantum system has computational

21The details of this are a bit subtle
and are discussed by Aharonov et al.
[2009]; Aharonov and Arad [2011]; Ku-
perberg [2015].

ability beyond that of a classical computer.
It turns out that the ability to calculate Kauffman bracket invariant is

sufficient to be able to do any quantum computation22. One can use

22In fact the computational power of
being able to evaluate the Kauffman
bracket for fixed A is equivalent to
the computational power of a quantum
computer, with the exception of a few
special values of the Kauffman param-
eter A.

this so-called topological quantum computer to run algoritms such
as Shor’s famous factoring (i.e., code breaking) algorithm23. The idea

23See Nielsen and Chuang [2000], for
example, for more detail about quan-
tum computation in general.

of using topological systems for quantum computation is due to Michael
Freedman and Alexei Kitaev24.

24Freedman is another Fields medalist,
for his work on the Poincare conjecture
in 4D. Alexei Kitaev is one of the most
influential scientists alive, a MacArthur
winner, Milnor Prize winner, etc. Both
smart people. Freedman is also a cham-
pion rock climber.

So it turns out that these topological systems can do quantum com-
putation. Why is this a good way to do quantum computation?18. First
we must ask about why quantum computing is hard in the first place.
In the conventional picture of a quantum computer, we imagine a bunch
of two state systems, say spins, which act as our qubits. Now during
our computation, if some noise, say a photon, or a phonon, enters the

19Perhaps the first statements ever made about a quantum computer were made by the Russian mathematician Yuri Manin,
in 1980. He pointed out that doing any calculation about some complicated quantum system with 100 interacting particles
is virtually impossible for a classical computer. Say for 100 spins you would have to find the eigenvalues and eigenvectors of
a 2100 dimensional matrix. But if you had the physical system in your lab, you could just measure its dynamics and answer
certain questions. So in that sense the physical quantum system is able to compute certain quantities, i.e., its own equations
of motion, that a classical computer cannot. In the following year Feynman started thinking along the same lines and asked
the question of whether one quantum system can compute the dynamics of another quantum system — which starts getting
close to the ideas of modern quantum computation.
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system and interacts with a qubit, it can cause an error or decoherence,
which can then ruin your computation. And while it is possible to pro-
tect quantum systems from errors (we will see in section *** below how
you do this) it is very hard.
Now consider what happens when noise hits a topological quantum

computer. In this case, the noise may shake around a particle, as shown
in Fig. 2.13. However, as long as the noise does not change the topology
of the knot, then no error is introduced. Thus the topological quan-
tum computer is inherently protected from errors. (of course sufficiently
strong noise can change the topology of the knot and still cause errors.)

noise

⇒

Fig. 2.13 The effect of noise on a topological quantum computa-
tion. As long as the noise does not change the topology of the knot,
then no error is introduced.

2.5 Some Quick Comments about Fractional
Quantum Hall Effect

There will be chapters later about Fractional Quantum Hall Effect (FQHE).
But it is worth saying a few words about FQHE as a topological system
now.
FQHE occurs in two dimensional electronic systems25 in high mag-

25Electronic systems can be made two
dimensional in several ways. See com-
ments in chapter ??. netic field at low temperature (typically below 1K). There are many

FQHE states which are labeled by their so called filling fraction ν = p/q
with p and q small integers. The filling fraction can be changed in exper-
iment by, for example, varying the applied magnetic field (we will discuss
this later in chapter ??). The FQHE state emerges at low temperature
and is topological26.

26A comment in comparing this
paradigm to the common paradigm of
high energy physics: In high energy
there is generally the idea that there
is some grand unified theory (GUT)
at very high energy scale and it is
extremely symmetric, but then when
the universe cools to low temperature,
symmetry breaks (such as electro-weak
symmetry) and we obtain the physics
of the world around us. The paradigm
is opposite here. The electrons in
magnetic field at high temperature
have no special symmetry. However,
as we cool down to lower temperature,
a huge symmetry emerges. The topo-
logical theory is symmetric under all
diffeomorphisms (smooth distortions)
of space and time.

How do we know that the system is topological? There are not a
whole lot of experiments that are easy to do on quantum Hall systems,
since they are very low temperature and complicated experiments to do.
However, one type of experiment is fairly straightforward — a simple
electrical resistance measurement, as shown in Figs. 2.14 and 2.15. In ,
Fig. 2.14 the so-called longitudinal resistance is measured — where the
current runs roughly parallel to the voltage. In this case the measured
voltage is zero — like a superconductor. This shows that this state of
matter has no dissipation, no friction.
The measurement in the Fig. 2.15 is more interesting. In this case,

the Hall voltage is precisely quantized as V = (h/e2)(1/ν)I where I is
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V

I

2D electron sample

in B-field

V = 0

Dissipationless Flow

Fig. 2.14 Measurement of longitudinal resistance in FQHE experiment.

V

I

2D electron sample

in B-field

V = (h/e2)(1/ν)I

Quantized Resistance

Fig. 2.15 Measurement of Hall resistance in FQHE experiment.

the current, h is Plank’s constant, e the electron charge and ν = p/q is a
ratio of small integers. This quantization of V/I is extremely precise —
to within about a part in 1010. This is like measuring the distance from
London to Los Angeles to within a millimeter. What is most surprising is
that the measured voltage does not depend on details, such as the shape
of the sample, whether there is disorder in the sample, or where you put
the voltage leads or how you attach them as long as the current and
voltage leads are topologically crossed, as they are in the Fig. 2.15, but
not in Fig. 2.14. We should emphasize that this is extremely unusual. If
you were to measure the resistance of a bar of copper, the voltage would
depend entirely on how far apart you put the leads and the shape of the
sample. This extremely unusual independence of all details is a strong
hint that we have something robust and topological happening here.
Finally we can ask about what the particles are that we want to braid

around each other in the FQHE case. These so-called quasiparticles are
like the point-vortices of the FQHE superfluid. As we might expect for a
dissipationless fluid, the vortices are persistent — they will last forever
unless annihilated by antivortices.
So in fact, Kelvin was almost right (See chapter 1). He was thinking

about vortices knotting in the dissipationless aether. Here we are think-
ing about point vortices in the dissipationless FQHE fluid, but we move
the vortices around in time to form space-time knots!
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2.6 Appendix: More Knot Theory Basics

2.6.1 Isotopy and Reidermeister Moves

Two knots (or two pictures of knots) are ambient isotopic if one can
be deformed into each other other without cutting any of the strands.
In order for two pictures of knots to be ambient isotopic they must
be related to each other by a series of moves, known as Reidermeister
moves27, as shown in Fig. 2.16.

27This is a very old result, by Kurt
Reidemeister from 1927. Note that it
may take many many moves in order
to bring a knot into some particular
desired form. For example, if there
are c crossings in a diagram which is
equivalent to the simple unknot (an un-
knotted loop), the strongest theorem
yet proven is that it can be reduced to
the simple unknot with (236c)11 moves
[Lackenby, 2015].

↔ Type I

↔ Type II

↔ Type III

Fig. 2.16 The Three Reidermeis-
ter Moves. Any two knots that can
be deformed into each other without
cutting (they are “ambient isotopic”)
can be connected by a series of Rei-
dermeister moves. Strictly speaking
the Reidermeister moves includes the
moves drawn here as well as the front-
back mirror-reflections of each of these
moves (turn all over-crossings to under-
crossings).

In the context of quantum physics, and as elaborated in section 2.2.1,
we are usually concerned with regular isotopy which treats the strands as
ribbons. Two knots are regular isotopic if they can related to each other
using only type-II and type-III moves. A type-I move inserts a twist
in the ribbon (See Fig. 2.7) and results in a different ribbon diagram,
whereas type-II and III moves do not twist the ribbon28.

28For regular isotopy of link dia-
grams one should allow cancellation
of opposite ribbon twists which is
sometimes known as a type-I′ move.

↔ Type I′

.

2.6.2 Writhe and Linking

Let us put arrows on all strands of our knots and links (so now we have
directed lines). For each crossing we define a sign ǫ as shown in Fig. 2.17

= −1 = +1

Fig. 2.17 Defining a sign ǫ = ±1 for each crossing of oriented knots and links.

The writhe w of an oriented knot (here “knot” means made of a
single strand) is the sum of all of the ǫ values of the crossings

w(knot) =
∑

crossings

ǫ(crossing) (2.2)

Note that type II and III Reidermeister moves preserve the writhe of a
knot, whereas type I moves do not. Thus, the writhe is an invariant of
regular isotopy but not of ambient isotopy.
For a link made of two strands, the linking number lk between the

two strands is given by

lk(link) =
∑

crossings between
two different strands

ǫ(crossing) (2.3)
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Chapter Summary

• Knot invariants, such as the Kauffman bracket invariant, help dis-
tinguish knots from each other.

• The quantum dynamics of certain particles are determined by cer-
tain knot invariants.

• Computation of certain knot invariants is computationally “hard”
on a classical computer, but not hard using particles whose dy-
namics is given by knot invariants.

• Computation by braiding these particles is equivalent to any other
quantum computer.

• Physical systems which have these particles include fractional
quantum Hall effect.

Further Reading

• The book by Kauffman [2001] is a delightful introduction to knot
theory and connections to physics. This was the book that got
me interested in the subject back when I was in grad school and
changed the course of my life.

• I wrote another easy reading introduction, Simon [2010], connect-
ing knots to anyons.

• Some nice introductory books on knots include Adams [1994], and
Sossinsky [2002]. A beautiful set of course notes on knot theory is
given by Roberts [2015].

Exercises

Exercise 2.1 Trefoil Knot and the Kauffman Bracket
Using the Kauffman rules, calculate the Kauffman bracket invariant of the

right and left handed trefoil29 knots shown in Fig. 2.18. Conclude these two

29The word “trefoil” is from the plant
trifolium, or clover, which has com-
pound trifoliate leaves.

knots are topologically inequivalent. While this statement appears obvious
on sight, it was not proved mathematically until 1914 (by Max Dehn). It is
trivial using this technique!

Fig. 2.18 Left and Right Handed Tre-
foil Knots (on the left and right respec-
tively)

Exercise 2.2 Abelian Kauffman Anyons
Anyons described by the Kauffman bracket invariant with certain special

values of the constant A are abelian anyons – meaning that an exchange
introduces only a simple phase as shown in Fig. 2.19.
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(a) For A = ±eiπ/3 (and the complex conjugates of these values), show that
the anyons are bosons or fermions respectively (i.e., eiθ = ±1).

(b) For A = ±eiπ/6 (and the complex conjugates of these values) show the
anyons are semions (i.e., eiθ = ±i). In fact these are precisely the anyons that
arise for the ν = 1/2 fractional quantum Hall effect of bosons (We will discuss
this later in this book (See section ***). This particular phase of quantum
Hall matter has been produced experimentallyClark et al. [2020], but only in
very small puddles so far and it has not been possible to measure braiding
statistics as of yet.

= eiθ

Fig. 2.19 For abelian anyons, ex-
change gives a phase eiθ .

HINT: For (a) and (b) show first the identity shown in Fig. 2.20.

= ±

Fig. 2.20 For bosons or fermions the
sign in this figure is +, for semions the
sign is −.

If you can’t figure it out, try evaluating the Kauffman bracket invariant for
a few knots with these values of A and see how the result arises.

Exercise 2.3 Reidermeister moves and the Kauffman Bracket
Show that the Kauffman bracket invariant is unchanged under application of

Reidermeister move of type II and type III. Thus conclude that the Kauffman
invariant is an invariant of regular isotopy.

Exercise 2.4 Jones polynomial
Let us define the Jones polynomial of an oriented knot as

Jones(knot) = (−A3)w(knot) Kauffman(knot)

where w is the writhe (We must first orient the knot, meaning we arrows on the
strands, in order to define a writhe). Show that this quantity is an invariant of
ambient isotopy – that is, it is invarient under all three Reidermeister moves.

Exercise 2.5 HOMFLY Polynomial
The HOMFLY30 polynomial is a generalization of the Jones polynomial30HOMFLY is an acronym of the

names of the inventors of this poly-
nomial. Sometimes credit is even
more distributed and it is called HOM-
FLYPT.

which has two variables A and z rather than just one variable. To define
the HOMFLY polynomial we must first orient the strings in our knot or link
(meaning we put arrows on the lines). The HOMFLY polynomial (Freyd et al.
[1985]) of an oriented link is then defined in terms of two variables A and z
by the two rules

= (A+A−1)
z=

A +A−1 = z

(a) Show that the HOMFLY polynomial is invariant under type I Reider-
meister moves3131In order for the HOMFLY invariant

to represent quantum particles, a phase
for this type I move must be inserted by
hand.

(b) Calculate the HOMFLY polynomial of the right and left handed trefoil
knots (shown in Fig. 2.18).



Part I

Anyons and Topological Quan-
tum Field Theories





Particle Quantum Statistics 3
Easy Material

In chapter 2 we discussed braiding particles around each other, or ex-
changing their positions. This is often what we call particle statistics
(or quantum statistics, or exchange statistics). What we mean by this
is “what happens to the many particle wavefunction when particles are
exchanged in a certain way.”
We are familiar with bosons and fermions1,2. If we exchange two 1Bose cooked up the current picture of

Bose statistics in 1924 in the context of
photons and communicated it to Ein-
stein who helped him get it published.
Einstein realized the same ideas could
be applied to non-photon particles as
well.
2Based on ideas by Pauli, Fermi-Dirac
statistics were actually invented by Jor-
dan in 1925. Jordan submitted a paper
to a journal, where Max Born was the
referee. Born stuck the manuscript in
his suitcase and forgot about it for over
a year. During that time both Fermi
and Dirac published their results. Jor-
dan could have won a Nobel Prize (po-
tentially with Born) for his contribu-
tions to quantum physics, but he be-
came a serious Nazi and no one really
liked him much after that. Born felt
terribly guilty about his mistake later
in life, stating “I hate Jordan’s poli-
tics, but I can never undo what I did
to him.”

bosons the wavefunction is unchanged, if we exchange two fermions the
wavefunction accumulates a minus sign. Various arguments have been
given as to why these are the only possibilities. The argument usually
given in introductory books is as follows3:

3The error in this argument is that
one has to be much more careful about
defining what one means about an “ex-
change”.

If you exchange a pair of particles then exchange them again, you
get back where you started. So the square of the exchange operator
should be the identity, or one. There are two square roots of one:
+1 and −1, so these are the only two possibilities for the exchange
operator.

In the modern era this argument is considered to be incorrect (or
at least not really sufficient). To really understand the possibilities in
exchange statistics, it is very useful to think about quantum physics
from the Feynman path integral point of view.4

4If you are familiar with path integrals
you can certainly skip down to section
3.2. If you are not familiar with path
integrals, please do not expect this to
be a thorough introduction! What is
given here is a minimal introduction to
give us what we need to know for our
purposes and nothing more! See the
Further Reading for this chapter for a
better introduction.

3.1 Single Particle Path Integral

Consider a space-time trajectory of a single non-relativistic particle. We
say that we have x moving in RD where D is the dimension of space, so
we can write x(t) where t is time.
Given that we start at position xi at the initial time ti we can define a

so-called propagator which gives the amplitude of ending up at position
xf at the final time tf . This can be written as

〈xf |Û(tf , ti)|xi〉

where Û is the (unitary) time evolution operator.
The propagator can be used to propagate forward in time some arbi-

trary wavefunction ψ(x) = 〈x|ψ〉 from ti to tf as follows

〈xf |ψ(tf )〉 =
∫
dxi 〈xf |Û(tf , ti)|xi〉 〈xi|ψ(ti)〉

If we are trying to figure out the propagator from some microscopic
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calculation, there are two very fundamental properties it must obey.
First, it must be unitary — meaning no amplitude is lost along the
way (normalized wavefunctions stay normalized). Secondly it must obey
composition: propagating from ti to tm and then from tm to tf must be
the same as propagating from ti to tf . We can express the composition
law as

〈xf |Û(tf , ti)|xi〉 =
∫
dxm 〈xf |Û(tf , tm)|xm〉 〈xm|Û(tm, ti)|xi〉

The integration over xm allows the particle to be at any position at
the intermediate time (and it must be at some position). Another way
of seeing this statement is to realize that the integral over xm is just
insertion of a complete set of states at some intermediate time

1 =

∫
dxm|xm〉〈xm|.

Feynman’s genius was to realize that you can subdivide time into
infinitesimally small pieces, and you end up doing lots of integrals over
all possible intermediate positions. In order to get the final result, you
must sum over all values of all possible intermediate positions, or all
possible functions x(t). Feynman’s final result is that the propagator
can be written as

〈xf |Û(tf , ti)|xi〉 = N
∑

paths x(t) from
(xi, ti) to (xf , tf )

eiS[x(t)]/~ (3.1)

where N is some normalization constant. Here S[x(t)] is the (classical!)
action of the path

S =

∫ tf

ti

dt L[x(t), ẋ(t), t]

with L the Lagrangian.
The sum over paths in Eq. 3.1 is often well defined as a limit of dividing

the path into discrete time steps and integrating over x at each time.
We often rewrite this sum over paths figuratively as a so-called path
integral

〈xf |Û(tf , ti)|xi〉 = N
∫ (xf ,tf )

(xi,ti)

Dx(t) eiS[x(t)]/~ (3.2)

Analogous to when we evaluate regular integrals of things that look
like

∫
dx eiS[x]/~, we can approximate the value of this integral in the

small ~, or classical, limit by saddle point approximation. We do this
by looking for a minimum of S with respect to its argument — this
is where the exponent oscillates least, and it becomes the term which
dominates the result of the integral. Similarly, with the path integral,
the piece that dominates in the small ~ limit is the piece where S[x(t)]
is extremized — the function x(t) which extremizes the action. This is
just the classical principle of least action!
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3.2 Two Identical Particles

We would now like to generalize the idea of a path integral to systems
with multiple identical particles, starting with the case of two particles.
If the particles are identical there is no meaning to saying that particle
one is at position x1 and particle two is at position x2. This would be the
same as saying that they are the other way around. Instead, we can only
say that there are particles at both positions x1 and x2. To avoid the
appearance of two different states expressed as |x1,x2〉 versus |x2,x1〉
(which are actually the same physical state!5), it is then useful to simply

5Often books define |x1,x2〉 =
−|x2,x1〉 for fermions. The two kets
describe the same state in the Hilbert
space only with a different phase
prefactor. We should contrast this to
the case of distinguishable particles
where |x1,x2〉 and |x2,x1〉 have no
overlap for x1 6= x2

agree on some convention for which coordinate we will always write first
— for example, maybe we always write the leftmost particle first6. For

6This ordering scheme works in one
dimension. In two dimensions we
would perhaps say, the particle with the
smaller x coordinate is written first, but
in case of two particles with the same
value of x, the particle with smaller y
coordinate is written first.

simplicity, we can assume that x1 6= x2, i.e., the particles have hard cores
and cannot overlap7. For these indistinguishable particles, the Hilbert

7It is sometimes even more convenient
to declare |x1 − x2| > ǫ.

space is then cut in half compared to the case of two distinguishable
particles where |x1,x2〉 and |x2,x1〉 mean physically different things.
We call the space of all states the configuration space C. To construct

a path integral, we want to think about all possible paths through this
configuration space. The key realization is that the space of all paths
through the configuration space C divides up into topologically inequiv-
alent pieces. I.e., certain paths cannot be deformed into other paths by
a series of small deformations.
What do these topologically disconnected pieces of our space of paths

look like? For example, we might consider the two paths as shown in
Fig. 3.1. Here we mean that time runs vertically. It is not possible
to continuously deform the path on the left into the path on the right
assuming the end points are fixed.

No Exchange Exchange

TYPE +1 TYPE −1

versus

Fig. 3.1 Two possible sets of paths
(paths in configuration space) from the
same two starting positions to the same
two ending positions (we are implying
that time runs vertically). We call the
non-exchange path TYPE +1, and the
exchange path TYPE −1. Here we
mean that time runs vertically. The
two sets of paths cannot be continu-
ously deformed into each other assum-
ing the end points are fixed. Note
that we may be able to further refine
our classification of paths — for exam-
ple, we may distinguish over and under-
crossings, but for now we will only be
concerned with exchanges (TYPE −1)
and non-exchanges (TYPE +1)

We will call the non-exchange path TYPE +1 (left in Fig. 3.1), and the
exchange path TYPE−1 (right in Fig. 3.1). The two sets of paths cannot
be continuously deformed into each other assuming the end points are
fixed. Note that we may be able to further refine our classification of
paths — for example, we may distinguish over- and under-crossings,
but for now we will only be concerned with exchanges (TYPE −1) and
non-exchanges (TYPE +1).
Paths can be composed with each other. In other words, we can follow

one path first, then follow the second. We can write a multiplication
table for such composition of paths (the path types form a group, see
Section 33.2)

TYPE +1 Followed by TYPE +1 = TYPE +1
TYPE +1 Followed by TYPE −1 = TYPE −1
TYPE −1 Followed by TYPE +1 = TYPE −1
TYPE −1 Followed by TYPE −1 = TYPE +1

(3.3)

So for example, an exchange path (which switches the two particles)
followed by another exchange path (which switches again) results in a
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net path that does not switch the two particles.
Now let us try to construct a path integral, or sum over all possible

paths. It is useful to think about breaking up the sum over paths into
separate sums over the two different classes of paths8.8If |x1ix2i〉 6= |x1fx2f 〉, i.e., if the ini-

tial and final endpoints of the path are
not the same, then we need a more gen-
eral definition of what we call TYPE
+1 versus TYPE −1. One simple pos-
sible definition is to count the num-
ber of times the space-time paths cross
given a particular fixed viewing angle.
For example, we can use the order-
ing rule of note 6 above and as time
evolves, we can count the number of
times the ordering changes (which cor-
responds to a crossing of the world lines
as in Fig. 3.1). An even number of such
crossings would correspond to a TYPE
+1 path, and an odd number of cross-
ings would correspond to a TYPE −1
path. Other consistent definitions are
also possible as long as the multiplica-
tion rule of Eq. 3.3 is maintained.

〈x1fx2f |Û(tf , ti)|x1ix2i〉 = N
∑

paths
i→f

eiS[path]/~ =

N




∑

TYPE +1 paths
i→f

eiS[path]/~ +
∑

TYPE −1 paths
i→f

eiS[path]/~




This second line is simply a rewriting of the first having broken the
sum into the two different classes of paths.
It turns out however, that it is completely consistent to try something

different. Let us instead write8

〈x1fx2f |Û(tf , ti)|x1ix2i〉 = (3.4)

N




∑

TYPE +1 paths
i→f

eiS[path]/~ −
∑

TYPE −1 paths
i→f

eiS[path]/~




Notice the change of sign for the TYPE −1 paths.
The reason this change is allowed is because it obeys the composition

law. To see this, let us check to see if the composition law is still obeyed.
Again, we break the time propagation at some intermediate time99The sum over intermediate states nec-

essarily requires us to include the case
discussed in note 8 above. 〈x1fx2f |Û(tf , ti)|x1ix2i〉 =

∫
dx1mdx2m 〈x1fx2f |Û(tf , tm)|x1mx2m〉 〈x1mx2m|Û(tm, ti)|x1ix2i〉

∼
∫
dx1mdx2m




∑

TYPE +1
m→f

−
∑

TYPE −1
m→f







∑

TYPE +1
i→m

−
∑

TYPE −1
i→m


 eiS[path]/~

where in the last line we have substituted in Eq. 3.4 for each of the two
propagators on the right, and we have used a bit of shorthand in writing
the result.
Now, when we compose together subpaths from i→ m with those from

m → f to get the overall path, the sub-path types multiply according
to our above multiplication table Eq. 3.3. For the full path, there are
two ways to obtain a TYPE +1 path: (1) both sub-paths are TYPE +1
or (2) both sub-paths are TYPE −1. In either case, note that the net
prefactor of the overall TYPE +1 path is +1. (In the case where both
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subpaths are of TYPE −1, the two prefactors of −1 cancel each other).
Similarly, we can consider full paths with overall TYPE −1. In this case,
exactly one of the two sub-paths must be of TYPE −1, in which case, the
overall sign ends up being −1. Thus, for the full path, we obtain exactly
the intended form written in Eq. 3.4. I.e., under composition of paths,
we preserve the rule that TYPE +1 paths get a +1 sign and TYPE −1
paths get a −1 sign. Thus this is consistent for quantum mechanics, and
indeed, this is exactly what happens in the case of fermions.

3.3 Many Identical Particles

Generalizing this idea, to figure out what is consistent in quantum me-
chanics, we must do two things:

(a) Characterize the space of paths through configuration space
(b) Insist on consistency under composition.

Let us first discuss our configuration space. If we had N distinguish-
able particles in D dimensions we would have a configuration space
(RD)N representing the coordinates {x1,x2,x3, . . . ,xN}. For simplic-
ity we usually assume all of these coordinates are different (We might
imagine that the particles are hard spheres of some very small diameter
ǫ). Thus we write the configuration space as [(RD)N −∆] where ∆ rep-
resents the so-called coincidences where two particles are at the same
position10. 10Mathematicians often write

(RD)N \∆ to represent removing
∆ from the set (RD)N .

In the case of identical particles we want to disregard the order in
which we write the coordinates. In other words, we have an equivalence
relationship ∼ between the N ! possible orderings of the coordinates

{x1,x2,x3, . . . ,xN} ∼ {x2,x3,x7, . . . ,x9} ∼ {x3,xN ,x2, . . . ,x1} ∼ . . .

Thus for indistinguishable particles the configuration space is

C = [(RD)N −∆] / ∼

where “/ ∼” means that we are “modding out” by the equivalence rela-
tionship ∼. This is just a fancy way to say that the order in which we list
the coordinates {x1,x2,x3, . . . ,xN} does not matter (or as described in
section 3.2, we choose some convention for the order, like always writ-
ing the left-most first). In the case of 2 identical particles above, this
reduced the Hilbert space by a factor of 2. With N identical particles
this will reduce the Hilbert space by a factor of N !. This is the same
indistinguishability factor which is familiar from the Gibbs paradox of
statistical mechanics.
We would now like to consider all possible paths through this con-

figuration space C. In other words we want to consider how these N
different points move in time. We can think of this as a set of coor-
dinates moving through time {x1(t), . . .xN (t)} but we must be careful
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that the particles are indistinguishable, so the order in which we write
the coordinates doesn’t matter. We can think of this as N directed
curves moving in ND + 1 dimensional space11. Since we want to add

11The curves are directed because we
do not allow them to double-back
in time as shown in Fig. 3.2, that
would represent particle-hole creation
or annhilation, which we do not yet
consider.

up all of these possible paths in a path integral it is useful to try to
understand the structure of this space of paths better.

ti
m
e

Fig. 3.2 A double-back in time is not
allowed in our considerations here (and
not allowed in the braid group) as it
corresponds to creation and annihila-
tion of particles at the turning around
points.

Again, the key realization is that the space of all paths through the
configuration space C divides up into topologically inequivalent pieces.
I.e., certain paths cannot be deformed into other paths by a series of
small deformations assuming the endpoints are fixed. The group of
paths through C is familiar to mathematicians and is known as the first
homotopy group Π1(C) or fundamental group12 (See section 33.3). The

12In fact what we really want is the
fundamental groupoid which allows for
the fact that the initial and final posi-
tions of particles may not be the same.
However, for illustration, the funda-
mental group will be sufficient.

reason this is a group is that it comes with a natural operation, or
multiplication of elements — which is the composition of paths: follow
one path, then follow another path.

3.3.1 Paths in 2+1 D, the Braid Group

A path through the configuration space of particles in 2 dimensions is
known as a braid. An example of a braid is shown in Fig.3.3.

ti
m
e

Fig. 3.3 A path through configuration
space for 3 Particles in 2 dimensions
(i.e, world lines in 2+1 D) is a braid
with three strands.

A few notes about braids:

(1) Fixing the endpoints, the braids can be deformed continuously,
and so long as we do not cut one string through another, it still
represents the same topological class, or the same element of the
braid group.

(2) We cannot allow the strings to double-back in time as in Fig. 3.2.
This would be pair creation or annihilation, which we will consider
later, but not now.

The set of braids have mathematical group structure (See section
33.2): multiplication of two braids is defined by stacking the two braids
on top of each other – first do one then do another. It is easy to see that
braids can be decomposed into elementary pieces which involve either
clockwise or counterclockwise exchange of one strand with its neighbor.
These elementary pieces involving single exchanges are known as gener-
ators.
The braid group on N strands is typically notated as BN . The gener-

ators of the braid group on 4 strands are shown in Fig. 3.4. Any braid
can be written as a product of the braid generators and their inverses13.

13The identity element 1 of the braid
group is everything that is topologically
equivalent to the non-braid, i.e., parti-
cles that do not change their position
in space at all. It is easy to see that
σiσ

−1
i = 1.

The “multiplication” of the generators is achieved simply by stacking
the generators on top of each other. An expression representing a braid,
such as σ1σ2σ

−1
3 σ1 is known as a “braid word.” Typically we read the

braid word from right to left (do the operation listed right-most first),
although sometimes people use the opposite convention! The important
thing is to fix a convention and stick with it!
Note that many different braid words can represent the same braid.

An example of this is shown for B4 in Fig. 3.5. Although a braid can
be written in many different ways14, it is possible to define invariants of
the braid which do not change under deformation of the braid — so long
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σ1 = σ2 = σ3 =

σ−1
1 = σ−1

2 = σ−1
3 =

Fig. 3.4 The three generating elements σ1, σ2, σ3 of the braid group on 4 strands,

B4, and their inverses σ−1
1 , σ−1

2 , σ−1
3 . Any braid on four strands (any element of

B4) can be written as a product of the braid generators and their inverses by simply
stacking these generators together (See Fig. 3.5 for examples).

σ−1
1 σ−1

2 σ1 =

third second first

= σ2 σ
−1
1 σ−1

2=

.

Fig. 3.5 Two braid words in B4 that represent the same braid. The figure on the
left can be continuously deformed to the one on the right, keeping endpoints fixed.
The braidwords are read from right to left indicating stacking the generators from
bottom to top.15

as the braid is topologically unchanged. One very useful braid invariant
is given by the so-called winding number

W = Winding Number

= (# of overcrossings) − (# of undercrossings)

where an overcrossing is a σ and an undercrossing is a σ−1. As can be
checked in Fig. 3.5, the winding number is independent of the particular
way we represent the braid. As long as we do not cut one strand through
another or move the endpoints (or double-back strands) the winding
number, a braid invariant, remains the same.

14

14All braid word equivalences can be
derived from the identity

σnσn+1σn = σn+1σnσn+1

For example, try deriving Fig. 3.5 from
this. See also exercise 3.1.

15The observant reader will see the
similarity here to Reidermeister moves
of type-III discussed in section 2.6.1.
Similarly σiσ

−1
i = 1 is a type-II move.

3.3.2 Paths in 3+1 D, the Permutation Group

In one dimension:

Two objects cannot cross

In two dimensions:

Two objects can go around each other

Fig. 3.6 Top: In one dimension,
two points cannot cross through each
other without hitting each other. Bot-

tom: However, if we allow the points
to move in two dimensions they can get
around each other without touching.
This is supposed to show you that one-
dimensional world-lines cannot form
knots in four-dimensional space.

We now turn to consider physics in 3+1 dimensions. A key fact is that it
is not possible to knot a one-dimensional world-line that lives in a four-
dimensional space. If this is not obvious consider the following lower
dimensional analogue,16 shown in Fig. 3.6. In one dimension, two points
cannot cross through each other without hitting each other. But if we
allow the points to move in 2D they can move around each other without
touching each other. Analogously we can consider strings forming knots
or braids in 3D space. When we try to push these strings through each

16It would be very convenient to be able to draw a diagram in four dimensions!
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other, they bump into each other and get entangled. However, if we allow
the strings to move into the fourth dimension, we can move one string
a bit off into the fourth dimension so that it can move past the other
string, and we discover that the strings can get by each other without
ever touching each other! Hence there are no knots of one dimensional
objects embedded in four dimensions.
Given that in 3+1 D world-lines cannot form knots, the only thing

that is important in determining the topological classes of paths is where
the strings start and where they end. In other words, we can draw things
that look a bit like braid-diagrams but now there is no meaning to an over
or under-crossing. If the world line lives in 3+1 dimensions, everything
can be unentangled without cutting any of the world lines until the
diagram looks like Fig. 3.7: indicating only where lines start and end.
This is precisely describing the permutation group, or symmetric group
SN (see section 33.2.1). Note that in the symmetric group an exchange

1 2 3 4

1 2 3 4

Fig. 3.7 Paths in 3+1 D are elements
of the permutation group (or symmet-
ric group) SN (See section 33.2.1).
Shown here is an element of S4.

squared does give the identity. However, in the braid group this is not
so — the braid σ2

i is not the identity since it creates a nontrivial braid!17
17One way to think about the relation-
ship between the symmetric group and
the braid group is to say that the sym-
metric group SN is a “truncation” of
the braid group BN , meaning that it
obeys the same group properties, ex-
cept that in SN , the element σ2i has
been identified with the identity.

3.3.3 Building a Path Integral

We now return to the issue of building a path integral. We will follow
the intuition we gained in the two particle case, but now we will include
the information we have discovered about the group of paths through
configuration space.
Using the notation {x} to denote all of the N particle coordinates, we

construct the path integral as

〈{x}f |Û(tf , ti)|{x}i〉 = N
∑

g ∈ G

ρ(g)
∑

paths ∈ g
i→f

eiS[path]/~ (3.5)

Here G is the group of paths (the fundamental group — or the set of
classes of topologically different paths). This is the symmetric group
SN for 3+1 dimensions and is the braid group BN for 2+1 dimensions.
Here we have split the sum over paths into the different classes — the
outer sum being a sum over the classes g and the inner sum being the
sum over all paths of type g, i.e., a set of paths that can be continuously
deformed into each other. We have also introduced18 a factor of ρ(g) out

18In the nonabelian case discussed in
section 3.5 below the ket |{x}〉 is given
an additional index to become |n, {x}〉
with n = 1 . . .M . This then implies
a basis choice for the M -dimensional
space, and this basis choice for one set
of positions {x} can be chosen indepen-
dently of the basis choice for a differ-
ent set of positions. When the initial
and final positions are not the same we
can make two independent basis choices
and changing these choices simply pre-
or post- multiplies the representation ρ
by the appropriate basis changing uni-
taries. This caution is related to notes
8 and 12 above.

front where ρ is a unitary representation of the group G. (See section
33.2.4 on group theory).
In the case where the initial set of position |{x}i〉 and the final set of

position |{x}f〉 are not the same (similar to the case mentioned in note
8 above) the definiton 3.5 can still be used, although strictly speaking
these are not precisely what we would call braids or permuations (for
which initial and final positions are supposed to match). Nonetheless
we can associate an element g of the braid or permutation group to
each space-time path by viewing the motion from some fixed angle and
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smoothly deforming the paths such that start and endpoints are at some
reference positions without introducing any new crossings to the paths19. 19A crossing can be defined as a re-

ordering of coordinates as in note 6
above.

To show that Eq. 3.5 is allowed by the laws of quantum mechanics,
we need only check that it obeys the composition law – we should be
able to construct all paths from i to f in terms of all paths from i to m
and all paths from m to f .

〈{x}f |Û(tf , ti)|{x}i〉 =

=

∫
d{x}m 〈{x}f |Û(tf , tm)|{x}m〉 〈{x}m|Û(tm, ti)|{x}i〉

∼
∫
d{x}m



∑

g1 ∈ G

ρ(g1)
∑

paths ∈ g1
m→f






∑

g2 ∈ G

ρ(g2)
∑

paths ∈ g2
i→m


 eiS[path]/~

So we have constructed all possible paths from i to f and split them
into class g2 in the region i to m and then class g1 in the region m
to f . When we compose these paths we will get a path of type g1g2.
The prefactors of the paths ρ(g1) and ρ(g2) then multiply and we get
ρ(g1)ρ(g2) = ρ(g1g2) since ρ is a representation (the preservation of
multiplication is the definition of being a representation! See section
33.2.4). So the prefactor of a given path from i to f is correctly given
by ρ(g) where g is the topological class of the path. In other words, the
form shown in Eq. 3.5 is properly preserved under composition, which
is what is required in quantum mechanics!

3.4 Abelian Examples

Let us consider the case where the representation ρ of our group G of
paths through configuration space is one dimensional — in other words
it is a mapping from g to a complex phase.20 20We call these cases abelian since the

group G is commutative.This case seems to be most applicable in the quantum mechanics
we know, because this representation is acting on the wavefunction of
our system — and we are quite familiar with the idea of wavefunctions
accumulating a complex phase.

3.4.1 3+1 Dimensions

In 3+1 D, the group G of paths through configuration space is the sym-
metric group SN . It turns out that there are only two possible21 one- 21See exercise 3.2. This is a fairly short

proof!dimensional representations of SN :

• Trivial rep: In this case ρ(g) = 1 for all g. This corresponds to
bosons, The path integral is just a simple sum over all possible
paths with no factors inserted.

• Alternating (or sign) rep: In this case ρ(g) = +1 or −1 depend-
ing on whether g represents an even or odd number of exchanges.
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In this case the sum over all paths gets a positive sign for an even
number of exchanges and a negative sign for an odd number. This
is obviously fermions and is the generalization of the two particle
example we considered above in section 3.2 where the exchange
was assigned a −1.

3.4.2 2+1 Dimensions

In 2+1 D, the group G of paths through configuration space is the braid
groupBN . We can describe the possible one-dimensional representations
by a single parameter θ. We write the representation

ρ(g) = eiθW (g)

where W is the winding number of the braid g. In other words, a clock-
wise exchange accumulates a phase of eiθ whereas a counterclockwise
exchange accumulates a phase of e−iθ.

• For θ = 0 there is no phase, and we simply recover bosons.

• For θ = π we accumulate a phase of −1 for each exchange no
matter the direction of the exchange (since eiπ = e−iπ). This is
fermions.

• Any other value of θ is also allowed. This is known as Anyons, or
fractional statistics. They are also known as abelian anyons
in contrast with the nonabelian case which we will discuss in a
moment.

The fact that this fractional statistics is consistent in quantum me-
chanics was first point out by Leinaas and Myrheim [1977]22, and pop-

22There is no reason why this should
not have been discovered in the 1930s,
but no one bothered to think about it.
It is a lucky coincidence that an exper-
imental system of anyons was discov-
ered so soon after the theoretical pro-
posal (fractional quantum Hall effect,
discovered by Tsui, Stormer, and Gos-
sard [1982], see chapter ***), since the
original theoretical work was entirely
abstract, and they were not thinking
about any particular experiment.

ularized by Wilczek [1982]23. Soon thereafter, Halperin [1984] and then

23Among other things, Wilczek coined
the term anyon. (He also won a Nobel
Prize for asymptotic freedom.)

Arovas, Schrieffer, and Wilczek [1984] showed theoretically that anyons
really occur in fractional quantum Hall systems. We will examine these
physical systems in detail starting in chapter ??.

3.5 Nonabelian Case

Can we do something more interesting and exotic by using a higher di-
mensional representation of the group G = BN of paths in configuration
space? Generally in quantum mechanics, higher dimensional represen-
tations correspond to degeneracies, and indeed this is what is necessary.
Suppose we have a system with N particles at a set of positions {x}.

Even once we fix the positions (as well as the values of any local quan-
tum numbers, like any “color” or “flavor” or ”spin” degree of freedom
associated with the particle), suppose there still remains an M -fold de-
generacy of the state of the system. We might describe the M states as
|n; {x}〉 for n = 1 . . .M . An arbitrary wavefunction of the system can
then be expressed as24

24If we want |ψ〉 normalized then there
is a normalization condition on the
An coefficients. For example, if the
|n; {x}〉’s are orthonormal then we need
∑

n |An|2 = 1 in order that |ψ〉 is nor-
malized.
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|ψ{x}〉 =
M∑

n=1

An|n; {x}〉 (3.6)

with the An’s being some complex coefficients. Given the N positions
{x}, a general wavefunction should be thought of as a vector in M
dimensional complex space. Now that we have a vector, we can use an
M -dimensional representation of the braid group in our path integral!
We thus identify that ρ(g) in Eq. 3.5 is an M by M unitary matrix

ρ(g) → [U(g)]n,n′

which is a representation of G and must also be unitary so as to assure
that probability is conserved. The propagator in Eq. 3.5 should now be
thought of as a propagator between the initial ket |n′; {x}i〉 and the final
bra 〈n; {x}f |. The unitary matrix U(g) will act on the coefficients An
(which is a vector) in Eq. 3.6.

A
(i)
n

A
(f)
n

Fig. 3.8 An initial state is described

by a vector A
(i)
n multiplying the ba-

sis states |n; {x}i〉 as in Eq. 3.6. The
particles are braided around each other
in a braid g and brought back to the
same positions. The final state is again
described in terms of the same basis
vectors but now with coefficients A

(f)
n

which are obtained from the initial vec-
tor by application of the unitary matrix
U(g) as shown in Eq. 3.7. Here U(g) is
a representation of the braid group.

Let us now consider the process shown in Fig. 3.8. Here an initial
wavefunction is represented as shown in Eq. 3.6 as a vector A

(i)
n multi-

plying basis states |n; {x}〉 as in Eq. 3.6. We braid the particles around
each other in some braid g and bring them back to the same positions.
After braiding the wavefunction should still be composed of the same
basis states |n; {x}〉 since the particles are at the same positions and

thus can be written in the form of Eq. 3.6 with a vector A
(f)
n . The final

vector is obtained from the initial vector simply by multiplying by the
unitary operator which is the representation of our braid group element
g

A(f)
n = [U(g)]n,n′A

(i)
n′ (3.7)

A particle that obeys this type of braiding statistics is known as a non-
abelian anyon, or nonabelion.25 The word “nonabelian” means non- 25The idea of nonabelian anyons was

explored first in the 1980s and early 90s
by several authors in different contexts.
Bais [1980] in the context of gauge the-
ories; Goldin et al. [1985], Fröhlich and
Gabbiani [1990] and Fredenhagen et al.
[1989] in very abstract sense; Witten
[1989]; Chen et al. [1989] in the lan-
guage of topological quantum field the-
ories; and Moore and Read [1991] in the
context of quantum Hall effect.

commutative, and the term is used since generically matrices (in this
case the U matrices) don’t commute.
In general the Hilbert space dimension M will be exponentially large

in the number of particles N . We define a quantity d, known as the
quantum dimension such that

M ∼ d
N (3.8)

where the ∼ means that it scales this way in the limit of large N . We
will see a lot more of this quantity d later. It is not coincidence that
we used the symbol d previously in the context of Kauffman anyons!
(See Eq. 2.1) We will see in section 17.1 that (up to a possible sign) this
quantum dimension d is actually the value d of the unknot26.

26Because of the possible sign, we dis-
tinguish the two quantities by using a
different typeface.

Some Quick Comments on Quantum Computing:

Quantum Computing is nothing more than the controlled application of
unitary operations to a Hilbert space27. Unitary operations is exactly

27And initialization and measurement.

what we can do by braiding nonabelions around each other! I.e., we are
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multiplying a vector by a unitary matrix. Thus we see how braiding of
particles, as discussed in chapter 2 can implement quantum computa-
tion.28 In chapter 11 we will give some more explicit descriptions of how28The observant reader will notice that

for quantum computation we are no
longer summing over all possible braids,
but we are specifying a particular braid
that the particles should take in order
to implement a particular unitary op-
eration. To do this we must control
the paths of the particles, by say, hold-
ing them in traps that we move. In
principle all paths are still included in
the path integral, but only the ones we
specify contribute significantly.

one does quantum computation by braiding anyons.

3.5.1 Parastatistics in 3+1 Dimensions

Is it possible to have exotic nonabelian statistics in 3+1 dimensions?
Indeed, there do exist higher dimensional representations of the sym-
metric group, so one can think about particles that obey more com-
plicated statistics even in 3+1 dimensions — which is often known as
parastatistics. However, it turns out that, subject to some “additional
constraints”, it is essentially not possible to get anything fundamentally
new — all we get is bosons and fermions and possibly some internal
additional degrees of freedom. The proof of this statement is due to
Doplicher et al. [1971, 1974] and took some 200 pages when it was first
proven29.29A more concise derivation of the key

portion of this result was given using
modern category theory techniques by
Müger [2007]. While this shorter proof
is only 40 pages long, in order to under-
stand the 40 pages you need to read a
400 page book on category theory first!

However, we should realize that in making statements like this, the fine
print is important. As I mentioned in the previous paragraph we want
to add some “additional constraints” and these are what really limit us
to just bosons and fermions. What are these additional constraints?

(1) We want to be able to pair create and annihilate. This means we
are not just considering the braid group, but rather a more com-
plicated structure that allows not just braiding particles around
each other, but also creating and annhiliating and even merging
particles by bringing them together. This structure is given by cat-
egory theory, some parts of which we will encounter (in simplified
language) starting in chapter 8.

(2) We also want some degree of locality. If we do an experiment on
Earth, while off on Jupiter someone creates a particle-antiparticle
pair, we would not want the particles on Jupiter to effect the result
of our experiment on earth at all.

These two restrictions are crucial to reducing the 3+1 D case to only
bosons and fermions. We will not go through the full details of how
this happens. However, once we see the full structure of anyons in 2+1
dimensions, it ends up being fairly clear why 3+1 dimensions will be so
restrictive. We return to this issue in section 20.3 where we will give
further discussion.
We should note that despite this important result, 3+1 D is certainly

not boring — but in order to get “interesting” examples, we have to
relax some of our constraints. For example, if we relax the condition
that “particles” are pointlike, but consider string-like objects instead,
then we can have exotic statistics that describe what happens when
one loop of string moves through another (or when a point-like particle
moves through a loop of string). We would then need to consider the
topology of the world-sheets describing loops moving through time.
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Chapter Summary

• The path integral formulation of quantum mechanics requires us
to add up all possible paths in space time.

• We can add all of these paths in any way that preserves the com-
position law and the different possibilities allow for different types
of particle statistics.

• The topologically different paths of N particles in space-time form
a group structure (the fundamental group of the configuration
space) which is the permutation group SN in 3+1 dimensions, but
is the braid group BN in 2+1 dimensions.

• Particle braiding statistics must be a representation of this group.

• In 3+1 dimensions we can only have bosons and fermions, but in
2+1 dimensions we can have nontrivial braiding statistics which
may be abelian (or “fractional”) or nonabelian.

• Quantum computation can be performed by braiding with certain
nonabelian representations.

Further Reading

• For more discussion of particle statistics, a nice albeit somewhat
dated book is Wilczek [1990].

• A good review discussing many aspects of exotic statistics is Nayak
et al. [2008].

For a basic primer on path integrals see

• R. MacKenzie, Path Integral Methods and Applications,
https://arxiv.org/abs/quant-ph/0004090

• The classic reference on the subject is Feynman and Hibbs [1965].

Exercises

Exercise 3.1 About the Braid Group
(a) Convince yourself geometrically that the defining relations of the braid

group on M particles BM are:

σi σi+1 σi = σi+1 σi σi+1 1 ≤ i ≤M − 2 (3.9)

σi σj = σj σi for |i− j| > 1, 1 ≤ i, j ≤M − 1 (3.10)

(b) Instead of thinking about particles on a plane, let us think about par-
ticles on the surface of a sphere. In this case, the braid group of M strands
on the sphere is written as BM (S2). To think about braids on a sphere, it



36 Exercises

is useful to think of time as being the radial direction of the sphere, so that
braids are drawn as in Fig. 3.9.

The braid generators on the sphere still obey Eqns. 3.9 and 3.10, but they
also obey one additional identity

σ1σ2 . . . σM−2σM−1σM−1σM−2 . . . σ2σ1 = I (3.11)

where I is the identity (or trivial) braid. What does this additional identity
mean geometrically?

Fig. 3.9 An element of the braid
group B3(S2). The braid shown here
is σ1σ

−1
2

[In fact, for understanding the properties of anyons on a sphere, Eq. 3.11
is not quite enough. We will try to figure out below why this is so by using
Ising Anyons as an example.]

Exercise 3.2 About the Symmetric Group
Show that Eqs. 3.9 and 3.10 also hold for the generators of the symmetric

group SM on M particles, where σi exchanges particle i and i + 1. In the
symmetric group we have the additional condition that σ2

i = 1. Prove the
statement used in section 3.4.1 that there are only two one-dimensional rep-
resentations of the symmetric group. Hint: The proof is just a few lines. Use
ρ(σi)ρ(σj) = ρ(σiσj) where ρ is a representation.

Exercise 3.3 Ising Anyons and Majorana Fermions
The most commonly discussed type of nonabelian anyon is the Ising anyon

(we will discuss this in more depth later). Ising anyons occurs in the Moore-
Read quantum Hall state (ν = 5/2), as well as in any chiral p-wave supercon-
ductor and in recently experimentally relevant so called “Majorana” systems.

The nonabelian statistics of these anyons may be described in terms of
Majorana fermions by attaching a Majorana operator to each anyon. The
Hamiltonian for these Majoranas is zero – they are completely noninteracting.

In case you haven’t seen them before, Majorana Fermions γj satisfy the
anticommutation relation

{γi, γj} ≡ γiγj + γjγi = 2δij (3.12)

as well as being self conjugate γ†
i = γi.

(a) Show that the ground state degeneracy of a system with 2N Majoranas
is 2N if the Hamiltonian is zero. Thus conclude that each pair of Ising anyons
is a two-state system. Hint: Construct a regular (Dirac) fermion operator
from two Majorana fermion operators. For example,

c† =
1

2
(γ1 + iγ2)

will then satisfy the usual fermion anti-commutation {c, c†} = cc† + c†c = 1.
(If you haven’t run into fermion creation operators yet, you might want to
read up on this first!) There is more discussion of this transformation in a
later problem *** (Ising F matrix)

(b) When anyon i is exchanged clockwise with anyon j, the unitary trans-
formation that occurs on the ground state is

Uij =
eiα√
2
[1 + γiγj ] i < j. (3.13)

for some real value of α. Show that these unitary operators form a represen-
tation of the braid group. (Refer back to the previous problem, “About the
Braid Group”). In other words we must show that replacing σi with Ui,i+1
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in Eqns. 3.9 and 3.10 yields equalities. This representation is 2N dimensional
since the ground state degeneracy is 2N .

(c) Consider the operator

γFIVE = (i)Nγ1γ2 . . . γ2N (3.14)

(the notation FIVE is in analogy with the γ5 of the Dirac gamma matrices).
Show that the eigenvalues of γFIVE are ±1. Further show that this eigenvalue
remains unchanged under any braid operation. Conclude that we actually have
two 2N−1 dimensional representations of the braid group. We will assume that
any particular system of Ising anyons is in one of these two representations.

(d) Thus, 4 Ising anyons on a sphere comprise a single 2-state system, or a
qubit. Show that by only braiding these four Ising anyons one cannot obtain
all possible unitary operation on this qubit. Indeed, braiding Ising anyons is
not sufficient to build a quantum computer. [Part (d) is not required to solve
parts (e) and (f)]

(e) [bit harder] Now consider 2N Ising anyons on a sphere (See above prob-
lem ”About the braid group” for information about the braid group on a
sphere). Show that in order for either one of the 2N−1 dimensional represen-
tations of the braid group to satisfy the sphere relation, Eqn. 3.11, one must
choose the right abelian phase α in Eq. 3.13. Determine this phase.

(f) [a bit harder] The value you just determined is not quite right. It should
look a bit unnatural as the abelian phase associated with a braid depends
on the number of anyons in the system. Go back to Eqn. 3.11 and insert
an additional abelian phase on the right hand side which will make the final
result of part (e) independent of the number of anyons in the system. In fact,
there should be such an additional factor — to figure out where it comes from,
go back and look again at the geometric “proof” of Eqn. 3.11. Note that the
proof involves a self-twist of one of the anyon world lines. The additional
phase you added is associated with one particle twisting around itself. The
relation between self-rotation of a single particle and exchange of two particles
is a generalized spin-statistics theorem.

Exercise 3.4 Small Numbers of Anyons on a Sphere
On the plane, the braid group of two particles is an infinite group (the group

of integers describing the number of twists!). However, this is not true on a
sphere

First review the problem “About the Braid Group” about braiding on a
sphere.

(a) Now consider the case of two particles on a sphere. Determine the full
structure of the braid group. Show it is a well known finite discrete group.
What group is it?

(b) [Harder] Now consider three particles on a sphere. Determine the full
structure of the braid group. Show that it is a finite discrete group. [Even
Harder] What group is it? It is “well known” only to people who know a lot
of group theory. But you can google to find information about it on the web
with some work. It may be useful to list all the subgroups of the group and
the multiplication table of the group elements.

(c) Suppose we have two (or three) anyons on a sphere. Suppose the ground
state is two-fold degenerate (or more generally N-fold degenerate for some
finite N). Since the braid group is discrete, conclude that no type of anyon
statistics can allow us to do arbitrary SU(2) (or SU(N)) rotations on this
degenerate ground state by braiding





Aharanov-Bohm Effect and
Charge-Flux Composites 4

Easy Material

This chapter introduces a simple model of how fractional statistics anyons
can arise. After reviewing Aharanov-Bohm effect, we describe these ex-
otic particles as charge-flux composites and explore some of their prop-
erties. Finally we see how this fits into the framework of abelian Chern-
Simons theory and briefly discuss its nonabelian generalization.
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Fig. 4.1 The Young two slit experi-
ment (not to scale).

4.1 Review of Aharanov-Bohm Effect
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Fig. 4.2 Adding a magnetic field in-
side the middle box in the Young two
slit experiment. Here the circular re-
gion includes a constant magnetic field.
No magnetic field leaks out of the box.
Nonetheless, if the particle being sent
into the interferometer is charged, the
interference pattern is changed com-
pared to the above figure.

Let us consider the two slit interference experiment shown in Fig. 4.1.
We all know the result of the two slit experiment but let us rewrite the
calculation in the language of a path integral. We can write

∑

paths

eiS/~ =
∑

paths, slit 1

eiS/~ +
∑

paths, slit 2

eiS/~

∼ eikL1 + eikL2

where L1 and L2 are the path lengths through the two respective slits
to whichever point is being measured on the output screen, and k is the
wavevector of the incoming wave. In other words, we get the usual two
slit calculation pioneered by Thomas Young in the early 1800s.
Now let us change the experiment to that shown in Fig. 4.2. Here

we assume the particle being sent into the interferometer is a charged
particle, such as an electron. In this case a magnetic field is added inside
the middle box between the two paths. No magnetic field is allowed to
leak out of the box, so the particle never experiences the magnetic field.
Further the magnetic field is kept constant so the particle does not feel
a Faraday effect either. The surprising result is that the presence of
the magnetic field nonetheless changes the interference pattern obtained
on the observation screen! This effect, named the Aharanov-Bohm ef-
fect, was predicted by Ehrenberg and Siday [1949], then re-predicted
independently by Aharonov and Bohm [1959]1.

1Possibly the reason it is named after the later authors is that they realized the
importance of the effect, whereas the earlier authors pointed it out, but did not
emphasize as much how strange it is! The first experimental observation of the effect
was by Chambers [1960], although many more careful experiments have been done
since.
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So why does this strange effect occur? There are several ways to
understand it, but for our purpose it will be best to stay with the idea
of path integrals and consider the Lagrangian description of particle
motion.
We must recall how a charged particle couples to an electromagnetic

field in the Lagrangian description of mechanics. We write the magnetic
field and electric field in terms of a vector potential

B = ∇×A

E = −∇A0 − dA/dt

where A0 is the electrostatic potential. We can then write the particle
Lagrangian as

L =
1

2m
ẋ2 + q(A(x) · ẋ−A0) (4.1)

where q is the particle charge. It is an easy exercise to check that the
Euler-Lagrange equations of motion that result from this Lagrangian
correctly gives motion under the Lorentz force as we should expect for
a charged particle in an electromagnetic field.22Here are the steps: Start with the

Euler-Lagrange equations

d

dt

∂L

∂ẋk
=

∂L

∂xk .

This gives us

d

dt
(mẋk + qAk)

= mẍk + q
d

dt
Ak + qẋj

∂

∂xj
Ak

= q(ẋj
∂

∂xk
Aj −

∂

∂xk
A0)

So that

mẍk = q(E+ ẋ×B)k .

We are interested in a situation where we add a static magnetic field
to the system. Thus, we need only include qA(x) · ẋ in the Lagrangian.
The action then gets changed by

S → S0 + q

∫
dt ẋ ·A = S0 + q

∫
dl ·A (4.2)

where S0 is the action in the absence of the magnetic field and the
integral on the far right is a line integral along the path taken by the
particle.
Returning now to the two slit experiment. The amplitude of the

process in the presence of the vector potential can be now rewritten as

∑

paths, slit 1

eiS0/~+iq/~
∫
dl·A +

∑

paths, slit 2

eiS0/~+iq/~
∫
dl·A

where S0 is again the action of the path in the absence of the vector
potential.
The physically important quantity is the difference in accumulated

phases between the two paths. This difference is given by

exp

[
iq

~

∫

slit 1
dl ·A− iq

~

∫

slit 2
dl ·A

]
= exp

[
iq

~

∮
dl ·A

]
(4.3)

where the integral on the right is around a loop that goes forward
through slit 1 and then backwards through slit 2.
Using Stokes’ theorem, we have

iq

~

∮
dl ·A =

iq

~

∫

enclosed

dS · (∇×A) =
iq

~
Φenclosed
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where Φenclosed is the flux enclosed in the loop. Thus there is a mea-
surable relative phase shift between the two paths given by iq

~
Φenclosed.

This results in a shift of the interference pattern measured on the obser-
vation screen. Note that although the original Lagrangian Eq. 4.1 did
not look particularly gauge invariant, the end result (once we integrate
around the full path) is indeed gauge independent.
A few notes about this effect:

(1) If Φ is an integer multiple of the elementary flux quantum

Φ0 = 2π~/q,

then the phase shift is an integer multiple of 2π and is hence equiv-
alent to no phase shift.

(2) We would get the same phase shift if we were to move flux around
a charge.

(3) More generally for particles moving in space-time one wants to
calculate the relativistically invariant quantity

iq

~

∮
dlµA

µ

Φ

q

Fig. 4.3 Abelian anyons represented
as charges bound to flux tubes through
the plane. The charge of each particle
is q, the flux of each tube is Φ. Drag-
ging one particle around another incurs
a phase both because charge is moving
around a flux, but also because flux is
moving around a charge.

4.2 Anyons as Charge-Flux Composites

We will now consider a simple model of abelian anyons as charge-flux
composites. Imagine we have a two dimensional system with charges q in
them, where each charge is bound to an infinitely thin flux tube through
the plane, with each tube having flux Φ as shown in Fig. 4.3. We will
notate this charge-flux composite object as a (q,Φ) particle. If we drag
one such particle around another, we then accumulate a phase due to the
Aharanov-Bohm effect. The phase from the charge of particle 1 going
around the flux of particle 2 is eiqΦ/~, whereas the phase for dragging
the flux of 1 around the charge of 2 is also eiqΦ/~, thus the total phase
for dragging 1 around 2 is given by

(Phase of charge-flux composite 1 encircling 2) = e2iqΦ/~

Thus we have (as shown in Fig. 4.4)

Φ

q

Fig. 4.4 An exchange. Two exchanges
is the same as dragging one particle all
the way around the other as shown in
Fig. 4.3.

(Phase for exchange of two charge-flux composites) = eiqΦ/~

and we correspondingly call these particles θ-anyons, with θ = qΦ/~.
Obviously θ = 0 is bosons, θ = π is fermions, but other values of θ are
also allowed, giving us abelian anyons as discussed in chapter 3.
Note that the same type of calculation would show us that taking

a composite particle with charge q1 and flux Φ1 all the way around a
composite particle with charge q2 and flux Φ2 would accumulate a phase
of eiϕ with ϕ = (q1Φ2 + q2Φ1)/~.
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Spin of an anyon

Let us see if we can determine the spin of these anyons. Spin refers to
properties of the rotation operator, so we need to physically rotate the
anyon on its axis. To do this we must think about how the flux is tied
to the charge — we must have some microscopic description of exactly
where the flux is and where the charge is. It is easiest to put the charge
and flux at very slightly different positions as shown in Fig. 4.53. In this

3Almost any prescription for attach-
ing flux to charge (for example, break
the flux into four pieces and attach one
piece on each of four side of the charge)
will give the same result. However, if
we try to put the flux and charge at ex-
actly the same position, we get infini-
ties that we don’t know how to handle!

case, when we rotate the anyon around its axis we move the charge and
flux around each other and we obtain a new phase of

eiqΦ/~ = eiθ

This fits very nicely with the spin statistics theorem — the phase ob-
tained by exchanging two identical particles should be the same as the
phase obtained by rotating one around its own axis. (See the discussion
of Fig. 2.7).

Φ

q

Fig. 4.5 Tying flux to charge. We put
the flux and the charge at slightly dif-
ferent positions. As a result, when we
rotate the particle around its own axis
a phase is accumulated as the charge
and flux go around each other.

4.2.1 Fusion of Anyons

We can consider pushing two anyons together to try to form a new par-
ticle. We expect that the fluxes will add and the charges will add. This
makes some sense as the total charge and total flux in a region should
be conserved (this is an important principle that we will encounter fre-
quently!). We sometimes will draw a “fusion diagram” as in Fig. 4.6 to
show that two anyons have come together to form a composite particle.
A simple example of this is pushing together two particles both having

the same charge and flux (q,Φ). In this case we will obtain a single
particle with charge and flux (2q, 2Φ). Note that the phase of exchanging
two such double particles is now θ = 4qΦ/~ (since the factor of 2 in
charge multiplies the factor of 2 in flux!).

(q1,Φ1) (q2,Φ2)

(q1 + q2,Φ1 + Φ2)

Fig. 4.6 Fusing two anyons to get an
anyon of a different type which has the
sum of fluxes and the sum of charges.

(q,Φ) (−q,−Φ)

I = (0, 0)

=

(q,Φ)

Fig. 4.7 Fusing an anyon and an an-
tianyon to get the vacuum (I) drawn
as dotted line. Note that the antianyon
moving forward in time is drawn as a
downpointing arrow — which looks like
an anyon moving backwards in time.

4.2.2 Anti-Anyons and the Vacuum Particle

We now introduce the concept of an anti-anyon. This is a charge-flux
composite which instead of having charge and flux (q,Φ) has charge
and flux (−q,−Φ). Fusing an anyon with its anti-anyon results in pair
annihilation — the two particles come together to form the vacuum
(which we sometimes4 refer to as the identity I) which has zero total

4The vacuum or identity particle can
be denoted e, or I or 0 or 1 depend-
ing on the context. This nomenclatural
problem stems from a similar problem
in group theory, see section 33.2.

charge and zero total flux, as shown in Fig. 4.7. It may seem a bit odd
to call the absence of any charge or any flux a “particle”. However, this
is often convenient since it allows us to think of pair annihilation (as in
the left of Fig. 4.7) in the language of fusion.
In the right of Fig. 4.7 we show that it is sometimes convenient not

to indicate the vacuum particle. In this case, we have written the anti-
anyon moving forward in time as an anyon moving backwards in time.
If the phase of dragging an anyon clockwise around an anyon is 2θ,

then the phase of dragging an anti-anyon clockwise around an anti-anyon
is also 2θ. (The two minus signs on the two anyons cancel — negative
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flux multiplies negative charge!). However, the phase of dragging an
anyon clockwise around an anti-anyon is −2θ.

4.3 Anyon Vacuum on a Torus and Quantum
Memory

A rather remarkable feature of topological models is that the ground
state somehow “knows” what kind of anyons exist in the model (i.e,
those that could be created), even when they are not actually present.
To see this, consider the ground state of an anyon model on torus (the
surface of a doughnut5.

5See note 1 in chapter 33.

C1
C2

= C2

C1

Fig. 4.8 Drawing a torus as a rectan-
gle with opposite edges identified. The
two noncontractable cycles around the
torus can be considered to be the edges
of the square, labeled C1 and C2 here.

We can draw the torus as a square with opposite edges identified as
shown in Fig. 4.8. The two cycles around the torus are marked as C1

and C2.
Let us now construct operators that do the following complicated

operations:

T1 is the operator that creates a particle-antiparticle pair, moves
the two in opposite directions around the C1 cycle of the torus
until they meet on the opposite side of the torus and reannihilate.

T2 is the operator that creates a particle-antiparticle pair, moves
the two in opposite directions around the C2 cycle of the torus
until they meet on the opposite side of the torus and reannihilate.

Both of these operators are unitary because they can be implemented
(in principle) with some time-dependent Hamiltonian6. However, the 6For example, we could insert charges

+Q and -Q near to each other which
are strong enough to pull a particle-
antiparticle pair out of the vacuum, the
-Q trapping the +(q,Φ) and the +Q
trapping the (−q,−Φ). Then we can
drag the ± Q charges around the han-
dle of the torus, dragging the anyons
with them.

two operators do not commute. To see this let us consider the operator
T−1
2 T−1

1 T2T1 where we read time from right to left. This can be inter-
preted as as two particles being created, braiding around each other,
and then reannihilating. This procedure is shown in Fig. 4.9.
So what we have now is two operators T1 and T2 which do not commute

with each other. Indeed, we have7

7At least this relation should be true
acting on the ground state space. If
some particles are already present, then
we have to consider the braiding of the
the particles we create with those al-
ready present, which will be more com-
plicated.

T2T1 = e−2iθT1T2

But both T1 and T2 commute with the Hamiltonian (since they start
and end with states of exactly the same energy8). Whenever you have

8Strictly speaking this means they
commute with the Hamiltonian within
the ground state space, or equivalently
the commutators [T1,H] and [T2, H]
both annihilate the ground state space.

two operators that don’t commute with each other but do commute with
the Hamiltonian, it means you have degenerate eigenstates. Let us see
how this happens.
Since T1 is unitary, its eigenvalues must have unit modulus (i.e., they

are just a complex phase). Considering the space of possible ground
states, let us write a ground state eigenstate of T1 as

T1|α〉 = eiα|α〉.

Note that we are labeling the ket |α〉 by its eigenvalue under the ap-
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ti
m
e

= = e−2iθ

Fig. 4.9 The torus is drawn as a horizontal rectangle with opposite ends identified.
Time runs vertically. First create a particle-antiparticle pair at the center of the
rectangle and move them in opposite directions, right and left, until they meet at the
edges of the rectangle to reannhiliate. Note that a particle moving to the right or an
antiparticle moving to the left are both drawn as a rightpointed arrow. Next create
a particle-antiparticle pair in the center of the torus and move them to the front
and back walls (which are the same point) to reannihilate. Then the two processes
are reversed to give T−1

2 T−1
1 T2T1. This procedure can be reduced to one particle

wrapping around another which gives a phase of e−2iθ. Note that to make the figure
on the left look like the linked rings, we should not quite annihilate the particles at
the end of the first and second step (turning the dotted lines into solid lines). This is
allowed since bringing a particle-anti-particle pair close together looks like they have
fused together to the vacuum if we view it from far away.

plication of T1. Now we will generate a new eigenstate with a different
eigenvalue of T1. Consider the state T2|α〉. This must also be in the
ground state space since T2 commutes with the Hamiltonian. But now

T1(T2|α〉) = e2iθT2T1|α〉 = e2iθeiα(T2|α〉)

This new ground state T2|α〉 has eigenvalue eiα+2iθ under application
of T1. We thus call this new ground state |α + 2θ〉 = T2|α〉. We have
now generated a new ground state and we can continue the procedure
to generate more!
Let us suppose we have a system where the anyons have statistical

phase angle
θ = πp/m

where p and m are relatively prime integers (i.e., p/m is an irreducible
fraction). Starting with the ground state |α〉 we can generate a series of
ground states by successive application of T2,

|α〉, |α+2πp/m〉, |α+4πp/m〉, . . . , |α+2π(m−1)/m〉

When we try to generate yet another state, we get the phase α+2π which
is equivalent to α since it is describing a complex phase, so we are back
to the original state. So we now have m independent ground states.9

9There could be even more degeneracy
which would be non-generic. What we
have proven is there must be a degen-
eracy which is m times some integer,
where one generally expects that inte-
ger to be 1 but there could be additional
accidental degeneracy.

Note in particular that the ground state degeneracy of the system with
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no anyons in it is related to the statistical angle θ of the anyons if they
were to be created.

4.3.1 Quantum Memory and Higher Genus

The degenerate ground state on the torus can be thought of as a quan-
tum memory. If there are m different ground states, the most general
wavefunction we can have is some linear superposition of the multiple
ground states

|Ψ〉 =
m−1∑

n=0

An|α+ 2πnp/m〉

where the coefficients An form an arbitrary (but normalized) complex
vector. We can initialize the system in some particular superposition
(i.e, some vector An) and we can expect that the system remains in this
superposition. The only way that this superposition can change is if
a T1 or T2 operation is performed, or some combination thereof — i.e,
if a pair of anyons appears from the vacuum moves around the handle
of the torus and then reannihilates. Such a process can be extremely
unlikely when the energy gap for creating excitations is large10. Hence

10Strictly speaking, at any finite tem-
perature for any size system there is a
finite time for this process to occur, al-
though it might be very long.

the quantum superposition is “topologically protected”.
In fact, one does not even need to have a system on a torus in order to

have a degenerate ground state. It is often sufficient to have an annulus
geometry (a disk with a big hole in the middle as shown in Fig. 4.10).
In this case, T1 could correspond to moving an anyon around the loop
of the annulus and T2 could correspond to moving an anyon from the
inside to the outside edge.11

11In this case it is often not precisely
true that the ground states are entirely
degenerate (since there is a non-zero
net result of having moved a particle
from inside to outside, and therefore
one is not necessarily in the precise
ground state) but under certain condi-
tions it can be extremely close to degen-
erate nonetheless. A classic example of
this is discussed by Gefen and Thouless
[1993].

Fig. 4.10 An annulus.One can consider more complicated geometries, such as a torus with
multiple handles, or a disk with multiple holes cut in the middle. For a
theory of abelian anyons (fractional statistics) the ground state degen-
eracy for a surface with genus g (meaning g handles, or g holes) is mg

(See exercise 4.1). Thus by using high genus one can obtain very very
large Hilbert spaces in which to store quantum information.

4.3.2 Number of Species of Anyons

Having established multiple vacuum states on a torus, let us now return
to study the anyons that we could create in such a system. Again let us
consider anyons of statistical angle θ = πp/m with p and m relatively
prime. We can describe such anyons12 with a charge-flux composite

12By this time I’m sick of writing ~ and
I’m going to set it equal to 1.

(q,Φ) = (πp/m, 1). Fusion of n of these elementary anyons will have
charge and flux given by13 13It is only a slight abuse of notation to

write the ket |“n′′〉 to mean a cluster of
n elementary anyons.Fusion of n elementary anyons = |“n”〉 = (nq, nΦ)

= (nπp/m, n)

Something special happens when we have a cluster of m of these ele-
mentary anyons:

|“m”〉 = (πp,m)
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If we braid an arbitrary cluster |“n”〉 = (nπp/m, n) around one of these
|“m”〉 = (πp,m) clusters, we obtain a net phase14 of 2nπp which is

14As mentioned at the beginning of sec-
tion 4.2 the total phase is given by
q1Φ2 + q2Φ1 = (nπp/m)m + (πp)n.

equivalent to no phase at all! Thus we conclude that the cluster of m
elementary anyons is equivalent to the vacuum in the sense that all parti-
cles get trivial phase if they braid all the way around |“m”〉. Sometimes
one says that |“m”〉 is a transparent particle.
We might be tempted to conclude that there are exactly m differ-

ent anyon species in the system. Indeed, this conclusion is often true.
However, there is an exception. If both p and m are odd, one ob-
tains a nontrivial sign for exchanging (half braiding, as in Fig. 4.4) a
|“m”〉 = (πp,m) particle with another |“m”〉 = (πp,m) particle. To
see this note that exchange gives a phase πpm since it is half of the
2πpm phase for wrapping one particle all the way around the other (as
in Fig. 4.3). This means the |“m”〉 particle is a fermion. In fact, this
case of p and m both odd is a bit of an anomolous case and is a bit more
difficult to handle15.15Whenever we have a particle that

braids trivially with all other particles
(i.e., is transparent), the theory is more
complicated. Later on we will call this
kind of theory “non-modular.” See sec-
tion 17.3.1.

Neglecting this more complicated case with transparent particles, we
are correct to conclude that we have exactlym different species of anyons
– and also m different ground states on the torus as calculated above.
This connection will occur in any well behaved topological theory — the
number of ground states on the torus will match the number of different
species of particles.

Chapter Summary

• The Charge-Flux composite model describes abelian anyons —
with the braiding phase coming from Aharonov-Bohm effect.

• We introduced idea of fusion, antiparticles, and spin

• The vacuum for a system of anyons is nontrivial and can be a
quantum memory.

Further Reading

A good reference for the charge-flux composite model is John Preskill’s
lecture notes (Preskill [2004]).

Exercises

Exercise 4.1 Abelian Anyon Vacuum on a Two-Handle Torus
Using similar technique as in section 4.3, show that the ground state vac-

uum degeneracy on a two handle torus is m2 for a system of abelian anyons
with statistical angle θ = πp/m for integers p and m relatively prime. Hint:
Consider what the independent cycles are on a two-handled torus and deter-
mine the commutation relations for operators Ti that take anyon-antianyon
pairs around these cycles.
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Medium Material

5.1 Abelian Chern-Simons Theory

It is useful to see how charge-flux binding occurs in a microscopic field
theory description of a physical system. The type of field theory we will
study, so-called “Chern-Simons” field theory1, is the main paradigm for 1S. S. Chern was one of the most im-

portant mathematicians of the 20th
century. Jim Simons was a promi-
nent mathematician who wrote the key
first paper on what became known as
Chern-Simons theory in 1974. Simons
was the head of the math department
at Stonybrook university at the time.
In 1982, he decided to change careers
and start a hedge fund. His fund, Re-
naissance Technologies, became one of
the most successful hedge funds in the
world. Simons’ wealth is now estimated
at over 20 billion dollars (as of 2018).
More recently he has become a promi-
nent philanthropist, and has donated
huge amounts of money to physics and
mathematics — now being one of the
major sources of funds for the best sci-
entists in the world.

topological quantum field theories.
In the current section we will consider the simplest type of Chern-

Simons theory which is the abelian type (i.e., it generates abelian anyons,
or simple fractional statistics particles). We start by imagining a gauge
field aα, known as the Chern-Simons vector potential, analogous to the
vector potential Aα we know from regular electromagnetism. Here we
should realize that aα is not the real electromagnetic vector potential
because it lives only in our 2-dimensional plane. We should think of it in-
stead as some emergent effective quantity for whatever two dimensional
system we are working with.
Let us write the Lagrangian of our system

L = L0 +

∫
d2x L

Here we have written L0 to be the Lagrangian of our particles without
considering the coupling to the (Chern-Simons) vector potential. This
might be nothing more than the Lagrangian for free particles — although
we could put other things into this part too, such as inter-particle inter-
action, if we like.
The second term is the integral of a Lagrangian density — and this

will be the term that is relevant for the flux-binding and the exchange
statistics of the particles. The form of the Lagrangian density is

L =
µ

2
ǫαβγaα∂βaγ − jαaα (5.1)

where jα is the particle current, µ is some coupling constant, and ǫ is
the antisymmetric tensor2. The indices α, β, γ take values 0, 1, 2 where 2The antisymmetric tensor is given by

ǫ012 = ǫ120 = ǫ201 = 1 and ǫ210 =
ǫ102 = ǫ021 = −1.

0 indicates the time direction and 1, 2 are the space directions (and j0

is the particle density).
The first term in Eq. 5.1 is the Lagrangian density of the Chern-

Simons vector potential itself. (It is sometimes known as the “Chern-
Simons term”). The second term in Eq. 5.1 couples the Chern-Simons
vector potential to the particles in the system. Its form, jαaα, may look
unfamiliar but it is actually just the expected coupling of the charged
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particles to a vector potential analogous to what we used when we dis-
cussed Aharonov-Bohm effect in section 4.1. To see this, let us carefully
define the particle current jα. If we have N particles then the current is

j0(x) =

N∑

n=1

qnδ(x− xn)

j(x) =

N∑

n=1

qnẋn δ(x− xn)

The j0 component, the charge density3, is just a delta function peak at3Again not the real electromagnetic
charge, but rather the charge that cou-
ples to the Chern-Simons vector poten-
tial aα. Later in this chapter we will set
q = 1 along with ~ = 1 for simplicity of
notation.

the position of each particle with value given by the particle charge q.
The 1 and 2 component, j is a delta function at the position of each
particle with prefactor given by the velocity of the particle times its
charge. Now when −jαaα is integrated over all of space we get

N∑

n=1

qn [a(xn) · ẋn − a0(xn)] (5.2)

exactly as in Eq. 4.1. So this is nothing more than the regular coupling
of a system of charged particles to a vector potential.
As is usual for a gauge theory, the coupling of the particles to the

gauge field is gauge invariant once one integrates the particle motion
over some closed path (one measures only the flux enclosed, as with
the Aharonov-Bohm effect). The Chern-Simons term (the first term in
Eq. 5.1) is also gauge invariant, at least on a closed manifold if we can
integrate by parts. To see this, make an arbitrary gauge transformation

aµ → aµ + ∂µχ (5.3)

for any function χ. Then integating the Chern-Simons term (by parts
if necessary) all terms can be brought to the form ǫαβγχ∂α∂βaγ which
vanishes by antisymmetry. Note that this gauge invariance holds for any
closed manifold, although for a manifold with boundaries, we have to be
careful when we integrate by parts as we can get a physically important
boundary term. (We will discuss these later in section *** but for now,
let us just think about closed space-time manifolds).
To determine what the Chern-Simons term does we need to look at

the Euler-Lagrange equations of motion. We have

∂L
∂aα

= ∂β

(
∂L

∂(∂βaα)

)
(5.4)

which generates the equations of motion4

4It may look like the right result would
have µ/2 on the right hand side, given
that it is µ/2 in Eq. 5.1. However, note
that when we differentiate with respect
to aα on the left hand side of Eq. 5.4,
we also generate an identical factor of
µ/2 and these two add up.

jα = µǫαβγ∂βaγ (5.5)

This equation of motion demonstrates flux binding. To see this, let us
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look at the 0th component of this equation. We have

j0 =
N∑

n=1

qnδ(x − xn) = µ(∇× a) = µb (5.6)

where we have defined a “Chern-Simons” magnetic field b to be the curl
of the the Chern-Simons vector potential. In other words this equation
attaches a delta function (infinitely thin) flux tube with flux qn/µ at the
position of each charge qn. So we have achieved charge-flux binding!
For simplicity, let us now assume all particles are identical with the

same charge qn = q. We might expect that the phase obtained by
exchanging two such identical charges would be given by the charge
times the flux or θ = q2/µ analogous to section 4.2. Actually, this is not
right! The correct answer is that the statistical phase is

θ = q2/(2µ).

To see why this is the right answer, we can multiply our equation of
motion Eq. 5.5 by aα and then plug it back into5 the Lagrangian 5.1. 5One might worry about whether we

are actually allowed to plug the equa-
tions of motion back into the La-
grangian when we do a full path inte-
gral, as in Eq. 5.7, where we are sup-
posed to integrate over all field configu-
rations, not just those that satisfy equa-
tions of motion. While generally in field
theory one should not plug equations
of motion back into the Lagrangian, it
is actually allowed in this case because
the Lagrangian is linear in each aµ. For
example, classically we can think of a0
as being a Lagrange multiplier which
enforces Eq. 5.6. Similarly in the func-
tional integral when we integrate out a0
it enforces that equation of motion as a
strict constraint.

We then end up with

L = −1

2
jαaα

In other words, the Lagrangian of the Chern-Simons vector potential
itself cancels exactly half of the Lagrangian density, and hence will cancel
half of the accumulated phase when we exchange two particles with each
other!
If we are interested in calculating a propagator for our particles we

can write ∑

paths {x(t)}

∑

all aµ(x,t)

ei(S0+SCS+Scoupling)/~ (5.7)

Here the first sum is the usual sum over particle paths that we have
discussed before. The second sum is the sum over all possible configu-
rations of the field aµ(x, t). Note that this means we should sum over
all configurations in space and time so it is effectively a path integral
for a field. (This is potentially everything you ever need to know about
field theory!). Often the sum over field configurations is written as a
functional integral ∑

all aµ(x,t)

→
∫

Daµ(x)

Formally when we write a functional integral we mean6 that we should 6Making strict mathematical sense of
this type of integral is not always so
easy!

divide space and time into little boxes and within each box integrate
over all possible values of aµ. Fortunately, we will not need to do this
procedure explicitly.
At least formally we can thus rewrite Eq. 5.7 as

∑

paths {x(t)}
eiS0/~

∫
Daµ(x) eiSCS/~ ei(q/~)

∫
paths

dlαaα (5.8)
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where S0 is the action of the particles following the path but not in-
teracting with the gauge field, SCS is the action of the Chern-Simons
gauge field alone (from the first term in Eq. 5.1). The final exponential
in Eq. 5.8 represents the coupling (from the second term of Eq. 5.1) of
the gauge field to the path of the particles — it is an integral that fol-
lows the path of the particles and integrates the vector potential along
the path (see also Eq. 5.2). This is precisely the phase accumulated
by a particle in the vector potential. It is an example of a Wilson-line
operator, which we will see again shortly in section 5.2.
Once the integration over the Chern-Simons field is done, we obtain

∑

paths {x(t)}
eiS0/~+iθW (path)

whereW is the winding number of the path and θ is the anyon statistical
angle. In other words, integrating out the Chern-Simons gauge field
implements fractional statistics for the particles in the system, inserting
a phase e±iθ for each exchange!

Vacuum Abelian Chern-Simons Theory

Something we have pointed out above in section 4.3 is that the vacuum
of an anyon theory knows about the statistics of the particles, even
when the particles are not present (i.e., the ground state degeneracy on
a torus matches the number of particle species). Thus, in the absence
of particles, we will be interested in

Z(M) =

∫

M
Daµ(x) eiSCS/~

where M is the space-time manifold we are considering7.

7Some space time manifolds we might
consider, such as any 2D manifold Σ
cross time (such that M = Σ × R),
seem very natural. However, as we
will see in much detail in chapter 7,
we will want to be much more gen-
eral about the types of manifolds we
consider. We should even allow three
dimensional manifolds where the two-
dimensional topology of a fixed time
slice changes as time evolves! See also
the discussion in chapter 6 and Fig. 6.1.

If we are consider a three dimensional manifold of the form M =
Σ × S1 for a 2D manifold Σ and S1 represents time (compactified8)

8Compactification of time from R to

S1 is something that might be famil-
iar from statistical physics where this
procedure is used for representing finite
temperatures.

this integral gives exactly the ground state degeneracy of the system.
As we might expect, this quantity will be a topological invariant of
the space-time manifold. That is, smooth deformations of M do not
change its value. (See chapter appendix, particularly section 5.3.2). This
quantity Z(M), often known as the partition function of the theory for
the manifold M, will be of crucial importance as we learn more about
topological theories in general in Chapter 7 below.

5.2 Nonabelian Chern-Simons theory: The
paradigm of TQFT

Among 2+1 dimensional topological quantum systems, pretty much ev-
erything of interest is somehow related to Chern-Simon theory — how-
ever, we don’t generally have the luxury of working with abelian theory
as we have been doing so far.
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We can generalize abelian Chern-Simons theory by promoting the
gauge field aα to be not just a vector of numbers, but rather a vector
of matrices.9 More precisely, to construct a nonabelian Chern-Simons

9If you have studied Yang-Mills theory,
you already know about nonabelian
vector potentials.

theory, we consider a vector potential that takes values in a Lie alge-
bra10. For example, if we choose to work with the Lie algebra of SU(2) 10See the introduction to Lie groups

and Lie algebras in section 33.2.3. In
brief: A Lie group is a group which
is also a continuous manifold. A Lie
algebra is the algebra of infinitesimal
changes in this group. A prime exam-
ple is the Lie group SU(2) with alge-
bra generated by iσj with σj ’s being
the Pauli operators. We write group el-
ements as exponentials of the algebra
g = eiσ·n.

in the fundamental representation we can write a general element of this
algebra as a sum of the three generators (proportional to σx, σy, σz) so
that our Lie algebra valued gauge field is then11

11For general Lie algebras, we want to
write aµ = aaµTa where Ta are the anti-
Hermitian generators of the Lie alge-
bra with Ta = −T †

a . This means that
[Ta, Tb] = fabcTc with f the so-called
structure constants of the Lie group,
and Tr[TaTb] ≡ − 1

2
δab. In case of

SU(2) in the fundamental representa-
tion we have Ta = −iσa/2 with fabc =
ǫabc. Be warned that other normaliza-
tion conventions do exist, and changing
conventions will insert seemingly ran-
dom factors of 2 or i or worse.

aµ(x) = aaµ(x)
(σa
2i

)
(5.9)

where σa are the Pauli matrices. Now that aµ is matrix valued it becomes
noncommutative and we have to be very careful about the order in which
we write factors of aµ.
The fundamental quantity that we need to think about is the Wilson

loop operators12

12These are named for Ken Wilson,
who won a Nobel Prize for his work
on the renormalization group and crit-
ical phenomena. There is a legend that
Wilson had very very few publications
when he came up for tenure as a profes-
sor at Cornell. Only due to the strong
recommendation of his senior colleague
Hans Bethe (already a Nobel Laureate
at the time) did he manage to keep
his job. Bethe knew what Wilson had
been working on, and vouched that it
would be extremely important. His
ground-breaking work on renormaliza-
tion group was published the next year.
Everything worked out for him in the
end, but the strategy of not publish-
ing is not recommended for young aca-
demics trying to get tenure.

WL = Tr

[
P exp

(∮

L

dlµaµ

)]
(5.10)

where here the integral follows some closed path L. This object, being
the exponential of an integral of a vector potential, is essentially the
nonabelian analogue13 of the Aharonov-Bohm phase of Eq. 4.3). In

13The factor of i we usually have in
the exponential of the Aharonov-Bohm
phase (Eq. 4.3) is missing because it has
been absorbed into aµ in Eq. 5.9 (See
comment in note 11). The factors of q
and ~ are missing because we have set
them to one as every theorist should do.

Eq. 5.10, the P symbol indicates path ordering — analogous to the usual
time ordering of quantum mechanics. The complication here is that
aµ(x) is a matrix, so when we try to do the integral and exponentiate,
we have a problem that aµ(x) and aµ(x

′) do not commute. The proper
interpretation of the path orderered integral is then to divide the path
into tiny pieces of length dl. We then have

P exp(

∮

L

dlµaµ) = (5.11)

[1 + aµ(x1)dl
µ(x1)] [1 + aµ(x2)dl

µ(x2)] [1 + aµ(x3)dl
µ(x3)] . . .

where x1, x2, x3, . . . are the small steps along the path.
The proper gauge transformation in the case of a nonabelian gauge

field is given by
aµ → U−1aµU + U−1∂µU (5.12)

Where U(x) is a matrix (which is a function of position and time) which
acts on the matrix part of aµ. Note that this is just the nonabelian
analogue14 of the gauge transformation in Eq. 5.3. To see that this

14Here take U = eiχ and note that a
factor of i is absorbed into the vector
potential as mentioned in note 13.

gauge transformation leaves the Wilson loop operators invariant (and
hence is the right way to define a gauge transformation!) see section
5.3.1.
With aµ a matrix valued quantity, the Chern-Simons action is now

written as

SCS =
k

4π

∫

M
d3x ǫαβγ Tr

[
aα∂βaγ +

2

3
aαaβaγ

]
(5.13)
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Note that the second term in the brackets would be zero if the aα were
commutative. (In the abelian case above, we have no such term! See
Eq. 5.1).
The Chern-Simons action is metric independent, which we show ex-

plicitly in the chapter appendix section 5.3.2. This means that space
and time can be deformed continuously and the value of the action does
not change. While this may not be obvious from looking at the form of
the action, a large hint is that the action is written without any reference
to the usual space-time metric gµν .
Since Chern-Simons theory is also a gauge theory, we would like the

action to be gauge invariant. It turns out that the action is almost gauge
invariant, as we will discuss momentarily. At any rate it is close enough
to gauge invariant to be of use for us!
It turns out that the Chern-Simons action is actually unique in being

both metric independent and also (at least almost) gauge invariant. In
2+1 dimensions, no other action can be written down which involves
only one gauge field and has these two properties: topological invariance
and gauge invariance. This is what makes Chern-Simons theory such a
crucial paradigm for topological theories in 2+1 dimensions.
Let us now return to this issue of how the Chern-Simons action is only

almost gauge invariant. First of all, if the manifold has a boundary, we
will run into non-gauge invariant terms as mentioned below Eq. 5.3. For
now, let us just assume that our manifold has no boundaries.
More crucially there is another issue with gauge invariance. Under

gauge transformation (at least on a closed manifold) as in Eq. 5.12 the
Chern-Simons action transforms to (See exercise 5.2)

SCS → SCS + 2πνk (5.14)

where

ν =
1

24π2

∫

M
d3x ǫαβγ Tr

[
(U−1∂αU)(U−1∂βU)(U−1∂γU)

]
(5.15)

Surprisingly the complicated expression in Eq. 5.15 (sometimes known
as the Pontryagin index) is always an integer (See section 5.3.3 for more
detail). The integer ν gives the winding number of the map U(x) from
the manifold into the gauge group15.

15In the case of the gauge group being
SU(2), as mentioned in section 33.2.3,
the gauge group is isomorphic to the
manifold S3. So if the manifold hap-
pens to be S3 then we are looking
at mappings from x ∈ S3 (space) to
U(x) ∈ S3 (group). A mathematician
would say that Π3(S3) = Z, meaning
one can wrap S3 around S3 any inte-
ger number of times. The case of zero
winding number is anything that can be
continuously deformed to U = 1 every-
where. However, we also can consider
the identity mapping that S3 (space)
maps into S3 (group) in the obvious
way (every point goes to itself) which
gives an n = 1 mapping (a 1-to-1 map-
ping). One can also construct 2-to-1
mappings which have winding n = 2
etc. (See exercise 5.3)

It may now look problematic that our Chern-Simons action is not a
true gauge invariant (Eq. 5.14), but we note that the only thing enter-
ing our functional integral is eiSCS , not the Chern-Simons action itself.
Thus, so long as we choose k, the so-called “level”, as an integer (and
since the winding number ν is also an integer), then we have a well
defined functional integral of the form

Z(M) =

∫

M
Daµ(x) eiSCS (5.16)

where the result Z(M) turns out to be a manifold invariant (see chapter
appendix, section 5.3.2), meaning that smooth deformations of space and
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time do not change its value. M3

L1

L2

Fig. 5.1 A cartoon of a 3 manifold
with a link made of two strands em-
bedded in it.

The insertion of the Wilson loop operator into the path integral gives
a knot invariant of the link L that the Wilson loop follows. The fact that
the result should be a topological invariant should not be surprising given
the fact that the Chern-Simons action itself is metric independent and
therefore independent under deformations of space and time16. Often

16The observant reader will note that
we have not specified the “framing” of
the knot — i.e, if we are to think of
the world-line as being a ribbon not a
line, we have not specified how the rib-
bon twists around itself. (See section
2.6.1.) In field theory language this
enters the calculation by how a point-
splitting regularization is implemented.

we will think about our link as being embedded in a simple manifold like
the three sphere, which we denote as S3 (see section 33.1.1 for definition
of S3).
So for example, to find the link invariant corresponding to the two

linked strings in Fig. 5.1, we have

Knot Invariant =
Z(S3, L1, L2)

Z(S3)
=

∫
S3 Daµ(x) WL1

WL2
eiSCS∫

S3 Daµ(x) eiSCS
(5.17)

with WL being the Wilson loop operators as in Eq. 5.10. Indeed, if we
choose to work with the gauge group SU(2) at level k (working with the
spin 1/2 representation of the group, i.e, with Pauli matrices) we obtain
the Kauffman invariant of the knot with A = −(−i)(k+1)/(k+2).
If we keep the same gauge group, but work with a different represen-

tation (for example, spin 1, rather than spin 1/2 in Eq. 5.9), we will
obtain different “particle types” of the theory.
One can also choose to work with different gauge groups. Using

SU(N) and choosing a level k one obtains the two parameter HOMFLY
knot polynomial (the two parameters here being N and k). Similarly,
using SO(N) at level k gives a two parameter Kauffman polynomial (not
to be confused with the Kauffman bracket). Typically a Chern-Simons
theory with gauge group G at level k is notated as Gk (For example,
using SU(2) at level 2 we write the theory as SU(2)2). Changing the
sign of k corresponds to taking the “mirror image” of the theory (the
partition function is complex conjugated).

5.3 Appendix: Odds and Ends about Chern
Simons Theory

5.3.1 Gauge Transforms with Nonabelian Gauge
Fields

Let us define a Wilson-line operator, similar to the Wilson loop but not
forming a closed loop, i.e., going along a curve C from space-time point
x to point y.

WC(x, y) = Tr

[
P exp

(∫

C

dlµaµ

)]

Under a gauge transformation function U(x) we intend that the Wilson
line operator transform as

WC(x, y) → U(x)−1 WC(x, y) U(y) (5.18)
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Clearly this obeys composition of paths, and will correctly give a gauge
invariant result for a closed Wilson loop. Now let us see what is required
for the gauge field aµ such that Eq. 5.18 holds. We consider

WC(x, x + dx) = 1 + aµdx
µ (5.19)

and its transformation should be

WC(x, x+ dx) → U(x)−1WC(x, x+ dx)U(x + dx)

= U(x)−1[1 + aµdx
µ]U(x+ dx)

= U(x)−1[1 + aµdx
µ][U(x) + dxµ∂µU(x)]

= 1 + [U−1aµU + U−1∂µU ]dxµ (5.20)

By comparing Eq. 5.19 and Eq. 5.20 we see that the gauge transform
rule Eq. 5.12 correctly gives a gauge invariant Wilson loop operator.

5.3.2 Chern Simons Action is Metric Independent

You will often see books state that Eq. 5.13 must be metric independent
because you don’t see the metric gµν written anywhere. But that kind
of misses the point!
A differential geometer would see that one can write the Chern-Simons

action in differential form notation

SCS =
k

4π

∫
(a ∧ da+ 2

3
a ∧ a ∧ a)

which then makes it “obvious” that this is metric independent being the
integral of a 3-form.
In more detail however, we must first declare how the gauge field

transforms under changes of metric. It is a “1-form” meaning it is meant
to be integrated along a line to give a reparameterization invariant result,
such as in the Wilson loops. In other words, we are allowed to bend and
stretch the space-time manifold, but the flux through a loop should stay
constant. Under reparametrization of coordinates we have

∫
da =

∫
dxµaµ(x) =

∫
dx′µ

∂xν

∂x′µ
aν(x

′)

This means that under reparameterization x′(x) we have

aµ(x) =
∂xν

∂x′µ
aν(x

′)

such that the line integral remains invariant under a reparameterization
of the space.
Now, if we make this change on all of the a’s in the the Chern-Simons

action we obtain

ǫαβγ Tr

[
aα∂βaγ −

2i

3
aαaβaγ

]
→
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ǫα
′β′γ′ ∂xα

∂x′α′
∂xβ

∂x′β′
∂xγ

∂x′γ′ Tr

[
aα∂βaγ −

2i

3
aαaβaγ

]

But notice that the prefactor, including the ǫ, is precisely the Jacobian
determinant and can be rewritten as

ǫα
′β′γ′

det[∂x/∂x′]

Thus the three-dimensional Chern-Simons action integral can be changed
to the dx′ variables and the form of the integral is completely unchanged
and thus depends only on the topological properties of the manifold.
In fact, this feature of the Chern-Simons Lagrangian is fairly unique.

Given that we have a single gauge field aµ(x) this is the only (3-form)
gauge invariant Lagrangian density we can write down which will give a
topological invariant!

5.3.3 Winding Number: The Pontryagin Index

We would like to show that the integral in Eq. 5.15 is indeed always
an integer. While doing this rigorously is difficult, it is not too hard to
see roughly how it must be done. First, we note that, like the Chern-
Simons action, it is the integral of a three form so it does not care
about the metric on the manifold (this is not surprising being that this
winding number arose from the Chern-Simons action). One can then
reparameterize the manifold in terms of coordinates within the group,
and convert the integral over space into an integral over the group. The
only thing that is left unclear is then in the mapping U(x) : M → G
how many times the group is covered in this mapping. We then have
immediately that the given definition of the winding number must be an
integer times some constant. By construction of a few examples, one can
see that the constant is indeed unity (See exercise 5.4). A more detailed
discussion of this issue is given in Vandoren and van Nieuwenhuizen
[2008] and Rajaraman [1982].

5.3.4 Framing of the Manifold — or Doubling the
Theory

There is a bit of a glitch in Chern-Simons theory. We want the Chern-
Simons functional Z(M) to be a function of the topology of M only.
This is almost true — it is true up to a phase. In order to get the
phase, you need to specify one more piece of information which can be
provided in several ways (often called a 2-framing17). This additional 17A detailed discussion of 2-framing

is given by Atiyah [1990b]; Kirby and
Melvin [1999]. This is fairly mathemat-
ical stuff!

piece of information is most easily described by saying that you need
to specify a bit of information about the topology of the 4-manifold
N that M bounds M = ∂N . It is a fact that all orientable closed
3-manifolds are the boundary of some 4-manifold — in fact, of many
possible 4-manifolds. The phase of Z(M) is sensitive only to the so-
called “signature” of the 4-manifold N . (Consult a book on 4 manifold
topology if you are interested!)
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The fact that the Chern-Simons theory should depend on some infor-
mation about the 4-manifold that M bounds may sound a bit strange.
It is in fact a sign that the Chern-Simons theory is “anomolous”. That
is, it is not really well defined in 3-dimensions. If you try to make sense
of the functional integral

∫
Daµ, you discover that there is no well de-

fined limit by which you can break up space-time into little boxes and
integrate over aµ in each of these boxes. However, if you extend the
theory into 4-dimensions, then the theory becomes well behaved. This
is not unusual. We are familiar with lots of cases of this sort. Perhaps
the most famous example is the fermion doubling problem. You cannot
write down a time reversal invariant theory for a single chirality fermion
in D dimensions without somehow getting the other chirality. However,
you can think of a system extended into D + 1 dimensions where one
chirality ends up on one of the D-dimensional boundaries and the other
chirality ends up on the other D dimensional boundary18. So to make18This is precisely what happens on the

surface of materials known as “Topo-
logical Insulators” (or TIs) in three di-
mensions. The bulk of the system is a
gapped insulator, but the surface of the
system has a single Dirac fermion (or an
odd number of Dirac fermions) and this
is impossible to have in a purely two-
dimensional system. See chapter ***.

Chern-Simons theory well-defined, you must either extend into 4D, or
you can “cancel” the anomoly in 3D by, for example, considering two, op-
posite chirality Chern-Simons theories coupled together (so-called “dou-
bled” Chern-Simons theory). The corresponding manifold invariant of
a doubled theory gets Z(M) from the righthanded theory and its com-
plex conjugate from the left handed theory, thus giving an end result of
|Z(M)|2 which obviously won’t care about the phase anyway!

5.3.5 Chern Simons Theory as Boundary of a Four
Dimensional Topological Theory

With the considerations of the previous section 5.3.4, it is interesting to
express Chern-Simons theory as the boundary theory of a 4D topological
theory. To do this let us define the field strength tensor

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]

This definition matches the expression for the electomagnetic field strength
in the case where the fields are abelian such that the commutator van-
ishes. However, more generally for nonabelian gauge theories (including
Yang-Mills theory) the additional commutator term must be added.
In 4D we can define the dual field strength

∗Fµν =
1

2
ǫµνλρFλρ

where ǫ is the antisymmetric tensor. We now consider the following
topological action on a 4D manifold N

S =
θ

16π2

∫

N
d4x Tr [Fµν

∗Fµν ]

This 4D action is well defined and non-anomalous, meaning it can be
regularized and/or treated properly on a lattice.
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With a bit of algebra the action can be rewritten as

S =
θ

8π2

∫

N
d4x ∂µGµ

where

Gµ = 2ǫµνλρTr

[
Aν∂λAρ +

2

3
AνAλAρ

]
(5.21)

Since the action can be written as the integral of a total derivative, it
should give zero when integrated over a closed manifold N . However
when the manifold has a boundary one obtains

S =
θ

8π2

∫

∂N

d3x Gµv
µ

where vµ is the unit vector normal to the boundary. Examining the
form of Eq. 5.21 we realize that the action is precisely the Chern-Simons
action on the 3D boundary manifold ∂N .

5.3.6 Chern Simons Canonical Quantization for the
Abelian Case

One can consider the Chern-Simons theory as a quantum mechanical
theory with wavefunctions and operators (i.e., not in path integral lan-
guage). To do this, we need to find the commutation relations. Working
in the gauge a0 = 0, in the Chern-Simons Lagrangian terms like ∂0ay
multiply ax and vice versa19. This means that ay(x) is the momen- 19Note that for nonabelian Chern-

Simons theories working in the a0 = 0
gauge makes the a3 term of the action
vanish!

tum conjugate to ax(x) and vice versa. We thus have the commutation
relations

[ax(~x), ay(~x
′)] =

i~

µ
δ(~x− ~x′)

The arguments ~x here live in 2 dimensions. Consider now the Wilson
loop operators around the two different handles of a torus

Wj = exp

(
i(q/~)

∮

Lj

~dl · ~a
)

where here j indicates we have a loop around either cycle 1 (L1) or cycle
2 (L2) of our torus. The two paths must intersect at one point and
therefore, due to the above commutations, do not commute with each
other. We can use the identity that

eAeB = eBeAe[A,B]

which holds when [A,B] is a number not an operator. This then gives
us

W1W2 = eiq
2/µ~W2W1 = eiθW2W1

where θ is the statistical angle of the theory. Thus the Wilson loop
operators act just like operators T1 and T2 in section 4.3 which created
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particle-hole pairs and moved them around the handle then reannihi-
lated. So even without discussing particles, the ground state wavefunc-
tion of the Chern-Simons theory is degenerate!

Chapter Summary

• The Charge-Flux model can be realized in an abelian Chern-
Simons theory.

• We introduced some ideas of general nonabelian Chern-Simons the-
ory, including manifold invariants and turning Wilson loop opera-
tors into knot invariants.

A good reference for abelian Chern-Simons theory is

• F. Wilczek, ed. Fractional Statistics and Anyon Superconductivity,
World Scientific, (1990).

Some good references on nonabelian Chern-Simons theory are

• E.Witten, Quantum Field Theory and the Jones PolynomialComm.
Math. Phys. Volume 121, Number 3 (1989), 351-399; available on-
line here https://projecteuclid.org/euclid.cmp/1104178138. This
is the paper that won a Fields’ medal!

• Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman,
Sankar Das Sarma, Non-Abelian Anyons and Topological Quan-

tum Computation, Rev. Mod. Phys. 80, 1083 (2008). Also avail-
able online at https://arxiv.org/abs/0707.1889. This has a short
discussion of Chern-Simons theory meant to be easily digested.

• Louis Kauffman, Knots and Physics, World Scientific, (2001), 3ed.
The section on Chern-Simons theory is heuristic, but very useful.

• Current Algebras and Anomolies, by S. Treiman, R. Jackiw, B. Zu-
mino, and E. Witten (World Scientific) 1985. See particularly the
chapters by R. Jackiw.

• G. Dunne, Aspects of Chern-Simons Theory in Topological as-
pects of low dimensional systems. Les Houches - Ecole d’Ete de
Physique Theorique, vol 69. Springer, Berlin, Heidelberg, eds A.
Cometet, T, Jolicoeur and S. Ouvry. Also available as arXiv:hep-
th/9902115.

Exercises

Exercise 5.1 Polyakov Representation of the Linking Number
Consider a link made of two strands, L1 and L2. Consider the double line

integral

Φ(L1, L2) =
ǫijk
4π

∮

L1

dxi
∮

dxj
xk − yk

|x− y|3
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(a) Show that Φ is equal to the phase accumulated by letting a unit of flux
run along one strand, and moving a unit charged particle along the path of
the other strand.

(b) Show that the resulting phase is the topological invariant known as the
linking number — the number of times one strand wraps around the other,
see section 2.6.2.

This integral representation of linking was known to Gauss.

Exercise 5.2 Gauge Transforming the Chern-Simons Action
Make the gauge transform Eq. 5.12 on the Chern-Simons action 5.8 and

show that it results in the change 5.14. Note that there will be an additional
term that shows up which it a total derivative and will therefore vanish when
integrated over the whole manifold M.

Exercise 5.3 Winding Numbers of Groups in Manifolds
Consider the mapping of U(x) ∈ SU(2) → S3. Construct an example of a

map with winding number n for arbitrary n. I.e., find a representative of each
group element of Π3(SU(2)) (See note 15).

Exercise 5.4 Quantization of Winding Number
Let us consider the manifold S3 which we consider as R3 plus a point at

infinity. Consider the gauge transform function defined

U(x) = exp

(

iπNx · σ
√

|x|2 +R2

)

where x is a point in R3, and σ represents the Pauli matrices with R an
arbitrary length scale. Show the winding number Eq. 5.15 gives the integer
N . Why does N need to be an integer here?





Short Digression on Quantum
Gravity1 6

Medium Material

6.0.1 Why This Is Hard
1This chapter aims to give context
about why people first started studying
topoogical theories. It can be skipped
on a first reading (but do come back
later to enjoy it!).

Little is known about quantum gravity with any certainty at all. What
we do know for sure is the value of some of the fundamental constants
that must come into play: the gravitational constantG, the speed of light
c and of course Planck’s constant ~. From these we can put together an
energy scale, known as the Planck Scale

EPlanck =

√
~c5

G
≈ 1028 eV.

The temperature of the world around us is about 0.03 eV. Chemistry,
visible light, and biology occur on the scale of 1 eV. The LHC accelera-
tor probes physics on the scale of roughly 1013 eV. This means trying to
guess anything about the Planck scale is trying to guess physics on an
energy scale 15 orders of magnitude beyond what any accelerator2 exper- 2Cosmic ray observations have been

made at several orders of magnitude
higher still — but very little can be de-
duced from these extremely rare and
uncontrolled events. A famous event
known as the “Oh my God particle”
was apparently 1020 eV, still 8 orders of
magnitude away from the Planck scale.

iment has ever probed. We must surely accept the possibility that any
physical principle we hold dear from all of our experiments on low energy
scales could no longer hold true at the Planck scale! The only thing that
is really required is that the effective low energy theory matches that
which we can see at the low energies in the world around us.

6.0.2 Which Approach?

There are several approaches to quantum gravity. While I will not make
any statement about which approaches are promising, and which ap-
proaches are crazy and overpublicized3, I am comfortable stating that 3For some basic information on the

wars between some of the different ap-
proaches to quantum gravity, see the
books “The Trouble With Physics” by
Lee Smolin or “Not Even Wrong” by
Peter Woit. Or see responses to these,
such as the article by J. Polchinski in
the American Scientist, or (with appro-
priate warning that it a bit of a rant)
the online response by Lubos Motl.
Also enlightening are the online letters
between Smolin and Lenny Susskind.

many of these investigations have led to incredibly interesting and im-
portant things being discovered. While in some cases (maybe in most
cases) the discoveries may be more about math than about physics, they
are nonetheless worthwhile investigations that I am enthusiastic about.

6.1 Some General Principles?

We have to choose general principles that we believe will always hold,
despite the fact that we are considering scales of energy and length
15 orders of magnitude away from anything we have ever observed or
measured. Much of the community feels that the most fundamental
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thing to hold onto is the Feynman picture of quantum mechanics —
that all space-time histories must be allowed. We might write a quantum
partition function of the form

Z =
∑

All universes

eiS/~ (6.1)

where the sum is now over everything that could happen in all pos-
sible histories of the universe — it is the ultimate sum over histories!
Obviously such a thing is hard to even contemplate. Several key simpli-
fications will make contemplation easier:

(1) Let us ignore matter. Let us (at least to begin with) try to model
only universes which are completely devoid of substance and only
contain vacuum.

Thus the universe contains only the space-time metric. Doing this, the
Einstein-Hilbert action4 for gravity takes the form4Written down first by Hilbert in 1915.

SEinstein ∼
∫

M
dx R

√
−det(g)

where the integration is over the entire space-time manifold M, where
here g is the space-time metric tensor and R is the Ricci scalar5. One5If you are rusty with your general rel-

ativity, recall that the metric tensor g
defines the relativistically invariant line
element via ds2 = gµνdxµdxν , and the
Ricci scalar R, which is a complicated
function of g, is a measure of the curva-
ture of a manifold which compares the
volume a small ball to the volume it
would have in flat Euclidean space. In
particular for a D dimensional manifold
M we would consider a D-dimensional
ball BD of radius ǫ and we have

V (BD) ⊂ M
V (BD) ⊂ RD

= 1− ǫ2R

6(D + 2)
+ . . . .

might imagine that we could construct a theory of quantum gravity
by plugging the Einstein-Hilbert action into the path integral form of
Eq. 6.1. We obtain

Z =

∫
Dg(x) eiSEinstein[g(x)]/~ , (6.2)

thus summing (or integrating) over all possible space-time metrics. Even
without matter in the universe, the model is very nontrivial because the
space-time metric can fluctuate — these fluctuations are just gravity
waves6. Even in this limit no one has fully made sense of this type of

6Observation of gravity waves by the
LIGO experiment won the 2017 Nobel
Prize. Long before this we had very
strong indirect observation of gravity
waves from observation of the Hulse-
Taylor binary pulsar which earned a
Nobel Prize in 1993.

path integral without many additional assumptions.

(2) Let us simplify even more by considering a 2+1 dimensional uni-
verse.

We are used to the idea that many things simplify when we go to lower
dimension. Indeed, that is what happens here. In 2+1 dimension, there
is an enormous simplification that there are no gravity waves! Why
not? In short, there are just not enough degrees of freedom in a 2+1
dimensional metric to allow for gravity waves. (For more information
about this fact see the appendix to this chapter, section 6.2.) As a result,
the only classical solution of the Einstein equations in the vacuum is
that R = 0 and that is all! I.e., the universe is flat and there are no
fluctuations. (One can also have a cosmological constant Λ in which case
R = 2Λg is the solution).
One might think that this means that gravity in 2+1D is completely

trivial. However, it is not. The space-time manifold, although every-
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where curvature free, still has the possibility of having a nontrivial topol-
ogy. Thus what we are interested in is actually the different topologies
that our space-time manifold might have!
We thus rewrite Eq. 6.1 as

Z =
∑

manifoldsM

∫

M
Dg(x) eiS[g(x)]/~

=
∑

manifoldsM
Z(M)

where S[g(x)] is the Einstein-Hilbert action for a flat universe with met-
ric g, the sum is over all different topologies of manifolds the universe
might have, and the integration Dg is an integration over all metrics
subject to the condition that the manifold’s topology is fixed to be M.
Why would we be interested in such a quantity? In short, suppose

we know what the topology is of our (d-dimensional universe) at a fixed
time t. We want to know the amplitudes that the topology changes as
t develops. I.e., is the space-time manifold of our universe of the form
M = Σ× time or does the space-time manifold split analogous to that
shown in Fig. 6.1.

ti
m
e

Fig. 6.1 A manifold where the topol-
ogy of a space-like slice (slice at fixed
time) changes as time progresses.

Here is the surprise: the function Z(M) is precisely the Chern-Simons
partition function discussed above in section 5.2 for an appropriately
chosen gauge group!7 This connection is very roughly sketched in the 7 This was first noted by Achúcarro

and Townsend [1986] and then was de-
veloped further by Witten [1988] and
many others.

chapter appendix section 6.3.

6.1.1 Further Comments on Connections to
Quantum Gravity

In the “this is not string-theory” school of thought for quantum gravity,
evaluation of Eq. 6.2 is the main goal. Crucially one needs some vari-
ables to describe the metric of the universe. Several different approaches
to this seem to converge on some similar structures. One interesting ap-
proach, known as loop quantum gravity, uses Wilson loop operators as
the elementary variables of the theory (once one has reformulated grav-
ity to look like a gauge theory). Another approach discretizes space-time
and sums over the different possible discretizations8. With certain as-

8Indeed at length scales as small as the

Planck length lPlanck =
√

~G/c3 =
~c/EPlanck ≈ 1.6× 10−35m, there is no
reason to believe space-time resembles
our macroscopic idea of a smooth man-
ifold. The ratio of the radius of the sun
to the radius of an atom is roughly the
same as the ratio of the radius of an
atom to the Planck length!

sumptions these approaches appear to be very closely related! In section
21.3 we will return to the issue of discretizing space-time and how this
can result in topological gravity.
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6.2 Appendix: No Gravity Waves in 2+1 D

Why are there no gravity waves in 2+1 dimension? The short argument
for this is as follows (taken from Carlip [2005])

In n dimensions, the phase space of general relativity is
parametrized by a spatial metric at constant time, which has
n(n− 1)/2 components, and its conjugate momentum, which adds
another n(n− 1)/2 components. But n of the Einstein field equa-
tions are constraints rather than dynamical equations, and n more
degrees of freedom can be eliminated by coordinate choices. We
are thus left with n(n − 1) − 2n = n(n − 3) physical degrees of
freedom per spacetime point. In four dimensions, this gives the
usual four phase space degrees of freedom, two gravitational wave
polarizations and their conjugate momenta. If n = 3, there are no
local degrees of freedom.

Let us put a bit more detail on this argument. If we write the flat
metric as ηµ,ν = diag[−1, 1, 1, . . .] in any dimension, and we consider
small deviations from a flat universe g = η + h, we can construct the
trace-reversed

h̄µν = hµν −
1

2
ηµνη

ρσhρσ .

In any dimension, gravitational waves in vacuum take the form

h̄µν ,ν = 0

and
�h̄µν = 0

where the comma notation indicates derivatives, and indices are raised
and lowered with η.
In any dimension we will have the gravitational wave of the form

h̄µν = ǫµνe
ikρxρ

where the polarization ǫµν is orthogonal to the lightlike propagation
wavevector, kµkµ = 0, meaning

ǫµνk
ν = 0. (6.3)

However, one must also worry about gauge freedoms. We can redefine
our coordinates and change the form of the metric without changing any
of the spatial curvatures. In particular, making a coordinate transform
x→ x− ξ, we have

h̄µν → h̄µν − ξν,µ − ξµ,ν + ηµ,νξ
α
,α

Now here is the key: In 2+1 D for any matrix ǫ you choose, you can
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always find a
ξµ = Aµe

ikρxρ

such that
h̄µν = ǫµνe

ikρxρ = ξν,µ + ξµ,ν − ηµ,νξ
α
,α

This means that the wave is pure gauge, and the system remains per-
fectly flat! I.e., if you calculate the curvature with this form of h̄, you
will find zero curvature.
To be more precise, we find

ǫµ,ν = Aµkν −Aνkµ + ηµνA
σkσ

and any ǫ that satisfies Eq. 6.3 can be represented with some vector A.
It is easy to check this by counting degrees of freedom. ǫ has 6 degrees
of freedom in 2+1 D, but Eq. 6.3 is 3 constraints, and A has three
parameters, so we should always be able to solve the equation for A
given ǫ.

6.3 Appendix: Relation of 2+1D GR to

Chern-Simons Theory (In Brief)

Let us start with a Chern-Simons Lagrangian for SU(2)k ⊗ SU(2)−k.
Here we will use a very shorthand notation

L =
k

4π

∫

M

(A+dA+ +
2

3
A3

+) +
−k
4π

∫

M

(A−dA− +
2

3
A3

−)

Making the transformation

ω=
1

2
(A+ +A−) e =

k

8π
(A+ −A−)

one obtains the Lagrangian (using differential form notation)

L =

∫
(e ∧R+

λ

3
e ∧ e ∧ e) (6.4)

Here e is interpreted as the dreibein of general relativity which is related
to the metric by (returning appropriate indices to vectors)

gµν = eaµe
a
νηab

with ηab the flat metric in 2+1 D, and ω is a spin connection which has
an equation of motion that dictates it is torsion free, and the remaining
Lagrangian Eq. 6.4 is precisely the 2+1D Einstein-Hilbert Lagrangian
in the so-called Palitini form. In that equation

λ = (4π/k)2



66 Short Digression on Quantum Gravity

is the cosmological constant. The calculation here has been given for a
Euclidean form of gravity. For Lorenzian gravity one needs to work with
SO(2, 1) Chern-Simons theory which is a bit more complicated.
More details of the relationship between 2+1D general relativity and

Chern-Simons theory are provided in the further reading, listed below.

Further Reading

• For a huge amount of information on 2+1 dimensional quantum
gravity, see Carlip [2005].

• The relationship of 2+1 D gravity to Chern-Simons theory was first
developed by Ana Achúcarro and Paul Townsend ([Achúcarro and
Townsend, 1986])

• The relationship was further developed by EdwardWitten (Witten
[1988])

• Years later, the question was revisited by Witten [2007], where
doubt is raised as to whether Chern-Simons theory is sufficient to
fully describe gravity in 2+1 dimensions.

• A (potentially biased) history of various approaches to quantum
gravity is given by Rovelli [2000].

• Reviews of loop quantum gravity are given by Rovelli [2008] and
Nicolai et al. [2005].

• Discussions of discretization approaches to quantum gravity are
given by Regge and Williams [2000] and Lorente [2006].

• The article by Nicolai and Peeters [2007] covers the connections
between the loop and discretization approach fairly clearly.

Note that none of these references are particularly easy to digest!



Defining Topological Quantum
Field Theory1 7

Medium Hard Material

1Many students find this chapter
frighteningly abstract. While this chap-
ter sets the stage for a number of ideas
that come later, it can also be skipped
to a large extent if it seems too difficult.
While it may seem a bit cruel to include
such a chapter early in the book, I’ve in-
cluded it here because it gives the best
definition of what a TQFT actually is
— which, in one form or another, is
what we are studying for the remain-
der of the book.

We already have a rough picture of a Topological Quantum Field Theory
(TQFT) as a quantum theory that depends on topological properties as
opposed to depending on geometric properties. For example, it matters
that particle 1 traveled around particle 2, but it doesn’t matter how far
apart they are.
We can formalize these ideas by saying that the theory should be

independent of small deformations of the space-time metric. We might
say that

δ

δgµν
〈any correlator〉 = 0.

This is a completely valid way to define a TQFT, but is often not very
useful.
Another way to define a (2+1 dimensional) TQFT is that it is a set of

rules that takes an input of a labeled link embedded in a three-manifold2 2Particularly condensed matter physi-
cists might start to wonder why we need
to start talking about arbitrary, and po-
tentially bizarre sounding, three dimen-
sional manifolds — what could they
possibly have to do with real physical
systems? However (besides just being
a beautiful digression) pursuing this di-
rection allows us to understand some
of the strong constraints on topological
models and their mathematical struc-
ture, and this turns out to be impor-
tant for the analysis of even fairly sim-
ple physical systems.

and gives an output of a complex number in a way that is invariant under
smooth deformations. This definition is quite analogous to our definition
of a knot invariant, with two key differences. First, we allow for the lines
to be labeled with a “particle type” (and our rules for evaluating the end
result will depend on the particular particle type labels). Secondly, the
link can be embedded in some arbitrarily complicated three-manifold3.

3We may also allow world lines of
anyons to fuse into other species as dis-
cussed in section 4.2.

This type of mapping (see Fig. 7.1) is precisely the sort of thing that one
gets as an output of Chern-Simons theory which we called Z(M, links) as
we discussed in section 5.2. The advantage of thinking in this language
is that strictly speaking, the functional integrals of Chern-Simons theory

M
a

b −→ Z(M, a, b)

Fig. 7.1 A (2+1) dimensional TQFT takes an input of a labeled link in a manifold
and produces an output of a complex number in a manner which is topologically
invariant.
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are often not well defined mathematically. Instead, here we bypass the
Chern-Simons field theory altogether and define a TQFT simply as a
mapping from a manifold with a link to an output.
A closely related but more formal definition of TQFTs is given by a

set of Axioms by Atiyah [1988]4 which are in some sense much more4Sir Michael Atiyah, a Fields medal-
ist, who went to primary school in Su-
dan, was one of the foremost mathe-
maticians of the 20th century. He spe-
cialized in geometry and topology —
particularly at the interface between
mathematics and physics. You can
find videos of him talking about life,
physics, and mathematics at webofsto-
ries.com.

informative.

7.1 Paraphrasing of Atiyah’s Axioms

Here I’m going to give a rough interpretation of Aityah’s axioms of
TQFT, suitable for physicists. To begin with, we will consider space-
time manifolds with no particles in them. As we have found above,
TQFTs are nontrivial even in the absence of any particles. Later on in
section 7.2 we will discuss adding particles and moving them around in
space-time too.
We will consider a D+ 1 dimensional space-time manifold5 which we5While it is possible to define certain

TQFTs on non-orientable manifolds it
is much easier to assume that all man-
ifolds will be orientable — excluding
things like Möbius strips and Klein bot-
tles. See section 33.1.

call M, and D dimensional oriented slice Σ — we can often think of this
slice as being the D-dimensional space at a fixed time. Almost always
we will be thinking of D = 2, although the axioms are quite general and
can be applied to any D.

AXIOM 1: A D-dimensional space Σ is associated with a Hilbert
space V (Σ) which depends only on the topology6 of Σ.6The phrases “depends only on the

topology...” is something that physi-
cists would say, but mathematicians
would not. To a mathematician, topol-
ogy describes things like whether sets
contain their limit points, whether
points are infinitely dense and so forth.
Perhaps it would be better to just say
that V (Σ) does not change under con-
tinuous deformation of Σ. This is
something mathematicians and physi-
cists would both agree on, and this is
what we actually mean here!

We call the space V , which stands for vector space, although some-
times people call it H for Hilbert space.
As an example of what we mean, we have seen that if Σ is a torus, there

is a nontrivial Hilbert space coming from the ground state degeneracy.
This degenerate space is the space V (Σ). The space V (Σ) will depend
on the particular anyon theory we are considering. For example in the
case of abelian anyons in section 4.3 we found a degeneracy of m for a
system on a torus with statistical angle θ = πp/m.
Note that when we add particles to the system (we will do this in

section 7.2), if the particles are nonabelian, then there will also be a
Hilbert space associated with the additional degeneracy that comes with
such nonabelian particles.

AXIOM 2: the disjoint union of two D-dimensional spaces Σ1 and
Σ2 will be associated with a Hilbert space which is the tensor product
of the Hilbert spaces associated with each space7. I.e.,7This may sound a bit abstract, but

it is exactly how the Hilbert spaces
of any two systems must combine to-
gether. For example, in the case of two
spins, the Hilbert space of the union of
the two spins is the tensor product of
the two Hilbert spaces.

V (Σ1 ∪ Σ2) = V (Σ1)⊗ V (Σ2)

In particular this means that the vector space associated with the null
or empty space ∅ must be just the complex numbers. Let us state this
mathematically.

Axiom 2 Implies:
V (∅) = C



7.1 Paraphrasing of Atiyah’s Axioms 69

The reason this must be true is because ∅ ∪ Σ = Σ and C ⊗ V (Σ) =
V (Σ) so the result follows8. 8If this sounds confusing, remember the

space C is just the space of length 1
complex vectors, and tensoring a length
n vector with a length m vector gives
a size n by m matrix, so tensoring a
vector of length n with a length 1 vector
gives back a vector of length n.

AXIOM 3: IfM is a (d+1)-dimensional manifold withD-dimensional
boundary9 Σ = ∂M , then we associate a particular element of the vector

9We use the ∂ to denote boundary. See
section 33.1.4.

space V (Σ) with this manifold. We write

Z(M) ∈ V (∂M)

where the association (i.e., which particular state in the vector space is
chosen) again depends only on the topology of M.

Here we might think of ∂M as being the space-like slice of the system
at a fixed time, and V (∂M) as being the possible Hilbert space of ground
states. The rest of M (the interior, not the boundary) is the space-time
history of the system, and Z(M) is the particular wavefunction that is
picked out by this given space-time history (See Fig. 7.2).

ti
m
e M

∂M

or M

∂M

Fig. 7.2 Two depictions of a space-time manifold M with boundary ∂M. The left
depiction is problematic because the only boundary of the manifold is supposed to
be the red top surface ∂M (the black outline of M really should not be there, but
we can’t draw a closed three manifold!). The right depiction is more accurate in this
sense, although it depicts a 2D M and 1D ∂M.

The point of this axiom is to state that the particular wavefunction of
a system Z(M) which is chosen from the available vector space depends
on the space-time history of the system. We have seen this principle
before several times. For example, we know that if a particle-antiparticle
pair is taken around a handle, this changes which wavefunction we are
looking at — this process would be part of the space-time history.
Axiom 3 Implies: For M closed, we have ∂M = ∅, the empty space,

so
Z(M) ∈ C

i.e., the TQFT must assign a manifold a topological invariant which is
a complex number. This is exactly what we found from Chern-Simons
theory.
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∂M = Σ

M

∂M′ = Σ∗

M′

Z(M′) = 〈ψ′| ∈ V (Σ∗)

Z(M) = |ψ〉 ∈ V (Σ)

ti
m
e

ti
m
e

Fig. 7.3 In this picture M and M′ are meant to fit together since they have a
common boundary but with opposite orientation Σ = ∂M = ∂M′∗. Here 〈ψ′| =
Z(M′) ∈ V (Σ∗) lives in the dual space of |ψ〉 = Z(M) ∈ V (Σ). Note that the
normals are oppositely directed

AXIOM 4: Reversing Orientation

V (Σ∗) = V ∗(Σ)

where by Σ∗ we mean the same surface with reversed orientation, whereas
by V ∗ we mean the dual space — i.e., we turn kets into bras. It is a
useful convention to keep in mind that the orientiation of the normal of
∂M should be pointing out of M. See Fig. 7.3.
GLUING: If we have two manifolds M and M′ which have a com-

mon boundary ∂M = (∂M′)∗ we can glue these two manifolds together
by taking inner products of the corresponding states as shown in Fig. 7.4.
Here we have Σ = ∂M = (∂M′)∗ so we can glue together the two man-
ifolds along their common boundary to give10

10The notation M ∪Σ M′ means the
union of M and M′ glued together
along the common boundary Σ.

Z(M∪Σ M′) = 〈Z(M′)|Z(M)〉 (7.1)

COBORDISM: Two manifolds Σ1 and Σ2 are called “cobordant” if
their disjoint union is the boundary of a manifold M.

∂M = Σ1 ∪Σ2

We say that M is a cobordism between Σ1 and Σ2. See Fig. 7.5 for an
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M

M′

Σ∗

Σ ⇒
M

M′

Z(M∪Σ M′) = 〈Z(M′)|Z(M)〉 = 〈ψ′|ψ〉
Fig. 7.4 Gluing two manifolds together by taking the inner product of the wave-
functions on their common, but oppositely oriented, boundaries.

example.
We thus have Z(M) ∈ V (Σ∗

1)⊗ V (Σ2), so that we can write

Z(M) =
∑

αβ

Uαβ |ψΣ2,α〉 ⊗ 〈ψΣ1,β |

where |ψΣ2,α〉 is the basis of states for V (Σ2) and 〈ψΣ1,β| is the basis of
states for V (Σ∗

1). We can thus think of the cobordism M as being an
evolution11 similar to that shown in Fig. 7.5. 11This evolution may or may not be

unitary — indeed, the dimensions of
V (Σ1) and V (Σ2) may not even match
if Σ1 6= Σ2.

M

Σ1

Σ2

∂M = Σ∗
1 ∪ Σ2

Fig. 7.5 M is the cobordism between Σ∗
1 and Σ2. I.e., ∂M = Σ∗

1 ∪ Σ2. Note that
we have reversed orientation of Σ1 here.

IDENTITY COBORDISM: If we have M = Σ× I where I is the
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one dimensional interval (We could call it the 1-disk, D1 also) then the
boundaries are Σ and Σ∗ (See Fig. 7.6), and the cobordism implements
a map between V (Σ) and V (Σ). Since the interval can be topologically
contracted to nothing (or infinitesimal thickness”), we can take this map
to be the identity:

Z(Σ× I) =
∑

α

|ψΣ,α〉 ⊗ 〈ψΣ,α| = identity.

where the sum is over the entire basis of states of V (Σ).
Σ

Σ

M

M = Σ× I

∂M = Σ ∪ Σ∗

Fig. 7.6 A cobordism that can be
topologically contracted to nothing acts
as the identity on the Hilbert space
V (Σ).

Σ

M

M = Σ× S1

Fig. 7.7 Gluing the top of Σ × I to
the bottom we obtain M = Σ × S1.
An important fact is that Z(Σ× S1) is
just the ground state degeneracy of the
2-manifold Σ

We can now consider taking the top of the interval I and gluing it
to the bottom to construct a closed manifold M = Σ × S1, where S1

means the circle (or 1-sphere), as shown in Fig. 7.7. We then have

Z(Σ× S1) = Tr [Z(Σ× I)] = Dim[V (Σ)]. (7.2)

where Tr means trace. Thus we obtain the dimension of the Hilbert
space V (Σ), or in other words, the ground state degeneracy of the 2-
manifold Σ.
As we have discussed above in section 4.3, for the torus T 2 we have

Dim V (T 2) = number of particle species (7.3)

which we argued (at least for modular abelian anyon models) based on
non-commutativity of taking anyons around the handles of the torus, and
we will justify for nonabelian anyons as well in section 7.2.1. Similarly,
for a 2-sphere S2, we have

DimV (S2) = 1 (7.4)

since there are no noncontractable loops, and this will also hold for both
abelian and nonabelian theories. See section 4.3.1 for discussion of the
ground state degeneracy of abelian theories on higher genus surfaces.

7.2 Adding Particles

We now consider extending the ideas of TQFT to space-time manifolds
with particle world-lines in them.12

12For dimension D > 2+1 dimensional
TQFTs we could have world-sheets of
moving strings and other higher dimen-
sional objects as well.

Σ
b̄

ā

a

b

Fig. 7.8 A 2-manifold with particles
in it, which are marked and labeled
points. We now call the combination
(the manifold and the marked points)
Σ for brevity.

Let us imagine that there are different anyon types which we can
label as a, b, c, and so forth. The corresponding antianyons are labeled
with overbar ā, b̄ and so forth as in section 4.2.2. We now imagine a
2-manifold with some marked and labeled points as shown in Fig. 7.8.
We call the combination of the 2-manifold with the marked points Σ for
brevity. As with the case without particles (AXIOM 1, in section 7.1), Σ
is associated with a Hilbert space V (Σ). The dimension of this Hilbert
space depends on the number and type of particles in the manifold (We
expect for nonabelian particles, the dimension will grow exponentially
with the number of particles). We can span the space V (Σ) with some
basis states |ψα〉 which will get rotated into each other if we move the
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a

c

b M

Σ = ∂Mb̄

ā

a

b

a

c

b M

Σ = ∂M

M′

Σ′ = ∂(M∪M′)b̄

ā

a
b

Fig. 7.9 Left: 3-manifold M with particles in it, which are marked and labeled lines
(the lines should be directed unless the particle is its own antiparticle). These world
lines may end on the boundary Σ = ∂M. The wavefunction on the boundary ∂M is
determined by the spacetime history given by M. Right: M′ evolves the positions
of the particles in time. Note that by M′ we mean not just the manifold, but the
manifold along with the world-lines in it. In this particular picture Σ = Σ′ being the
same surface with the same types of particles at the same positions.

marked points around within the manifold (i.e., if we braid the particles
around each other).
Similarly a 3-manifold M is now supplemented with labeled links

indicating the world lines of the particles. The world-lines should be
directed unless the particles are their own antiparticles. The world lines
are allowed to end on the boundary of the manifold ∂M. See left of
Fig. 7.9. Analogously we may sometimes call the combination of the
manifold with its world lines M, although sometimes we will write this
as M;L where L indicates the “link” (or knot) of the world lines.
As in the above discussion of axiom 3, the spacetime history specifies

exactly which wavefunction

|ψ〉 = Z(M) ∈ V (∂M)

is realized on the boundary Σ = ∂M. If a basis of V (∂M) is given by
wavefunctions |ψa〉 then we can generally write the particular wavefunc-
tion |ψ〉 in this basis

|ψ〉 =
∑

α

cα|ψα〉.

We can now think about how we would braid particles around each
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other. To do this we glue another manifold M′ to ∂M to continue the
time evolution, as shown in the right of Fig. 7.9. The final wavefunction
is written as

|ψ′〉 = Z(M∪M′) ∈ V (Σ′)

If we put the positions of the particles in Σ′ at the same positions as the
particles in Σ, then the Hilbert spaces, V (Σ′) is the same as V (Σ), and
we can write |ψ′〉 in the same basis as |ψ〉

|ψ′〉 =
∑

α

c′α|ψα〉.

We can then think of Z(M′) as giving us a unitary transformation on
this Hilbert space — which is exactly what we think of as nonabelian
statistics. We can write explicitly the unitary transformation

Z(M′) =
∑

αβ

Uαβ |ψΣ′,α〉 ⊗ 〈ψΣ,β |

or equivalently

c′α =
∑

β

Uαβcβ.

Note that if the particles stay fixed in their positions (or move in
topologically trivial ways) then M′ can be contracted to infinitesimal
thickness and we can think of the unitary transformation as being the
identity. As with the identity cobordism discussed in section 7.1, we can
take such an identity transformation, glue the top to the bottom and
obtain

Z(Σ× S1) = Dim[V (Σ)] (7.5)

I.e., the partition function Z is just the dimension of the Hilbert space
of the wavefunction. This holds true even when Σ has marked points,
or particles, in it.

7.2.1 Particles or No-Particles

In the same way that the ground state of a topological system “knows”
about the types of anyons that can exist in the system, it is also the
case that the TQFT in the absence of particles actually carries the same
information as in the presence of particles13. To see this consider a13Up to here our discussion has been

applicable to TQFTs in any dimension.
From here on we specialize to the most
interesting case of D = 2, that is 2+1
dimensions.

manifold M with labeled and directed world-lines Li in them, as shown
in Fig. 7.10. Now consider removing the world lines along with a hollow
tubular neighborhood surrounding the paths that the world-lines follow
as shown in the figure. We now have a manifold with a solid torus
removed for each world-line loop. (Think of a worm having eaten a path
out of the manifold.) In this configuration, the boundary ∂M of the
manifold M now contains the surface of these empty tubes — i.e, the
surface of a torus T 2 for each world-line loop. Note that the empty tube
is topologically a solid torus D2 × S1 even if the world-line forms some
knot14. The statement that it forms a nontrivial knot is a statement

14D2 is the usual notation for a two

dimensional disk and S1 again is the
circle.
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M

⇒L1

L2
M

Fig. 7.10 Removing the world-lines on the left along with a thickened tube. Imagine
a worm burrowing along the path of the world lines and leaving a hollow hole (colored
red).

about the embedding of the S1 loop in the manifold.
Note that the Hilbert space of the torus surface T 2 is in one-to-one

correspondence with the particle types that can be put around the han-
dle of the torus. Indeed, each possible state |ψa〉 of the torus surface
corresponds to a picture like that of Fig. 7.11, where a particle of type
a goes around the handle. We can think of this solid torus manifold
as being a space-time history where t = −∞ is the central core of the
solid torus (the circle that traces the central line of the jelly filling of the
donut) and the torus surface is the present time. Somewhere between
t = −∞ and the time on the surface of the torus, a particle of type
a has been dragged around the handle. Obviously, gluing such a solid
torus containing a particle world line (Fig. 7.11) back into the empty
solid-torus-shaped tube (right of Fig. 7.10) recovers the original picture
of labeled world lines following these paths (left of Fig. 7.10).

a

Fig. 7.11 The possible wavefunctions |ψa〉 that we can have on the
surface of the torus can be realized by having a world-line of a parti-
cle of type a going around the handle of the torus. We can call these
Z(solid torus with a running around handle) = |ψa〉

The partition function of the manifold with the tori excised from it
(the right of Fig. 7.10) contains all of the information necessary to de-
termine the partition function for the left of Fig. 7.10 for any particle
types that we choose to follow the given world lines. For the manifold
on the right there are two surfaces (the two surfaces on the inside of the
holes left where we excised the two tori), so we have

Z(M) =
∑

i,j

Z(M; i, j) 〈ψL1,i| ⊗ 〈ψL2,j |
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where Z(M; i, j) is the partition function for the torus with two particle
types i, j following the two world line loops L1 and L2, and the two
wavefunctions are the corresponding boundary condition. Thus, if we
want to extract Z(M; a, b), where the particle lines are labeled with a, b
we simply glue in the wavefunction |ψL1,a〉 ⊗ |ψL2,b〉 representing the
boundary condition on the two surfaces.

7.3 Building Simple 3-Manifolds

7.3.1 S3 and the Modular S-matrix

We will now consider building up 3-manifolds from pieces by gluing
objects together using the gluing axiom from section 7.1. The simplest
3-manifold to assemble is the three sphere S3. Remember that S3 can be
thought of as R3 compactified with a single point at infinity (the same
way that S2 is a plane, closed up at infinity — think of stereographic
projection. See the discussion in section 33.1). Recall also that a solid
torus should be thought of as a disk crossed with a circle D2 × S1. I
claim that we can assemble S3 from two solid tori15

15If you are rusty on these elementary
topology manipulations, see the review
in section 33.1

S3 = (S1 ×D2) ∪T 2 (D2 × S1)

The notation here is that the two pieces S1×D2 and D2×S1 are joined
together on their common boundary which is T 2 (the torus surface).
There is a very elegant proof of this decomposition. Consider the

4-ball B4. Topologically we have16

16Topologically it is easiest to think
about the n-dimensional ball, Bn, as
being the interval I = B1 raised to the
nth power. The disk (or 2-ball), is topo-
logically a filled-in square D2 = B2 =
I×I. The usual 3-ball is topologically a
cube B3 = I×I×I. The 4-ball is topo-
logically a 4-cube B4 = I × I × I × I =
D2 ×D2.

B4 = D2 ×D2

Now applying the boundary operator ∂ and using the fact that the
boundary operator obeys the Leibniz rule (i.e., it distributes like a
derivative), we have

S3 = ∂B4 = ∂(D2 ×D2) = (∂D2 ×D2) ∪ (D2 × ∂D2)

= (S1 ×D2) ∪T 2 (D2 × S1)

where we have used the fact that the boundary of a disk is a circle,
∂D2 = S1. Note that the two solid tori differ in that they have the
oppositeD2 filled in. Note that the two solid tori here are glued together
along a common T 2 = S1 × S1 boundary. To see this note that

∂(S1 ×D2) = S1 × S1 = ∂(D2 × S1).

The two tori are glued together meridian-to-longitude and longitude-to-
meridian. (I.e., the contractable direction of one torus is glued to the
non-contractable direction of the other, and vice versa.) A sketch of
how the two solid tori are assembled together to make S3 is given in
Fig. 7.12.

a

Fig. 7.12 Assembling two solid tori to
make S3. The obviously drawn torus
D2 × S1 can be thought of as the red
disk D2 crossed with the blue circle
S1. The remainder of space outside of
this torus, including the point at infin-
ity is the other solid torus S1 × D2.
For this “outside” solid torus, the S1

can be thought of as the vertical green
line. This line becomes S1 by connect-
ing up with itself at the point at infin-
ity. The upper shaded disk is an exam-
ple of a contractable D2 which is con-
tained entirely within the outside solid
torus. Note that the entire outside solid
torus is S1 ×D2, the vertical green line
crossed with disks topologically equiv-
alent to this one. The green loop off to
the side (also contained within the out-
side torus), like the vertical green S1

loop is not contractable within the out-
side solid torus, but can be deformed
continuously to the vertical green loop.

Let us think about the partition function of these two solid tori which
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are glued together on their boundaries to make up S3. We write the
partition function as the overlap between wavefunctions on the outside
and inside tori:

Z(S3) = 〈Z(S1 ×D2)|Z(D2 × S1)〉 = 〈ψoutside|ψinside〉

where the ψ’s are the wavefunctions on the surface of the torus.
We can further consider including world lines around the noncon-

tractable loops of the solid torus, as in Fig. 7.11. There is a different
state on the surface of the torus for each particle type we have run-
ning around the handle. We then assemble S3 with these new solid tori
and get an S3 with two particle world lines linked together as shown in
Fig. 7.13. Gluing the two tori together we get

Z(S3; a loop linking b loop) = 〈Z(S1 ×D2; b)|Z(D2 × S1; a)〉 ≡ Sab
(7.6)

This quantity Sab is known as the modular S-matrix, and it is a very
important quantity in topological theories as we shall see in chapter 17
below.17

17Some comments on the S-matrix: (1)
since a linking b is topologically the
same as b linking a we should have
Sab = Sba. (2) Reversing the direction
of the world line takes a particle to its
anti-particle. This is topologically the
same as taking the mirror image of the
linking diagram in Fig. 7.13, thus we
have Sāb = [Sab]

∗ where ā is the an-
tiparticle of a.

a

b

〈Z(S1 ×D2; b) | Z(D2 × S1; a)〉 =

a

b

=

Embedded in S3

= Z(S3, a link b) = Sab

Fig. 7.13 Here we assemble a partition function for S3 with world lines of a linking

b embedded in the S3. To do this we glue together two solid tori each with a world
line running around the handle. The green line marked b runs around the handle of
the “outside” torus. The end result is known as the modular S-matrix, and it gives a
basis transform converting between the two bases which both span the Hilbert space
of the torus surface where the two solid tori are glued together.

Note that the S-matrix is unitary18, since it is simply a basis transfor- 18Here we are assuming the theory is
modular meaning there are no transpar-
ent particles. This assumption will be
discussed in more depth in section 17.3.

mation between the two sets of wavefunction which both span the vector
space V (T 2) of the torus surface T 2 where the two solid tori are glued
together. Note also that the element S00, corresponding to the element
of the S-matrix where the vacuum particle (no particle at all!) is put
around both handles. (Here we are using 0 to mean the vacuum.) This
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tells us that
Z(S3) = S00 ≤ 1 (7.7)

and in fact, should be strictly less than one unless there are no nontrivial
particle types and S is a one-by-one dimensional matrix.
Another way of viewing the S matrix is as a simple link between two

strands, as shown in Fig. 7.13. As with the Kauffman bracket invariant,
we can construct a set of diagrammatic rules to give a value to knots.
Soon, in chapters 8-16 we will construct diagramatic rules to help us
“evaluate” knots like this. These rules will be somewhat similar to the
rules for the Kauffman bracket invariant, only now we need to keep track
of labels on world lines as well.

7.3.2 S2 × S1

a b

Sew these disks together along their boundaries to make S2

Fig. 7.14 Assembling two solid tori to make S2 × S1. Here the two contractable

disks D2 are sewed together along their boundaries to make S2.

There is another way we can put two solid tori together to make
a closed manifold19. Instead of attaching longitude-to-meridian and19In fact there are an infinite number

of ways two tori can be sewed together
to form a closed manifold. These are
discussed in detail in the appendix to
this chapter, section 7.4.

meridian-to-longitude, we instead attach meridian-to-meridian and long-
itude-to-longitude. (This is perhaps a simpler way to put together two
solid tori!) See Figure 7.14. Here we claim that20

20One should be warned that S2 × S1

cannot be embedded in usual three di-
mensional space, so visualizing it is very
hard!

S2 × S1 = (D2 × S1) ∪T 2 (D2 × S1)

The sewing together is again done along the common boundary T 2 =
S1×S1. The S1 factors in both solid tori are the same, and both of the
D2 have the same S1 boundary. Thus we are sewing togther two disks
D2 along their S1 boundaries to make a 2-sphere S2 (imagine cutting
a sphere in half along its equator and getting two disks which are the
north and south hemispheres).
As in the previous case, we can put world lines through the handles

of the solid tori if we want. If we do so we have21

21It is worth considering how the world
lines, in the case where a = b, are posi-
tioned in the S2 × S1. The world line
around the handle of one torus enters
each S2 sphere through one hemisphere
and the world line around the handle
of the other torus exits each S2 sphere
through the other hemisphere. This fits
with the principle that a nonzero am-
plitude of two particles on the surface
of a sphere can only occur if the two
particles are a particle-antiparticle pair.
This is discussed in section 8.4.

〈
Z(D2 × S1; b) |Z(D2 × S1; a)

〉
= δab

The reason it is a delta function is that both the bra and ket are really
the same wavefunctions (we have not switched longitude to meridian).
So except for the conjugation we should expect that we are getting the
same basis of states for both tori.
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In particular, we have the case where we put no particle (the vacuum)
around both handles, we have (i.e., a = b = I = 0)

〈Z(D2 × S1)|Z(D2 × S1)〉 = δab = 1

So we have the result
Z(S2 × S1) = 1 (7.8)

Note that this agrees with two of our prior statements. On the one hand
Eq. 7.5 says that Z for any two dimensional manifold crossed with S1

should be the dimension of the Hilbert space for that manifold; and on
the other hand Eq. 7.4 states that the dimension of the Hilbert space on
a sphere is 1.

7.4 Appendix: Sewing Two Solid Tori

Together

While this discussion is a bit outside the main train of thought (being
the development of TQFTs) it is interesting to think about the different
ways two solid tori may be sewed together to obtain a closed manifold.

Fig. 7.15 A line that wraps both the
longitude and meridian of the torus.

A solid torus is written as D2 × S1. We define the meridian m to
be the S1 boundary of any D2. I.e., the meridian is a loop on the
surface around the contractable direction of the solid torus. We define
the longitude l as being any loop around the surface of the solid torus
which intersects a meridian at one point. This definition unfortunately
has some (necessary) ambiguity. A line that loops around the meridian
n times as it goes around the noncontractable direction of the torus, is
just as good a definition of a longitude (an example of this is Fig. 7.15
which is n = 1). We call this line l + nm where n is the number of
times it goes around the meridian and l was the original definition of
the longitude that did not loop around the meridian. Redefining the
longitude this way is known as a “Dehn Twist”.
Let us choose a meridian m1 on the surface of one solid torus and

choose to sew it to the line −qm2 + pl2 of the second solid torus (that
is, the line that goes p times around the longitude and −q times around
meridian, we make −q negative so that the two tori surfaces are oppo-
site oriented for attaching them together. Once the two lines are glued
together this uniquely defines how the rest of the two torus surfaces
are glued together. The resulting object is known as the “Lens space”
L(q, p). In section 7.3.1 we showed that L(0, 1) = S3 and in section 7.3.2
we showed that L(1, 0) = S2 × S1. Note that due to the ambiguity of
definition of the longitude of the torus −qm2+pl2, under redefinition of
the longitude goes to (−q − np)m2 + pl2. Thus L(q + np, p) = L(q, p),
and in particular, L(1, 1) = S3 also.
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Chapter Summary

• The Atiyah Axioms formalize the idea of a topological quantum
field theory.

Further Reading

For discussion on the Atiyah Axioms see Atiyah [1988, 1997]

A discussion of gluing together manifolds (as in sections 7.3-7.4) is given
by Rolfson [1976]. The book Farb and Margalit [2012] may also be
useful. We will discuss this type of sewing further in chapter 22 below.
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Fusion and Structure of Hilbert
Space 8

Easy Material

As discussed in section 7.1, each two-dimensional surface (a slice of a
three-dimensional space-time manifold) has an associated Hilbert space.
In the case where there are particles in this surface, the dimension of
the Hilbert space will reflect the nature of the particles. We now seek to
understand the structure of this Hilbert space and how it depends on the
particles. At the same time we will building up a diagrammatic algebra
with the goal of constructing a mapping from world-lines of particles to
complex numbers (a definitions of a TQFT as given in Fig. 7.1). We
briefly introduced graphical notation in section 4.2.1 and we will con-
tinue that development here. For those who prefer more mathematical
detail, in section 8.6 (as well as in chapter 12) we will introduce tensor
description of diagrams and the associated Hilbert spaces.

8.1 Basics of Particles and Fusion — The
Abelian Case

Particle types:

There should be a finite set of labels which we call particle types. For
now, let us call them a, b, c, etc.

Fusion

World lines can merge which we call fusion, or do the reverse, which
we call splitting. If an a particle merges with b to give c, we write
a× b = b × a = c. Fusion and splitting are shown diagrammatically in
Fig. 8.1. Sometimes colloquially we call both diagrams “fusion”.

c

c

a b

a b
Fig. 8.1 Fusion (left) and splitting
(right) diagrams can be thought of as
part of a space-time history of the parti-
cles. If we are describing two separated
particles a and b whose overall quantum
number is c (sometimes we say “overall
fusion channel is c), we would describe
the ket for this state using the right
hand picture — which we can think of
as a space-time description of how the
current situation (a on the left b on the
right) came about (with time going up).
Details of the formal meaning of these
diagrams in terms of as bras and kets
is given in sections 8.6 and chapter 12.

It should be noted that we can think of two particles as fusing together
even if they are not close together. We need only draw a circle around
both particles and think about the “total” particle type inside the circle.
For example, we sometimes draw pictures like shown in Fig. 8.2.

a b

c

Fig. 8.2 Another notation to describe
the fusion of two particle types to make
a third a×b = c. The two particles need
not be close to each other. This figure
is equivalent to the right of Fig. 8.1.

In our abelian anyon model of charges and fluxes (see section 4.2), if
the statistical angle is θ = πp/m (p and m relatively prime and not both
odd) then we have m species a = (aq, aΦ) for a = 0 . . .m − 1, where
qΦ = πp/m. The fusion rules are simply addition modulo m. That is
a× b = (a+ b)modm.
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Identity

Exactly one of the particles should be called the identity or vacuum. We
write this1 as 1 or 0 or I or e. The identity fuses trivially

1It is annoying that we have so many
different ways to express the identity,
but in different contexts different no-
tations seem natural. For example, if
our set of particles is fusing by addi-
tion (as we discussed in the charge-flux
model) the identity should be 0. But if
our group fuses by multiplication, iden-
tity is more naturally 1. See note 5 in
chapter 33.

a× I = a

for any particle type a. In the charge-flux model (section 4.2) we should
think of the identity as being no charge and no flux. Fusion with the
identity is depicted schematically in Fig. 8.3. Often we do not draw the
identity particle at all, being that it is equivalent to the absence of any
(nontrivial) particle.

a

I a

=

a

a

= a =

a

a

I

Fig. 8.3 Fusion of a particle with the identity a× I = a. The dotted line indicates
the identity. In some of these pictures the a particle appears to move slighly to the
left. However, this is not important for topological properties since the path can be
deformed continuously to a particle that does not move.

Antiparticles

Each particle a should have a unique antiparticle which we denote as
ā. The antiparticle is defined by a× ā = I. (There should only be one
particle which fuses with any a to give the identity!). A particle going
forward in time should be equivalent to an antiparticle going backwards
in time as shown in Fig. 8.4. Fusion to the identity can be thought of

a ā
=

Fig. 8.4 A particle going forward
should be equivalent to an antiparticle
going backwards.

as a particle turning around in space-time as shown in Fig. 8.5.I

a ā

=

a a
Fig. 8.5 Fusion of an anyon with its
anti-anyon to form the identity can be
thought of as a particle turning around
in space-time. On the right, we have
reversed one arrow and changed ā to
a, and we have not drawn the identity
line.

A particle may be its own antiparticle, in which case we do not need
to draw arrows on its world lines. An example of this in our charge-flux
model from section 4.2 would be the “2” particle (fusion of 2 elementary
anyons, see section 4.3) in the case of θ = π/4. Also, the identity particle
I is always its own antiparticle.

8.2 Multiple Fusion Channels - the

Nonabelian Case

For the nonabelian theories as we have discussed above (for example in
Section 3.5), the dimension of the Hilbert space must increase with the
number of particles present. How does this occur? In nonabelian models
we have multiple possible orthogonal fusion channels

a× b = c+ d+ . . . (8.1)

meaning that a and b can come together to form either c or d or . . .,

a b

c or d or . . .

Fig. 8.6 Multiple possible fusion chan-
nels. Here we show that a and b can
fuse together to give either c or d or
other possible results.

as shown in Fig. 8.6. A theory is nonabelian if any two particles fuse in
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such a way that there are multiple possible fusion channels (i.e., there
is more than one particle listed on the right hand side of Eq. 8.1).
If there are s possible fusion channels for a× b, then the two particles

a and b have an s dimensional Hilbert space (part of what we called
V (Σ)).
What is this Hilbert space associated with multiple fusion channels?

A slightly imperfect analogy is that of angular momentum addition. We
know the rule for adding spin 1/2,

1

2
⊗ 1

2
= 0⊕ 1,

which tells us that two spin 1/2’s can fuse to form a singlet or a triplet.
As with the case of spins, we can think about the two particles being
in a wavefunction such that they fuse in one particular fusion channel
or the other — even if the two particles are not close together. The
singlet or J = 0 state of angular momentum is the identity here: it has
no spin at all. The analogy with spins is not exact though — unlike the
case of spins, the individual particles have no internal degrees of freedom
(analogous to the 2-states of the spin 1/2), nor do any results of fusion
have an mz degree of freedom (like a triplet would).

Locality

The principle of locality is an predominant theme of anyon physics (if
not of physics altogether).
The quantum number (or “charge”) of a particle is locally conserved

in space. Consider, for example, Fig. 8.7. On the left, a particle a
propagates along and suddenly something complicated happens locally.
If only a single particle comes out of this region it must also be a particle
of type a. (If two particles come out of this region, we could have a split
into two other species as in the right of Fig. 8.1). We sometimes call
this the no transmutation principle. It allows us to conclude that
the complicated picture on the left of Fig. 8.7 must be equal to some
constant times the simple propagation of an a particle as shown on the
right.

a

s
r

d
c

a

b a∝

Fig. 8.7 If a particle a goes into
a spacetime region, then a net par-
ticle charge a must come out. This
is also sometimes called the “no-
transmutation” principle. From far
away, one can ignore any local processes
(up to an overall constant).

If two particles (maybe far away from each other) fuse together to
some overall particle type (in a case where multiple fusion channels are
available) it is not possible to determine this fusion channel by measuring
only one of the initial particles. In order to determine the fusion channel
of the two particles, you have to do an experiment that involves both
of the initial particles. For example, one can perform an interference
measurement that surrounds both of these particles. The fusion channel
is local to the pair.

c b
d

f

a

Fig. 8.8 In this picture b and c fuse to
d. Then this d fuses with a to give an
overall fusion channel of f . No amount
of braiding b around c will change the
fact that the two of them fuse to d.
However, if we braid a with b and c,
this can change the fusion of b with c
subject to the constraint that the fusion
of all three particles will give f .

Similarly, if we have some particles, b and c and they fuse to d (see
Fig. 8.8), no amount of braiding b around c will change this overall fusion
channel d. The fusion channel is local to the pair. If these two then fuse
with a to give an overall fusion channel f , no amount of braiding a,
b and c will change the overall fusion channel f . However, if a braids
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with b and c, then the fusion of b and c might change, subject to the
constraint that the overall channel of all three particles remains f .
Locality gives another important way in which of anyons differs from

the fusion of spins. With spins, if you can measure two spins individually
you can (at least sometimes) determine the fusion channel of the spins.
For anyons you must be able to measure a loop that surrounds both
anyons in order to determine their collective fu sion channel —measuring
each anyon individually does not tell you the fusion of the two!

Antiparticles in the Case of Multiple Fusion Channels

When we have multiple fusion channels (i.e., for nonabelian theories)
we define antiparticles via the principle that a particle can fuse with its
antiparticle to give the identity, although other fusion channels may be
possible.

a× ā = I + other fusion channels

As in the abelian case we use the overbar notation to indicate an an-
tiparticle. It should be the case that for each particle a there is a unique
particle that can fuse with it to give the identity, and we call this par-
ticle ā. As in the abelian case, a particle may be its own antiparticle if
a× a = I +other fusion channels, in which case we do not put an arrow
on the line corresponding to the particle.

8.2.1 Example: Fibonacci Anyons

Perhaps the simplest nonabelian example is the anyon system known as
Fibonacci2 anyons. Something very close to this is thought to occur in

2Fibonacci, also known as Leonardo
of Pisa, was born around 1175 AD.
Perhaps his most important contribu-
tion to mathematics is that he brought
Arabic numerals (or Hindu-Arabic nu-
merals) to the western world. The
Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, . . .
is named after him, although it was
known in India hundreds of years ear-
lier!

the so-called ν = 12/5 quantum Hall state which we will study in more
depth in section 31. Fibonacci anyons are closely related to the SU(2)3
Chern-Simons theory3.

3Fibonacci anyons can be described ex-
actly by the G2 level 1 Chern-Simons
theory. This involves a messy Lie al-
gebra called G2. The SU(2)3 Chern-
Simons theory contains some additional
particles besides the Fibonacci parti-
cles, but ignoring these, it is the same
as Fibonacci.

In this example the particle set includes only two particles, the identity
I and a nontrivial particle which is often called τ .

Particle types = {I, τ}

The fusion rules are

I × I = I

I × τ = τ

τ × τ = I + τ

The first two of these rules hardly need to be written down (they are
implied by the required properties of the identity). It is the final rule that
is nontrivial. This final rule also implies that τ is its own antiparticle
τ = τ̄ which means we do not need to put arrows on world lines.

τ

I

τ

=
τ τ

I

τ

τ

τ

=
τ τ

τ

Fig. 8.9 Two different notations for
the two different fusion channels of two
Fibonacci anyons

With two Fibonacci anyons the Hilbert space is two dimensional, since
the two particles can fuse to I or τ , as shown in Fig. 8.9.
With three Fibonacci anyons the Hilbert space is 3 dimensional, as
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shown in Fig. 8.10. The key thing to notice is that if the first two
particles fuse to τ , then this combination acts as being a single particle
of overall charge τ — it can fuse with the third τ in two ways.
There is a single state in the Hilbert space of three anyons with overall

fusion channel I. This state is labeled as4 |N〉. As mentioned above 4Here |N〉 stands for “noncomputa-
tional”, since it is not used in many
quantum computing protocols that use
Fibonacci anyons.

by Fig. 8.7, due to locality, no amount of braiding amongst the three
particles will change this overall fusion channel (although braiding may
introduce an overall phase).
There are two states in the Hilbert space of three anyons with overall

fusion channel τ . These are labeled |1〉 and |0〉 in Fig. 8.10. Again,
as mentioned above by Fig. 8.7, due to locality, no amount of braiding
amongst the three particles will change this overall fusion channel. Fur-
ther, since in these two basis states the first two particles furthest left
are in an eigenstate (either I in state |0〉 or τ in state |1〉) no amount
of braiding of the first two particles will change that eigenstate from |0〉
to |1〉 or from |1〉 to |0〉. However, as we will see below in section 10.1,
if we braid the second particle with the third, we can then change the
quantum number of the first two particles and rotate between |0〉 and
|1〉.

τ τ τ

τ

I

=
τ τ τ

τ I = |N〉

τ τ τ

I

τ

=
τ τ τ

I τ = |0〉

τ τ τ

τ

τ

=
τ τ τ

τ τ = |1〉
Fig. 8.10 Notations for the three different orthogonal fusion channels of three
Fibonacci anyons. The notation |N〉, |1〉 and |0〉 are common notations for those
interested in topological quantum computing with Fibonacci anyons!

For our Fibonacci system, with 2 particles the Hilbert space is 2 di-
mensional. With 3 particles the Hilbert space is 3 dimensional. It is easy
to see that with 4 particles the Hilbert space is 5 dimensional (fusing a
fourth anyon with |0〉 or |1〉 in figure 8.10 can give either I or τ , whereas
fusing a fourth anyon with |N〉 can only give τ , thus giving a space of
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dimension 2+2+1). With five particles the space is 8 dimensional and
so forth. This pattern continues following the Fibonacci sequence (Try
to show this!), hence the name.
Since the N th element of the Fibonacci sequence for large N is ap-

proximately

Dim of N Anyons = FibN ∼
(
1 +

√
5

2

)N

.

(8.2)

We say that the quantum dimension of this particle is d = (1 +
√
5)/2,

the golden mean (See Eq. 3.8).

8.2.2 Example: Ising Anyons

The Ising5 anyon system is extremely closely related to SU(2)2 Chern-5The name Ising is used here due to the
relationship with the Ising conformal
field theory which describes the Ising
model in 2D at its critical point.

Simons theory6, and this general class of anyon is believed to be realized

6The fusion rules of Ising and SU(2)2
are the same, but there are some
spin factors which differ, as well as a
Frobenius-Schur indicator — see sec-
tions 14.2 and 18.3.

in the ν = 5/2 quantum Hall state (see section 31), topological super-
conductors, and other so-called Majorana systems (see section ***).
The Ising theory has three particle types7:

7Another common notation is to use
ǫ instead of ψ in the Ising theory. In
SU(2)2 the particles I, σ, ψ may be
called 0, 1/2, 1 or 0, 1, 2.

Particle types = {I, σ, ψ}

The nontrivial fusion rules are

ψ × ψ = I

ψ × σ = σ

σ × σ = I + ψ

where we have not written the outcome of any fusion with the identity,
since the outcome is obvious. Again, each particle is its own antiparticle
ψ = ψ̄ and σ = σ̄ so we need not put arrows on any world-lines.
Fusion of anything with the ψ particle always gives a unique result on

the right hand side. We thus call ψ an abelian particle (despite the fact
that the full theory is nonabelian), or we say that ψ is a simple current
(see margin note 8 below). Fusion of many ψ particles is therefore fairly
trivial, since each pair fuses to the identity in only one way.
Fusion of many σ particles, however, is nontrivial. The first two σ’s

can either fuse to I or ψ, but then when the third is included the overall
fusion channel must be σ (since fusing σ with either ψ or I gives σ).
Then adding a fourth σ to this cluster whose overall quantum number
is σ again gives two possible outcomes. Such a fusion tree is shown in
Fig 8.11. By counting possible trees, we find that the total number

σ σ σ σ σ σ σ

σI
or
ψ

σI
or
ψ

σI
or
ψ

Fig. 8.11 The fusion tree for many σ
particles in the Ising anyon theory.

of different fusion channels for N particles of type σ is 2N/2 (rounding
down if N/2 is not an integer). To see this in another way, we can group
σ particles together in pairs where each pair gives either ψ or I, so two
σ particles comprises a two state system, or a qubit. Then the I’s and
ψ’s fuse together in a unique way. Since the Hilbert space dimension is
(
√
2)N the quantum dimension of the σ particle is d =

√
2 (See Eq. 3.8).
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8.3 Fusion and the N matrices

We are well on our way to fully defining an anyon theory. A theory
must have a finite set of particles, including a unique identity I, with
each particle having a unique antiparticle.
The general fusion rules can be written as

a× b =
∑

c

N c
ab c (8.3)

where the N ’s are known as the fusion multiplicities. N c
ab is zero if a

and b cannot fuse to c. N c
ab is one if we have a× b = . . .+ c+ . . ., and

c only occurs once on the right hand side. If c occurs more than once
on the right hand side, then N c

ab simply counts the number of times it
occurs8 .

8A particle a is a simple current if
∑

cN
c
ab = 1 for each particle b.

What does it mean that a particle type can occur more than once in
the list of fusion outcomes? It simply means that the fusion result can
occur in multiple orthogonal ways9 in which case a diagram with a vertex

9While this does not occur for angu-
lar momentum addition of SU(2) (and
also will not occur in Chern-Simons
theory SU(2)k correspondingly) it is
well known among high energy theo-
rists who consider the fusion of repre-
sentations of SU(3). Recall that

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 1̄0⊕ 27

and the 8 occurs twice on the right.
showing a and b fusing to c should also contain an index (µ ∈ 1 . . .N c

ab)
at the vertex indicating which of the possible c fusion channels occurs,
as shown in Fig. 8.12. For most simple anyon theories N c

ab is either
0 or 1, and we will not usually consider the more complicated case in
examples for simplicity, but they are discussed in the chapter appendices
for completeness (See section 9.5.3. See also section ***). It is good to
keep in mind that such more complicated cases exist.

c

a b

µ

Fig. 8.12 Multiple fusion channels. In
nonabelian theory fusion of a and b to c
can occur in multiple orthogonal ways
when Nc

ab > 1. To specify which way
they fuse, we add an additional index
µ ∈ 1 . . . Nc

ab at the vertex as shown.

Elementary properties of the fusion multiplicity matrices

• Commutativity of fusion a× b = b× a.

N c
ab = N c

ba

• Time reversal
N c
ab = N c̄

āb̄ (8.4)

• Trivial fusion with the identity

N b
aI = δab (8.5)

• Uniqueness of inverse
N I
ab = δbā (8.6)

c

a b a c̄b

Fig. 8.13 An equivalence of Nc
ab with

Nabc̄. Both types of vertices have the
equivalent fusion multiplicity. Note
that the left half of the right picture
is exactly equivalent to the right — c
is entering the vertex from below (then
this c turns over to become a c̄ going
up on the far right).

It is sometimes convenient to define

Nabc̄ = N c
ab (8.7)

which is the number of different ways that a, b, and c̄ can fuse to the iden-
tity. An example of this equivalence is shown graphically in Fig. 8.13.
The advantage of this representation is that Nabc is fully symmetric in
all of its indices. For example, using this notation Eq. 8.5 and Eq. 8.6
are actually the same. Further, using Eq. 8.7 along with the symmetry
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of Nabc we can derive identities such as

N c
ab = N b̄

ac̄ = N c
āb. (8.8)

where in the last step we used Eq. 8.4.

Fusing Multiple Anyons

If we are to fuse, say, five anyons of type a together into a final result of
e, we can do so via a tree as shown in Fig. 8.14.
To find the dimension of the Hilbert space, we write

Dim of fusing five a anyons to final result e =
∑

bcd

N b
aaN

c
baN

d
caN

e
da

=
∑

bcd

N b
aaN

c
abN

d
acN

e
ad

and we identify each factor of N as being one of the vertices in the figure.
It is convenient to think of the tensor N c

ab as a matrix Na with indices
b and c, i.e, we write [Na]

c
b, such that we have

Dim of fusing five a anyons to final result e = [(Na)
4]ea

Similarly were we to have a larger number p of anyons of type a we would
need to calculate [Na]

p−1. We recall (See Eq. 3.8) that the quantum
dimension da of the anyon a is defined via the fact that the Hilbert space
dimension should scale as dNa where N is the number of a particles fused
together. We thus have that

da = largest eigenvalue of [Na] (8.9)

Note that this implies da = dā given the symmetries of N .

a a a a a

b

c

d

e

Fig. 8.14 Fusing five a type anyons
together into a final result e.

Example of Fibonacci Anyons

The fusion matrix for the τ particle in the Fibonacci theory is

I τ

Nτ =

(
0 1
1 1

)
I
τ

where, as indicated here, the first row and first column represent the
identity and the second row and second column represent τ . The first
row of this matrix says that fusing τ with the identity gives back τ and
the second row says that fusing τ with τ gives I and τ . It is an easy
exercise to check that the largest eigenvalue of this matrix is indeed
dτ = (1 +

√
5)/2, in agreement with Eq. 8.2.
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Example of Ising Anyons

The fusion matrix for the σ particle in the Fibonacci theory is

I σ ψ

Nσ =




0 1 0
1 0 1
0 1 0



I
σ
ψ

where the first row and column represent the identity, the second row
and column represent σ and the third row and column represent ψ. So,
for example, the second row here indicates that σ × σ = I + ψ. Again,
it is an easy exercise to check that the largest eigenvalue of this matrix
is dσ =

√
2 as described in section 8.2.2.

8.3.1 Associativity

It should be noted that the fusion multiplicity matrices N are very spe-
cial matrices since the outcome of a fusion should not depend on the
order of fusion. I.e., (a× b)× c = a× (b× c). a b c

d

e

a b c

f

e

Fig. 8.15 Fusing (a× b)× c should be
equivalent to a × (b × c). On the left
a and b fuse to d first then this com-
posite fuses with c to give e. On the
right b and c fuse to f first, then this
composite fuses with a to give e. Both
diagrams represent the same physical
Hilbert space. Fixing a, b, c, e the figure
on the left spans the Hilbert space with
different values of d whereas the figure
on the right spans the same space with
different values of f .

For example, let us try to calculate how many ways a× b× c can give
an outcome of e. We can either try fusing a × b first as on the left of
Fig. 8.15 or we can try fusing b and c first as on the right. Whichever
we choose, we are describing the same Hilbert space and we should find
the same overall dimension either way. In other words, we should have
the same total number of fusion channels. Thus, corresponding to these
two possibilities we have the equality

∑

d

Nd
abN

e
cd =

∑

f

Nf
cbN

e
af (8.10)

Again, thinking of N c
ab as a matrix labeled Na with indices b and c, this

tells us that
[Na, Nc] = 0 (8.11)

Therefore all of the N matrices commute with each other. In addition
the N ’s are normal matrices, meaning that they commute with their
own transpose (Since [Na, Nā] = 0 and Na = NT

ā by Eq. 8.8). A set of
normal matrices that all commute can be simultaneously diagonalized,
thus

[U †NaU ]xy = δxyλ
(a)
x (8.12)

and all Na’s get diagonalized with the same unitary matrix U . Surpris-
ingly (as we will see below in section 17.3.1) for well behaved (so-called
“modular”10 anyon theories) the matrix U is precisely the modular S-

10For nonmodular theories, we can still
diagonalize N in the form of Eq. 8.12,
and the resulting unitary matrix U
is sometimes known as the mock S-
matrix.matrix we discussed above in Eq. 7.6 !
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8.4 Application of Fusion: Dimension of

Hilbert Space on 2-Manifolds

The structure of fusion rules can be used to calculate the ground state
degeneracy of wavefunctions on 2-dimensional manifolds11. Here we will11We are again assuming manifolds are

always orientable – so this excludes ob-
jects like the Klein bottle or the Möbius
strip. Only a subset of TQFTs are well
defined in the non-orientable case.

again be examining the Hilbert space V (Σ) where Σ is our 2-manifold
which may or may not have particles in it.
Let us start by considering the sphere S2, and assume that there

are no anyons on the surface of the sphere. As mentioned previously in
Eq. 7.5, there is a unique ground state in this situation because there are
no non-contractable loops (See sections 7.1 and 4.3.1). The dimension
of the Hilbert space is just 1,

Dim V (S2) = 1.

This will be the starting point for our understanding. All other config-
urations (change of topology, adding particles etc) will be related back
to this reference configuration.
Now let us consider the possibility of having a single (nontrivial12)12By nontrivial we mean this particle

is not the vacuum particle. anyon on the sphere. In fact such a thing is not possible because you
can only create particles in a way that conserves that overall quantum
number. If we start with no particles on the sphere, the total anyon
charge must be conserved — i.e., everything on the sphere must fuse
together to total quantum number of the identity. Thus, we have

Dim V (S2 with one (nontrivial) anyon) = 0 (8.13)

Another way to explain this is to realize that, since particle-antiparticles
are made in pairs, there is no space-time history that could prepare the
state with just a single (non-vacuum) particle on the sphere.13

13For higher genus surfaces with non-
abelian theories it is possible to have a
single anyon alone on the surface. An
example of this is when a × ā = I + c.
In this case a pair a and ā may be cre-
ated, one particle can move all the way
around a handle to fuse with its part-
ner, but it may leave behind a single
anyon c since some quantum numbers
can be changed by the action of moving
the anyon around the handle. If we try
this on the sphere (without the handle)
we would always find that the pair re-
annihilates to the vacuum. See further
discussion near Eq. 8.14.

We can however consider the possibility of two anyons on a sphere. We
can create an a particle with an ā particle, and since these two particles
must fuse back to the identity in a unique way we have14

14It is implied that we are counting
states here with the particles a and ā
at some given fixed position (all posi-
tions being topologically equivalent). If
we were to count different positions as
different states in the Hilbert space we
would have to include this nontopolog-
ical degeneracy in our counting as well.

Dim V (S2 with one a and one ā) = 1

The two particles must be antiparticles of each other, otherwise no state
is allowed and the dimension of the Hilbert space is zero. This is a
general principle: the fusion of all the particles on the sphere must be
the vacuum, since these particles must have (at some point in history)
been pulled from the vacuum.
Now we could also imagine puncturing the sphere to make a hole

where the particles were. In the spirit of what we did in section 7.2.1
we could re-fill the hole with any particle type15 . However, if we refill

15Since there is a time direction S1
time

as well, removing a disk with a particle
in it from a spatial manifold Σ is pre-
cisely the same as removing a tubular
neighborhood with a particle world line
in it from the space-time manifold.

one hole with a particular particle type a, then the other hole can only
get filled in with the anti-particle type ā. Nonetheless, we can conclude
that

Dim V (S2 with two unlabeled punctures) = Number of particle types
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⇒ ⇒ ⇒aā

ā a

Fig. 8.16 Surgering the twice punctured sphere into a torus. This is the gluing
axiom in action. Note that we are implicitly assuming the system is trivial in the
“time” direction, which we assume to form a circle S1

time.

Now consider the procedure shown in Fig. 8.16. We start with the
twice punctured sphere. The two punctures can be labeled with any
particle-antiparticle pair labels. We can then deform the sphere to sew
the two punctures together in a procedure that is sometimes called
surgery (We will discuss surgery in more detail in chapter 22). The
result of this surgery is the torus surface T 2 and we conclude that

Dim V (T 2) = Number of particle types

as we have already discussed. The general rule of surgery is that two
punctures can be sewed together when they have opposing particle types
(i.e., a particle and its antiparticle). This is exactly the gluing prop-
erty of the TQFT. Although we are gluing together pieces along a 1-
dimensional boundary (the edge of the punctures), we should realize
that there is also a time direction, which we have implicitly assumed is
compactified into S1

time. Thus we are actually sewing together the 2-
surface (S1

puncture × S1
time) with another 2-surface (S1

puncture × S1
time),

and the inner product between the two wavefunctions on these two-
surfaces ensures that the quantum number on these two punctures are
conjugate to each other16.

16In Eq. 7.3 we had a torus surface
which we crossed with an interval of
time and we closed up the interval to
form a circle, thus giving Tr[Z(T 2 ×
Itime)] = Z(T 2×S1

time) = DimV (T 2).
In contrast, in Fig. 8.16 we have a cylin-
der S1 × I (topologically the same as
a sphere with two holes) crossed with
S1
time and we close the cylinder to get

Tr[Z((S1 × I) × S1
time)] = Z(T 2 ×

S1
time).

We can continue on to consider a sphere with three particles. Similarly
we should expect that the three particle should fuse to the identity as
shown in Fig. 8.17. We can then think of the sphere with three particles a b c

c̄

Fig. 8.17 Three particles that fuse to
the identity. There are Nabc = N c̄

ab dif-
ferent fusion channels.

as being a sphere with three labeled punctures which is known as a “pair
of pants”, for reasons that are obvious in Figure. 8.18. It turns out that
any orientable 2-dimensional manifold (except S2 or T 2 which we have
already considered) can be constructed by sewing together the punctures
of pants — this is known as a “pants decomposition”. For example, in
Fig. 8.19 we sew together two pair of pants to obtain a two handled
torus.
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=

a b c a

b c
Fig. 8.18 A three-times punctured sphere is known as a “pair of pants”.

To find the ground state degeneracy of the two handled torus,

Dim V (Two handled Torus) = Z(Two handled Torus× S1),

we assemble the manifold using two pair of pants as shown in Fig. 8.19
and then we simply need to figure out the number of possible fusion
channels where we could satisfy a × b × c → I (for the bottom pair of
pants) and ā × b̄ × c̄ → I (for the top pair of pants). This number of
possible fusion channels is given in terms of the fusion multiplicities Nabc
as shown in Fig. 8.17. Essentially we are just looking at the number of
ways we can assign labels to the punctures when we glue the objects
together. Thus we have

Dim V (Two handled Torus) =
∑

abc

NabcNāb̄c̄

a b c

−→ā b̄ c̄

Fig. 8.19 Sewing together two pair of pants to form a two-handled torus.

Another interesting use of the pants diagram is to determine the de-
generacy of a torus T 2 with a single anyon on it labelled a. Unlike
the sphere, where one cannot have a single anyon on the surface (See
Eq. 8.13) one can have a single anyon on a torus (See note 13 of this
chapter). To see how this is possible, take a pants diagram with the
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holes labelled b, b̄, and a. Connect up the b to the b̄ to give a torus with
a single puncture remaining labeled a. Thus we conclude that

Dim V (T 2 with one a) =
∑

b

Nbb̄a ≡ La (8.14)

where we have defined this quantity to be called La.
One final example is to determine the ground state degeneracy of a

three handled torus. There are many ways we might cut a three handled
torus into pieces, but a convenient decomposition is the one shown in
Fig. 8.20. Here there are three tori each with a puncture in it (marked as
a red collar), and a single pants in the middle connecting the three. Each
torus with a puncture has a Hilbert space dimension La where a is the
quantum number assigned to the puncture. Thus the total dimension of
the Hilbert space is conveniently written as

Dim V (Three handled Torus) =
∑

abc

LaLbLcNāb̄c̄ (8.15)

Fig. 8.20 Decomposing a three han-
dled torus into three copies of a torus
with puncture (the puncture is the red
collar), and a single pants in the mid-
dle. I have resisted the urge to draw a
three handled object as being covered
with moss.

Example: Fibonacci Anyons

With the Fibonacci fusion rules, there are five ways we can fuse three
particles and get the identity.

NIII = 1

NττI = NτIτ = NIττ = 1

Nτττ = 1

and all other Nabc = 0. Thus there are five possible labelings of the
punctures in a pants diagram that allow overall fusion to the identity.
If we match these together on both top and bottom of the diagram on
the left of Fig. 8.19, we conclude that in the Fibonacci theory we have

Z(Two Handled Torus× S1) = Dim V (Two Handled Torus) = 5.

Similarly, we can consider the degeneracy of states for a torus with a
single τ particle on its surface

Dim V (T 2 with one τ particle on it) = 1

coming from the allowed fusion Nτττ = 1. Thus we have LI = 2 and
Lτ = 1. It is then easy to plug into Eq. 8.15 to obtain

Dim V (Three handled torus) = 15.

8.5 Product Theories

A very common construction is to consider the product of two anyon
theories. Given two anyon theories (let us call them T and t) with
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particle types

a, b, c, . . . ∈ t

A,B,C, . . . ∈ T

we consider the product theory T × t. The Hilbert space of the product
theory is just the product of the Hilbert spaces of the constituent the-
ories. So any arbitrary particle α in the product theory is composed of
one particle from each of the consitutent theories

α ∈ T × t =⇒ α = (Y, x) with Y ∈ T and x ∈ t

For example, in the theory (Ising × Fibonacci), there are 6 particle
types which we can label as

(I, I) (I, τ) (σ, I) (σ, τ) (ψ, I) (ψ, τ)

The fusion multiplicity matrices N for the product theories are just
the product of the N matrices for the constituent theories

N
(C,c)
(A,a),(B,b) = NC

A,BN
c
a,b

8.6 Tensor Description of Fusion and Splitting
Spaces

Let us now try to give a bit more precise mathematical meaning to idea
of fusion as well as to some of the diagrams we have been drawing17. For17Those who feel they have a good

understanding of the physics without
needing the mathematics may be able
to skip this section.

each fusionN c
ab we define a space V

c
ab known as a fusion space and a space

V abc known as a splitting space. Both of these spaces have dimension
N c
ab

dimV cab = dimV abc = N c
ab

Each of these spaces can be given an orthonormal basis, which we label
with an index µ. We can write states in this space as kets which we
draw as diagrams

µ

c

a b

= |a, b; c, µ〉 ∈ V abc (8.16)

describes the splitting space. The Hermitian conjugate, the correspond-
ing bras, are drawn as fusion diagrams

µ

c

a b

= 〈a, b; c, µ| ∈ V cab (8.17)

In the most commonly considered case, N c
ab = 1 in which case there is

a unique state and we do not need to specify µ since it has only one
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possible value. Cases where N c
ab = 0 area non-allowed fusions meaning

that the space V cab and V
ab
c are zero dimensional.

In Eq. 8.16 we have described states in the space associated with
a single anyon splitting into two, and in Eq. 8.17 we have described
states in the space associated with two anyons fusing into one. It is
possible to also describe the splitting or fusion space for a single anyon
splitting or fusing into more pieces. For example, when splitting/fusing
into three pieces the relevant spaces are often denoted18 as V abce or the 18We do not mean e to necessarily be

the identity here. See note 1 of this
chapter. We use this notation to match
that of the next chapter.

Hermitian conjugate V eabc. A basis of states in this space can be written
diagrammatically with the above described splitting vertices as19

19The insertion of the parenthesis (a, b)
in Eq. 8.18, and similarly the parenthe-
sis (b, c) in Eq. 8.21 are crucial to in-
dicate which splitting is closest to the
leaves of the tree (furthest from the
root). Without the parenthesis one can
have ambiguous notation, such as in the
Fibonacci theory, where |ττ ; τ〉⊗|ττ ; τ〉
could mean either the state in Eq. 8.18
or Eq. 8.21. The notation is telling us
something important: that the kets in
Eq. 8.18 and Eq. 8.21 are living in dif-
ferent, albeit isomorphic, spaces.

= |(a, b); d, µ〉 ⊗ |d, c; e, ν〉 ∈ V abd ⊗ V dce ∈ V abce

µ

ν

a b c

d

e

(8.18)

The full splitting space V abce can thus be described as

V abce
∼=
⊕

d

V abd ⊗ V dce (8.19)

with a corresponding dimension of this space

dim V abce =
∑

d

Nab
d N

dc
e . (8.20)

On the other hand, we could just as well have described a state in this
space as

= |a, f ; e, λ〉 ⊗ |(b, c); f, η〉 ∈ V afe ⊗ V bcf ∈ V abce
λ

η

a b c

f

e

(8.21)

In this language the full splitting space V abce can be described as

V abce
∼=
⊕

f

V afe ⊗ V bcf (8.22)

with a corresponding dimension of this space

dim V abce =
∑

d

Naf
e N bc

f . (8.23)

We thus have

V abce
∼=
⊕

d

V abd ⊗ V dce
∼=
⊕

f

V afe ⊗ V bcf (8.24)

where “∼=” means “isomorphic to”. In other words, these are two iso-
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morphic decriptions of the same space. Equating the two different ex-
pressions (Eq. 8.20 and 8.23) for the dimension of this space recovers
the equality Eq. 8.10. The isomorphism between these two descriptions
of the same space will be explored in detail in the next chapter.
One can describe more complicated splitting and fusion spaces in an

analogous way. For example, the space V aaaaae can be described as

V aaaaae
∼=
⊕

b,c,d

V aab ⊗ V bac ⊗ V cad ⊗ V dae

where each term in the direct sum (i.e., each term with fixed b, c, d) is
drawn diagrammatically as in Fig. 8.14.

Chapter Summary

• This is

Further Reading

This is some reading.

Exercises

Exercise 8.1 Quantum Dimension
Let Nc

ab be the fusion multiplicity matrices of a TQFT

a× b =
∑

c

Nc
ab c

meaning that Nc
ab is the number of distinct ways that a and b can fuse to c.

(In many, or even most, theories of interest all N ’s are either 0 or 1).
The quantum dimension da of a particle a is defined as the largest eigenvalue

of the matrix [Na]
c
b where this is now thought of as a two dimensional matrix

with a fixed and b, c the indices.
Show that

dadb =
∑

c

Nc
ab dc

We will prove this formula algebraically in Chapter 17. However there is a
simple and much more physical way to get to the the result: Imagine fusing
together M anyons of type a and M anyons of type b where M gets very
large and determine the dimension of space that results. Then imagine fusing
together a× b and do this M times and then fuse together all the results.

Exercise 8.2 Fusion and Ground State Degeneracy
To determine the ground state degeracy of a 2-manifold in a 2+1 dimen-

sional TQFT one can cut the manifold into pieces and sew back together. One
can think of the open “edges” or connecting tube-ends as each having a label
given by one of the particle types (i.e., one of the anyons) of the theory. Re-
ally we are labeling each edge with a basis element of a possible Hilbert space.
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The labels on two tubes that have been connected together must match (label
a on one tube fits into label ā on another tube.) To calculate the ground
state degeneracy we must keep track of all possible ways that these assembled
tubes could have been labeled. For example, when we assemble a torus as
in Fig. 8.16, we must match the quantum number on one open end to the
(opposite) quantum number on the opposite open end. The ground state de-
generacy is then just the number of different possible labels, or equivalently
the number of different particle types.

For more complicated 2-d manifolds, we can decompose the manifold into
so-called pants diagrams that look like Fig. 8.18. When we sew together pants
diagrams, we should include a factor of the fusions multiplicity Nc

ab for each
pants which has its three tube edges labeled with a, b and c̄.

(a) Write a general formula for the ground state degeneracy of anM -handled
torus in terms of the N matrices.

(b) For the Fibonacci anyon model, find the ground state degeneracy of a
4-handled torus.

(c) Show that in the limit of large number of handles M the ground state
degeneracy scales as ∼ DM where D2 =

∑

a d
2
a.





Change of Basis and
F -Matrices1 9

Medium Easy Material

1This chapter is crucial for the under-
standing of topological quantum sys-
tems. If there is one chapter to really
study closely, this one is it! Don’t worry
too much about the section on gauge
transforms or the appendices.

Let us consider the case of three anyons a, b and c that fuse together to
form an anyon e. As mentioned several times previously (See Fig. 8.15
or Eqs. 8.18 and 8.21) one can describe the state of these three particles
in two different ways. We can describe the space by describing how a
fuses with b (the value of d on the left of Fig. 9.1), or by how b fuses
with c (the value of f on the right of Fig. 9.1). Either of these two
descriptions should be able to describe any state of the three anyons a, b
and c fusing to e. However, in the two different cases these states are
described in different bases. We define the change of basis as a set of
unitary matrices2,3,4 called F , as shown in Fig. 9.1. 2For simplicity we are assuming no

fusion multiplicities Nc
ab greater than

1. In cases where Nc
ab > 1 (as in

Fig. 8.12), each vertex gets an addi-
tional index which ranges from 1 to its
multiplicity so that the F matrix gets
additional indices as well. This case is
discussed in section 9.5.3.
3The conventions for writing F -
matrices used in this chapter match
that of Refs. Kitaev [2006] and
Bonderson [2007].

a b c

d

e

=
∑

f

[
F abce

]
df

a b c

f

e
Fig. 9.1 The F -matrix makes a change of basis between the two different ways of
describing the space spanned by the fusion of three anyon charges a, b, and c when
they all fuse to a total quantum number of e. For fixed a, b, c and e, the matrix F
is unitary in its subscripts d, f . Here F is defined to be zero if the fusion diagram is
not allowed, i.e, if any of the fusion multiplicies Nd

ab, N
e
dc, N

f
bc, N

e
af are zero.

Several brief comments are in order. First, as noted in the caption of
Fig. 9.1 the F matrix is considered to be zero if any of the vertices on
either side of the diagram are not allowed vertices of the fusion algebra.
Secondly F moves involving the identity particle (i.e, with a, b or c
being the identity in the figure) are chosen to have value of unity5. In 5This involves a gauge choice, see sec-

tion 9.4.particular this means

[F Ibce ]be = [F aIce ]ac = [F abIe ]eb = 1 (9.1)

4In the notation of section 8.6 the F matrix describes the isomorphism V abd ⊗V dce
∼=

V afe ⊗ V bcf . We can write the basis change more algebraically as

|(a, b); d〉 ⊗ |d, c; e〉 =
∑

f

[F abce ]df |a, f ; e〉 ⊗ |(b, c); f〉

which represents Fig. 9.1 (where we have again suppressed indices µ, . . . at the vertices
for simplicity).
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)

x y

a

b w vz

cd

e

t

=
∑

f

[
F abce

]
df

x y

a

b w vz

c

f

e

t

Fig. 9.2 The F -matrix can be applied inside of more complicated diagrams. Outside
of the red circle both diagrams are the same. Inside the circle there is exactly the
same transformation as is shown in Fig. 9.1.

Finally, being a change of basis, the F matrix (for fixed a, b, c, e) is
unitary viewed as a matrix with indices d and f .
This idea of change of basis is familiar from angular momentum addi-

tion where the F -matrix is known as a 6j symbol (note it has 6 indices).
One can combine three objects with L2 angular momenta values a, b and
c in order to get L2 angular momentum e, and quite similarly you can
describe this space in terms of a combined with b to get d (as in the left
of Fig. 9.1) or in terms of b combined with c to get f (as in the right of
Fig. 9.1). In fact, even when studying TQFTs, sometimes people refer
to F -matrices as 6j symbols.
It is important to emphasize that an F -matrix can act on a portion of

a diagram, as shown in Fig. 9.2. This allows us to convert any treestruc-
ture in a fusion diagram to any other tree structure.

9.1 Example: Fibonacci Anyons

Again we turn to the example of Fibonacci anyons for clarification. We
imagine fusing together three τ particles. As shown in Fig. 8.10, there is
a single state |N〉 in which the three fuse to the identity I. It should not
matter if we choose to fuse the leftmost two anyons first, or the rightmost
two. In either case there is only one possible state for the outcome. We
can thus draw the simple identity shown in Fig. 9.3. Mathematically
we would write that F τττI = 1. (And as noted in Eq. 9.1, if any of the
three upper indices are the identity, we also have F = 1). The more

τ τ τ

τ

I

=

τ τ τ

τ

I
Fig. 9.3 There is only one state in the
Hilbert space of three Fibonacci anyons
fusing to the identity (we previously
called this |N〉. Thus it does not mat-
ter if you fuse the left two first or the
right two first, you are describing the
same state.

interesting situation is the case where the three Fibonacci anyons fuse
to τ . In this case, there is a two dimensional space of states, and this
two dimensional space can be described in two ways. We can fuse the
left two particles first to get either I (yielding overall state |0〉) or to
get τ (yielding overall state |1〉). See the top of Fig. 9.4. On the other
hand, we could fuse the right two particles first to get either I (yielding
overall state |0′〉) or to get τ (yielding overall state |1′〉). See the bottom
of Fig. 9.4.
The space of states spanned by the three anyons is the same in either
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τ τ τ

I

τ

=
τ τ τ

I τ = |0〉

τ τ τ

τ

τ

=
τ τ τ

τ τ = |1〉

Fusing the two particles on the left first

τ τ τ

I

τ

=
τ τ τ

I τ = |0′〉

τ τ τ

τ

τ

=
τ τ τ

τ τ = |1′〉

Fusing the two particles on the right first

Fig. 9.4 Two ways to describe the same two dimensional space in the case of
Fibonacci anyons. The basis {|0〉, |1〉} fuses the left two particles first, whereas the
basis {|0′〉, |1′〉} fuses the right two particles first.

description. Thus, there must be a unitary basis transform given by
(

|0〉
|1〉

)
=

(
F00′ F01′

F10′ F11′

)(
|0′〉
|1′〉

)
(9.2)

Here F is a two by two matrix, and in the notation of the F matrix
defined in Fig. 9.1, this two by two matrix is [F ττττ ]ab and the indices
a, b should take the values I and τ instead of 0 and 1, but we have used
abbreviated notation here for more clarity.
For the Fibonacci theory the F matrix is given explicitly by6 6We can redefine kets with different

gauge choices (see section 9.4) and this
will insert some phases into the off-
diagonal of this matrix, but the sim-
plest gauge choice gives the matrix as
shown.

F ττττ = F =

(
φ−1 φ−1/2

φ−1/2 −φ−1

)
(9.3)

where φ−1 = (
√
5− 1)/2, so φ is the golden mean. As one should expect

for a change of basis, this matrix is unitary. In Section 9.3 we will discuss
how this matrix is derived (See also section 18.2).
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9.2 Example: Ising Anyons

The situation with Ising anyons is quite similar, so we will be rather
brief. Let us fuse three σ particles to an overall fusion channel of σ.
There is no other choice, three σ particles can only fuse to σ (I.e., there
is no |N〉 state. See section 8.2.2). There are two possible states in
the Hilbert space which we can write in either of two bases as shown in
Fig. 9.5 — either fusing the left two particles first or fusing the right
two particles first. Analogous to the Fibonacci case we can write an F -
matrix which relates the two basis descriptions as in Eq. 9.2. However,
here the F matrix is instead given by

F σσσσ = F =
1√
2

(
1 1
1 −1

)
(9.4)

which is sometimes known as a Hadamard matrix. Deriving this form of
the F -matrix will be described roughly in section 9.3 below, and is done
in detail in sections 18.3 and 19.4 below (See also exercise 9.7).

σ σ σ

I

σ

=
σ σ σ

I σ = |0〉

σ σ σ

ψ

σ

=
σ σ σ

ψ σ = |1〉

σ σ σ

I

σ

=
σ σ σ

I σ = |0′〉

σ σ σ

ψ

σ

=
σ σ σ

ψ σ = |1′〉

Fig. 9.5 Fusing three σ particles in the
Ising theory. In |0〉 and |1〉 we fuse the
left two particles first, whereas in |0′〉
and |1′〉 we fuse the right two particles
first.

In the Ising theory we can also look at situations where we have both
σ and ψ particles. In this case we have7

7It is interesting that the first of these
two equations is a gauge independent
statement, whereas the second of these
two equations involves a gauge choice.
See section 9.4 and exercise 9.1.

[Fψσψσ ]σσ = −1 (9.5)

[F σψσψ ]σσ = −1 (9.6)

Eq. 9.5 is shown diagrammatically in Fig. 9.6. The other elements of
F in the Ising theory which we have not mentioned so far (i.e., those
not described by Eqs. 9.4-9.6) are either 1 if all the fusion vertices are
allowed, or are zero if any of the fusion vertices are not allowed (See
Fig. 9.1 caption).
The presence of the minus signs in Eqs. 9.5 and 9.6 may seem a bit

puzzling being that, for example, the diagrams on the left and right of
Fig. 9.6 are describing the same state in the Hilbert space. However, we
will see in the next section why this sign is required in order to have a
consistent F -matrix (See exercise 9.3 for a more detailed calculation).

ψ σ ψ

σ

σ

= −1

ψ σ ψ

σ

σ

Fig. 9.6 Diagrammatic representation
of Eq. 9.5. Both diagrams describe the
same state in the Hilbert space, but
they differ in a −1 phase.

9.3 Pentagon

It is possible to describe the same Hilbert space in many ways. For
example, with three anyons, as in Fig. 8.15, one can describe the state
in terms of the fusion channel of the two anyons on the left, or in terms
of the two on the right. Ie., we can describe (a×b)×c or a× (b×c), and
as in Fig. 9.1, these two descriptions can be related via an F -matrix.
When there are four anyons, there are still more options of how we

group particles to describe the states of the Hilbert space, and these can
also be related to each other via F matrices similarly (analogous to that
shown in Fig. 9.2). The fact that we can change the connectivity of these
tree diagrams then allows one to make multiple changes in the trees as
shown in Fig. 9.7 Indeed, in this figure one sees that one can go from
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e

a b c d

f
g

a b c d

f

e

l
a b c d

e

l
k

a b c d

g

h

e e

h

a b c d

k

F F

F

F

F

Fig. 9.7 Pentagon Diagram. Each step in the diagram is a new description of the
same basis of states via and F -matrix.

the far left to the far right of the diagram via two completely different
paths (the top and the bottom path) and the end result on the far right
should be the same either way. This diagram, known as the pentagon
diagram8, puts a very strong contraint on the F matrices, which written

8An analogous relation holds for 6j
symbols of angular momentum ad-
dition, known often as the Elliot-
Biedenharn identity.

out algebraically would be

[F fcde ]gl[F
abl
e ]fk =

∑

h

[F abcg ]fh[F
ahd
e ]gk[F

bcd
k ]hl (9.7)

where the left hand side represents the top route of the figure and the
right hand side represents the bottom route.9 9It is very worth working through this

to make sure you understand how this
equation matches up with the figure!
Note that in the equation the F ma-
trices are written in an order such that
those furthest right in Fig. 9.7 are fur-
thest right in the equations.

For very simple theories, such as the Fibonacci anyon theory, the
fusion rules and the Pentagon diagram are sufficient to completely define
the F -matrices (up to some gauge convention choices as in section 9.4).
See exercise 9.4. Further, for any given set of fusion rules there are a
finite set of possible solutions of the pentagon equation10 — a property

10A finite set of gauge inequivalent so-
lutions. I.e., a gauge transform of a
given solution does not count as a new
solution.

that goes by the name “Ocneanu rigidity”11.

11Ocneanu did not manage to ever pub-
lish this important result. See for ex-
ample Etingof et al. [2005].

One might think that one could write down more complicated trees
and more complicated paths through the trees analogous to Fig. 9.7 and
somehow derive additional constraints on the F -matrices. A theorem
by MacLane [1971], known as the “coherence theorem”, guarantees that
no more complicated trees generate new identities beyond the pentagon
diagram.

9.4 Gauge Transforms

We have the freedom to make gauge transformations on our diagrams
and these will be reflected in the F -matrix. While this is a bit of a
technical point, we make frequent use gauge transformation in some
later chapters so it is worth discussing it briefly here.
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A gauge choice is a choice of a phase associated with the vertices in a
diagram. If we chance this gauge choice, diagrams are then multiplied
by phases. Let us define a second vertex
In particular a gauge transformation multiplies the vertices in a dia-

gram by a phase as shown in Fig. 9.8. The tilde over the vertex on the
right notates that we have made a gauge transform to a tilde gauge1212This is much more easily expressed

using the notation of section 8.6 where
we can just write

|a, b; c〉 = uabc
˜|a, b; c〉

c

a b

= uabc
∼
c

a b

Fig. 9.8 We have the freedom to make a gauge transform of a vertex by multiplying

by a phase uabc . The tilde on the right notates that the vertex is in the tilde gauge.

Under such gauge transforms, the F -matrix must correspondingly
transform as

[̃F abce ]df =
uafe u

bc
f

uabd u
dc
e

[F abce ]df (9.8)

As we shall see in section 14.2, some gauge choices are much more nat-
ural than others, but we should always keep in mind that we have this
freedom.
Note that if one of the upper legs is the identity (a = I or b = I

in Fig. 9.8) we typically do not allow a gauge transform of this type of
vertex, since the presence of a vertex with the vacuum is the same as
the absence of a vertex with the vacuum (i.e, we can add or remove lines
labeled by I for free).1313There can be cases where we do

want to specify that a vacuum line has
branched off at one particular point and
we do allow choosing a nontrivial gauge
for such a vertex (See Lin and Levin
[2014] for further discussion of this pos-
sibility).

9.5 Appendix: F -matrix Odds and Ends

9.5.1 Product Theories

Given two anyon theories T and t, we can construct the product the-
ory T × t as in section 8.5. If the theory T has consistent F matrices
[FABCE ]DF and the theory t has consistent F matrices [F abce ]df (“con-
sistent” here means satisfying the pentagon relation), then the product
theory has consistent F matrices

[F
(A,a)(B,b)(C,c)
(E,e) ](D,d),(F,f) = [FABCE ]DF [F abce ]df

The point here is that in a product theory, the two consituent theories
don’t “see” each other at all.
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9.5.2 Unitarity of F

The F -matrix relation we defined as

a b c

d

e

=
∑

f

[
F abce

]
df

a b c

f

e
The fact that F is unitary in its indices d and f means we can also

write

a b c

f

e

=
∑

d

[
F abce

]∗
fd

a b c

d

e

9.5.3 F -matrix with higher fusion multiplicities

In cases where there are fusion multiplicities N c
ab greater than 1, each

vertex gets an additional index as shown in Fig.8.12. The F -matrix must
also describe what happens to these indices under basis transform. We
thus have a more general basis-change equation given in Fig. 9.9.

a b c

d
µ

ν

e

=
∑

f,α,β

[
F abce

]
(dµν)(fαβ)

a b c

f

e

α

β

Fig. 9.9 The F -matrix equation with fusion multiplicities greater than one. Here the

vertex indices are µ ∈ 1 . . . Nd
ab and ν ∈ 1 . . . Ne

dc and α ∈ 1 . . . Nf
bc and β ∈ 1 . . . Ne

af .

The subscripts (dµν) and (fαβ) are “super-indices”, of the matrix F abce . I.e., d, µ
and ν are joined together to make a single index.

In the language of section 8.6 this F -transform is written as

|a, b; d, µ〉 ⊗ |d, c; e, ν〉 =
∑

f,α,β

[
F abce

]
(dµν)(fαβ)

|a, f ; e, β〉 ⊗ |b, c; f, α〉

Gauge Transforms with higher fusion multiplicities

With higher fusion multiplicities N c
ab > 1, our diagrams have indices at

the vertices. Gauge transforms are generally a unitary matrix within
this index space and then take the form shown in Fig. 9.1014

14Again, this is much more easily ex-
pressed using the notation of section 8.6
where we can just write

|a, b; c, µ〉 =
∑

µ′
[uabc ]µµ′ ˜|a, b; c, µ〉Under such gauge transforms, the F -matrix must correspondingly
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c

a b

µ =
∑

µ′

[uabc ]µ,µ′
∼
c

a b

µ′

Fig. 9.10 We have the freedom to make a gauge transform of a vertex by multiplying

by a unitary matrix [uabc ]µµ′ . The tilde on the right notates that the vertex is in the
tilde gauge.

transform as

[̃F abce ](dµ′ν′)(fα′β′) = (9.9)
∑

α,β,µ,ν

([uabd ]−1)µ′µ([u
dc
e ]−1)ν′ν [F

abc
e ](dµν)(fαβ)[u

af
e ]ββ′ [ubcf ]αα′

Chapter Summary

• This is the summary

Further Reading

Exercises

Exercise 9.1 F -gauge choice
(a) Explain why in the Fibonacci theory, [F ττττ ]ττ is gauge independent but

[F ττττ ]Iτ is gauge dependent.
(b) Explain why in the Ising theory is [Fψσψσ ]σσ is gauge independent, but

[F σψσψ ]σσ is gauge dependent.

Exercise 9.2 F ’s with the vacuum field I
Explain why [F aIce ]ac = [F abId ]db = [F Ibce ]be = 1.

Exercise 9.3 Ising Pentagon
Consider a system of Ising anyons. Given the fusion rules, F xyzw will be a

2 by 2 matrix in the case of x = y = z = w = σ (given by Eq. 9.4) and is a
simply a scalar otherwise. One might hope that these scalars can all be taken
to be unity. Unfortunately this is not the case. By examining the pentagon
equation, Eq. 9.7 in the case of a = b = c = σ and d = f = ψ show that taking
the scalar to always be unity is not consistent. Show further that choosing
[Fψσψσ ]σσ = −1 (and leaving the other scalars to be unity) allows a consistent
solution of the pentagon for a = b = c = σ and d = f = ψ.

Exercise 9.4 Fibonacci Pentagon
In the Fibonacci anyon model, there are two particle types which are usually

called I and τ . The only nontrivial fusion rule is τ × τ = I + τ . With
these fusion rules, the F matrix is completely fixed up to a gauge freedom
(corresponding to adding a phase to some of the kets). If we choose all elements
of the F matrix to be real, then the F matrix is completely determined by
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the pentagon up to one sign (gauge) choice. Using the pentagon equation
determine the F -matrix. (To get you started, note that in Fig. 9.7 the variables
a, b, c, d, e, f, g, h can only take values I and τ . You only need to consider the
cases where a, b, c, d are all τ ).

If you are stuck as to how to start, part of the calculation is given in Nayak
et al. [2008].

Exercise 9.5 Pentagon and Fusion Multiplicities
Consider the case of Appendix 9.5.3 where there are fusion multiplicies

Nc
ab > 1. Write the generalization of the pentagon equation Eq. 9.7.

Exercise 9.6 Gauge Change
(a.i) Confirm that the F -matrix transforms under gauge change as indicated

in Eq. 14.2. (a.ii) Show that a solution of the pentagon equation remains a
solution under any gauge transformation.

[Harder] Now consider the case of Appendix 9.5.3 where there are fusion
multiplicies Nc

ab > 1
(b.i) Analogous to (a.i) Confirm Eq. 9.9. (b.ii) Analogous to (a.ii) show

that a solution of the pentagon equation remains a solution under any gauge
transformation. (You will need to solve problem 9.5 first!)

Exercise 9.7 Ising F-matrix
[Hard] As discussed in the earlier problem, “Ising Anyons and Majorana

Fermions” (Ex, 3.3), one can express Ising anyons in terms of Majorana
fermions which are operators γi with anticommutations {γi, γj} = 2δij . As
discussed there we can choose any two majoranas and construct a fermion
operator

c†12 =
1

2
(γ1 + iγ2)

then the corresponding fermion orbital can be either filled or empty. We
might write this as |012〉 = c12|112〉 and |112〉 = c†12|012〉. The subscript 12
here meaning that we have made the orbital out of majoranas number 1 and
2. Note however, that we have to be careful that |012〉 = eiφ|121〉 where φ is a
gauge choice which is arbitrary (think about this if it is not obvious already).

Let us consider a system of 4 majoranas, γ1, γ2, γ3, γ4. Consider the basis
of states

|a〉 = |012034〉
|b〉 = |012134〉
|c〉 = |112034〉
|d〉 = |112134〉

rewrite these states in terms of basis of states

|a′〉 = |041023〉
|b′〉 = |041123〉
|c′〉 = |141023〉
|d′〉 = |141123〉

Hence determine the F -matrix for Ising anyons. Be cautious about fermionic
anticommutations: c†xc

†
y = −c†yc†x so if we define |1x1y〉 = c†xc

†
y |0x0y〉 with the

convention that |0x0y〉 = |0y0x〉 then we will have |1x1y〉 = −|1y1x〉. Note
also that you have to make a gauge choice of some phases (analogous to the
mentioned gauge choice above). You can choose F to be always real.





Exchanging Identical Particles 10
Medium Easy Material

We would now like to deterime what happens when two particles are
exchanged with each other. As one might expect for anyons, phases are
accumulated from such exchanges. However, one must be cautious be-
cause the phase accumulated will generally depend on the fusion channel
of the particles being exchanged.

10.1 Introducing the R-matrix

Let us begin with a simple case where two identical particles of type a
are braided around each other. Let us specify that the two particles fuse
together in an overall channel c. Let us call this quantum mechanical
state |state〉 as shown in two different notations in Fig. 10.1.

a a

c

=
a a

c = |state〉
Fig. 10.1 Two a particles fusing to a c particle.

We then (half)-braid the two particles around each other (counter-
clockwise observing from above1.). The final fusion channel of the two 1In the language of the braid group we

would call this exchange σ. See section
3.3.1.

a particles is still c (by the locality principle of section 8.2 ). However,
a phase will be accumulated in the process which call Raac as shown in
Fig. 10.2. The inverse phase would be accumulated for an exchange in
the opposite direction.

= = Raac |state〉
a a

c

a a

c

Fig. 10.2 The phase accumulated by exchanging two a particles that fuse to c is
called Raac .

This so-called R-matrix along with the corresponding F -matrices will
allow us to compute the result of braiding any number of a particles
around each other in arbitrary ways.
Let us consider the case of three anyons of type a. We can write a

basis for the possible states of three anyons as shown in Fig. 10.3.
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a a a

c

f

=
a a a

c f = |c; f〉
Fig. 10.3 A basis of states for three a type anyons fusing to an overall quantum
number f .

a a a

c

f

=

a a a

c f
σ̂1|c; f〉 = = Raac |c; f〉

Fig. 10.4 Exchanging the two left particles incurs a phase Raac .

We now consider exchanging the left two particles as shown in Fig. 10.4.
(We call the operator that performs this exchange σ̂1 in analogy with
the braid group discussed in section 3.3.1.) Since we know the fusion
channel of these two particles (c) we know that the phase accumulated
in this exchange is just Raac . This seems fairly simple as it is precisely
the type of exchange we defined in Fig. 10.2 above
As with all operators in quantum mechanics that can be implemented

as a time evolution, the exchnge operator is linear, meaning that it acts
on superpositions by acting on each term individually:

σ̂1
∑

c

αc|c; f〉 =
∑

c

αcR
aa
c |c; f〉

Let us now instead consider exchanging the right two particles, an
operation we call σ̂2. Since the right two particles are not in a definite
fusion channel we cannot directly apply the R-matrix. However, we
can use the F -matrix to rewrite our state as a superposition of states
where the right two particles are in a definite fusion channel as shown
in Fig. 10.5.

a a a

c f =
∑

g

[F aaaf ]cg
a a a

g f

Fig. 10.5 Using an F -move to work in the basis with a known fusion channel of the
right two particles.

One we have transformed to this new basis, then we can exchange
the right two particles and apply the R-matrix directly to the right two
particles as shown in Fig. 10.6. Once we have established the effect of
the exchange we can (if desired) convert back into the original basis
which describes the fusion of the left two particles using F−1.
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σ̂2|c; f〉 =

a a a

c f =
∑

g

[F aaaf ]cg

a a a

g f

=
∑

g

Raag [F aaaf ]cg
a a a

g f

Fig. 10.6 In order to describe exchange of the right two particles, we first change
to a basis where the fusion channel of those two particles is explicit. We can then
apply the R matrix directly.

The result of this procedure in terms of the original basis, is given by

σ̂2|c; f〉 =
∑

g,z

[F aaaf ]cg Raag [(F aaaf )−1]gz |z; f〉 (10.1)

The general principle is that to evaluate any exchange of identical
particles, we can always use F matrices to convert to a basis where the
fusion channel of the two particles to be braided is known. Once we are
working in this basis, we can then we apply the R matrix directly. At
the end we can transform back to the original basis if we so desire. This
scheme works for any set of identical particles given appropriate F and
R matrices.

10.1.1 Locality

An important principle which we will often use is that result of braiding
a group of particles with a given total quantum number c is the same as if
that entire group were replaced with just a single particle with quantum
number c. For example, in Fig. 10.7 when we braid a cluster of a, b with
overall quantum number d around a cluster x, y, z with overall quantum
number w, the phase accumulated should be the same as if we simply
braided d around w.

a bxy z

cw f

=

w c

f

Fig. 10.7 Braiding a cluster of particles with overall quantum number c around a
cluster of particles with overall quantum number w should have the same effect as
braiding a single c particle, around a single w particle. The result should just be a
phase dependent on the quantum numbers c, w and f . In chapter 13 we will refer to
this phase as Rwcf Rcwf . Note that a does not wrap around b. If it did that would
accumulate an additional phase.
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10.2 Some Examples

Since the idea of using the R-matrix is quite important, it is worth
working through a few examples explicitly.

10.2.1 Fibonacci Anyons

Recall the properties of Fibonacci anyons (see section 8.2.1): There is
only one nontrivial particle type which we call τ and the only nontrivial
fusion rule is τ × τ = I + τ . As we saw in section 8.2.1, the fusion rule
imples that there are two possible states of two Fibonacci anyons: The
state where they fuse together to form I and the state where they fuse
together to τ (See Fig 10.8. See also Fig. 8.9 where we previsously in-
troduced these two states). We call these states |I〉 and |τ〉 respectively.

τ τ

I

=
τ τ

I = |I〉

τ τ

τ

=
τ τ

τ = |τ〉

Fig. 10.8 The two possible states of
two Fibonacci anyons. Note that we do
not draw arrows on the particle lines in
the left diagrams since τ is self-dual.

Now consider the operator σ̂ that exchanges the two Fibonacci anyons
counterclockwise as viewed from above, as shown in Fig. 10.9 This
operator yields the phase RττI if the fusion channel of the two particles
is I or Rτττ if the fusion channel of the two particles is τ .

σ̂|I〉 = = = RττI |I〉
τ τ

I

τ τ

I

σ̂|τ〉 = = = Rτττ |τ〉
τ τ

τ

τ τ

τ

Fig. 10.9 Exchanging two anyons gives a phase dependent on their fusion channel.

In section 13.3 below (see also exercise 10.6) we will explain how we
actually compute the phases Rτττ and RττI . For now, it suffices to give
the answers that for right-handed Fibonacci anyons

Rτττ = e+3πi/5

RττI = e−4πi/5 (10.2)

There also exists a left-handed type of Fibonacci anyons for which the
phases are complex conjugate of these.
As with all operators in quantum mechanics we can act on superpo-

sitions by acting on each term individually:

σ̂
(
α|I〉+ β|τ〉

)
= αRττI |I〉+ βRτττ |τ〉 .

If we think of our two states |I〉 and |τ〉 as the two states of a qubit,
the σ̂ operator is what is known as a controlled phase gate in quantum
information processing — the phase accumulated depends on the state
of the qubit.

τ τ τ

τ

I

=
τ τ τ

τ I
= |N〉

τ τ τ

I

τ

=
τ τ τ

I τ = |0〉

τ τ τ

τ

τ

=
τ τ τ

τ τ = |1〉

Fig. 10.10 The three states in
the Hilbert space of three Fibonacci
anyons.

Next let us consider the possible states of three Fibonacci anyon. As



10.2 Some Examples 115

described in section 8.2.1 the space of such states is three-dimensional,
and we can choose as a basis the two states shown in Fig. 10.10 (we
already introduced these states in Fig. 8.10 above). Now consider an
operator σ̂1 that braids the two leftmost particles around each other as
shown in Fig. 10.11. Here the phase accumulated depends on the fusion
channel of the leftmost two particles, entirely analogous to Fig. 10.9.

τ τ τ

τ

I

=

τ τ τ

τ I
σ̂1|N〉 = = Rτττ |N〉

τ τ τ

I

τ

=

τ τ τ

I τ
σ̂1|0〉 = = RττI |0〉

τ τ τ

τ

τ

=

τ τ τ

τ τ
σ̂1|1〉 = = Rτττ |1〉

Fig. 10.11 Exchanging the left two particle.

More interesting is the question of what happens if we exchange the
right two particles as shown in Fig. 10.12. As discussed in Section 10.1,
the trick here is to use the F -matrix to change the basis such that we
know the fusion channel of the right two particles, and then once we
know the fusion channel we can use the R-matrix. If we want, we can
then use the F -matrix to transform back to the original basis.

τ τ τ

I

τ

=

τ τ τ

I τ

σ̂2|0〉 =

Fig. 10.12 Exchanging the two particles on the right for the |0〉 state where these
two particles on the right are not in a definite fusion channel. Note that in the tree
diagram on the left the state below the dashed red line is exactly |0〉.

To see how this works, Recall that we can use the F -matrix to write
the |0〉 state in the basis of the |0′〉 and |1′〉 as in Eq. 9.2 which we
reproduce the relevant parts of here:

|0〉 = F00′ |0′〉+ F01′ |1′〉 (10.3)

where |0′〉 and |1′〉 are shown in Fig. 10.13. Note that here Fab is short-
hand for [F ττττ ]ab.

τ τ τ

I

τ

=
τ τ τ

I τ = |0′〉

τ τ τ

τ

τ

=
τ τ τ

τ τ = |1′〉

Fig. 10.13 In the prime basis the two
particles on the right are in a definite
fusion channel
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On the right hand side of Fig. 10.13 (i.e., in the prime basis) we know
the fusion channel of the rightmost two particles, so we can braid them
around each other and use the R-matrix to compute the corresponding
phase as shown in Fig. 10.14.

τ τ τ

I τ = F00′

τ τ τ

I τ +F01′

τ τ τ

τ τ

= F00′R
ττ
I

τ τ τ
I τ +F01′R

ττ
τ

τ τ τ
τ τ

= F00′R
ττ
I |0′〉+ F01′R

ττ
τ |1′〉 (10.4)

= F00′R
ττ
I

(
[F−1]0′0|0〉+ [F−1]0′1|1〉

)
(10.5)

+ F01′R
ττ
τ

(
[F−1]1′0|0〉+ [F−1]1′1|1〉

)

=
(
F00′R

ττ
I [F−1]0′0 + F01′R

ττ
τ [F−1]1′0

)
|0〉

+
(
F00′R

ττ
I [F−1]0′1 + F01′R

ττ
τ [F−1]1′1

)
|1〉

Fig. 10.14 To exchange the right two particles we first use an F -move so that we

know the fusion channel of these two particles, then we can apply R and then F−1

to transform back into the original basis.

Where between Eq. 10.4 and 10.5 we have used the inverse F transform
to put the result back in the original |0〉 and |1〉 basis.2. The final result,

2For this particular case (using Eq. 9.3
for the F -matrix) the matrix F and
F−1 happen to be the same matrix
(however we write out the inverse ex-
plicitly for clarity!) Eq. 10.6 is precisely the same as Eq. 10.1 just written out in all of its

detail33To fully harmonize the notation with
that of Eq. 10.1 we should make the
identification |0〉 → |I; τ〉 and |1〉 →
|τ ; τ〉. The indices 0 and 1 are replaced
by I and τ and as mentioned above the
Fab matrix is really [F ττττ ]ab.

We can summarize the results of the two possible braiding opera-
tions on the three dimensional Hilbert space. Assuming right-handed
Fibonacci anyons and using a basis |N〉, |0〉, |1〉 (also notated as |τ ; I〉,
|I; τ〉, |τ ; τ〉) we have

σ̂1 =




e3πi/5

e−4πi/5

e3πi/5


 (10.6)

σ̂2 =




e3πi/5

φ−1e4πi/5 φ−1/2e−3πi/5

φ−1/2e−3πi/5 −φ−1


 (10.7)

where φ = (
√
5 + 1)/2 is the golden mean.

10.2.2 Ising Anyons

σ σ σ

I

σ

=
σ σ σ

I σ = |0〉

σ σ σ

ψ

σ

=
σ σ σ

ψ σ = |1〉

Fig. 10.15 A simple basis for a qubit
made from three Ising anyons. (See
Fig. 9.5).

For Ising anyons the situation is perhaps even simpler since three σ par-
ticles have only two fusion channels (See section 8.2.2). The appropriate
F -matrices are given by Eq. 9.4 and the R-matrices for a right-handed
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Ising theory are given by

RσσI = e−iπ/8 (10.8)

Rσσψ = ei3π/8 = iRσσI (10.9)

with the R-matrices for a left-handed theory being the complex conju-
gates of these expressions. From the R-matrix, we immediately obtain
the form of the exchange operator σ̂1, that counterclockwise exchanges
the leftmost two Ising anyons

σ̂1 = e−iπ/8
(

1 0
0 i

)

.

(10.10)

Then using Eq. 10.1 we can evaluate the exchange operator σ̂2 which
counterclockwise exchanges the rightmost two anyons of the three, giving

σ̂2 =
eiπ/8√

2

(
1 −i
−i 1

)

.

(10.11)

This is some reading

Exercises

Exercise 10.1 Calculating Exchanges
(a) Use Eq. 10.1 to confirm Eq. 10.11
(b) Use Eq. 10.1 to confirm Eq. 10.7
(c) Confirm the braiding relation σ̂1σ̂2σ̂1 = σ̂2σ̂1σ̂2 in both cases. What

does this identity mean geometrically. See exercise 3.1.

Exercise 10.2 Ising Anyons Redux
In exercise 3.3 we introduced a representation for the exchange matrices for

Ising anyons which, for three anyons, would be of the form

σ̂1 =
eiα√
2
(1 + γ1γ2) (10.12)

σ̂2 =
eiα√
2
(1 + γ2γ3) (10.13)

where the γ’s are Majorana operators defined by

{γi, γj} ≡ γiγj + γjγi = 2δij

with γi = γ†
i .

Show that the exchange matrices in Eq. 10.11 are equivalent to this repre-
sentation. How does one represent the |0〉 and |1〉 state of the Hilbert space
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in this language? The answer may not be unique.

Exercise 10.3 Exchanging More Particles
(a) Consider a system of 4 identical Ising anyons. Use the F and R-matrices

to calculate the braid matrices σ̂1, σ̂2, and σ̂3. (You should be able to check
your answer using the Majorana representation of exercise 3.3.)

(b) [Harder] Consider a system of 4 identical Fibonacci anyons. Use the F
and R-matrices to calculate the braid matrices σ̂1, σ̂2, and σ̂3.

Exercise 10.4 Determinant and Trace of Braid Matrices
Consider a system of N-identical anyons with a total Hilbert space dimen-

sion D. The braid matrix σ̂1, σ̂2, . . . , σ̂N−1 are all D-dimensional. Show that
each of these matrices has the same determinant, and each of these matrices
has the same trace. Hint: This is easy if you think about it right!

Exercise 10.5 Checking the locality constraint
[Easy] Consider Fig. 10.16. The braid on the left can be written as b̂3 =

σ̂2σ̂
2
1σ̂2.

(a) For the Fibonacci theory with a = τ check that the matrix b̂3 gives just
a phase, which is dependent on the fusion channel c. I.e., show the matrix b̂3
is a diagonal matrix of complex phases. Show further that these phases are
the same as the phase that would be accumulated for taking a single τ particle
around the particle c.

(b) Consider the same braid for the Ising theory with a = σ. Show again
that the result is a c-dependent phase.

[Hard] Consider the braid shown on the left of Fig. 10.17. The braid can
be written as b̂4 = σ̂3σ̂2σ̂

2
1 σ̂2σ̂3.

(c) Consider Ising anyons where a = σ, Use the F and R-matrices to calcu-
late σ̂3 (See exercise 10.3.a). Since the fusion of three σ anyons always gives
c = σ, calculate b̂4, show this is a phase times the identity matrix, and show
that the phase matches the phase of taking a single σ all the way around
another σ.

(d) Consider Fibonacci anyons with a = τ , Use the F and R-matrices to
calculate σ̂3. (See exercise 10.3.b). Check that b̂4 is a diagonal matrix of
phases. Check the phases match the two possible phases accumulated by
wrapping a single τ all the way around a single particle c which can be I or τ .

aa a

c f

=

ac

f

Fig. 10.16 The locality constraint (see
similar figure 10.7).

aaa a

c f

=

ac

f

Fig. 10.17 The locality constraint
(See similar figure 10.7).

Exercise 10.6 Enforcing the locality constraint
The locality constraint shown in Fig. 10.16 turns out to be extremely pow-

erful. In this exercise we will use this constraint to (almost) derive the possible
values for the R-matrix for Fibonacci anyons given the known F -matrix.

Consider an anyon theory with Fibonacci fusion rules and Fibonacci F -
matrix as in Eq. 9.2.

(a) [Easy] Confirm the locality constraint shown in Fig. 10.16 (see also
Fig. 10.7) given the values of R given in Eq. 10.2. Make sure to confirm the
equality for all three cases f = I, c = τ and f = τ, c = I and f = τ, c = τ .

Note that on the left of Fig. 10.16 is the braiding operation Ô = σ̂2σ̂1σ̂1σ̂2.
whereas the operation on the right is σ2.

(b) Show that the locality constraint of Fig. 10.16 would also be satisfied
by

RττI → −RττI Rτττ → −Rτττ (10.14)

It will turn out (See *** below) that this additional solution is spurious, as
there are other consistency conditions it does not satisfy.
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(c) In addition to right and left handed Fibonacci anyons and the two
additional spurious solutions provided by Eq. 10.14, there are four additonal
possible sets of R-matrices that are consistent with the F -matrices of the
Fibonacci theory given the locality constraint of Fig. 10.16. These additional
solutions are all fairly trivial. Can you guess any of them?

If we cannot guess the additional possible R-matrices, we can derive them
explicitly (and show that no others exist). Let us suppose that we do not
know the values of the R-matrix elements RττI and Rτττ .

(d) For the case of f = I and c = τ show that Fig. 10.16 implies

[Rτττ ]4 = [RττI ]2 (10.15)

(e) [Harder] For the case of f = τ we have a two-dimensional Hilbert space
spanned by the two values of c = I or c = τ . Any linear operator on this
Hilbert space should be a 2 by 2 matrix. Thus the localtiy constraint Eq. 10.16
is actually an equality of 2 by 2 matrices. Derive this equality.

(f) Use this result, in combination with Eq. 10.15 to find all possible R-
matrices that satisfy the localtiy constraint. You should find a total of eight
solutions. Six of these are spurious as we will see in section 13.3.

The calculation you have just done is equivalent to enforcing the so-called
hexagon condition which we will discuss in section 13.3 below.
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Medium Material

Having discussed the basics of anyon theories, we are now in a position
to discuss how one might perform quantum computations with braids.
In chapter 2 we briefly introduced some ideas of topological quantum

computation. In chapter 8 we discussed how we might define a qubit
in several simple anyon theories. In the current chapter we will briefly
discuss how anyons can be used to fulfill the requirements for quantum
computation1. 1For more of the basics of quan-

tum computation, a classic reference is
Nielsen and Chuang [2000]. We also
provide a bit more information in ap-
pendix chapter ***.11.1 Quantum Computing

To have a quantum computer, we must first have a Hilbert space, and we
usually think of this Hilbert space as being built from small pieces, such
as qubits or qutrits2. This Hilbert space will be the quantum memory 2Qubits are two state systems (such as

a spin- 1
2
), qutrits are three state sys-

tems etc. The general case is known as
a qudit. See the introduction to quan-
tum information in appendix chapter
***

that the computer acts on.
Once we have our Hilbert space, our model of a quantum computer

has three key steps for quantum computation3:

3There are variants on this theme. For
example, it might be sufficient to ini-
tialize into a state that is only partially
known, or it might be sufficient to have
a somewhat noisy measurement. Most
interesting is the issue of whether one
can tolerate some amount of imperfec-
tion in the system (noise in the system,
uncontrolled operations on the Hilbert
space, etc). We will discuss this issue
further in section **

(0) Find a Hilbert space to work with.

(1) Initialize the Hilbert space in some known state.

(2) Perform a controlled unitary operation on the Hilbert space.

(3) Measure some degree of freedom in the Hilbert space.

If the controlled unitary (step 2) is implemented as a series of unitary
operations each of which acts on only small parts of the Hilbert space
(such as acting on just a few qubits at a time), we call this scheme for
quantum computation the quantum circuit model.4

We will discuss each of the above steps (0)-(3) for our anyon systems
in section 11.2 below. First, however, we will introduce the idea of what
it means for a quantum computer to be “universal” in the quantum
circuit model.

4There are other models of quantum computation. We mention in particular the measurement schemes (See Raussendorf and
Briegel [2001]; Gross et al. [2007]), where no unitary is explicitly performed, but rather the computation is implemented as a
series of measurements on an initial highly entangled state. In the context of topological quantum computation an important
variant is a computation that is implemented by a combination of unitary operations and projective measurements. The earliest
proposal for quantum computing with anyons, by Kitaev in 1997, was of this type (See Kitaev [1997]). See also footnote 15
below.
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11.1.1 Universal Quantum Computing in the
Quantum Circuit Model

Let us suppose our Hilbert space consists of N qubits (each qubit being
a two state system). The Hilbert space dimension is then D = 2N . The
space of possible unitary5 operations6 on these qubits, is just the group

5Recall a matrix U is unitary if and

only if U†U = UU† = 1.

6Quantum mechanical time evolution
is always unitary. This is simply the
statement that a normalized ket re-
mains normalized. It is worth noting
that we are excluding the possibility of
making measurements (which are gen-
erally nonunitary7) on the system be-
fore the end of the computation. This
would be outside of the quantum circuit
model.

of D dimensional unitary matrices — a group known as U(D).

7All of quantum mechanics can be
viewed as unitary time evolution. Mea-
surements may look like they are non-
unitary, but one can always include
the measuring apparatus within the
system being considered and then the
full system (including the measuring
apparatus) then obeys unitary evolu-
tion. The idea of including measure-
ment within your system in order to
maintain unitarity is sometimes known
as “the church of the larger Hilbert
space”.

Let us now suppose our quantum computer can implement any one
of p different elementary operations (usually called “gates”) in a single
time step (each gates will act only on a small number of qubits). Each
gate corresponds to a particular unitary operation Un ∈ U(D) with
n ∈ 1, . . . , p that is applied to the Hilbert space. A sequence of such
gates constructs a particular unitary operation which is just the product
of the successive gates (the time order runs from left to right)

U = Uit . . . Ui2Ui1 (11.1)

where the number of gates t, can be thought of as the “run time” of the
computation.
Suppose there is some particular computation we would like to per-

form, and this computation corresponds to a unitary U which we hope
to construct via a series of gates as in Eq. 11.1. Note, however, that in
quantum computation we are never worried about the overall phase of
our result.8 As such if we want to construct some particular unitary U ,

8Recall that the last step of a quan-
tum computation, after applying a uni-
tary U (via some sequence of gates as
in Eq. 11.1) to our Hilbert space, we
obtain an output “answer” by measur-
ing whether some particular qubits are
in the |0〉 state or the |1〉 state. The
probabilities of theses outcomes is com-
pletely independent of the overall phase
of the U . I.e., if we changed U → eiφU
we would have the same probabilities of
outcomes.

for the purpose of quantum computation, it just as good to construct
eiφU for any value of φ.
Unfortunately, even with this freedom of phase most unitary opera-

tions (except for a set of measure zero) are actually impossible to con-
struct exactly from a finite set of elementary gates as in Eq. 11.1. Fortu-
nately, for computational purposes it is good enough to approximate the
desired unitary operation to some (potentially high) accuracy. Sets of
gates that can always make such an accurate approximation are called
universal. We will be more precise about the definition of this word in
a moment.
Since we will be discussing approximations of desired operations, it

is useful to define a distance between two unitary matrices so we can
measure the accuracy of our approximation. Given two D dimensional
unitary matrices U and V , we define a phase invariant distance measure
between them as99I believe this distance measure was in-

troduced by Fowler [2011]. Other defi-
nitions of distance can also be used. Re-
lationships between this distance mea-
sure and more conventional operator
norms are given by Field and Simula
[2018] and Amy [2013].

dist(U ;V ) =

√
1− |Tr[U †V ]|

D
(11.2)

Note that multiplying either matrix by an overall phase leaves dist un-
changed, and if U and V are the same up to a phase, then dist is zero.
We say that V is a good approximation of U up to a phase if dist(U ;V )
is small .
Having defined this distance measure, we can be more precise about

what we mean that a set of gates is universal. A gate set Un ∈ U(D)
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with n ∈ 1, . . . , p is universal if for any any desired target operation we
would like to perform Utarget ∈ U(D) we can find a sequence of gates
Ui1Ui2 . . . Uit such that the phase invariant distance to the target is less
than any desired error tolerance ǫ

dist(Utarget ; Ui1Ui2 . . . Uit) < ǫ (11.3)

no matter how small an ǫ we choose. In other words, our gate set can
approximate any target unitary as precisely as we want.
We might wonder how long a run time (how many gates) will we

typically need to have? A beautiful theorem by Kitaev and Solovay10 10The Kitaev-Solovay theorem, often
viewed as one of the most fundamen-
tal results of quantum computation, is
discussed nicely in Dawson and Nielsen
[2006] and Harrow [2001].

assures us that the run time is not too long11. In particular,

11The usual proof of the Kitaev-
Solovay theorem assumes that the gate
set must contain inverses. In other
words, if Un is one of the elementary
gates, then U−1

n should also be one of
the elementary gates.

t ∼ O (log(1/ǫ) ) (11.4)

We are thus guaranteed that if we have a universal gate set, then the run
time of the computer gets at most logarithmically longer as we try to
increase the quality of our approximation of the target operation Utarget.
The essence of this theorem is as follows. If we consider a sequence of

t gates, (i.e., a run time of t), if there are p different elementary gates, we
can construct roughly pt different sequences of gates12. Thus as t gets 12We will not get exactly pt differ-

ent unitaries, since more than one se-
quences might generate the same uni-
tary operation.

larger, there are exponentially more possible unitaries we can construct
and these roughly cover the space U(D) evenly. With the number of
points we can construct in this space growing exponentially with t, the
distance ǫ of an arbitrary target unitary to the nearest unitary we can
construct must drop exponentially with t, hence justifying Eq. 11.4.
It is a nontrivial calculation to determine which set of elementary gates

is sufficient to have a quantum computer which is universal. However,
an important result is that if one can perform arbitrary rotations on
a single qubit and in addition if one can perform any entangling two-
qubit operation between any of these two bits (or even between just
neighboring bits), then one has a universal quantum computer13.

13This important theorem is sometimes
known as the Brylinski theorem after
its discoverers, Brylinski and Brylinski
[2002]. The authors are married. A
simpler version of the proof is given by
Bremner et al. [2002].

11.2 Topological Quantum Computing

11.2.1 Hilbert space

With a topological quantum computer, a qubit (or qutrit, etc.) can
be formed from multiple anyons which can be put into multiple fusion
channels (See chapter 8). For example, with Fibonacci anyons a qubit
might be formed from three Fibonacci anyons fusing to τ as shown in
Fig. 9.4. With the Ising theory, one might use a cluster of three Ising
anyons fusing to σ as as qubit as shown in Fig. 9.5. There are, of course,
many more options of how one encodes a qubit in any given theory. For
example, in the Ising theory it may be more convenient to work with
clusters of four Ising anyons fusing to I as shown in Fig. 11.1.

σ σ σ σ

x x
I
= |x〉

Fig. 11.1 A qubit made from four
Ising anyons in an overall fusion chan-
nel of I. The two states of the qubit
are x = ψ and x = I. Note that due
to the fusion rules of the Ising theory, if
the overall state of the four qubits is I,
then if the left two anyons are in state
x, the right two must also be in state
x. Using a qubit made of 4-anyons has
advantages for other topological theo-
ries such as SU(2)k with k > 4. See,
for example, Hormozi et al. [2009].
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11.2.2 Measurement (in brief) and initialization

A topological qubit could be measured in several ways, depending on the
particular physical system in question. The genereal principle of locality
which we introduced in section 8.2 (See in particular Fig. 8.8) gives a
good idea how such measurements can (or can’t) be done.
Let us suppose, for example, we have two anyons of typs a and we

would like to measure their fusion channel. Given the principle of local-
ity, to measure this fusion channel we must perform an operation which
is local to both particles, i.e., a measurement that surrounds both.
One way to measure the fusion channel of two anyons is to bring them

together to the same point, or at least bring them physically close on a
microscopic scale. When two anyons are microscopically close to each
other, in essence their wavefunctions mix with each other and in this case
measurement of almost any nontrivial operator near that location will
suffice to distinguish between the different possible fusion channels. For
example, one could measure the energy of the two anyons, or the force
between them, which would generally distinguish the fusion channels.
Note, however, when the anyons are moved macroscopically far apart
no local operators should be able to distinguish the fusion channels.
(We will discuss precisly why this is the case in chapter *** below).
Another way to measure the fusion channel of two anyons would be

to leave the two anyons far apart from each other but implement a
measurement that surrounds them both — such as Aharanov-Bohm-
type interference as shown in Fig. 11.2. Here a test particle wave is
split into two partial waves which travel on opposite sides of the anyons
to be measured and then reinterfere with each other. This is entirely
analogous to the regular Aharanov-Bohm effect (See section 4.1 and
Fig. 4.2), where the partial waves travel on opposite sides of a flux and
then reinterfere. In the usual Aharonov-Bohm effect, the net phase we
measure is the phase of wrapping a single test particle all the way around
the central region (See Eq. 4.3). Analogously here we measure the phase
of wrapping the probe anyon all the way around the anyons in the central
region to measure their fusion channel as shown in Fig. 11.3. As we will
discuss in chapter ***, experiments of this sort have been attempted in
quantum Hall systems.

⇒
probe
particle

beam anyons

in
te
rf
er
en

ce
p
a
tt
er
n

Fig. 11.2 Using Aharanov-Bohm-like
interference to measure the fusion chan-
nel of two anyons (inside the circle) that
are far apart.

a a a

c f

=

ac

f

Fig. 11.3 The interference experiment
in Fig. 11.2 is equivalent to measuring
the phase of wrapping the probe parti-
cle (right) around the two test particles.
The general expression for the result-
ing phase would be σ̂2σ̂21 σ̂2, which is
dependent on the fusion channel c. (In
chapter 13. we will refer to this phase
as Rcaf R

ac
f .)

Once we know how to measure the state of the anyons in our Hilbert
space (and assuming we know how to manipulate our qubits) it is then
fairly trivial to initialize the Hilbert space. We simply measure the state
of a qubit: If it is in the state we want, we are done. If it is in some
other state, we apply the appropriate unitary operation to put it into
the desired initial state. We will discuss unitary operations next.

11.2.3 Universal Braiding

The most interesting part of a topological quantum compuatation is the
idea that we can apply a controlled unitary operation on our Hilbert
space by braiding anyons around each other. The elementary gates of
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the system (or elementary unitary operations) are the (counterclockwise)
exchanges of two identical anyons, which, in braid group notation, we
call σ̂n, as well as the inverse (clockwise) exchanges σ̂−1

n , where n ∈
1, 2, . . . , (N − 1) for a system of N identical anyons. Each of these
braid operators corresponds to a unitary matrix operating on the Hilbert
space.
It turns out that for many types of nonabelian anyon theories, the

gate set made up of elementary braiding exchanges is universal in the
sense defined in section 11.1.114. For example, braiding is universal for

14This result was shown by Freedman
et al. [2002a, b]. These papers are not
particularly easy to read for physicists.

Fibonacci anyons. Similarly SU(2)k Chern-Simons theory is universal
for k = 3 and k > 4. In fact, among nonabelian anyon theories, theories
where braiding is not universal are somewhat of an exception. Ising
anyons and the closely related SU(2)2 Chern-Simons anyons are two of
these nonuniversal exceptions15

It turns out that any system of N identical anyons that is capable of
universal quantum computation by braiding, is also capabable of univer-
sal quantum compuation by weaving16. Here, what we mean by “weave”

16This is proven by Simon et al. [2006].
Publication of this work reduced my
Erdös number to its current value of 3.

is that we fix the positions of N−1 of the anyons and only move the one
remaining anyon around all the other stationary anyons. An example of
a weave is shown in Fig. 11.4. The weaves are a very restricted subset
of the possible braids, but still the weaves form a universal set of gates
for these anyon systems. This result will be important below in section
11.4.1. (See also exercise 11.5).

Fig. 11.4 A weave is a braid where
only one particle moves and all the
other particles remain stationary. All
the particles in this figure are supposed
to be of the same type. The single par-
ticle that moves is colored red just for
clarity.

In fact, if one is able to measure fusion channels easily17, it is also

17Note that measurement schemes
of the Aharanov-Bohm type, as in
Fig. 11.2, involve braiding a test par-
ticle around other particles.

possible to implement universal quantum computation just by making
many measurements of fusion channels, without physically braiding any
particles around any others18.

18See Ref. Bonderson et al. [2008a].

11.3 Fibonacci Example

As an example, we will focus on the case of Fibonacci anyons, which is
potentially the simplest anyon system which is universal for quantum
computation.

11.3.1 A Single Fibonacci Qubit

Let us consider a single qubit made of three Fibonacci anyons. We have
discussed this several times before in sections 8.2.1, and 9.1 and 10.2.1.
To remind the reader, there are three possible states of three Fibonacci
anyons which we label |N〉, |0〉, |1〉 (See Fig. 8.10) — which represents
a qubit (the states |0〉 and |1〉) and one additional “noncomputational”
state |N〉 which we will not use for storing quantum information.

15SU(2)4 is an interesting case where braiding alone is not universal. However, if we are allowed to go outside of the quantum
circuit model and combine braiding with many projective measurements (i.e., not just making one measurement at the end
of the computation), then SU(2)4 anyons can impliment universal quantum computation (See Refs. Levaillant et al. [2015];
Cui and Wang [2015]). In fact, the first proposal of a topological quantum computer, by Kitaev in 1997 (published as Kitaev
[1997]), described a computation scheme which involved both braiding and projective measurement. A simple discussion of
this scheme is given by Preskill [2004] with early extensions of the scheme given by Mochon [2003, 2004].
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We now think about braiding our three anyons. In the braid group
on three strand, B3 (See section 3.3.1), there are two generators, σ1,
exchanging the first two strands counterclockwise, and σ2, exchanging
the second two strands counterclockwise. Any braid of three particles
can be constructed as some product of σ1, σ2, σ

−1
1 , and σ−1

2 in some
order as shown, for example, in Fig. 11.5.
The action of these braid operations on the three-dimensional Hilbert

space is shown in Eqs. 10.6 and 10.7 which we calculated in section
10.2.1. By multiplying these matrices together, we can figure out how
any complicated braid acts on our Hilbert space. In fact for now we are
only interested in how the matrices act on the space of the qubit states
|0〉 and |1〉 and we will return to worry about the |N〉 state below in
section **.

Example of X Gate

We are now interested in the following simple quantum computation
problem: Given a particular target unitary operation which we might
want to perform on our qubit, how should we move the anyons? I.e.,
what braid should we do to implement the target operation?

τa

Fig. 11.5 This is the braid written in
Eq. 11.6 which gives an approximation
of the X-gate on a single qubit made
from Fibonacci anyons. As usual, time
runs bottom to top. The distance to
the taget is dist = 0.17

For example, suppose we want to design a braid that impliments an
X-gate19 (just a Pauli σx)

19Note that a Z-gate can be imple-

mented exactly as σ̂51 . It is unusual and
non-generic that a target can be con-
structed exactly.

Utarget = X =

(
0 1
1 0

)
(11.5)

With a very short braid (Shown in Fig. 11.5), we can make a fairly poor
approximation to this gate (this braid is the best we can do with only
five braid operations) given by

Uapprox = σ̂−1
2 σ̂3

1 σ̂
−1
2 ≈ e−3πi/5

(
0.073− 0.225i 0.972

0.972 −0.073− 0.225i

)

(11.6)
For the approximation given in Eq. 11.6 the phase invariant distance
from the target is20

20Recall that in comparing Eq. 11.6 to
Eq. 11.5 we are not concerned with the
overall phase, so we ignore the prefactor
of e−3πi/5 in Eq. 11.6.

dist(Utarget ; Uapprox) ≈ 0.17

which is not a great approximation. However, with a longer braid having
nine braid operations, shown in Fig. 11.6, one can make a better approx-
imation with a trace distance dist ≈ 0.08. If we consider braids that are
longer and longer, we can get successively better approximations to the
desired target as would be expected from the Kitaev-Solovay theorem
discussed in section 11.1.1.

τa

Fig. 11.6 A longer braid gives a more
accurate approximation to the desired
target X-gate for Fibonacci anyons.
This braid has distance to the target,
dist ≈ 0.08.

As mentioned in section 11.2.3 it is possible to find braids that are
weaves, meaning that only a single anyon moves. For completeness,
we show a weave in Fig. 11.7 that impliments an X-gate to precision
dist ≈ .18 . Note that due to the restricted weave form of this braid,
a slightly larger number of elementary exchanges are required to reach
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roughly the same precision as in Fig. 11.5. As with braids, at least in
principle, by using longer weaves one can get as close to the target as
we like.

11.3.2 Topological Quantum Compiling: Single
Qubit

Even if there exists a braid that performs a unitary operation that ap-
proximates some target operation within some small error distance ǫ,
it is a nontrivial task to figure out what that braid is. In other words,
how do you know what braid you should implement on your computer
in order to perform the desired operation?

τa

Fig. 11.7 A weave that approxi-
mately impliments an X-gate for Fi-
bonacci anyons. Here all three anyons
are meant to be identical. The anyon
colored red is mobile whereas the other
two are kept stationary. The distance
to the target is dist ≈ .18. Because we
have restricted the form of this braid
to be a weave, the braid is longer (has
more elementary exchanges) than the
one in Fig. 11.5 for roughly the same
accuracy.

The general task of determining which elementary gates should be per-
formed, and in what order, to implement some desired target unitary is
known as quantum compiling21. For a topological quantum computer,

21Quantum compiling is analogous to a
compiling for a conventional computer,
which is the task of starting with a high
level programming language and de-
termining which machine-level instruc-
tions to impliment at the computer chip
level. See Harrow [2001] for a discus-
sion of quantum compiling in general.

the task of designing a braid is therefore known as topological quantum
compiling. Here we will discuss several approaches to topological quan-
tum compiling in order of their complexity, and their effectiveness.22.

22The field of topological quantum
compiling was started by Bonesteel
et al. [2005]. A very nice recent re-
view of the topic as well as discussion of
a number of other approaches towards
topological quantum compiling is given
by Field and Simula [2018].

We continue to focus only on compiling braids for a single Fibonacci
qubit. Multi-qubit braids will be discussed in section 11.4 below.

Brute Force Search

If we are willing to accept a fairly poor approximation of our target
unitary (a fairly large dist between our approximation and the target)
we will be able to use a fairly short sequence of our elementary gates
(i.e., a short braid). In this case we can consider some maximum gate
sequence length t (maximum run time) and search all possible gate se-
quences of length less than t, choosing the one that best approximates
our target. We should expect to achieve a distance to the target that
drops exponentially with t, as discussed near Eq. 11.4.
If we are considering a single qubit made of three Fibonacci anyons,

our elementary gates are the braid generators σ̂1, σ̂2, σ̂
−1
1 , σ̂−1

2 . This
means that if we want to search through all braids of length t we have
to search roughly 4t braids. While there are some tricks that allow
us to reduce this number somewhat23, the computational effort24 will

23For example, we might not want to

search any braids where σi and σ
−1
i oc-

cur in a row since then they would can-
cel.
24Here we mean the computational ef-
fort for the classical computer that we
use to design our quantum algortithm!

always grow exponentially with the length t. If one wants to make
highly accurate approximation of a target unitary with a very small
error distance, one can easily obtain a run time t large enough that
brute force searching becomes unfeasible.

Kitaev-Solovay Algorithm

Kitaev and Solovay25 provide us an explicit algorithm to construct very

25See again Dawson and Nielsen [2006];
Harrow [2001] for nice discussions of
Kitaev-Solovay.

accurate approximations of any desired unitary given a universal set of
elementary gates with reasonable (not exponentially growning!) com-

putational effort24. The essence of this algorithm is as follows. Let
us suppose that by brute-force search we can approximate any unitary
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operation to within a distance dist ∼ ǫ0 with sequency of elementary
gates (elementary braids in the topological case) of length t0. Let us say
that the classical computational time to achieve this is T0. Now given
a target unitary U

(0)
target that would like to approximate, we start with

this brute-force search, and construct our approximation U
(0)
approx which

is accurate to within dist ∼ ǫ0. This is our 0th level of approximation
of the target. We would next like to repair this approximation with
another series of gates to make it more accurate. We thus define

U
(1)
target ≡ [U (0)

approx]
−1 U

(0)
target .

If we could find a series of gates that would exactly give us U
(1)
target we

could exactly construct the original objective U
(0)
target as

U
(0)
target = U (0)

approx U
(1)
target .

However, it is not obvious that we have any better way to approximate
U

(1)
target than we had to approximate U

(0)
target, so why does this help? The

key here is that U
(1)
target is necessarily close (dist ∼ ǫ0) to the identity.

We then decompose

U
(1)
target = VWV −1W−1

with W and V being unitary operations close to the identity (dist ∼√
ǫ0). We then have an amazing result, that if we are able to approxmate

V andW to an accuracy ǫ0 (which we can do here by brute-force search)

we will get U
(1)
target accurate to dist ∼ ǫ

3/2
0 . Thus we obtain

U
(0)
target = U (0)

approxVWV −1W−1 (11.7)

accurate to order ǫ
3/2
0 . The total sequence of gates is now of length 5t0

since each of othe factors on the right hand side of Eq. 11.7 is of length
t0. The classical computational effort to achieve this is roughly 3T0 since
we must search for U

(0)
approx and V and W .

This scheme can then be iterated to make our approximation even
better. The only change it that the next level of approximation, instead
of using brute force search to make approximations good to dist ∼ ǫ0
we use the entire above described algorithm to make all of our approxi-
mations good to dist ∼ ǫ

3/2
0 . When U

(0)
approx and V andW are calculated

to order ǫ
3/2
0 our new approximation for U

(0)
target will be an accurate to

dist ∼ (ǫ
3/2
0 )3/2.

The entire scheme can be iterated recursively to any level of accuracy.
At the nth level of this approximation, we have a gate sequence of length
5nt0 and an accuracy dist ∼ ǫ

(3/2)n

0 and the computational effort24 to
achieve this scales as 3nT0.
Thus if we want to achieve some overall accuracy ǫ of our operation,
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the gate sequence will be of length

t ∼ O
(
[log(1/ǫ)](ln(5)/ ln(3/2))

)
= O

(
[log(1/ǫ)]3.969...

)
(11.8)

and this requires classical computation time

T ∼ O
(
[log(1/ǫ)](ln(3)/ ln(3/2))

)
= O

(
[log(1/ǫ)]2.710...

)
. (11.9)

While this algorithm produces gate sequences that are longer than one
obtains with brute force searching (which produces gate sequence lengths
as in Eq. 11.4) for the same desired accuracy ǫ, it has the advantage

that it is computationally feasible24 for much smaller values of ǫ and
can therefore produce more accurate results.

Galois Theory Optimal Compiling:

A rather remarkable scheme for quantum compiling was developed in
Kliuchnikov et al. [2014] based on ideas from Galois theory26 . While 26Évariste Galois was undoubtedly one

of the most interesting and brilliant
mathematicians of all time. Being po-
litically active in an era shortly after
the French revolution, he spent a de-
cent fraction of his short adult life in
prison. His mathematical works (some
written while in prison) opened up vast
new fields of research. He died at age
20 in a duel.

we cannot review Galois theory here, nor can we even do justice to the
details of the algorithm, we can nonetheless discuss some of structure of
the problem that makes this approach possible.
It turns out that any unitary that can be constructed by braiding

three Fibonacci anyons can be written (up to a phase) in the form

U(u, v, k) =

(
u v∗ωkφ−1/2

vφ−1/2 −u∗ωk
)

(11.10)

where φ = (1 +
√
5)/2 is the golden mean, k is an integer, ω = e2πi/10,

and
|u2|+ φ|v|2 = 1 (11.11)

where u and v come from the so-called ring of cyclotomic integers Z[ω],
which means that

u =

3∑

i=0

aiω
i v =

3∑

i=0

biω
i (11.12)

with coefficients ai and bi all being integers. The fact that the unitaries
that can be generated by braiding take a very restricted mathematical
form is, in fact, a generic property of all anyon theories27, although the 27This is due to the fact that the F and

R matrices of an anyon theory live in
a particular so-called Galois extension
of the rationals — meaning that only
certain irrational factors can show up
in any mathematical expression. This
fact can be used to prove various state-
ments about what type of operations
can or cannot be done exactly by braid-
ing. See for example Freedman and
Wang [2007].

particular form taken depends on the particular anyon theory.
Further, given values of u, v, and k a relatively simple algorithm is

provided that finds a braid28 that results exactly in this unitary, where

28Kliuchnikov et al. [2014] also pro-
vide a similar algorithm for generating
weaves. See section 11.2.3.

length of the braid is no longer than

t ∼ log

(
|

3∑

i=0

aiω
i|2 + |

3∑

i=0

aiω
3i|2
)

This procedure is known as exact synthesis as it constructs exactly the
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Fig. 11.8 The braid shown here between two Fibonacci qubits entangles the two
qubits but also results in leakage error. When we use three Fibonacci anyons as a
qubit, we set the overall fusion channel of the three to be τ , so c = d = τ in this
figure. The quantum information is stored in the quantum numbers a and b. The
shown braid results in some amplitude ending up in the noncomputational space
where eitehr c or d is I rather than τ .

desired U(u, v, k) as a series of elementary braid operations.
The remainder of the algorithm is to find values of u, v, k (with u and

v of the form in Eq. 11.12 with integer coefficients) so that Eq. 11.10
approximates any given target unitary. This task can exploit established
methods from algebraic number theory. The interested reader is referred
to Kliuchnikov et al. [2014].
The end result of this approach is an algorithm that, although it does

not find the absolute optimal braid29, it nonetheless is asymptotically29The “optimal braid” is the one that
would be found by brute force search
if one had the exponentially enormous
computational power necessary to find
it.

optimal in the sense that it produces braids of length

t ∼ O(log(1/ǫ))

as in Eq. 11.4. Further, the computational time24 to achieve this scales
only as T ∼ O(log(1/ǫ)2). Using this type of approach, it is easily
possible to generate braids with error distances of order 10−100 or even
better, and these braids are longer than the absolute optimal braid by
only a factor of order unity.

11.4 Two-Qubit Gates

Having studied single qubit operations, we now turn to a brief discussion
of two-qubit gates30. As mentioned in section 11.1.1, the Brylinski the-30Here we are constructing a two qubit

unitary operation, which we will call
a two-qubit gate, from our elementary
gates —- the elementary braid opera-
tions.

orem tells us that to have a universal quantum computer, we need only
have single qubit rotations along with any entangling two qubit gate.
To construct such an entangling two qubit gate we will need to have a
braid that physically entangles the world lines of the anyons comprising
the two qubits such as the example shown in Fig. 11.8.
However there is a crucial complication with braiding anyons between

qubits. If we perform a braid such as that shown in Fig. 11.8, the
fusion channel of the anyons comprising each of the qubits (quantum
numbers c and d in the figure) are not preserved (see the discussion of
locality in section 8.6) and this means that amplitude can leak into the
noncomputational space.
To be more explicit for the Fibonacci case, recall that we encode our

qubits (|0〉 or |1〉) by using three Fibonacci anyons in overall fusion
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channel τ (See Fig. 8.10). The fusion channel of the three anyons to I
is termed non-computatational |N〉 and is not used for computation. If
some of the amplitude of the wavefunction ends up in this noncompu-
tational space, it is called leakage error, and only very small quantities
of such leakage errors can be tolerated for any realistic computation.
Braids like the one shown in Fig. 11.8 always produce some amplitude
of noncomputational states. The problem of leakage error in two-qubit
gates is not special to Fibonacci anyons, but is in fact a generic property
of all anyon theories that have universal braiding31.

31Ainsworth and Slingerland [2011]
show that it is not possible to design
completely leakage free gates for any
universal anyon theory, and leakage can
only be make approximately zero.While we cannot completely eliminate leakage, we can in principle

design entangling gates with arbitrarily small (albeit non-zero) leakage.
Such braids with low leakage error do exist, but finding them is highly
nontrivial. Inconveniently, the Hilbert space of six Fibonacci anyons,
as in Fig. 11.8 is 13 dimensional32. Searching such a large space for 32This space is subdivided into an 8 di-

mensional subspace with f = τ and a
5 dimensinal subspace with f = I. No
braiding of these six anyons will change
the f quantum number. Note, however,
that gates must have low leakage inde-
pendent of the value of f .

particular unitaries with low leakage is numerically unfeasible. We thus
need a more clever way to design braids with low leakage.
In designing any computation, it is almost always advantageous to

simplify the desired task into smaller tasks that can be addressed one
at a time. This “divide and conquor” approach will allow us to tackle
the job of desiging two-qubit gates. In the next section we will give an
example of how entangling gates with negligible leakage can be designed.

11.4.1 Controlled Gates

In quantum computation it is often very convenient to use entangling
gates which are so-called controlled U -gates, or C(U) where U is a 2-
dimensional unitary matrix. A controlled U -gate acts on two qubits such
that one qubit (the “target” qubit) is acted on with a 2-dimensional
unitary operator U if and only if the other qubit (the “control” qubit)
is in the |1〉 state, whereas the control qubit remains unchanged:

U

Input

Output

Fig. 11.9 Typical notation for a con-
trolled unitary gate C(U). The second
qubit controls the first.

C(U) :





|0〉 ⊗ |0〉 → |0〉 ⊗ |0〉
|1〉 ⊗ |0〉 → |1〉 ⊗ |0〉
|0〉 ⊗ |1〉 → (U |0〉)⊗ |1〉
|1〉 ⊗ |1〉 → (U |1〉)⊗ |1〉

(11.13)

Thus the first qubit here is being controlled by the second qubit33. A

33As always in quantum mechanics the
operation acts linearly on superposi-
tions

very commonly used example of a controlled gate is the case of U = X
(See Eq. 11.5) which we call a controlled-X, or more often a controlled-
NOT (or CNOT) gate.
The key to our construction of controlled gates34 is the locality prin-

34The constructions discussed here
were introduced in Bonesteel et al.
[2005].

ciple of section 10.1.1. If we are given a cluster of 2 anyons which are
the τ fusion channel (for example, set c = τ in Fig. 10.7) and we braid
it around some other anyons, this will have the same effect as if we just
braided a single τ around the other anyons. However, if the cluster of 2
anyons is in the trivial (or I) fusion channel, then braiding this cluster
never does anything, as braiding the vacuum particle always is trivial.
Thus we can see that the effect of the braid is “controlled” by the fusion
channel of the two anyons.
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Controlled σ̂2
2 gate

Consider the construction shown in Fig. 11.10. On the far left of this
figure, we have shown a weave, meaning only a single anyon, the one
drawn in red, moves and the other two anyons remain stationary (see
the discussion by Fig. 11.4). This weave has been designed to have
approximately the same effect as if the two blue anyons are wrapped
around each other (exchanged twice counterclockwise), i.e, σ̂2

1 as shown
in the figure. For the particular weave shown, the distance to the target
σ̂2
1 is dist ≈ .12. We could make the approximation of σ̂2

1 more accurate
by using a longer weave using any of the compiling methods discussed
in section 11.3.2 above. Note that the equivalance between the weave
on the far left and σ2

1 is true as a 3 × 3 matrix acting on the full three
dimensional Hilbert space spanned by three Fibonacci anyons (i.e., on
the space spanned by |0〉, |1〉, |N〉, not just |0〉, |1〉).

≈ ⇒

τ τa b

≈

τa b

Fig. 11.10 Construction of a controlled gate using Fibonacci anyons. The weave on the far left is designed to have almost the
same effect on the Hilbert space as the braiding (two counterclockwise exchanges) of the two blue particles as shown. Using
a longer weave one can more closely approximate the braiding of the two blue particels. On the right, we have a system of 6
anyons representing two qubits. The right (red) we take the cluster of two red anyons, labeled b

Now consider the braid of six anyons on the right of Fig. 11.10 repre-
senting two qubits — the right (red) anyons are the control qubit and the
left (blue) anyons are the target qubits. We group the two red anyons
in fusion channel b and we move them around as a single unit to form
the same weave as shown on the far left (here using the two red anyons
and the right two anyons of the blue qubit). If these two red anyons
are in the vacuum fusion channel b = I, then this braiding has no effect
on the Hilbert space (braiding of the vacuum particle is always trivial).
On the other hand, if the two anyons are in fusion channel b = τ then
this braid is equivalent to moving a single τ particle through exactly the
same weave as on the far left, thus having the same effect as exchanging
the two right-most blue anyons twice counterclockwise. We have thus
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constructed a controlled operation, C(σ̂2
2) which is notated on the far

right of the figure in a manner analogous to Fig. 11.9: The operation
implemented on the blue qubit is (approximately) a full braiding of the
right two blue strands, if and only if the right qubit (b) is in the τ or |1〉
or τ state.
A crucial feature of this construction is that, to the extent that the

weave we use accurately approximates σ̂2
1 , the resulting construction

leads to no leakage error. The right hand qubit (b) is completely un-
changed (hence not creating leakage of this qubit), and the effect on the
left hand qubit (a) is designed to be equivalent to just braiding two of
the blue anyons — which does not create leakage either.

Controlled U-gate

≈ Inj ≡ 13×3

Fig. 11.11 An approximate injection
weave is shown on the left. A perfect
injection has no effect on the Hilbert
space (it applies the identity matrix
to the Hilbert space) but moves the
red strand from the right to the left
of the three anyons. The distance to
the target for this particular weave is
dist = 0.09. With a longer weave one
can more accurately approximate a per-
fect injection.

With a bit more work, we can in fact make any controlled C(U) gate for
an arbitrary two dimensional unitary U , as in Fig. 11.9 (up to an overall
phase as discussed in section11.1.1).
First let us discuss the so-called injection weave described in Fig. 11.11.

An ideal injection weave is meant to leave the Hilbert space unchanged
(it only applies an identity matrix). However, it has the nontrivial effect
of rearranging the three strands comprising a qubit. As shown in the
diagram, the injection weave moves the red strand from the far right
at the bottom to the far left at the top. As discussed in section 11.3.2
we can more precisely approximate the ideal injection by using a longer
weave.
We now construct the braid shown on the left of Fig. 11.12. As in

Fig. 11.10 we group together the two red anyons in fusion channel b and
we move them around as a group. These two anyons are first put through
an injection weave with the right most two blue anyons. This moves the
group of two anyons into the middle position of the right qubit. A weave
to implement an arbitrary unitary U is then implemented on the three
strands furthest left, treating the two red strands grouped together as a
single strand. Finally, thie injection weave is inverted to bring the two
red particles back to their original position. The braid constructed in
this way will implement a controlled U gate C(U), as shown using the
notation of Fig. 11.9 on the right of Fig. 11.12: The left (blue) qubit (a)
has the unitary U applied to it, if and only if the right qubit (b) is in the
|1〉 or τ state. If we choose U to be an X gate, such that the necessary
weave in the middle step is a weave like that shown in Fig. 11.7, we
obtain a C(X) or controlled NOT gate (CNOT).
To understand this procedure we realize that the only two anyons that

are moved in this procedure are the two red anyons in state b, and these
two are moved as a group. As in Fig. 11.10 if these two anyons are in
fusion channel b = I (or |0〉) then the Hilbert space is left unchanged.
However, if b = τ (or |1〉) then there will be an effect on the blue qubit
— hence we have a controlled rotation. Let us now consider this case
when b = τ , so that we should think of the two red strands as being a
single τ strand. The injection weaves are designed to have no effect on
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τa b τ

Inj

U

Inj−1

≈ U

τa b

Fig. 11.12 Construction of a controlled U gate C(U) with Fibonacci anyons. The
two red anyons in state b are moved as a group and all other anyons are kept sta-
tionary. If b = I or |0〉, then the weave has no effect on the Hilbert space. If b = τ
or |1〉 then this weave implements a U rotation on the left (a) qubit.

the Hilbert space — their only effect is to move the red double strand
inside of the blue qubit. The unitary rotation U is thus only nontrivial
effect on the Hilbert space.

Chapter Summary

• Summary Item 1

• Summary Item 2 etc

Further Reading

MOst of the same ideas can be generalzied for other anyon systems.
Freedman et al. [2002a] Freedman et al. [2002b] for the initial work

showing SU(2)k is universal
Mochon [2003] Mochon [2004] for universal quantum computing with

topological superconductor. (This was slightly after freedman)
Bonderson et al. [2008b] for interferometry
Bonderson [2009] for splitting of topological degeneracy
Bonderson et al. [2008a] for measurement only tqc.
Field and Simula [2018] Simula review
Bonesteel et al. [2005] Original Compiling Fib anyons
Hormozi et al. [2007] Quant compiling PRB
Hormozi et al. [2009] Compiling RR states
Simon et al. [2006] One mobile particle
Nielsen and Chuang [2000] Nielson and Chuang
Harrow [2001] Harrow’s thesis.
Brylinski and Brylinski [2002] Brylinksi theorem
Kliuchnikov et al. [2014] Galois theory
Maybe cite original Solovay and Kitaev article.
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Levaillant et al. [2015] Cui and Wang [2015] For SU(2)4
.

Exercises

Exercise 11.1 Ising Nonuniversality
The braiding matrices for Ising anyons are given by Eqs. 10.10 and 10.11.

Demonstrate that any multiplciation of these matrices, and there inverses will
only produce a finite number of possible results. Thus conclude that Ising
anyons are not universal for quantum compuation. Hint: write the braiding
matrices as eiαUi where Ui is unitary with unit determinant, i.e., is an element
of SU(2). Then note that any SU(2) matrix can be thought of as a rotation
exp(i n̂ · σ θ/2) where here θ is an angle of rotation n̂ is the axis of rotation
and σ is the vector of Pauli spin matrices.

Exercise 11.2 Brute Force Search
Given the braid matrices for Fibonacci anyons in Eq. 10.6 and 10.7, write

a computer program for brute-force searching braids up to length 10.
Ignoring the noncomputational state |N〉, and ignoring the overall phase as

usual, determine the closest approximation to the Hadamard gate

H =
1√
2

(

1 1
1 −1

)

Partial Answer: A braid of length 10 exists with phase-invariant distance to
target dist ≈ 0.084

Exercise 11.3 Scaling of Kitaev-Solovay Algorithm
Given the discussion just above Eq. 11.8, prove Eqs. 11.8 and 11.9.

Exercise 11.4 About the Injection Weave
One might wonder why we choose to work with an injection weave in

Fig. 11.11 which moves the red strand from the far right at the bottom all the
way to the far left on the top. Show that for three Fibonacci anyons, there
does not exist any injection weave that moves the (red) strand from the far
right on the bottom to the middle on the top, even up to an overall phase. I.e.,
show that no weave exists starting on the bottom far left ending in the middle
on the top whose effect on the three dimensional Hilbert space is eiφ13×3 for
any phase φ.

Exercise 11.5 Universal Weaving and the Injection Weave
Consider injection weaves as described in Fig. 11.11. Let us assume that

we can construct an injection weave of arbitrary precision. Given such an
(approximately) perfect injection weave show that for any number of anyons
N > 3, a weave can be constructed that performs the same unitary operation
on the Hilbert space as any given braid. A more general mathematical proof
of the universality of weaving is also given in Simon et al. [2006].
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Anyon Diagramatics (in detail)





Planar Diagrams1 12
Medium Hard Material

1This chapter through chapter 15 de-
velop the diagrammatic algebra in some
detail. Those who would like a brief
and easier (albeit not as general) in-
troduction to diagrammatic algebra
should go straight to chapter 16.

One of our objectives is to come up with some diagrammatic rules (some-
what analogous to those of the Kauffman bracket invariant) which will
allow us to evaluate any diagram of world-lines (i.e, a labeled link, pos-
sibly now including diagrams where particles come together and fuse,
or split apart) and get an output which is a complex number as desired
in Fig. 7.1. In chapters 8-10 we have been putting together some of
the necessary pieces for these diagrammatic rules. Here we will begin
to formalize our diagrammatic algebra a bit more precisely2. While we 2Formally, some of the mathematical

structure of planar diagrams was intro-
duced in section 8.6. The rules we are
defining in this chapter is known as a
unitary fusion category to mathemati-
cians.

try to physically motivate all of our steps, in essence the rules of this
chapter can be taken to be axioms of the diagrammatic algebra.
In this chapter we will focus only on planar diagrams — i.e., we do

not allow lines to cross over and under each other forming braids. We
can roughtly think of such planar diagrams as being particles moving
in 1+1 dimension. Since there are no over and under-crossings the only
nontrivial possibility is that particles come together to fuse, or they split
apart. An example of a planar fusion diagram is shown in Fig. 12.1.
It is convenient to draw diagrams so that no lines are drawn exactly
horizontally. The reader should be cautioned that there are several
different normalizations of diagrams — two in particular that we will
discuss. These two normalization conventions are useful in different
contexts. We will start with a more “physics” oriented normalization in
this chapter but we switch to a more topologically oriented normalization
in chapter 14 and in later chapters.

a
ā

b c
d
e

f

g q
n

x
x̄

ys

Fig. 12.1 A planar fusion diagram
starting and ending at the vacuum.

We start by briefly reviewing some of the notions introduced in chap-
ters 8-9: We assume a a set of particle types a, b, c, . . . which we will
draw as labeled lines with arrows in our diagrammatic algebra. This
set of particles includes a unique identity or vacuum particle I, which
may be drawn as a dotted line, or or may not be drawn at all since it
corresponds to the absence of any particles. Each particle type has a
unique antiparticle denoted with an overbar (ā for the antiparticle of a).
As we discussed in section 8.1, if we reverse the arrow on a line we turn
a particle into its antiparticle. If a particle is its own antiparticle we do
not draw an arrow on its line.
Fusion rules are given by the matrices N c

ab having the properties dis-
cussed in section 8.3. We will also assume a consistent3 set of F -matrices

3The word “consistent” here means
that the F -matrices satisfy the pen-
tagon Eq. 9.7.

as discussed in chapter 9.
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12.1 Diagrams as Operators

If, like Fig. 12.1, a diagram starts at the bottom from the vacuum and
ends at the top with the vacuum, we interpret that diagram to represent
a complex number, or an amplitude. However, we will also consider
diagrams that have “loose ends” (lines sticking off the top or bottom of
the page ) meaning that they may not begin or end with the vacuum4.4Many of the diagrams we have drawn

(such as Fig. 8.1 or Fig. 9.1) have not
started at the bottom with the vacuum
or ended at the top with vacuum.

We can view these diagrams with loose ends as being a sub-diagram of a
larger diagram that begins and ends in the vacuum. However, it is also
useful to give such diagrams quantum mechanical meaning in their own
right.
Our convention is that when we draw a diagram with world-lines that

end pointing upwards we should view these particles as kets (indepen-
dent of the direction of any arrow drawn on the world-line). If world-lines
end pointing downwards, we mean them to be bras. Many diagrams will
have world-lines that point both up and down, in which case we mean
that the diagram has some particles that live in the vector space of kets
and some in the dual (bra) space. Such diagrams can be interpreted as
operators that take as input the lines coming in from the bottom and
give as output the lines going out the top. The lines coming in from the
bottom are thus in the bra part of the operator and the lines pointing
out the top are the ket part of the operator5. If we consider, for exam-5Analogous to some of the ideas of

chapter 7, the bras and kets are meant
to be contracted together with bras and
kets from other diagrams, pasting to-
gether such operators to assemble a pic-
ture with no loose ends like Fig. 12.1
which starts and ends in the vacuum.

ple, diagrams with Min incoming lines from the bottom and Mout lines
going out the top, we can write a general operator6 as

6The only constraint on this operator
is that it conserves the total quantum
number (or “charge”). One could imag-
ine operators that do not conserve to-
tal quantum number. Such operators
would be nonphysical and are also out-
side of what we can express with dia-
grams.

Operator =
∑

n,m,q

Cn,m,q |n,Mout; q〉〈m,Min; q| (12.1)

An example of such an operator is shown diagrammatically in Fig. 12.2
with two incoming and three outgoing lines. In Eq. 12.1 the states
|n,Mout; q〉 are an orthonormal complete set of states of Mout particles
where all the particles together fuse to the quantum number q; and
similarly the states |m,Min; q〉 are an orthonormal complete set of states
of Min particles where all the particles together fuse to the quantum
number q. The value of the coefficients Cn,m,q depend on the details of
the diagram being considered. The fact that the operator is necessarily
diagonal in the variable q means that the total quantum number of all of
the incoming particles must be the same as the total quantum number of
all the outgoing particles (i.e., they fuse to the same overall charge). This
conservation of overall quantum number is a reflection7 of the locality7We do not need an axiom for total

quantum number conservation, as this
will arise as a result of the other rules
we introduce in this chapter.

principle of section 8.2.
Generally in a diagram, lines will be labeled with particle types and (if

the particle is not self-dual) arrows. We have not labeled the incoming
and outgoing lines in Fig. 12.2 with the assumption that these labels and
arrows occur inside the hidden box. However, it is sometimes useful to
reinstate these labels as in Fig. 12.3. As we will discuss in more detail in
section 12.2.1 a label restricts the quantum number of the corresponding
line
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=
∑

n,m,q

C(1)
n,m,q |n, 3; q〉〈m, 2; q|diagram 1

Fig. 12.2 Diagram 1, representing an arbitrary diagram (or linear combination,
i.e., weighted sum, of diagrams), is understood as part of a larger diagram, and is
interpreted as an operator. Incoming lines from the bottom correpond to bras and
outgoing lines towards the top correspond to kets. The states |n, 3; q〉 are a complete
set of states for 3 particles where all the particles together fuse to the quantum
number q. Similarly, the states |m, 2; q〉 are a complete set of states for 2 particles
where all the particles together fuse to the quantum number q, The superscript on

C
(1)
n,m,q indicates that these constants correspond to the particular “diagram 1” in

the box. The total quantum number q of all the particles is conserved by the operator
due to the locality principle from section 8.2.

a b

c d e

=
∑

n,m,q

C(2)
n,m,q |n, 3; q〉〈m, 2; q|diagram 2

Fig. 12.3 In a figure with labeled incoming and outgoing lines, the quantum numbers
on these lines are fixed, as compared to Fig. 12.2 where the diagram may have a
superposition of quantum numbers on the external lines.

We now introduce an important diagrammatic principle.

Hermitian Conjugation: Reflecting a diagram around a horizon-
tal axis and then reversing the direction of all arrows implements
Hermitian conjugation

For example, reflecting Fig. 12.3 and then reversing the arrows on all
lines results in the Hermitian conjugate diagram

a b

c d e

=
∑

n,m,q

[C(2)
n,m,q]

∗ |m, 2; q〉〈n, 3; q|diagram 2

Fig. 12.4 Flipping the diagram in Fig. 12.3 results in the Hermitian conjugatate.

The coefficients C
(2)
n,m,q in Fig. 12.3 are complex conjugated to obtain [C

(2)
n,m,q ]

∗ here.

It is crucial that when we turn a bra into a ket (reflecting the diagram
and then reversing the arrows), down-pointing arrows remain down-
pointing and up-pointing arrows remain up-pointing (Note, for example,
that the arrow on a is pointing up both in Fig. 12.3 and 12.4).
Diagrams which start from the vacuum at the bottom are an impor-

tant special case. When there are no incoming lines at the bottom of a
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diagram the expression become

ket =
∑

n,q

Cn,∅,q|n,Mout; q〉 (12.2)

which we can also interpret as an “operator” which accepts the vacuum
as an input at the bottom and gives a ket as an output at the top. The
symbol ∅ here means that the m index used in Fig. 12.2 and Eq. 12.1
is just the empty set (nothing summed over), or equivalently that the
diagram starts from the vacuum. An example of such a diagram is shown
in Fig. 12.5.

=
∑

n,q

C
(3)
n,∅,q |n, 3; q〉

diagram 3

Fig. 12.5 A diagram with no incoming lines at the bottom is interpreted as a ket.

Similarly we can consider diagrams which end in the vacuum at the
top. When there are no outgoing lines at the top of a diagram we have

bra =
∑

m,q

C∅,m,q〈m,Min; q| (12.3)

which is an operator that accepts a ket as an input and gives a com-
plex number as an output. An example of such a diagram is shown in
Fig. 12.6.

=
∑

m,q

C
(4)
∅,m,q 〈m, 3; q|diagram 4

Fig. 12.6 A diagram with no outgoing lines at the top is interpreted as a bra.

If diagram 3 happens to be the reflection of diagram 4 around a hor-
izontal axis with all arrows reversed, then these two diagrams are her-
mitian conjugates of each other and C

(4)
n,∅,q = [C

(3)
∅,n,q]

∗.

12.1.1 Stacking operators

Stacking operators on top of each other contracts bras with kets in the
natural way8. For example, if we define the operator, diagram 5, as in8The observant reader will see sim-

ilarities between this stacking proce-
dure and the stacking of manifolds with
boundary discussed in chapter 7. These
similarities are not a coincidence!

=
∑

n,m,q

C(5)
n,m,q |n, 1; q〉〈m, 3; q|diagram 5

Fig. 12.7 Another example operator
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Fig. 12.7, we can then stack diagram 5 (Fig. 12.7) on top of diagram 1
(Fig. 12.2) to obtain Fig. 12.8. The resultant operator, diagram 6, on
the right is given by

=

diagram 5

diagram 1

diagram 6

Fig. 12.8 Stacking operators on top of each other to create new operators.

Operator =


 ∑

n,m′,q

C
(5)
n,m′,q |n, 1; q〉〈m′, 3; q|




 ∑

n′,m,q

C
(1)
n′,m,q |n′, 3; q〉〈m, 2; q|




=
∑

n,m,q

(
∑

n′

C
(5)
n,n′,qC

(1)
n′,m,q

)
|n, 1; q〉〈m, 2; q|

where we have used the orthonormality of the states |n′, 3; q〉 to generate
a Kronecker delta δm′,n′ . Thus diagram 6 can be written in the usual
form of Eq. 12.1 with constants

C(6)
n,m,q =

∑

n′

C
(5)
n,n′,qC

(1)
n′,m,q

A particularly important case is that of stacking a bra diagram on top
of a ket diagram which generates a scalar. For example, stacking the bra
diagram 4 on top of the ket diagram 3 generates the usual scalar inner
product as shown in Fig. 12.9. This fits with our claim at the beginning
of this chapter that a diagram that starts and ends in the vacuum should
correspond to a complex amplitude.

=

(
∑

m,q

C
(4)
∅,m,q〈m, 3; q|

)(
∑

n,q

C
(3)
n,∅,q|n, 3; q〉

)

=
∑

m,q

C
(4)
∅,m,qC

(3)
m,∅,q

diagram 4

diagram 3

Fig. 12.9 Stacking a bra operator on top of a ket operator generates a scalar. We
have used orthonormality of the kets |n, 3; q〉 on the right hand side.
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12.2 Basis of States

In our definition of an operator (Eq. 12.1) we invoked the existence of
a complete orthonormal basis of states |n,M ; q〉 for M particles having
total quantum number q. We now would like to specify some details of
this basis.

12.2.1 One Particle

We begin by considering a single particle at a time. For a single particle,
an orthogonal complete basis is given by the different particle types9 |a〉9In keeping with the notation of

Fig. 12.2 the state |a〉 should be no-
tated |a, 1; a〉 to indicate a single line,
but here we use just |a〉 for simplicity.

(including the vacuum |I〉). We denote a projector onto a particular
particle type as a simple labeled straight line as shown in Fig. 12.10.
The vacuum can be drawn as a dotted line, or may not be drawn at all.

= |a〉〈a|a

Fig. 12.10 A labeled straight line is just an projector onto the particle type.

Since the different particle types are assumed orthonormal 〈a|b〉 = δab.
Applying two such projectors in a row diagrammatically gives the iden-
tity shown in Fig. 12.11.

= |b〉〈b|a〉〈a| = δab|a〉〈a| = δab
a

b
a

Fig. 12.11 Orthogonality of projection operators.

This identity exemplifies the more general rule shown in Fig. 12.12 which
also agrees with the fact that the operators in Eq. 12.1 are diagonal in
the overall quantum number q. Again this is simply a reflection of the
locality, or no-transmutation, principle10 of section 8.2 (See in particular

10As mentioned in note 7 from earlier
in this chapter, this principle is not an
axiom of our diagrammatics, but rather
can be derived from the other rules we
introduce in this section. See exercise
12.2.

Fig. 8.7).

= 0 unless a = b

a

b

anything

Fig. 12.12 The locality, or no-transmutation, principle as in Fig. 8.7.

Since we assume the set of particle types is complete, the identity
operator is given by the sum over all particle types as in Fig. 12.13
where the sum includes the vacuum particle. We represent the identity

∑

a

=
∑

a

|a〉〈a| = identity =a

Fig. 12.13 The completeness relation for single lines.
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operator on the right in Fig. 12.13 as a straight unlabeled line. This
is convenient since it allows us to extend labeled lines by appending
unlabeled lines.

12.2.2 Two Particles

Let us now move on to the case of two particles. As discussed in chapter
8, to fully describe the state of two particles, we need to give the quantum
number (particle type) of each particle and the fusion channel between
the two particles. We thus draw the state of two anyons with a vertex
diagram11 as shown in Fig. 12.14.

11In cases where the fusion multipl-
icy Nc

ab > 1 we must also add an in-
dex µ ∈ 1 . . . Nc

ab at the vertex as in
Eq. 8.16, and we would write the ket
as |a, b ; c, µ〉. We suppress this addi-
tional index here for simplicity. It is
reinstated in section 12.5.

c

a b

= |a, b; c〉

Fig. 12.14 Particles a and b have fusion channel c.

The notation of the ket12 |a, b; c〉 means that the total quantum num-

12In the notation of Fig. 12.2 the state
|a, b; c〉 might be notated |(a, b), 2; c〉 to
indicate there are two outgoing lines.
If we wanted to emphasize that there
is one incoming line and two outgoing
lines we might write |a, b; c〉〈c| instead.
Here we use abbreviated notation.

ber of particles a and b is c (or a and b fuse13 to c). If N c
ab = 0, i.e., if

13More properly for Fig. 12.14 we
should say that a and b split from c,
whereas in Fig. 12.15 we should say
that a and b fuse to c. Most of the
time people are careless in distinguish-
ing fusing and splitting.

the diagram is a disallowed fusion, then the value of the diagram is zero.
The set of states |a, b; c〉 for all possible a, b, c is assumed to form an or-
thonormal complete set of states for two anyons. Note in particular that
for a 6= b the ket |a, b; c〉 is orthogonal to |b, a; c〉 — i.e., in our planar
diagram algebra, it matters which particle is to the left and which is to
the right.
The Hermitian conjugate of the vertex ket Fig. 12.14, the correspond-

ing bra, is shown in Fig. 12.15.
c

a b

= 〈a, b; c|

Fig. 12.15 This is the bra which is the Hermitian conjugate of the ket in Fig. 12.14

The fact that the diagram for the bra looks like the ket upside-down
is in accordance with our general principle of Hermitian conjugation14

14In section 12.1 we treated the
statement that flipping the diagram
gives Hermitian conjugation as an ax-
iom. However, one could instead treat
Fig. 12.15 as the axiom and build up
the general principle from only this
statement.

introduced in section 12.1 (See the discussion near Fig. 12.4).
To take inner products between a bra (like Fig. 12.14) and a ket (like

Fig. 12.15) we simply stack the bra on top of the ket, in accordance with
section 12.1.1, to produce the diagram15,16 shown in Fig. 12.16.

15Again, if Nc
ab > 1 there are addi-

tional indices µ at the vertices and the
kets are orthonormal in these indices as
well. See note 11 above, and section
12.5.

16This inner product between bra and
ket does not give a scalar but rather
gives a scalar times a c particle line.
This is because the ket, Fig. 12.14 is
actually an operator that takes an in-
coming single line as input and gives
two lines as output. (And conversely
with the bra Fig. 12.15). See also the
comment on notation in the above note
12.

The fact that we obtain delta functions on the right is equivalent
to the statement that the kets |a, b; c〉 form an orthonormal set. The
normalization of Fig. 12.16 (i.e, that one gets kronecker deltas on the
right and no numerical constants) is our physics normalization. This
normalization will be changed in chapter 14.
Note that the first two delta functions δaa′ and δbb′ in Fig. 12.16 can

be interpreted as a result of Fig. 12.11 (the lines are angled instead
of vertical, but this does not change their meaning). As a result, the
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= δaa′δbb′δcc′ c

c

c′

ba

b′a′

Fig. 12.16 The inner product between the bra in Fig. 12.14 and a ket in Fig. 12.15.
This gives kronecker deltas on the right given the physics normalization we are using
in this chapter. The normalization will be changed in chapter 14.

diagram of Fig. 12.16 is often written in the simplified form shown in
Fig. 14.715

= δcc′ c

c

c′

ba

Fig. 12.17 A simplified version of the innner product in Fig. 12.16. This gives a
kronecker delta on the right in the physics normalization we are using in this chapter.
The normalization will be changed in chapter 14.

The fact that c must equal c′ in Figs. 12.16 and 12.17 is consistent
with the no-transmutation principle Fig. 12.12.
The principle of orthonormality of vertices implies the useful result

that a loop, as shown in Fig. 12.18, is given the value of unity (This is
jst Fig. 12.17 where we have set c = c′ = I and not drawn the identity
line). At the risk of being repetitive we once again note that we will
change this normalization in chapter 14 below and in later chapters,
although it is correct for this section.

| 〉 = |ā, a; I〉 = |state〉
a

= 1=〈state|state〉 Physics
Normalization

a

Fig. 12.18 The orthonormality of trees implies a particle loop gets a value of 1 if
we are using physics normalization.

Since the vertex diagrams |a, b; c〉 from Fig. 12.14 form a complete set
of states for the two particles, we can construct an identity operator for
two strands as shown in Fig. 12.19.
We can derive a useful identity from Fig. 12.19 by applying projectors

|x〉〈x| and |y〉〈y| to left and right strings respectively to obtain Fig. 14.8.

∑

c

c

x y

x y

=
∑

c

|x, y; c〉〈x, y; c| = x y

Fig. 12.20 Insertion of a complete set of states, with fixed quantum numbers x and
y on both ends. This figure uses physics normalized diagrams. The normalization
will be changed in chapter 14.
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∑

a,b,c
c

a b

a b

=
∑

a,b,c

|a, b; c〉〈a, b; c| =

Fig. 12.19 Insertion of a complete set of states. This figure uses physics normalized
diagrams. The normalization wil be changed in chapter 14.

An arbitrary operator with two incoming and two outgoing lines can
be written as in Fig. 12.21 where the coefficients C(x,y),(a,b),c are arbi-
trary (depending on what operator we want to define).

∑

a,b,x,y,c

C(x,y),(a,b),c c

a b

x y

=
∑

a,b,c,x,y

C(x,y),(a,b),c|x, y; c〉〈a, b; c|

Fig. 12.21 An arbitrary operator with two incoming and two outcoming lines. The
coefficients C are arbitrary.

12.2.3 Three Particles

We can continue on and consider states of three particles. All the same
principles apply here. As discussed in chapter 8, we can write an or-
thonormal complete set of states for three particles as a fusion tree17,18

17In cases where there are fusion mul-

tiplicities Nd
ab > 1 or Ne

dc > 1 then we
must place an additional index µ or λ
at the corresponding index. See for ex-
ample, section 9.5.3.

18As mentioned in the above note 12,
although we write this as a ket, it
is really an operator, and to empha-
size this we might write something like
|(a, b), c, d; e〉〈e| instead.

as in Fig. 12.22.

a b c

d

e

= |(a, b), c, d; e〉 = |(a, b); d〉 ⊗ |d, c; e〉

Fig. 12.22 An orthonormal set of states for three particles can be described as a
fusion tree. We have used two different notations on the right. The latter notation
matches that of section 8.6.

If either Nd
ab = 0 or Ne

dc = 0 then the corresponding fusion is disal-
lowed and the value of the diagram is zero19. The corresponding kets are 19This is already implied by looking

at the individual vertices and consid-
ering the rules of a single vertex as in
Fig. 12.14.

obtained using the Hermitian conjugation rule of flipping the diagram
and reversing arrows as shown in Fig. 12.23.

a b c

d

e

= 〈(a, b), c, d; e| = 〈(a, b); d| ⊗ 〈d, c; e|

Fig. 12.23 The bras corresponding to the kets in Fig. 12.22.

The inner product of such states is given by stacking the bra on top
of the ket as in Fig. 12.24.
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a b c

d

e

= δaa′δbb′δcc′δdd′δee′ e
a′ b′ c′

d′

e′

Fig. 12.24 The orthogonormality of tree states. This diagram uses physics normal-
ization.

Note that in Fig. 12.24, one can focus one’s attention on the left
branches (with d, a, b, a′, b′, d′), which look exactly like Fig. 12.16 thus
immediately obtaining δaa′δbb′δdd′ and replacing the small diamond on
the left branch with a single d-line. The remaining figure then looks
exactly like the figure 12.16 and gives us the delta functions δcc′δee′ as
well. Thus the orthonormality of these tree states is not a seperate
assumption but can be derived from the orthonormality of two particle
states that we used in section 12.2.2.
The completeness of this set of states similarly can be expressed with

diagrams as shown in Fig. 12.25.

=
∑

a,b,c,d,e,a′,b′,c′,d′

a′ b′ c′

d′

e

a b c

d

Fig. 12.25 The completeness of tree states for three particles. This diagram uses
physics normalization.

Once again we can derive this completeness relation from what we
know about the two-particle case. We can start in the very center of
Fig. 12.25, considering the lines d, c, e, d′c′, and apply the completeness
relation Fig. 12.20. This splits off the c-line to the right which, summed
over its index gives a single unlabled line on the right as in Fig. 12.13.
The remaining diagram on the left (with lines a, b, d, a′, b′ is of the form
of Fig. 12.19 which summed over gives two unlabeled lines. Thus the
completeness relation for three particles is not an independent assump-
tion but follows from the completeness of the one and two particle cases.
One can use these basis states to build arbitrary operators with three

particle states. Just as an example, in Fig. 12.26 we show the most
general form of an operator that takes two particles as an input and
gives three particles as an output.
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=
∑

a,c,e,x,y,z,w

Cx,y,z,wa,c;e |(x, y)z, w; e〉〈a, b; e|
∑

a,c,e,x,y,z,w

Cx,y,z,wa,c;e

x y z

w

e

a c

Fig. 12.26 An arbitrary operator with two incoming lines and three outgoing lines.
The coefficients C are arbitary

12.2.4 F -Matrices Again

In defining our three particle states in Fig. 12.22 we have fused the two
particles a and b on the left first to form d and then fused d with c to
form e. (Our notation to indicate this is |(a, b)c, d; e〉). However, we
could have chosen to fuse the particles in a different order to form a
different tree as shown in Fig. 12.27. Here b and c fuse together to form
f and then a and f fuse together to form e. We notate this state as
|a, (b, c), f ; e〉.

a b c

f

e

= |a, (b, c), f ; e〉 = |a, f ; e〉 ⊗ |(b, c); f〉

Fig. 12.27 Another orthonormal set of states for three particles. Compare to
Fig. 12.22.

The set of states defined by the fusion trees in Fig. 12.27 also form a
perfectly good (but different) complete orthonormal basis of states for
three particles. For example, we have the orthogonality relation shown
in Fig. 12.28 (compare Fig. 12.24).

b c

a

e

f

= δaa′δbb′δcc′δff ′δee′ e
b′ c′

a′

e′

f ′

Fig. 12.28 The orthogonality of tree states in a different basis. This diagram uses
physics normalization.

As described in detail in chapter 9, if we draw trees with different
branching structure, we are describing the same Hilbert space, but in
a different basis — the basis change being given by a unitary F -matrix
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transform as shown in Fig. 12.29 (See also discussion of Fig. 9.1).

a b c

d

e

=
∑

f

[
F abce

]
df

a b c

f

e

Fig. 12.29 The F -matrix. See chapter 9.

Similarly we have the relation between the Hermitian conjugate states
as shown in Fig. 12.30. Note that because the F matrix is unitary in its

a b c

d

e

=
∑

f

[
F abce

]∗
df

a b c

f

e

Fig. 12.30 F -matrix

two outside indices (d and f in Fig. 12.29) we have

[F abce ]∗df = ([F abce ]†)fd = ([F abce ]−1)fd

12.2.5 More Particles

The principles we have developed for one-, two-, and three-particle states
are easily extended to greater numbers of particles. Each shape of fusion
tree defines a different orthonormal complete set of states. For example,
with four particles, we might choose the tree shape shown in the left
of Fig. 12.31, or we might choose the tree shape shown in the right of
Fig. 12.31. Either one of these makes a perfectly good orthonormal basis
for four particles — and these two bases are related to each other by
F -matrices as discussed in chapter 9.

a b c d

e

f

g

a b c d

hf

g

Fig. 12.31 Two (of five) possible bases for describing states of four particles. These
bases are related to each other by F -moves (See Fig. 9.7). The shape of tree on the
left is sometimes known as the “standard” basis.

The left-hand tree structure in Fig. 12.31, with all of the particles on
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top branching from a single line going from top left to bottom right, is
sometimes known as the “standard basis.”
One can use F -moves to evaluate more complicated diagrams. An

example of this is shown in Fig.12.32.

b c a

ā

d

ef

ā

=
∑

x

[(F bdeā )−1]cx
b d e a
x

ā

f

ā

= (F bdeā )∗fc

Fig. 12.32 The diagram on the left is evaluated by applying an F -move to the lower
left part of the diagram. The resulting diagram is evaluated to a function δxf due
to the orthonormality of tree diagrams. Finally we use the unitarity of F in the last
step. Since this diagram starts and ends at the vacuum it evaluates to a scalar. This
diagram is evaluated with physics normalization.

12.3 Causal Isotopy

Keeping with the idea of diagrams that are planar (no over- and under-
crossings), we now consider how we may deform these diagrams. When
we discussed the Kauffman bracket invariant we were allowed to freely
deform any diagram as long as we did not cut any strands. This prop-
erty is known as isotopy invariance20. Analogously, if a planar diagram

20In that case we had regular isotopy

invariance meaning that we can deform
knots freely in 3D as long as we treated
the strands as ribbons. See sections
2.2.1 and 2.6.1.

retains the same value for any deformation that does not involve cut-
ting strands or crossing them over each other, we say the theory has full
planar isotopy invariance. Examples of this are shown in Fig. 12.33.

=

a
b c

d

e f

g

h

a

b

c

d

e

f

g

h

Fig. 12.33 For a theory with full planar isotopy invariance, these two diagrams
should evaluate to the same result. Full planar isotopy invariance allows us to distort
the diagram in any way as long as we do not cut any strands or cross lines through
each other.

We need to ask how much topological invariance we should really ex-
pect from our physical theories. In the mathematical world of TQFTs
and knot invariants, it is fine to assume that all directions are equivalent,
and we can freely distort a line travelling in the x direction (horizontally)
on the page to a line travelling in the t direction (vertically). However,
in real physical systems, generically the time direction might need to
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be treated differently from the space directions. In this section we will
discuss topologically theories that allow deformation in space, but with-
out allowing one to freely exchange the time and space directions. In
particular some amount of causality might be demanded.
In chapter 16 we will consider a subset of theories which have a much

higher level of topological invariance, known as regular isotopy invari-
ance21, which allows us to freely distort diagrams in either the space or

21The term “regular” implies that
strands are treated as ribbons, but
other than this caveat, all deformations
without scissors are allowed. See sec-
tion 2.6.1.

time direction and further allow us to interchange the two.
In this chapter through chapter 15 we do not assume regular isotopy

invariance (or full planar isotopy in the case of planar diagrams) but
rather assume only what we call causal isotopy22. Here we allow defor-22This is not standard nomenclature.

mation of space-time diagrams so long as we do not change the time-
direction orientation of any lines or vertices. In other words, the path of
a particle that is moving forward in time should not be distorted such
that it is moving backwards in time (and vice-versa, a particle moving
backwards should not be distorted so that it is moving forwards) — but
other than this constraint, any smooth deformation is allowed. Two ex-
amples of deformations that are allowed under causal isotopy are shown
in Fig. 12.34.

=

a a

=

a b d

e f g

a b d

e f g

Fig. 12.34 Two examples of deformations that are allowed under causal isotopy.
Deformations of the path are allowed as long as they do not require a particle to
reverse directions in the time-like direction. In the left example, this deformation
is allowed because in both cases the particle continues to move forward in the time
direciton. In the right example, the temporal order of the vertices does not matter.

⇐⇒X

a a

a c

b

a c

ā

b

⇐⇒X

Fig. 12.35 Two examples of transformations that are not necessarily equalities
under causal isotopy. In some special theories these transformations will be allowed,
but generically they are not allowed. The diagrams on the far left are discussed in
chapter 14. The diagram on the far right is discussed in sections 12.4.1 and 14.1.1.

Certain deformation of diagrams are not allowed by causal isotopy.
Two examples of such disallowed deformations are given in Fig. 12.35.
On the left of the figure we see a particle which turns around in time.
This need not be the same as the particle moving straight in time as it
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involves a particle creation event and a particle annihilation event. On
the right of Fig. 12.35 a vertex is altered so instead of an a particle going
out of the vertex, a ā particle goes in. In this case we must have a a
with ā annihilation event in the far right diagram that does not exist
in the simpler diagram where a and c directly fuse to b. Thus these
two diagrams do not necessarily evaluate to the same result. (Although
in some cases, such as in chapter 16, one may have a simple theory for
which the tranformations showed in Fig. 12.35 are allowed, such theories
are not generic.)

12.4 Summary of Planar Diagram Rules in
Physics Normalization

With the principles we have now discussed we should be able to evaluate
any planar diagram— taking a space-time process which starts and ends
in the vacuum and turning it into an amplitude (i.e, a complex number).
The same principles can be used to simplify operators such as Eq. 12.2.

a ā

b

=

a ā b

I

b
Fig. 12.36 One can always add or re-
move the identity (or vacuum) line to
any diagram.

Here are a summary of the important rules we have learned for dia-
gram evaluation

(1) One is free to continuously deform a diagram consistent with causal
isotopy as described in section 12.3. That is, particles must not
change their direction in time due to the deformation.

(2) One is free to add or remove lines from a diagram if they are labeled
with the identity or vacuum (I). See the example in Fig. 12.36.

(3) Reversing the arrow on a line turns a particle into its antiparticle
(See Fig. 8.4).

(4) Regions must maintain their quantum number locally as in Fig. 12.12.
In particular this means that a line must maintain its quantum
number unless it fuses with another line, or splits.

(5) Splitting and fusion vertices are allowed for fusion multiplicities
N c
ab > 0 (See section 8.3). This includes particle creation and

annihilation as a special case where a particle-antiparticle pair fuse
to the vacuum or split from the vacuum (An example is shown in
Fig. 12.36).

(6) Hermitian conjugation is given by reflection of a diagram around
a horizontal line along with flipping the direction of arrows (See
Fig. 12.4 or for example, Fig. 12.23)

(7) One can use F -moves to change the structure of fusion trees in
order to simplify. For example, in Fig. 12.32.

(8) Once one reduces a diagram into tree structures that have the
same branching in the upper and lower half (as on the right of
Fig. 12.32) we can use the orthonormality of trees to complete
the evaluation. In cases where the diagram starts and ends in the
vacuum this reduces the diagram to a complex number (See, for
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example, in Fig. 12.32). More generally operator diagrams can be
reduced to simple forms analogous to Fig. 12.26.

With these principles (and given an F -matrix as input information –
which will depend on the particular physical system we are considering)
it is possible to fully evaluate any planar diagram, starting and ending
in the vacuum, into a complex number. While there may be many
strategies to use these rules to reduce a complicated diagram to a single
complex number, the final result is independent of the order in which
we apply the rules23.23This is guaranteed by the pentagon

relation and the Mac Lane coherence
theorem.

The mathematical structure we have defined thus far (our Hilbert
space and F matrices) is known as a “unitary fusion category”. There
is more structure to be uncovered in further chapters that follows from
what we have defined so far, and there are many special cases to be
discussed. In addition note that here we have only described planar
diagrams, so we have not yet described 2+1 dimensional theories — in
order to describe these, we will have to include braiding rules for our
diagrams we will add in chapter 13.

12.4.1 A Simple Example

As a simple example, let us try to evaluate the diagram shown on the far
left of Fig. 12.38. We first work on a small part of the diagram as shown
in Fig. 12.37 (Note that this is the same as the far right of Fig. 12.35).

I b

a

ā

c

= [F aābb ]Ic

b

b
c

a
ā c

= [F aābb ]Ic

b

ca

Fig. 12.37 To evaluate the diagram on the left, the vacuum line is inserted and an
F -move is made. The bubble is then removed with Fig. 12.16. These diagrams use
physics normalization. We will re-examine this diagram using a different normaliza-
tion in section 14.1.1.

The result in Fig. 12.37 can also be reflected along the horizontal axis
as in Fig. 12.4 to give the Hermitian conjugate diagram. Using both
Fig. 12.37 and its reflection, we obtain the result given in Fig. 12.38.

a c b = |[F aābb ]Ic|2 b

b

b

a

a
c = |[F aābb ]Ic|2

Fig. 12.38 The first step invokes Fig. 12.37 and its Hermitian conjugate. The figure
on the right is a tree which evaluates to the identity so long as the fusion vertices are
allowed and assuming physics normalizations.
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12.5 Appendix: Higher Fusion Multiplicities

When we have a theory with higher fusion multiplicities (i.e., N c
ab > 1

for at least one fusion channel), then the vertices must be given indices
as well as lines having indices, and tree states are orthogonal in these
indices as well. For example, we would need to modify Figs. 12.17 and
12.20. to the form shown in Figs. 12.39 and 12.40. See also the discussion
of the F -matrix with higher fusion multiplicites in section 9.5.3.

= δcdδµν c

c

d

ba

µ

ν

Fig. 12.39 The bubble diagram when there are fusion multiplicities. This diagram
is a result of the orthonormality of tree diagrams. The variables at the vertices must
match in order for the result to be nonzero. This diagram is drawn in the physics
normalization. We will change the normalization in chapter 16.

a b =
∑

c,µ

c

a b

a bµ

µ

Fig. 12.40 Insertion of a complete set of states. When there are fusion multiplicities,
these must be summed over as well µ ∈ Nc

ab. This diagram is drawn in the physics
normalization. We will change the normalization in chapter 16.

Chapter Summary

• THis is an item

Further Reading

This is some reading.

Exercises

Exercise 12.1 Evaluating diagrams with F -matrices
Evaluate the following diagram, writing the result in terms of F ’s.
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a

b

c

d f
g

Exercise 12.2 Locality Principle
Show that the locality principle (Fig. 12.12) is derivable from our other rules

for evaluating diagrams, and is not therefore an independent assumption.



Braiding Diagrams1 13
Medium Material

1This chapter continues the develop-
ment of the diagrammatic algebra in
some detail. Those who would like a
brief and easier (albeit not as general)
introduction to diagrammatic algebra
should go straight to chapter 16.

In chapters 8, 9, and 12 we focused on planar diagrams. These diagrams
can be thought of as describing the physics of objects that live in 1+1
dimension. More to the point, the nontrivial physics we discovered is
really just a reflection of the nontrivial structure of the Hilbert spaces
we are working with.
Here we extend our diagrammatic rules to the 2+1 dimensional world.

In particular we want to describe what happens when we braid world
lines. In chapter 10 we started to discuss braiding of identical particles
and we continue that discussion here.

13.1 Three Dimensional Diagrams

We begin by generalizing the concept of a diagram that we developed in
chapters 9-16. The diagrams we want to consider now allow over- and
under-crossings of lines as in Fig. 13.1. We will end up with a set of
rules that are conceptually similar to the knot-invariants we discussed
way back in chapter 2 — we take a picture of a generalized knot (like
Fig. 13.1) and we reduce it to an output number. The generlization
here is that the lines have labels (a, b, c, . . .) and lines can fuse with each
other in addition to crossing over and under each other.

a

b

c

k

f

g

h

Fig. 13.1 A diagram with over- and
under-crossings representing a process
in 2+1 dimensions.

We should be somewhat cautious here that whereas when we consid-
ered the Kauffman bracket invariant, we had regular isotopy invariance
— meaning that, treating strands as ribbons, any deformation of the
diagram was allowed as long as we did not cut any strands. In contrast
here (while we should still treat strands as ribbons) not all deforma-
tions are allowed. In general we will only have the same type of causal
isotopy as described in section 12.3 (that is, we cannot freely deform a
particle line going forward in time to one that goes backwards in time).
Of course there do exist anyon theories with a higher level of isotopy
invariance (regular isotopy), which we will discuss in chapter 16, but we
should realize that these are not generic.
Our rules for evaluating diagrams with over- and under-crossings will

be a consistent extension of a set of rules for evaluating planar diagrams2. 2In mathematical language, the rules
introduced in this chapter give addi-
tional structure to a unitary fusion cat-
egory to make it a unitary braided fu-
sion category, or unitary ribbon fusion
category (these notions are equivalent.

Our next task is to consider how we handle over- and under-crossings.
With this information, used in conjunction with the rules we have al-
ready developed for planar algebras, we will be able to evaluate any
diagram in 2+1 dimensions.
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13.2 Braiding Non-Identical Particles

We now turn to ask what happens if we exchange two different particle
species, say a and b. We might be tempted to do something similar to
Figs. 10.1 and 10.2 — that is we define a state with two particles in a
given fusion channel then we exchange the two particles and determine
the phase accumulated in this process. However, such a scheme cannot
work in the case of non-indentical particles. The reason this fails is that
when the two particles are not identical the initial and final states are
fundamentally different and cannot be related to each other by just a
phase — for example, the initial state for Fig. 13.2 has a to the left of b
whereas the final state has a to the right of b.

a b

Fig. 13.2 One would ideally like a
rule for exchanging any two particles.
However, this will not generally be
just a phase since the initial and fi-
nal states are fundamentally differ from
each other.

Nonetheless, the R-matrix can still be precisely defined even when we
are braiding nonidentical particles. Diagrammatically we define the R
matrix as shown in Fig. 13.3. On the right of this figure, the particles b
and a come from c, with a going off to the right and b to the right. In the
left of the figure, the two particles are moved away from each other, b to
the right and a to the left, before they are braided around each other.
The key here is that in both cases, the final state of the system has b
on the left and a on the right, and the two particles fuse to a quantum
number c, so that the two processes can be compared to each other and
differ from each other only by a phase, which we define3 to be Rabc .3The notation we use matches that of

Bonderson [2007]. In this convention,
the element Rabc is associated with the
diagram having b going out the top left
and a going out the top right. One
might have thought that Rbac would
have been a more natural notation.
(Secretly, when no one is looking, I
sometimes use the other convention.
But in this book we will match the con-
vention of the other references.)

= Rabc

b a

c

b a

c

Fig. 13.3 Definition of the R-matrix. It is crucial that the final state of the system
on both the left and right has b on the left and a on the right, and in both cases the
two particles fuse to a. However, the left diagram includes an exchange of the two
particles. The added exchange accumultates the phase Rabc .

Similarly we have the inverse braid

= [Rabc ]
−1

b a

c

b a

c

Fig. 13.4 The inverse exchange gives [Rabc ]−1.

It is important to note that (in a unitary theory) the R-matrix is
always just a complex phase. Note that Rabc is not defined if a and b are
not allowed to fuse to c (i.e, if N c

ab = 0). Further, note that braiding
anything with the identity (vacuum) particle should be trivial,

RIaa = RaIa = 1

.
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A full braid (two exchanges in the same direction) of two particles a
and b fusing to c is given by Rabc R

ba
c as shown in Fig. 13.5. Note that

in the representation on the far left of the figure, in both the initial
and final configurations of particles, the b particle is to the left of the a
particle meaning that we can understand this process as simply incurring
an Aharonov-Bohm-like phase dependent on the fusion channel.

c

b a

= = Rabc R
ba
c

b a

c

b a

c

Fig. 13.5 A double exchange is a full braid (one particle wrapping fully around
another.

If a particle a has trivial full-braiding with all other particles of a
theory, ie., if Rabc R

ba
c = 1 for all a, c where N c

ab > 0, then we call the
particle type transparent. (The identity, or vacuum particle, is always
transparent.)
Taken together with the F -matrices, the R-matrices allows us to cal-

culate the physical result of any braid. The scheme is mostly analogous
to the cases we discussed for braiding identical particles in chapter 10. If
we want to exchange two particles we first use the F -matrices to put the
system in a basis where those two particles have a known fusion channel.
We can then directly apply the R matrix to describe the exchange.
In particular we can now give a general scheme for evaluating any

crossing of the form shown in Fig. 13.2 which is shown in Fig. 13.6.
Using this procedure any diagram with braiding can be reduced to a
planar diagram which can then be evaluated using only the F -symbols.

a b

=

a b a b

=
∑

c

b

c

a

=
∑

c

Rabc

a b

b a

c

Fig. 13.6 A generic crossing can be reduced to a planar diagram using the R-matrix.
In the second step a complete set of particles c is inserted as in Fig. 12.20. Note this
figure uses physics normalization.

a b

=
∑

c

[Rabc ]−1

a b

b a

c

Fig. 13.7 The inverse crossing. This figure uses physics normalization.
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a b = ab
a

b
=

a

b

Fig. 13.8 These moves, Reidermeister Type-II moves, are allowed in any anyon
theory. See section 2.6.1.

a bc

=

a bc
Fig. 13.9 This move, a Reidermeister Type-III move, is allowed in any anyon theory.
See section 2.6.1.

Using the Hermitian conjugation principle (See Fig. 12.4) we can de-
rive (see exercise 13.3)

[Rabc ]−1 = [Rbac ]∗ (13.1)

13.2.1 Summary of Rules for Evaluating any 2+1 D
Diagram with Physics Normalization

The rules for evaluating any diagram in 2+1 dimensions (working with
physics normalization of diagrams) are thus a very simple extension of
the rules presented in section 12.4. We simply add two more rules

(1) We are allowed to use R-moves as in Fig. 13.3 and 13.4. In par-
ticular, this allows resolving of crossings by using Fig. 13.6 and
13.7.

(2) Once any diagram is reduced to a planar diagram, we can use the
rules of section 12.4.

As with the case of planar diagram, there is some degree of deforma-
tion of diagrams (causal isotopy, see section 12.3) which is freely allowed.
Here again the rules are similar: any deformation that does not involve
cutting lines, or changing the time-direction of motion is allowed. With-
out introducing new assumptions, natural moves such as those shown in
Fig. 13.8 and 13.9 can be derived (See exercise 13.5). These are noth-
ing more than the Reidermeister Type II and III moves introduced in
section 2.6.1.

13.3 The Hexagon

Using R-moves and F -moves any 2+1 D diagram (starting and ending
in the vacuum) can be reduced to a complex amplitude. One might
worry if the rules we have listed for evaluation of diagrams are self-
consistent: i.e., does it matter in which order we apply the rules? Will
we always obtain the same complex amplitude result? Indeed, given
an F -matrix, only certain sets of (physically acceptable) R-matrices will
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have the property that the diagrammatic rules give a unique final result.
In fact, it is even possible that for a given set of F -matrices that satisfy
the pentagon, there may not even exist a set of consistent R-matrices!
When we discussed planar diagrams in chapter 12, the pentagon equa-

tion guaranteed self-consistency of F -matrices. Now, given some F -
matrices that satisfy the pentagon equations, the consistency equations
for R-matrices are known as the hexagon equations and are shown dia-
grammatically in Fig. 13.10.

d

e

ba c →R

→F

d

e

b ca

→F

→R

d

b

g

ca

→R

→F d

b

g

ca

d

ba c

f

d

f

b ca
d

e

ba c →R
−1

→F

d

e

b ca

→F

→R−1

d

b

g

ca

→R −
1

→F d

b

g

ca

d

ba c

f

d

f

b ca

Fig. 13.10 The hexagon equations in graphical form.

In equations the hexagon conditions can be expressed as

Rcae [F acbd ]egR
cb
g =

∑

f

[F cabd ]efR
cf
d [F abcd ]fg (13.2)

[
Rcae ]−1[F acbd

]
eg
[Rcbg ]−1 =

∑

f

[F cabd ]ef [R
cf
d ]−1[F abcd ]fg (13.3)

The top equation is the left diagram whereas the lower equation is the
right diagram in Fig. 13.10. The left hand side of the equation corre-
sponds to the upper path, whereas the right hand side of the equation
corresponds to the lower path.
The structure we have now defined — a consistent set of (unitary)

F and R-matrices satisfying the pentagon and hexagon equations, is
known as a unitary braided tensor category4 . All 2+1 D anyon theories 4This is also sometimes known as a uni-

tary ribbon tensor category due to the
fact that Eq. 15.3 holds, which is always
true for unitary theories with braidings.
The unitary braided tensor category is
also sometimes known as a premodular

category.

must be of this form.
Given a set of fusion rules, the pentagon and hexagon equation are

very very strong constraints on the possible F and R matrices that can
result.
With simple fusion rules, such as Fibonacci (as we saw in exercise

9.4) the fusion rules completely determine the F -matrices of the theory.
Even with more complicated fusion rules, as we mentioned in section
9.3, there are only a finite number of possible solutions of the pentagon
equation5. 5Solutions that can be obtained from

other solutions by gauge transform are
not counted as being different solutions.

Once the F -matrices are fixed, there are only a finite number of pos-
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sible solutions of the hexagon equations. For example, in the case of
the Fibonacci theory, there are exactly two consistent solutions to the
Hexagon equations, corresponding to the left and right handed types of
Fibonacci anyons (See Eq. 10.2 and exercise 13.1).

13.4 R-matrix Odds and Ends

13.4.1 Appendix: Gauge Transforms and R

As in section 9.4 one can gauge make gauge transformations on the
vertices of a theory. Given the transform shown in Fig. 9.8,

c

a b

= uabc
∼
c

a b

Fig. 13.11 We have the freedom to make a gauge transform of a vertex by multi-

plying by a phase uabc . The tilde on the right notates that the vertex is in the tilde
gauge.

the R matrix transforms as

R̃abc =
ubac
uabc

Rabc (13.4)

Note that Raac is gauge invariant, as is the full braid Rabc R
ba
c in Fig. 13.5.

13.4.2 Product Theories

Given two anyon theories T and t, we can construct the product theory
T × t as in section 8.5. If the theory T has consistent R matrices RABC
and the theory t has consistent R matrices Rabc (“consistent” here means
there are F matrices that satisfy the pentagon relation and the F ’s
and R’s satisfy the hexagon relations), then the product theory has a
consistent R matrices

R
(A,a)(B,b)
(C,c) = RABC Rabc

Again, the point here is that in a product theory, the two consituent
theories don’t “see” each other at all.

13.4.3 Appendix: Higher fusion multiplicities

When we have a theory with higher fusion multiplicities (i.e., N c
ab > 1 for

at least one fusion channel), then the vertices must be given indices as
well as lines having indices as in section 12.5. In this case the R-matrix
carries vertex indices as well, and is a unitary matrix with respect to
these indices.
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=
∑

ν

[Rabc ]µν
b a

c

µ νb a

c

Fig. 13.12 Definition of R-matrix when there are higher fusion multiplicities. Here
the vertices carry labels, and R is a unitary matrix with respect to these labels.

Under a gauge transformation, as in Fig. 9.10, the Rmatrix transforms
as

[̃Rabc ]µ′ν′ =
∑

µ,ν

([uabc ]−1)µ′µ[R
ab
c ]µν [u

ba
c ]νν′ (13.5)

Exercises

Exercise 13.1 Fibonacci HexagonOnce F matrices are defined for a TQFT,
consistency of the R-matrix is enforced by the so-called hexagon equations as
shown in the figure diagramatically by Fig. 13.10. or the Fibonacci anyon
theory, once the F matrix is fixed as in Eq. 9.3, the R matrices are defined up
to complex conjugation (i.e., there is a right and left handed Fibonacci anyon
theory — both are consistent). Derive these R matrices. Confirm Eqs. 10.2
as one of the two solutions and show no other solutions exist.

Exercise 13.2 Evaluation of a Diagram
Consider the following diagram:

b

f
g

Evaluate this diagram in terms of R’s and F ’s. Hint: First reduce the
diagram to that shown in exercise 12.1.

Exercise 13.3 Symmetry of R
Use hermiticity to derive the property of R given in Eq. 13.1.

Exercise 13.4 Gauge transform of R and Hexagon
(a) Confirm the gauge transform Eq. 13.4.
(b) Show that a set of F matrices and R matrices satisfying the hexagon

equations, Eq. 13.2 and 13.3 remains a solution after a gauge transformation.
Remember that both R and F transform.

Exercise 13.5 Reidermeister Moves
(a) Use the R-matrix, and the completeness relationship, to derive the

equivalence shown on the left of Fig. 13.8.
(b) How does the hexagon equation imply the equivalence shown in Fig. 13.13.

Hint: This is very subtle, but is almost trivial.
(c) Use Fig. 13.13 to show the equality on the right of Fig. 13.8.
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a

b c

f a

b c

f

=

Fig. 13.13 This move is implied by the hexagon equation. (Similar with the straight
line f going under the other two, and similar if the left-to-right slope of f is negative
instead of positive.).

(d) Use the result of Fig. 13.13 along with completeness and the R-matrix
to demonstrate Fig. 13.9.

This exercise shows that equalities like those shown in Fig. 13.8 and 13.9
are not indpendent assumptions but can be derived from the planar algebra
and the definition of an R-matrix satisfying the hexagon.



Seeking Isotopy1 14
Medium Hard Material

1This chapter continues the develop-
ment of the diagrammatic algebra in
some detail. Those who would like a
brief and easier (albeit not as general)
introduction to diagrammatic algebra
should go straight to chapter 16.

When we discussed knot invariants, like the Kauffman bracket invariant,
we were allowed to deform a knot in arbitrary ways so long as we didn’t
cut any strands2. This is what we called isotopy invariance. We would

2Meaning regular isotopy — i.e., we
should treat strings as ribbons. See sec-
tion 2.2.1.

very much like the diagramatic rules of our topological theories to obey
isotopy invariance. However, as we discussed in section 12.3 we should
really only expect invariance under a more limited set of moves which
we called causal isotopy.
Fortunately, in many cases we can make some small changes to nor-

malizations to remove some impediments to isotopy invariance. Let us
first examine where the most obvious problem lies. For a nice topologi-
cal theory (meaning one with full planar isotopy for a planar theory, or
regular isotopy for a 2+1 dimensional theory) we would want to have
the so-called zig-zag identity shown in Fig. 14.1 (which is not a prop-
erty of theories having only causal isotopy invariance as mentioned in
Fig. 12.35).

=
?

a a

Fig. 14.1 A topological theory with
full isotopy invariance should have this
“zig-zag” identity. However, generi-
cally a set of F matrices will not satisfy
this equality (See Fig. 14.2). We can of-
ten repair this problem by changing the
normalization of kets.

Unfortunately, a set of F matrices (even if they satisfy the pentagon
self-consistency condition Eq. 9.7) does not generically satisfy this zig-
zag identity Fig. 14.1. To see this, consider the manipulations shown
in Fig. 14.2. With the physics normalization of diagrams we have been
using, the zig-zag identity does not hold.

= [F aāaa ]
II

a
I

I

a
I

I

a
= [F aāaa ]

II
a

Fig. 14.2 Straightening a zig-zag wiggle incurs a factor of F using physics normal-
ization of diagrams. The left of this diagram is the same as the left of Fig. 14.1.
In the first step we use an F -move on the lower part of the diagram. We then use
orthogonality of the tree to remove the small a bubble. This part of the diagram is
just Fig. 12.18. Thus this small a bubble can be removed. We conclude that with
the physics normalization we cannot satisfy the zig-zag identity Fig. 14.1.

14.1 Isotopy Normalization of Diagrams

To fix the zig-zag problem, we take a cue from the Kauffman bracket
invariant and change our definition of diagrams just by a small bit. In
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particular, let a simple loop of particle a, as shown in Fig. 14.3, be given
a value which we call da. This is different from our prior definition
where we set the loop value to one as in Fig. 12.18. The change here
only means that we will be working with unnormalized bras and kets.
We will call this normalization “isotopy normalization”.

| 〉 = |state〉
a

=〈state|state〉 a = da= Isotopy
Normalization

a

Fig. 14.3 Using a new normalization (which we call “isotopy normalization”) of
bras and kets. Compare to Fig. 12.18.

We should not worry about working with unnormalized bras and kets
— we are allowed to do this in quantum mechanics. The price for using
unnormalized states is that expecations of operators are now given by

〈Ô〉 = 〈ψ|Ô|ψ〉
〈ψ|ψ〉

instead of the usual expression for normalized states which just has the
numerator. Note that clearly for the identity particle dI = 1 since we
should be able to add and remove and deform vacuum lines freely3.

3Evaluation of an empty diagram also
gives unity, since one can add or remove
vacuum lines freely, we can think of the
empty diagram as being equivalent to
any number of loops of the vacuum I.

Henceforth, we will use isotopy normalization!

With this new normalization, we can recalculate the value of a zig-zag
wiggle analogous to that of Fig. 14.1.

= [F aāaa ]
II

a
I

I

a
I

I

a
= da[F

aāa
a ]

II
a

Fig. 14.4 With the new isotopy invariant normalization of diagrams, straightening
a zig-zag wiggle incurs a factor of da[F aāaa ]II . We will choose the value of da so as
to make this factor unity.

If we can arrange that the prefactor da[F
aāa
a ]II is unity then straighten-

ing a zig-zag such as that in Fig. 14.1 will be an allowed transformation.
In the simplest theories, we can simply choose da such that this product
is unity. However, this is not always going to be possible to do (this
will be discussed in more detail in section 14.2). Instead, what we will
always be able to do (which is almost what we would like!) is to arrange
that [F aāaa ]II is real4 and we choose da such that

4This is arranged by gauge transform.
See section 14.2.
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da =
ǫa

[F aāaa ]II
(14.1)

where
ǫa = ±1 (14.2)

which we will discuss in more detail in section 14.2 below5. Given this 5I like to call ǫa the “wiggle phase” in
absence of a better name.choice, the product da[F

aāa
a ]II in Fig. 14.4 is ǫa = ±1 and the the zig-zag

identity generally becomes modified to that shown in Fig. 14.5.

a a

== ǫa

a

Fig. 14.5 The modified zig-zag identity. Here ǫa is always arranged to be +1 or
−1. The equality on the left is from Fig. 14.4. The equality on the right follows from
Hermitian conjugation of the equality on the left (turning the diagrams upside down
and reversing the arrows).

Thus by changing the normalization of a loop in Fig. 14.3 and choosing
the value da of this loop appropriately, we arrange such that zig-zag lines
as in Fig. 14.5 can be freely straightened out, up to a possible sign. In
the simplest theories, ǫa = +1 for all particle types and zig-zag lines can
be straightened out freely without accumulating any sign. However, this
will not always be the case.
Thus we have defined a new normalization of the loop Fig. 14.3 given

by the choice of Eq. 14.1. As we will see in section 17.1, the normalization
constant da will turn out (up to a possible sign6 ) to be the same quantum 6Note that our conventions allow da to

be positive or negative. We will discuss
potential issues with da < 0 in section
14.2 below. Some references, includ-
ing Bonderson [2007] and Kitaev [2006]
define da to be the absolute value of
this quantity so it is the same as da.
We have already seen examples where
da < 0 (see exercise 2.2).

dimension da that we found in Eq. 8.9 from the Hilbert space dimension
of fusing anyons together!
Having changed the normalization of our kets, for consistency we need

to change the normalization of fusions and splittings vertices as well.
Thus we define new normalization of vertices as shown in Fig. 14.67

7One might be worried how one handles
the fractional power when one of the d’s
is negative. In fact we will only need
to consider cases where the factor in-
side the brackets ends up positive. (See
Eq. 14.4 below). This is always possi-
ble since we can always choose to put
the minus sign on ǫ rather than d.

| 〉
a b

c
Isotopy
Normalization

=

(
dadb
dc

)1/4 | 〉
a b

c
Physics
Normalization

Fig. 14.6 New “isotopy” normalization for vertices7. Note that this is consistent
with Fig. 12.18 by setting c = I with a = b (and note that dI = 1.).

With this new normalization, the orthonormality of trees is now dif-
ferent from what we previously assumed. For example, Fig. 12.32 should
now have a factor of

√
dadbdedd on the right hand side.

Similarly our bubble diagram Fig. 12.17 and our completeness diagram
Fig. 12.20 need to be modified as shown in Fig. 14.7 and Fig. 14.88.

8Once again if Nc
ab > 1 there are addi-

tional indices at the vertices and these
must match as well. See section 12.5.
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c

d

ba

ba
= δcd

√
dadb
dc

c

Fig. 14.7 Bubble diagram with isotopy invariant normalization of diagrams. See
Eq. 14.5 for how to interpret the square root in cases where d < 0.

a b =
∑

c

√
dc
dadb

c

a b

a b

Fig. 14.8 Insertion of a complete set of states with isotopy invariant normalization
of diagrams. See Eq. 14.5 for how to interpret the square root in cases where d < 0.

A crucial point is that the F -matrix does not need any alteration when
we switch from physics normalization to isotopy normalization9! One9Indeed, the reason why we changed

the value of all vertices, as in Fig. 14.6,
and not just rescale the vertex cor-
responding to a simple loop as in
Fig. 14.3, is in order to keep F from
changing.

can check that in changing normalizations both sides of Fig. 9.1 (equiv-
alently Fig. 12.29) are multiplied by the same factor of (dadbdc/de)

1/4.
With this isotopy invariant normalization the rules for evaluating pla-

nar diagrams are exactly the same as those described in section 12.4
except that loops are now normalized with the quantum dimension
as in Fig. 14.3 and our orthonormality relationships (Fig. 12.20 and
Fig. 12.17) are altered to those shown in Fig. 14.8 and Fig. 14.7.
The same R-matrix rules can be applied to diagrams with over- and

under-crossings as in chapter 13. The use of the R-matrix is unchanged.
Be warned, however, that in Fig. 13.6 and 13.7 we have used the com-
pleteness relationship Fig. 12.20 which now needs to be modified to
Fig. 14.8, so that when we evaluate crossings we now obtain, for exam-
ple, Fig. 14.9.

a b

=
∑

c

√
dc
dadb

Rabc

a b

b a

c

Fig. 14.9 Resolving a crossing with isotopy normalization. Compare to Fig. 13.6.
See Eq. 14.5 for how to interpret the square root in cases where d < 0.

14.1.1 Futher Possible Impediments to Full Isotopy
Invariance

With this new isotopy invariant normalization we allow straightening of
wiggly lines (i.e., the zig-zag identity is obeyed) as in Fig. 14.1 up to
a possible sign, which we will discuss further in section 14.2. However,
even neglecting this sign, we emphasize this does not guarantee full
planar isotopy invariance, that is that we can deform lines in any way
we like in the plane. For example, the right hand side of Fig. 12.35
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cannot generically be turned into an equality. In Fig. 14.10 and 14.11
we give similar examples (Recapitulating the calculation in Fig. 12.37
but now using isotopy normalization) of turning-up transformations that
generically incur nontrivial factors.

I a

c

c̄

b

= [F cc̄aa ]Ib

a

a
b

c
c̄ b

=
√

dadc
db

[F cc̄aa ]Ib

a

bc

Fig. 14.10 To evaluate the diagram on the left, the vacuum line is inserted and an
F -move is made. The bubble is then removed with Fig. 14.7. Note that if we were
to use the physics normalization, the prefactor of

√

dadc/db would be absent (See
Fig. 12.37). Generally we should not expect that the prefactors of d’s and F obtained
on the right should cancel each other. In chapter 16 we focus on precisely the theories
where this does turn out to be unity as is required for full isotopy invariance. More
generally, as we will discuss in section 14.7.1, the transform from left to right in this
figure is unitary, meaning the resulting factor on the right

√

dadc/db[F
cc̄a
a ]Ib] is just

a magnitude one complex phase.

Ia

b

c̄

c

=
√

dadc
db

[F ac̄ca ]∗bI

a

cb

Fig. 14.11 The mirror image of Fig. 14.10. Here we use the fact that F is Hermitian,

so F−1 = [F ∗]T .

Thus it seems that our most general theory with causal isotopy in-
variance cannot achieve full planar isotopy invariance. Perhaps this is
not surprising. Even if we can deform space-time world lines into each
other, we might still expect that there would be some minor difference
between a process on the far left and far right of Fig. 14.10: On the far
left c and c̄ are produced from the vacuum then c̄ and a come together
to form b whereas on the far right, a simply turns into c and b. Fortu-
nately, many topological theories are not this complicated: as we will see
in chapter 16, there are many theories where one does have full planar
isotopy invariance, and the prefactor incurred in the process shown in
Fig. 14.10 turns out to be unity.

14.2 Gauge Choice and Frobenius-Schur

Indicator

Let us now return to the zig-zag in Fig. 14.1 and our choice of the
quantity da in Eq. 14.1. First, we claimed that we can always arrange
to have [F aāaa ]II be real. With a gauge choice, we can fix the phase of
[F aāaa ]II any way we like, at least for cases where a 6= ā. Let us see how
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this can be done. On the far left of Fig. 14.4 we have a vertex |āa〉 as well
as a vertex which we write as 〈aā| (compare to Fig. 14.12). Note that,
at least when a 6= ā these two vertices are not Hermitian conjugates of
each other (recall that when Hermitian conjugating a diagram arrows
get reversed as well as reflecting the diagram). By making separate
gauge transforms on these two states, these kets can be redefined by an
arbitrary phase as discussed in section 9.4, and this phase then ends up
in [F aāaa ]II (See the transformation in Eq. ). Thus by a gauge choice
we can choose any phase for [F aāaa ]II , as long as a 6= ā. It is often
convenient to choose [F aāaa ]II to be real and positive so that we can
have da positive and ǫa = +1 postive as well. It is nice to have da > 0
because we want our states in Fig. 14.3 have positive norm, which is
appropriate for quantum mechanics (although there may be cases where
we choose da negative instead. See Eq. 14.4 below). Similarly it is nice to
have ǫa = +1 since this means we can straighten wiggles as in Fig. 14.5
without incurring signs.

= |āa〉
āa

= |aā〉
aā

= 〈aā|
aā

Fig. 14.12 The vertex |aā〉 (top)
and the vertex |āa〉 (middle) can be
assigned different phases as a gauge
choice (See section 9.4). The bot-
tom figure here is the Hermitian con-
jugate of the middle and must have the
conjugate phase choice. In Fig. 14.4
the leftmost figure includes |aā〉 and
〈āa|, whereas the phases cancel in the
loop formed in the middle picture of
Fig. 14.4 which is formed from |aā〉
(middle here) and 〈aā| (bottom here).
Thus choosing gauges we can choose
any phase for [F aāaa ]II unless a = ā
(See section 9.4 for discussion of the ef-
fects of gauge transform on F )..

However, if a = ā, it is not possible to change [F aaaa ]II by gauge
transform. In this case the kets |aā〉 and |āa〉 are equal and we do not
have the freedom to gauge transform them separately. It is easy to show
that when a = ā, the factor of [F aaaa ]II must be real (See appendix 14.6
for a three line proof). The sign of [F aaaa ]II is then a gauge invariant
quantity, known as the Frobenius-Schur indicator10

10For particles which are not self-dual
there are severeal different definitions
of what people call the Frobenius-Schur
indicator. Some references just define it
to be zero for such particles. Other ref-
erences define it to be ǫasign[da]. To
avoid confusion we will not use the
phrase Frobenius-Schur in the context
of non-self-dual particles.

κa = sign[F aaaa ]II = ǫa sign[da] . (14.3)

If the Frobenius-Schur indicator is positive for all the self-dual parti-
cles in a theory, then we can set ǫa = +1 for all particles and we can also
have da positive for all particles. This means that we can both have a
positively normed inner product, and we can freely straighten out wig-
gles as in Fig. 14.5 without incurring any minus signs. Theories of this
type are fairly simple to work with11.

11Theories with all positve Frobenius-
Schur indicators are sometimes called
unimodal or unimodular.

However, when the Frobenius-Schur indicator of a self-dual particle a
is negative, we can choose whether to put the minus sign in Eq. 14.1
onto da or to put it onto ǫa. Each of these has its disadvantages. On the
one hand, having negative da means we are working with a non-positive-
definite inner product. On the other hand, putting the minus sign on
ǫa means we have to keep track of all the wiggles in our diagram as in
Fig. 14.5. Either one of these approaches ends up giving complications
in keeping track of signs. In appendix 14.4 we show that it is not so
strange to have these sign complications, and such signs occur even for
conventional spin 1/2 particles!
An alternate approach used by many mathematicians (Bakalov and

Kirillov [2001]) is to create a fictitious degree of freedom and (even when
a = ā) treat a and ā as different objects. Effectively similar approaches
are used by Lin and Levin [2014], as well as Kitaev [2006] and Bonderson
[2007]. This scheme has advantages in that it appears fully isotopy
invariant, but it comes at the cost of not fixing a gauge. We discuss
these scheme, and its pro’s and con’s in section 14.5.
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14.2.1 Simple Bookkeeping Scheme

Here we will describe an extremely useful and faily general bookkeeping
scheme for handling the Frobenius-Schur signs.12 12This scheme was constructed by

Joost Slingerland and myself, but is so
far unpublished.

If one chooses to have negative values of da it is important to arrange
that

sign[da] sign[db] = sign[dc] when N c
ab > 0 (14.4)

This condition assures that that factor dadb/dc in Fig. 14.6 is positive, so
that for example, the square roots in Figs. 14.7, and 14.8 have positive
arguments. This nonetheless, leaves an ambiguity as to whether we
should take the positive or negative square root. The convention we will
use below is that

√
dadb
dc

=

{
negative da < 0 and db < 0
positive otherwise

(14.5)

Since we are able to make gauge choices for all non-self-dual particles,
it turns out that it is almost always possible satisfy Eq. 14.4 and at the
same time choose all ǫa = +1 which makes diagrammatics particularly
easy13 since then one can freely straighten wiggles as in Fig. 14.5.

13The simplest known, modular anyon
theory for which one cannot both sat-
isfy Eq. 14.4 and choose all ǫa = +1 is
a very complicated theory with 64 dif-
ferent fields. A simpler example of a
planar diagram algebra where one can-
not choose all ǫa = +1 is discussed by
Lin and Levin [2014].Thus we will choose ǫa = +1 for all particles yet we may generally

allow some da < 0 (this is only necessary if there exists at least one self-
dual particle with negative Frobenious-Schur indicator). It may sound
problematic to have some da < 0 since the negative normed state in
Fig. 14.3 seem like they would violate the principles of unitary in quan-
tum mechnanics. However, with a small reinterpretation of the meaning
of our inner product, we can reinterpret our diagrammatics as represent-
ing a well behaved unitary theory.
Our reinterepretation of this diagrammatic algebra is quite simple. We

evaluate diagrams using the rules given in section 14.1. That is, we use
the rules from section 12.4 except that loops are now normalized with the
quantum dimension as in Fig. 14.3 and our orthonormality relationships
(Fig. 12.20 and Fig. 12.17) are altered to those shown in Fig. 14.8 and
Fig. 14.7 (noting the choice of sign in square roots given by Eq. 14.5.)
If there are over- and under-crossings, these can be evaluated using the
R-matrix as in Fig. 14.9. Crucially, since we have set all ǫa = 1, zig-zag
wiggles like Fig. 14.5 can be freely straightened out (although recall that
diagrams like 14.10 may not be freely straightened in general).

c

c

a b

a b
Fig. 14.13 With time going vertical,
the left diagram is a neagtive-d cap if
and only if da < 0 and db < 0. (The
directions of the arrows do not matter,
and if the particles are self-dual we do
not draw arrows). The right diagram is
never a negative-d cap.

a

a

Fig. 14.14 With time going vertical,
the left diagram is a negative-d cap if
and only if da < 0. The right diagram is
never a negative-d-cap. We can think of
these diagrams as being the same as the
diagrams in Fig.14.13 with c being the
identity. The directions of the arrows
do not matter.

In the case where there are some da < 0, we call the result of this
evaluation the non-unitary evaluation of the diagram as it corresponds
to the non-unitary inner product. However, we now insert one additional
rule into our list

(0) Before evaluating a diagram, count the number of negative-d caps,
and call it n. After fully evaluating the diagram multiply the final
result by (−1)n.

Here a negative-d cap occurs when we go forward in time and two par-
ticles with d < 0 come together to annihilate or form a particle having
d > 0. (See examples in Figs. 14.13 and 19.4). Another way of counting
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the negative-d caps is to imagine erasing all lines in the diagram which
have d > 0. This leaves only a set of closed loops (due to Eq. 14.4). We
then just need to count caps in this set of closed loop of the form shown
in the left of Fig. 19.4.
With these new rules, we are now describing a unitary positive-normed

quantum theory — we call this evaluation of a diagram, including rule
0, the unitary evaluation of the diagram. To understand the intuition
behind these rules, consider a self-dual particle with negative Frobenius-
Schur indicator. For such particles a wiggle like in Fig. 14.5 is supposed
to incur a minus sign — however, in our scheme we have set ǫ = +1 and
instead made d negative. Since ǫ = +1 in the diagrammatic algebra,
there is no sign associated with straightening a wiggle. However, the
wiggle in Fig. 14.5 has a negative-d cap, so in the final evaluation of the
diagram (applying rule 0) we correctly obtain the required minus sign.
As a simple example, consider the evaluation of a single loop as in

Fig. 14.3 where da < 0. Before evaluating the loop we count that there is
a single negative-d cap on the top of the loop (as in the left of Fig. 19.4).
We evaluate the diagramwith the rules of section 16.1.2, to obtain da < 0
as the nonunitary evaluation. However, applying rule (0) this quantity is
then multiplied by −1, giving the final result for the quantum dimension
−da = |da| > 0. This is the result of the unitary evaluation of the
diagram, and it is positive as we would hope for a positive definite inner
product for a diagram that can be written as 〈state|state〉 (See Fig. 14.3.)

a b c̄

c

a b c̄

c

Fig. 14.15 An example of a dia-
gram which should have a postive def-
inite value since it can be written as
〈state|state〉.

As a second example, consider the diagram Fig. 14.15, and let us
assume that da, db < 0 and dc > 0. The (nonunitary) evaluation of the
diagram (without rule 0) gives −dc

√
dadb/dc, the square root coming

from Fig. 14.7 and the sign from the rule Eq. 14.5 of how to handle
square roots with negative d’s. However, applying rule 0, there is a
single negative-d cap (from the vertex with a and b coming in from the
bottom, and c going out the top), and hence the unitary evaluation of
this diagram is +dc

√
dadb/dc. Note that this is postive as it should be

for a diagram that can be written as 〈state|state〉 analogous to Fig. 14.3.
As a third example, consider the same diagram Fig. 14.15 but consider

the case where da, dc < 0 and db > 0. Here the nonunitary evaluation
gives dc

√
dadb/dc, but applying rule 0, with a single negative-d cap (the

top of the c loop) we obtain a final result of the unitary evaluation given
by −dc

√
dadb/dc. Note that this is also positive as it should be.

The situation described in this section — having a theory which al-
lows straightening of wiggles, but has negative da, which can then be
interpreted as a unitary theory — is quite common. There are many
topological theories of this type — including the semion theory SU(2)1
and more generally theories like SU(2)k.

14.3 What have we achieved?

One of our original hopes for defining a TQFT, way back in chapter
7, was some prescription that would turn a labeled knot or link dia-
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gram into a complex amplitude (see Fig. 7.1) where the result would
be unchanged by any smooth deformation of space-time (treating the
strands of the knots as ribbons, i.e., we are allowed regular isotopy of
the diagram). At least to the extent that we can choose ǫa = +1 for all
particles, we have actually now achieved this goal!14. The cases where 14In the case where we have some da <

0, it is the non-unitary evaluation of
the diagram that has full isotopy invari-
ance. Once we apply rule 0, we incur
minus signs for straightening a wiggle
again, although we then obtain a uni-
tary theory. The scheme for handling
Frobenius-Schur indicators discussed in
section 14.5 does not incur minus signs
for removing wiggles, and thus gives us
completely isotopy invariant link invari-
ants, but at the cost of not having a
fixed gauge.

we fail to have full planar isotopy invariance (in section 14.1.1) involve
fusion vertices, and as long as our diagrams do not have such fusion
vertices any deformation of the diagram is allowed15.

15It is interesting that in order to eval-

uate our knot or link diagrams we may
need to turn these knotted lines into
into fusing lines, such as in Fig. 14.9,
which may then not be invariant under
some smooth deformations as in section
14.1.1.

Note that in chapter 7 when we were defining a TQFT we wanted to
more generally have a prescription for turning a knot or link embedded
in an arbitrary closed manifold into a complex number output. This
generalization will indeed be possible, and we will return to this issue
in chapter 22. However, for now we note that our scheme gives unity
for an empty diagram (which we can think of as any number of loops
of the identity particle with dI = 1) so our diagrammatic evaluation
corresponds to

diagram =
Z(S3 with labeled link embedded)

Z(S3)
(14.6)

= Z(S2 × S1 with labeled link embedded)

with the caveat that the link does not go around the handle of the S1 in
the latter case. Note that this normalization matches that of Eq. 5.17.

14.4 Appendix: Spin 1/2 Analogy

It may seem a bit odd that wiggling a space-time line (as in Fig. 14.5) can
incur a minus sign. While this physics might appear a bit unfamiliar it
turns out that there is a familiar analog in angular momentum addition
— where the particle types (the labels a, b, c etc) correspond to the
eigenvalue of total angular momentum squared J2.
Consider three spin-1/2 particles which all taken together are in an

eigenstate of J = 1/2. We can describe the possible states of the system
with fusion trees as in Fig. 14.16 (see also Fig. 9.1)— in this case where
a, b, c and e are all labeled with J = 1/2. In Fig. 14.16 we can (on
the left of the figure) consider either the fusion of the left-most two
particles to some angular momentum d = 0 (meaning a singlet) or d = 1
(meaning a triplet), or we can (on the right of the figure) consider fusion
of the right-most two particles to either f = 0 or f = 1. The F -matrix

that relates these two descriptions of the same space is given by [F
1
2

1
2

1
2

1
2

]df
which is often known as a 6j symbol in the theory of angular momentum
addition. The analogy of negative Frobenius-Schur indicator here is the

fact that [F
1
2

1
2

1
2

1
2

]00 is negative.

Let us try to see how this happens more explicitly. Given that the
total spin is 1/2 we can focus on the case where the total z-component
of angular momentum is Jz = 1/2 as well. The state where the leftmost
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a b c

d

e

=
∑

f

[
F abce

]
df

a b c

f

e

Fig. 14.16 The F -move.

two particles fuse to the identity (or singlet J = d = 0) can then be
written explicitly as

|ψ〉 = 1√
2
(| ↑1↓2〉 − | ↓1↑2〉)⊗ | ↑3〉 (14.7)

where the subscripts are the particle labels given in left to right order.
This wavefunction is precisely analogous to the lower half (the “ket”) of
the far left hand picture in Fig. 14.2.
On the other hand, we could use a basis where we instead fuse the

rightmost two particles together first, as in the righthand side of Fig. 14.16.
We can write the state where the right two fuse to J = f = 0 analgously
as

|ψ′〉 = | ↑1〉 ⊗ (| ↑2↓3〉 − | ↓2↑3〉)
1√
2

(14.8)

which is precisly analogous to (but the Hermitian conjugate of) the top
half (the “bra”) of the left hand side of Fig. 14.2.
It is easy to check that the inner product of these two states |ψ〉 and

|ψ′〉, corresponding to the value of the left diagram of Fig.14.2 is1616This result of −1/2 is precisely the
6j symbol

{

1/2 1/2 0
1/2 1/2 0

} 〈ψ′|ψ〉 = −1/2

By redefining the normalization of these states, we can arrange for this
overlap to have unit magnitude. However, the sign cannot be removed.
The situation is the same for any two half-odd-integer spins fused to a
singlet.

14.5 Appendix: The Isotopy Invariant Calculus

As mentioned in section 14.2 there is an alternate method of handling
Frobenius-Schur indicators which allows one to generate knot invariants
that are fully isotopy invariant — although it comes at the cost of not
having a fixed gauge, which is unappealing for physical applications.
While one can apply this scheme to all the particles in the theory, for

non-self-dual particles, and self-dual particles with postive Frobenius-
Schur indicators, it is easy enough to just choose a gauge so that you
can remove wiggles as in Fig. with ǫ = +1. As such here we focus
here only on self-dual particles with negative Frobenius-Schur indicators
where the problem arises.
The scheme here is based on the idea that one should differentiate

between a and ā even if a = ā. In other words we should introducing
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a new, artifical, degree of freedom which does not have any physical
meaning at the end of the day. A version of this scheme is described by
Kitaev [2006] which we will follow.
We assign each cup and cap a big triangular arrow (called a “flag”)

which can either point left or right. (These are not the same arrows we
have been using to distinguish particles from their antiparticles. Indeed,
the particles we are focusing on here are self-dual!). These flags are
supposed to indicate which lines are an a particle going up versus a ā
particle going down (despite the fact that these two things are supposed
to be the same!). The convention of Kitaev is that the flag always points
towars ā.
Hermitian conjugation does not flip the direction of the flag

◭⊳ = [ ]
†

◭⊳ ◮⊲ = [ ]
†

◮⊲

The corresponding inner product is positive definite so that

◭⊳

a◭⊳
=

◮⊲

a◮⊲
= da

The direction of a flag can be reversed at the price of a factor of the
Frobenius-Schur indicator (which is −1 since these are the only particles
we are concerned with here)

◭⊳ a = −1
◮⊲ a κa = −1

(14.9)

Finally, the cups and caps can cancel in pairs if the flags point in
opposite directions, such as

◭⊳

a
◮⊲ =

◮⊲

a
◭⊳ =

a
(14.10)

Now, if we are given a diagram, without flags drawn this does not have
a well-defined value (the factors of −1 are ambiguous). We must state
how the flags are to be added to the the cups and caps of the diagram (for
all self-dual particles with negative Frobenius-Schur indicator) before the
diagram gets a value.
If we make the rule that all flags always point right, this is basically

fixing a unique gauge for all cups and caps. Making this choice, we
recover the story of section 14.2 — that is removing a wiggle in a line
incurs a minus sign (this can be seen from Eqs. 14.9 and 14.10).
However, another possible choice is to say that flags should be put on
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cups and caps so that they alternate directions as you walk along any
line. There are two ways that any line could be decorated with alternat-
ing flags, but fortunately, the two decorations are entirely equivalent17.17The fact that the two possible deco-

rations give the same result is a reflec-
tion of the fact that a and ā are ac-
tually the same and so you can switch
them and still get the same result. Re-
call that the flags are meant to point
from a to ā where these two are artifi-
cially declared to be different. However,
switching which is which must not mat-
ter.

Because wiggles with alternating flags can be freely straightened we then
have an isotopy invariant diagrammatic set of rules.
This scheme then provides a way that any braided anyon theory can

be converted into an knot (or link) invariant with full isotopy invariance.
Note, however, that it provides a different output from our above “gauge-
fixed” choice. Also note (entirely analogous to note 15 above) if one tries
to evaluate a link by using F -moves, one goes from a link diagram to a
diagram with fusions — and these may not have full isotopy invariance.
Further we comment that perhaps the easiest way to keep track of the
flags in any scheme is to use isotopy first, but then before applying F -
moves, flip flags using Eq. 14.9 to get get to a gauge fixed diagram (say
with all flags pointing right) where signs are then easy to keep track of.
For many mathematics applications (certainly for knot theory) one

wants to work with an isotopy invariant set of rules as described here.
However, for many physics purposes, the gauge fixed set of rules will be
more appropriate. The sign associated with a wiggle, can be a genuine
physical quantity, as we described in section 14.4.

14.6 Appendix: [F aaa
a ]II is real

Let a be a self-dual particle (i.e., a = ā). Working with the physics
normalization we already showed (Fig. 14.2) that

= [F aaaa ]II aa

Similarly, using an inverse F -move, and the fact that F is unitary (See
section 9.5.2) we derive

= [F aaaa ]∗II aa

Equivalently the last diagram can be derived as being the Hermitian
conjugate the previous diagram.
Finally, assuming only causal isotopy invariance, the equality

=
a a= = [F aaaa ]∗II[F aaaa ]II

a a

then shows that [F aaaa ]II must be real.
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14.7 Appendix: Some Additional Properties of

Unitary Fusion Categories

Unitary fusion categories (the theories we have been discussing!) have
two useful properties which we now present. bWe do not prove these
properties here. More detailed discussion is given by Kitaev [2006]. More
detailed discussions are given for example in Jones and Penneys [2017]
or Etingof et al. [2005]. These latter references are quite mathematical.

14.7.1 Pivotal Property

A property that may seem obvious is known as the pivotal property.
This states that there should be isomorphisms18 between a vertex with

18We do not say there is a unitary tran-
formation between the two diagrams
since the two diagrams operate on dif-
ferent Hilbert spaces —- the left dia-
gram having one down leg and two up,
whereas the right has one up and two
down.

a downturned line and one with an upturned line, such as that shown in
Fig. 14.17. While this seems like a rather small statement (which is a

c

a b

⇐⇒
a

b̄c
Fig. 14.17 A theory is pivotal if there exist isomorphisms between the states of the
Hilbert spaces described by pairs of vertices that differ by downturning and upturning
lines.

property of any unitary fusion category) it turns out to be quite powerful.
One can deduce from this that the transformations in Figs. 14.10 and
14.11 are unitary — meaning that the constants on the right hand side
have unit magnitude

∣∣∣∣∣

√
dadc
db

[F cc̄aa ]Ib

∣∣∣∣∣ =
∣∣∣∣∣

√
dadc
db

[F ac̄ca ]bI

∣∣∣∣∣ = 1 (14.11)

See Kitaev [2006]; Bonderson [2007]. In the more generael case where the
fusion multiplicity N c

ab is greater than one, the vertices have additional
indices µ and ν and the transform is a unitary matrix in these indices.
An example of this is given in Fig. 14.18.

µ

a

b

c̄

c

=
∑

ν

[Abca ]µν

a

cb

ν

Fig. 14.18 The matrix Abca is a unitary matrix in the indices µ and ν. In the
simpler case of Fig. 14.11, the prefactor is a unitary one-by-one matrix, meaning it
is a magnitude one complex scalar.

From this type of identity one successively turn up and down legs at
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vertices to obtain the identity in Fig. 14.19 where the prefactor C in the
figure is also a unit magnitude complex scalar (or a unitary matrix in
the case where the vertex has an additional index).

c

a b

= Cabc

c

a b

Fig. 14.19 The relationship between these two diagrams is unitary, meaning C is a
just a phase. For cases where Nc

ab > 1 the vertices are marked with an index, say µ
on the left and ν on the right, and for fixed a, b, and c, the constant Cabc becomes a
unitary matrix [Cabc ]µν in the indices µ, ν.

Quite a few more identities can also be derived from the pivotal prop-
erty. Detailed discussions of this property (and its meaning) are given by
Kitaev [2006]; Bartlett [2016]. One particularly useful identity is given
by applying Fig. 14.19 three times in a row to obtain

Cabc C
bc
a C

ca
b = 1 (14.12)

which diagrammatically is drawn as the so-called “pivotal identity” in
Fig. 14.20. In the case where there are additional indices at the vertex,
Eq. 14.12 becomes a matrix product which equals the identity matrix.

c

a b

=

c

a b

Fig. 14.20 The pivotal identity

The derivation of the pivotal identity is a bit complicated and is given
by Kitaev [2006]. However, it can be made a bit more intuitive physi-
cally by turning up one of the branches to obtain the alternate form of
the pivotal identity shown in Fig. 14.21. This form can be understood
as the statement that the vacuum (or particles fusing to the vacuum)
can be rotated freely in space-time.

ba c

=

ba c

Fig. 14.21 Another version of the pivotal identity. We can derive this from Fig. 14.20
by turning up the c-leg.
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14.7.2 Spherical Property

Theories which are unitary (describing real quantum mechanical par-
ticles) have an additional property called being “spherical”. Given a
diagram X with a line coming out the top and a line coming in the
bottom. The so-called left trace is defined by connecting up the top
line with the bottom line in a loop going to the left, as in the left of
Fig. 14.22. The right trace is defined similarly, except that the loop
goes to the right of the diagram X as in the right of Fig. 14.22. If the
left trace is always equal to the right trace we say that the theory is
spherical. The name here comes from the idea that we could pull the
string around the back of a sphere in order to turn a left trace into a
right trace as shown in Fig. 14.23. However, the spherical property is ac-
tually stronger than Fig. 14.23 suggests since it allows us to turn a right
trace into a left trace even when there are other objects on the sphere
which might prevent us from dragging a string all the way around the
back of the sphere.

Xa = X a

Fig. 14.22 The Spherical Property sets the left trace equal to the right trace as
shown in the picture.

a X
=

aX

Fig. 14.23 The naming “spherical” comes from the idea that we can pull the string
around the back of a sphere (as indicated by the black arrows) to turn a left trace
into a right trace.

An obvious result of the spherical property is that da = dā.

14.8 Appendix: Higher Fusion Multiplicities

When we have a theory with higher fusion multiplicities (i.e., N c
ab > 1

for at least one fusion channel), then the vertices must be given indices.
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This appendix is identical to that of section 12.5 except that here we
have changed the normalization from physics normalization to isotopy
invariant normalization.

= δcdδµν

√
dadb
dc

c

c

d

ba

µ

ν

Fig. 14.24 The bubble diagram when there are fusion multiplicities. This diagram
is drawn in the isotopy invariant normalization. Compare to Fig. 12.39.

a b =
∑

c,µ

√
dc
dadb

c

a b

a bµ

µ

Fig. 14.25 Insertion of a complete set of states. When there are fusion multiplicities,
these must be summed over as well µ ∈ Nc

ab. This diagram is drawn in the isotopy
invariant normalization. Compare to Fig. 12.40.

Further Reading

This is some reading.

Exercises
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Medium Easy Material

Recall from chapter 2 that we considered the procedure of pulling tight a
loop in a ribbon as shown in Fig. 15.1 (compare Fig. 2.7). Pulling tight
results in a twisted ribbon, which (viewing time as going vertically)
corresponds to a particle twisting around its own axis, while at a fixed
point in space, as time progresses. The twist in the ribbon can be
removed at the cost of a complex phase which we call θa, known as the
particle’s twist factor. In other words, the particle twisting around its
own axis accumulates a phase θa compared to a particle that does not
twist. This phase is something we should expect for any particle with a
spin, since rotating a spin accumulates a phase.

a a a

pull tight = θa

Fig. 15.1 Pulling tight a loop in a rib-
bon results in a twist. This twist in
a ribbon of particle type a can be re-
moved at the cost of a phase factor of
θa. See also Fig. 2.7.

In our diagrammatic notation, we do not draw ribbons. Rather to
represent a particle twisting around itself we use blackboard framing as
discussed in section 16. We thus formally define the twist factor as given
in Fig. 15.21.

1The twist factor is a bit tricky when
we have negative da, since removing a
twist changes the number of negative-d
caps (See section 14.2.1). More care-
fully, when da < 0 we can say that re-
moval of the twist gives −θa and re-
moval of the negative-d cap gives an-
other −1 (which is incurred upon ap-
plication of rule 0).a

= θa

a

=

a

Fig. 15.2 The definition of the twist factor θa drawn using blackboard framed
diagrams. The looped strings should be thought of as ribbons lying in the plane as
in Fig. 15.1 which are equivalent to a ribbon that twists around its own axis.

Invoking the Hermitian conjugation principle (if we reflect a diagram
around a horizontal axis, and reverse the arrows so they remain pointing
in the same direction, we complex conjugate its amplitude, see Fig. 12.4)
we similarly have the mirror image diagrams shown in Fig. 15.3

a

= θ∗a

a

=

a

Fig. 15.3 The mirror image diagrams to those of Fig. 15.2.

It is easy to confirm that the twist factor θa can only be a unit mag-
nitude phase2 as expected (proof of this is given in Fig. 15.4).

2One might think that θa has been act-
ing strange for a while — but it is just
a phase. Ha ha!.

a = a

Fig. 15.4 This equality establishes
θaθ∗a = 1, hence |θa| = 1. We can
evaluate the diagram on the left by re-
moving the two twists and getting θaθ∗a
times the diagram on the right. On
the other hand, the diagram on the left
can also be turned directly into that on
the right just by using moves which we
know are allowed such as Fig. 13.8. (See
also exercise 15.1).
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One further interesting fact about the twist factor is that

θa = θā

which can be seen from the equality of the diagrams shown in Fig. 15.5.

a

=

ā

Fig. 15.5 The equaltiy of these dia-
grams establishes θa = θā. See exercise
15.1.

The twist factor is related to the so-called topological spin, or con-
formal scaling dimension, usually called ha, via the relation

θa = e2πiha .

This phase accumulated from a 2π rotation is what we typically get in
quantum mechanics from the operator e2πiŜ with Ŝ the spin operator
and we set ~ = 1. The vacuum, or identity particle, should have zero
scaling dimension, hI = 0.
Note that in many quantities of interest will depend only on the twist

factor θa, i.e., the fractional part of the topological spin, ha mod 1.
Indeed, we will see that many of the topological properties of a system
are independent of the integer part of the topological spin, and care only
about the fractional part. That said, in chapter *** below we will also
find cases where the integer part of ha is important too.
Recall also the famous spin-statistics theorem (as discussed near Fig.

2.7), which tells us that the twist factor should give us the phase for
exchanging two identical particle, and is thus intimately related to the
anyonic statistics of particles. Of course two cases are very well known
to us: if the spin ha is an integer, then e2πiha is the identity, and the
particle is a boson. If ha is a half-odd-integer, then the phase is −1 and
the particle is a fermion.

15.1 Relations between θ and R

Braiding and twisting are very closely related to each other. In fact,
twist factors θ are related to the R-matrices we introduced in chapters
10 and 13 in several different ways.
First, let us try to evaluate the looped ribbon in Fig. 15.2 using the

R-matrix as in Fig. 15.6. This manipulation establishes the relation3,43In cases where Nc
aa > 1, then Raac is

replaced by
∑

µ[R
aa
c ]µµ.

4Note that θa is gauge independent,

whereas Rabc is generally gauge depen-
dent. (Although Raac is gauge indepen-
dent as well).

θa =
∑

c

dc

da
Raac (15.1)

a

=
∑

c

√
dc
da

Raac

a

a

ac =
∑

c

dc

da
Raac a

Fig. 15.6 Relation of the twist factor to the R-matrix. In the first step we use
Fig. 14.9. In the second step we use Fig. 14.11 along with Eq. 14.11 and finally
Eq. 14.7. For da < 0, we have implemented rule 0 from section 14.2.1 in the last
step.
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a

=

a

I

= Ra,āI
a

I

Fig. 15.7 This twist is evaluated with the R matrix. Note that this diagram is not
precisely equal to θ∗a (See Fig. 15.8).

a

= ǫa

a

= ǫa

a

= ǫasign(da)θ
∗
a

a

Fig. 15.8 A loop in rope turned sideways gets a twist factor θ∗ along with a wiggle
factor ǫ. The first step introduces a wiggle in the curve and we incur a factor of
ǫa as in Fig. 14.5 (We always want to arrange so that ǫ = +1). The second step is
an allowed smooth deformation (See exercise 15.1). In the last step we remove the
loop and obtain a factor of θ∗a as in Fig. 15.3. Note that the removal of a twist here
actually incurs sign(da)θ∗a as mentioned in note 1 of this chapter (in going from the
far left to far right we do not change the number of negative d-caps so we do not
incur a further minus sign).

A second, and different, relationship can be derived via the manipu-
lations shown in Fig. 15.7. One might be tempted to identify the left of
Fig. 15.7 with the twist factor θ but this is not quite right when we look
at it carefully, as shown in Fig. 15.8. From Fig. 15.7 and 15.8 we derive5 5Note that in this equation, and

Figs. 15.6 and 15.7 we are assuming the
gauge choice discussed in section 14.2.1.RaāI = ǫasign[da] θ

∗
a = sign([F aāaa ]II) θ

∗
a . (15.2)

where we have used Eq. 14.1 to relate ǫ, da, and F . Recall in particular
that for self-dual particles [F aāaa ]II is the Frobenius-Schur indicator.
The final relationship between R and θ is known as the ribbon iden-

tity6 6This is also gauge independent. Fur-
ther, there are no complications when
we have d < 0 due to Eq. 14.4.Rbac R

ab
c =

θc
θaθb

(15.3)

which can be derived by the geometric manipulations in Fig. 15.9.

Rbac R
ab
c

b a

c

=

b a

c

=

b a

c

=
θc
θaθb

b a

c

Fig. 15.9 Deriving the ribbon identity. The middle is the nonobvious geometric
step. See also exercise 15.2.
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c

b a

pull tight

c

b a

Fig. 15.10 The middle step of Fig. 15.9 viewed as a ribbon diagram.

The middle step in Fig. 15.9 is perhaps non-obvious, but is perhaps
clarified if viewed as a ribbon diagram as in Fig. 15.10. See also exercise
15.2.

Exercises

Exercise 15.1 Using Geometric Moves I
(a) Using the allowed moves in Fig. 13.8, show the equivalence of the left

and right of Fig. 15.4 (b) Similarly, show the equivalence of the left and right
of Fig. 15.5. (c) Similarly show the equivalence of the middle two figures in
Fig. 15.8.

Exercise 15.2 Using Geometric Moves II
Demonstrate the middle step of Fig. 15.9 by using allowed geometric moves

such as Fig. 13.8 and Fig. 13.9 and Fig. 13.13. You may also need the pivotal
identity Fig. 14.20.

Exercise 15.3 Gauge Independence of Ribbon Identity
Show that the ribbon identity Eq. 15.3 is gauge independent.
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Medium Material

In chapters 12 through 15 we carefully developed the principles of anyon
diagrammatics. In the current chapter we aim for a slightly simplified
and abbreviated, but still extremely useful, version of the diagrammatic
rules developed (roughly axiomatically) in the prior chapters.
Our original intent for a TQFT was to develop rules that would map

a labeled knot or link diagram into a complex amplitude output (as in
Fig. 7.1) in a way that would be invariant under any smooth deforma-
tions (isotopy) of space-time. Most generally in topological theories, we
found that there could some restrictions on what sort of deformations
of space-time would leave the output unchanged (See for example sec-
tion 14.1.1). In the current section we will focus on a simpler class of
theories where these impediments are lifted. In particular the topolog-
ical theories of this chapter have the property that they give the same
output amplitude for any smooth deformation of space-time (treating
world lines as ribbons). In other words, in this chapter we assume our
theories have “full isotopy” invariance (or “regular isotopy” invariance
as discussed in section 2.6.1). An example of such full isotopy is shown
in Fig. 16.1.

d

a

c

b
=

d
b

c

a

Fig. 16.1 For a theory with full isotopy invariance (regular isotopy invariance)
these two diagrams must evaluate to the same result since one can be continuously
deformed into the other treating the lines as ribbons.

16.1 Planar Diagrams

We start by considering only planar diagrams, so we do not allow over-
and under-crossings (which we re-introduce in section 16.2). Because of
our specialization to these fully isotopy invariant theories, our rules for
diagrammatic manipulation will be slightly easier than those in chapter
12.
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As in chapter 12 there is still a bra and ket interpretation of diagrams.
Roughly we can think of cutting a diagram in half and viewing one side
as a bra and the other as a ket1. We can also roughly think of these1We can think of any direction as be-

ing time, although it is sometimes most
convenient to think of time as up.

diagrams as being world lines of particles moving in 1+1 dimensions.

16.1.1 Planar Diagrammatic Rules

In this chapter all (regular) isotopy of lines is allowed. In particular we
are freely allowed to make the deformation shown in Fig. 16.2. In the
language of Fig.14.5 we are assuming all ǫa = +1.

=

a a

Fig. 16.2 For the isotopy invariant
theories considered in this chapter, this
deformation is allowed.

As in previous chapters we would like to use F -matrices to help us
convert one diagram into another. Although we previously found that
bending lines up and down (as in Fig. 14.10) can incur nontrivial factors,
in this chapter we instead assume no such nontrivial factors so we may
turn up and down legs freely. Our F -matrix can thus be written as in
Fig. 16.3. Note that the conventions we use in this chapter are different
from that of the previous chapter but instead match those introduced
by Levin and Wen [2005].

b

a

c

e

d =
∑

f

F badecf

b

a

c

e

f

Fig. 16.3 The definition of the F -matrix for fully isotopy invariant theories. This
notation uses the conventions of Levin and Wen [2005]. For a unitary theory the
F -matrix with fixed indices a, b, c, d is unitary in the indices d and f . For this F
matrix to be nonzero, the vertices in the pictures must be allowed fusions — i.e.,
Nabd = Nced̄ = Nbcf = Naef̄ = 1. The case with fusion multiplicities N greater
than one is considered in section 16.4.

In this chapter, the orientiation of this diagram (how we direct the
legs compared to some direction we call time) does not matter. Further,
we can freely rotate the diagrams in Fig. 16.3 and we can bend legs up
and down freely as well. For example, the same F -matrix as in Fig. 16.3
applies to Fig. 16.4.

a

b

c

e

d =
∑

f

F badecf

b

a c

e

f

Fig. 16.4 For fully isotopy invariant theories, the F -moves can be deformed in arbi-
trary ways. For example the same F matrix governs the transformation in Fig. 16.3
as in this figure.

We can compare the definition of F -matrix in Fig. 16.3 to our prior
definition of the F -matrix shown in Fig. 9.1. Since we now assume that
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we can bend legs up and down freely, we can bend legs in Fig. 9.1 and
reverse arrows to make it look like Fig. 16.3 and we thereby derive the
relation between the two definitions

F badecf = [F āb̄c̄e ]df (16.1)

Again the idea of the F -matrix is to write a single diagram (on the left
of Eq. 16.3) as a sum of diagrams on the right. By successively applying
such F -moves to parts of complicated diagrams we can restructure any
given diagram in a multitude of ways.
There are several further useful rules for diagram evaluation. First,

we need is to give a value to the a labelled loop as in Fig. 16.5. As in
the case of the Kauffman bracket invariant, the value of the loop will be
called d, although here there will be a different da, called the “quantum
dimension”, for each possible particle type a. Note that we have not yet
shown the relationship between this definition of the quantum dimension
da and the definition of da (which we also called “quantum dimension”)
given in Eq. 3.8. In section 17.1 we will show that these two definitions
are in fact the same up to a possible sign!

a = da = dā

Fig. 16.5 The value of a loop labeled a is given by the quantum dimension da. Here
we have invoked the spherical assumption to give us da = dā.

It is always true that dI = 1, meaning that loops of vacuum can be
freely added or removed from a diagram. As emphasized in section 14.1,
giving the loop this normalization implies we are working with non-
normalized kets (see Fig. 14.3, and also note 20 of chapter 2). Note that
the theories we consider in this chapter must satisfy

sign[da]sign[db] = sign[dc] whenever N c
ab > 0 (16.2)

as we described previously in section 14.2.1.
Secondly we define the contraction of a bubble as shown in Fig. 16.6.

c d

a

b

= δcd

√
dadb
dc

c

Fig. 16.6 Contraction of a bubble for fully isotopy invariant theories. In cases where
some d’s are negative we interpret the sign outside the square root as negative if and
only if both da < 0 and db < 0.

This identity is the same as Fig. 14.7 only written sideways (in this



188 Theories with Full Isotopy

chapter the orientation of the diagram on the page does not matter).
Physically we should think of this as being a version of the locality rule
of section 8.2 — looked at from far away, one does not see the bubble.
In particular this locality rule implies the “no-tadpole” rule, that any
diagram of the sort shown in Fig. 16.7 must vanish unless the incoming
line is the vacuum.

c

a

Fig. 16.7 Picture of a tadpole. (Apparently this picture is supposed to look like
a tadpole.). The locality principle Fig. 16.6 implies that any diagram containing a
tadpole must vanish unless the incoming line is labeled with the vacuum. (I.e., unless
there is no incoming line!). Famously, Physical Review did not allow the use of the
name “spermion” for diagrams of this sort.

We also have again the completeness relation as shown in Fig. 16.8.

a b =
∑

c

√
dc
dadb

c

a b

a b

Fig. 16.8 Insertion of a complete set of states. In cases where some d’s are negative
we interpret the sign outside the square root as negative if and only if both da < 0
and db < 0.

This relation is precisely the same as Fig. 14.8, only now we can orient
the diagram in any direction.

16.1.2 Summary of Planar Diagram Rules For Fully
Isotopy Invariant Theories

Given the rules established in section 16.1.1, we can evaluate any planar
diagram2 and turn it into a complex scalar number made up of factors

2Any planar diagram with no loose
ends. As described in detail in section
12.1 a diagram with loose ends should
be considered a bra or ket or operator.

of F ’s and d’s— very similar to what we did with the Kauffman bracket
invariant, only without over- and under-crossings here. Here are a sum-
mary of the rules for diagram evaluation in the case of fully isotopy
invariant planar theories. These rules are analogous to those presented
in section 12.4, only here the rules are simpler.

a ā

b

=

a ā b

I

b
Fig. 16.9 One can always add or re-
move the identity (or vacuum) line to
any diagram.

(1) One is free to continuously deform a diagram in any way as long
as we do not cut any strand (for this section we assume no over-
or under-crossings).

(2) One is free to add or remove lines from a diagram if they are labeled
with the identity or vacuum (I). See the example in Fig. 16.9.

(3) Reversing the arrow on a line turns a particle into its antiparticle
(See Fig. 8.4).
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(4) A line must maintain its quantum number unless it fuses with
another line, or splits.

(5) Vertices are allowed for multiplicities N c
ab > 0 (See section 8.3).

This includes particle-antiparticle creation and annihilation pro-
cesses where N I

aā = 1 (an example is shown in Fig. 16.9).

(6) One can use F -moves to change the structure of diagrams.

(7) One can use relations Fig. 16.8 and 16.6 to change the structure
of diagrams.

(8) Every diagram can be reduced to a set of loops which can each be
evaluated to give da for each loop of type a.

16.1.3 Constraints and Examples

There are many constraints on our diagrammatic algebras for planar
isotopy invariant theories. Here we give such constraints and explain
where they all come from.

Constraint: The Pentagon

The consistency condition on F -matrices given in Eq. 9.7 can be con-
verted to the notation of this chapter (See Eq. 16.1) to give3 3In deriving Eq. 16.3 from Eq. 9.7 we

have taken a, b, c, d → ā, b̄, c̄, d̄ for ease
of notation.F cf̄gedl F

baf

el̄k
=
∑

h

F bafgch F
h̄ag
edk F

cbh
kdl (16.3)

Constraint: Relating F to d

For any theory with full planar isotopy the value of da should be fixed
by the F -matrices:

da =
1

F āaIāaI

(16.4)

This is demonstrated by the manipulations of Fig. 14.4, converted into
the notation of the current chapter. Recall that we are assuming ǫa =
+1.

Constraint: Inversion

One can perform an F -move on the right hand side of Fig. 16.3 to bring
it back into the form on the left. We obtain the diagrammatic relation
shown in Fig. 16.10,

b

a

c

e

d =
∑

f

F badecf

b

a

c

e

f =
∑

f,g

F badecf F
cbf
aeḡ

b

a

c

e

g

Fig. 16.10 In the second step we apply the same F -matrix equation from Fig. 16.3,
but the diagram is rotated by 90 degrees.
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which necessarily implies the consistency condition

∑

f

F badecf F
cbf
aeḡ = δdg (16.5)

Constraint: Rotation

Rotating the diagram in Fig. 16.3 by 180 degrees and comparing it to
the original diagram, one derives

F badecf = F ecd̄baf̄ . (16.6)

Constraint: Turning Up and Down

For a theory to be fully isotopy invariant, we must be able to freely
make the moves shown in Fig. 14.10. As shown there, this requires
1 =

√
(dadc)/db[F

cc̄a
a ]Ib, or in the notation of this chapter

F cc̄Iaāb =

√
db
dadc

(16.7)

whenever b× c = a+ . . ., with the sign of the square root taken negative
if and only if da and dc are both negative.

Constraint: Unitarity

As mentioned above in Fig. 16.3, the F -matrix, being a change of basis,
must be unitary. This means that

∑

f

F badecf [F
bad′

ecf ]∗ = δdd′ (16.8)

∑

d

F badecf [F
bad
ecf ′ ]∗ = δff ′ (16.9)

or equivalently [F baec ]
† = [F baec ]

−1 Comparing the former to Eq. 16.5 we
obtain

[F badecf ]
∗ = F cbf

aed̄
(16.10)

Constraint: Hermitian Conjugation

Using reflection across the horizontal axis as in Fig. 12.4, we can re-
flect the F -matrix equation Fig. 16.3 and compare the reflected to the
unreflected diagram to obtain

F badecf = [F āb̄d̄c̄ēf ]
∗ (16.11)

= [F c̄ēdāb̄f̄ ]
∗ (16.12)

= F ēāf
b̄c̄d

, (16.13)

where in the second line the first line has been used in combination
with Eq. 16.6, whereas in the third line the first line has been used in
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combination with Eq. 16.10.

Constraint: Reflection

An independent condition that is very often imposed is that the F -
matrix should be invariant under left-right reflection. Compare the dia-
gram shown in Fig. 16.11 to that of Fig. 16.3.

c

e

b

a

d =
∑

f

F ced̄abf

c

e

b

a

f

Fig. 16.11 The diagrammatic equation in Fig. 16.3 after being left-right re-
flected.This is necessary for a isotopically invariant 2+1 dimensional theory, but
is an independent assumption for a planar diagram algebra.

If a theory has left-right reflection symmetry, then we must have a
further constraint

F badecf = F ced̄abf (16.14)

While this additional condition is not required for a planar diagram al-
gebra, and one can even have full isotopy invariance in two dimensions
without it, it is often assumed. For isotopically invariant three dimen-
sional theories, such a symmetry is necessary since one can view the
diagrams either from the front or the back.
Using Eq. 16.14 along with Eq. 16.13 gives us the natural seeming

constraint
F badecf = [F b̄ād̄ēc̄f̄ ]

∗ (16.15)

Example: Evaluating a bubble

As an example of showing how further constraints are derived, let us use
F -moves to evaluate the bubble shown in Fig. 16.12.

a d

c

b

=

a d̄

b̄

c

=
∑

f

F c̄ab̄d̄cf

a

c

d

f

= δadF
c̄ab̄
ācI dc

c

a

= δadF
c̄ab̄
ācI a

Fig. 16.12 Evaluation of a bubble diagram. In the first step, as usual we can flip
the direction of an arrow and turn a particle into its antiparticle. In the second step
we apply an F -move (compare to Fig. 16.3). Then by the no-tadpole (locality) rule
(Fig. 16.7) , we can set f to the vacuum particle I and hence a = d.
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However, we also know the value of the diagram in Fig. 16.12 from

Fig. 16.6 which gives us
√
dcdb/da. Thus we derive F c̄ab̄ācI dc =

√
dcdb
da

, or

equivalently (while replacing b with b̄ for simplicity and using db = db̄)
we have

F c̄abācI =

√
db
dadc .

(16.16)

whenever c × b = a + . . . where the sign of the square root is taken
negative if and only if da and db are both negative. Note that Eq. 16.16
could also be obtained from Eq. 16.7 with Eq. 16.13.

Example: The Theta diagram

A commonly considered diagram is the Theta diagram Θ(a, b, c) shown
in Fig. 16.13. This diagram is easily evaluated by using Fig. 16.6 along
with the value of a single bubble Fig. 16.5.

Θ(a, b, c) = =

a

b

c
ca b = dc

√
dadb
dc

=
√
dadbdc

Fig. 16.13 The Theta diagram. This is evaluated by using Fig. 16.6 along with
the value of a single bubble Fig. 16.5. The sign on the square root is taken negative
unless all three da, db and dc are positive.

Example: The tetrahedral diagram

Let us consider one more evaluation known as the tetrahedral diagram
as shown in Fig. 16.14. At this point we are considering this as a planar
diagram even though it looks three dimensional! However, we usually
consider diagrams to be well defined if they live on the surface of a
sphere, so if we want to think about this as being three dimensional, we
should think of this as living on a spherical surface.

f cb

a d
e

=
b

a

c

e

df =
∑

g

F badecg

b

a

c

e

g
f

= F badecf df
√

dbdc
df

√
dade
df

≡ Gbadecf

Fig. 16.14 Evaluation of the tetrahedral diagram. The first step is just smooth
deformation. The second step is application of an F move. Using Fig. 16.6, the
index g must be equal to the index f and we obtain some factors of

√
d. Finally we

are left with a single loop of f which gives a factor of df to give the final result which
we give the name G. As in Fig. 16.6 the square roots are taken negative if and only
if both d’s in the numerator of the square root are negative.
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For theories with full planar isotopy, the tetrahedral diagram has some
obvious symmetries. For example, we should have rotational symmetry
in the plane as shown in Fig. 16.15 which implies the identity (note the

f cb

a d
e

= c ed

b a

f
Fig. 16.15 An obvious rotational symmetry of the tetrahedral diagram.

definition of G in Fig. 16.14)

Gbadecf = Gdbafēc̄ . (16.17)

Another symmetry comes from Eq. 16.6

Gbadecf = Gecd̄baf̄ . (16.18)

which we draw as shown in Fig. 16.16.

f cb

a d
e

= f ae

c d

b

= b fc

d e

a
Fig. 16.16 The first step is the identity in Eq. 16.18 and the second step is a rotation
as in Fig. 16.15. Although this is actually a planar diagram it appears as a rotation
in 3D.

Although the diagram shown in Fig. 16.16 is a planar diagram, from
the far left to the far right, it appears as if it is a rotation in 3D. Using
Fig. 16.15 and 16.16 we can rotate this tetrahedron in any way we like.
If one assumes the reflection symmetry Eq. 16.14 then one can also take
the mirror image of the tetrahedron as well to obtain an equivalence
between 24 tetrahedral diagrams related by symmetries4.

4For an example of a spherical category
that cannot be put in a form with full
tetrahedral symmetry, see Hong [2009].

16.2 Braiding Diagrams Revisited

So far in this chapter we have considered planar theories only. Extension
to fully (regular) isotopy invariant three dimensional5 theories follows 5Here we mean 2+1 dimensional theo-

ries, but we sometimes may not specify
a particular time direction.

almost exactly the expositions of chapters 13. Here we will recapitulate
the key points.
First, any regular isotopy (See section 2.6.1) of diagrams is allowed

and does not change the value of the diagram. This means that as
long as we treat the lines in a diagram as ribbons, we can deform the
diagram into any shape we like. Often this sort of regular isotopy can
turn a diagram with braiding into a planar diagram which can then be
evaluated using the rules of section 16.1.2. An example of this is shown
in Fig. 16.1.
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Most generally, however, we will not be able to eliminate all over-
and under-crossing of lines just by using isotopy (i.e., by deforming a
diagram). To handle crossings, we invoke the R-matrix discussed in
chapter 13. The basic moves we need are summarized in Fig. 16.17
(which just repeat results previously discussed in Fig. 14.9). In the
current chapter, where we consider fully isotopy invariant theories, the
orientation of the crossing does not matter. So, for example, the same R-
matrix formula applies to the crossing in Fig. 16.17 (top) as in Fig. 16.18.

a b

=
∑

c

√
dc
dadb

Rabc

a b

b a

c

a b

=
∑

c

√
dc
dadb

[Rabc ]−1

a b

b a

c

Fig. 16.17 Resolving a crossing with isotopy normalization. The square roots are
taken negative if any only if da and db are both negative

a

b

=
∑

c

√
dc
dadb

Rabc
a

b

b

a
c

Fig. 16.18 With fully isotopy invariant theories, we can rotate diagrams freely.
Thus the uncrossing formula here is identical to that in Fig. 16.17 (top).

The R-matrix moves in Fig. 16.17 allow us to take any diagram with
over-and under-crossings and turn it into a planar diagram6 which can6Turning a crossing into a planar dia-

gram is known as “resolution of a cross-
ing”.

then be evaluated using the rules of section 16.1.2.
We thus add two rules for evaluation of diagrams in three dimensions

to our previously stated rules for planar diagrams of section 16.1.2:

(1’) One is free to continuously deform diagrams in three dimensions
in any way as long as we do not cut any strands (and strands
are treated as ribbons). In other words we have regular isotopy of
diagrams (See section 2.6.1). [This rule replaces rule (1) from the
list in section 16.1.2]

(9) Over- and under-crossings can be turned into planar diagrams us-
ing the R-matrix as in Fig. 16.17
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16.2.1 Constraints

There are several further constraints on the braiding diagrammatic al-
gebra which we now mention.

Constraint: Rotation

As mentioned in Fig. 16.18, we can rotate crossings freely. By turning
a crossing entirely upside-down and comparing to the original crossing,
we obtain an identity which holds for isotopy invariant theories

Rabc = Rb̄āc̄ . (16.19)

Constraint: Hermitian Conjugation

As in Eq. 13.1 we can use Hermitian conjugation to derive

[Rabc ]−1 = [Rbac ]∗ (16.20)

Constraint: Hexagon Equations

As discussed in section 13.3 there are consistency conditions between F
and R matrices known as hexagon equations (Eqs. 13.2 and 13.3). In
the notation of the current chapter these can be written as

Rcae F c̄āedb̄g R
cb
g =

∑

f

F āc̄edb̄f R
cf
d F b̄āfdc̄g (16.21)

[Rcae ]−1F c̄āedb̄g [Rcbg ]−1 =
∑

f

F āc̄edb̄f [Rcfd ]−1 F b̄āfdc̄g (16.22)

Relation to Twists

As detailed in chapter 15 each particle has a twist factor θa = θā (with
θI = 1) describing twisted strands as chapter 15 which we show again
here for completeness in Fig. 16.19.

a

= θa

a a

= θ∗a

a

Fig. 16.19 Definition of Twist Factors (See chapter 15 for more details)

In the current chapter the direction the twist is drawn on the page is
not important (only its chirality)
The R-matrix and the twist factors are related in several ways. The

identities Eq. 15.1, 15.2, and 15.3 hold where for fully isotopy invariant
theories we set ǫa = +1 for all particles.
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16.3 Negative da and Unitarity

We have allowed theories with da to be negative. While this may not
seem problematic, if we think of a loop as being an inner product
〈state|state〉 as in Fig. 14.3, a negative da implies a non-positive-definite
inner product, which is forbidden in quantum mechanics. This appar-
ent problem is discussed in detail in sections 14.1–14.2. Here we will
very briefly adapt the scheme discussed in section 14.2.1 to the current
situation.
In short, we accept that our diagrammatic algebra has negative da’s.

Evaluation of such diagrams with negative da’s we call the non-unitary
evaluation. However, with a small reinterpretation of the diagrams we
can still think of these diagrams as describing a unitary theory. As
discussed in section 14.2.1 we add two simple rules to our list.

(0’) We must break the space-time symmetry and define a time direc-
tion (often up on the page).

(0) Before evaluating a diagram, count the number of negative-d caps,
and call it n. After fully evaluating the diagram multiply the final
result by (−1)n.

Recall from section 14.2.1. Here a negative-d cap occurs when we go
forward in time and two particles with d < 0 come together to annihilate
or form a particle having d > 0. (See examples in Figs. 16.20 and 16.21).
These modifications guarantee we are describing a unitary theory. For

example, if we take as simple loop like Fig. 16.5 with da < 0 the naive
evaluation (before application of rule 0) gives a negative result. However,
the diagram has one negative-d cap and so the result is multiplied by
(−1)1 thus giving a postive result as we should expect for a diagram
that can be interpreted as 〈state|state〉 as in Fig. 14.3. More examples
of how these evaluations work are given in section 14.2.1.

c

c

a b

a b
Fig. 16.20 With time going vertical,
the left diagram is a neagtive-d cap if
and only if da < 0 and db < 0. (The
directions of the arrows do not matter,
and if the particles are self-dual we do
not draw arrows). The right diagram is
never a negative-d cap.

a

a

Fig. 16.21 With time going vertical,
the left diagram is a negative-d cap if
and only if da < 0. The right diagram is
never a negative-d-cap. We can think of
these diagrams as being the same as the
diagrams in Fig.16.20 with c being the
identity. The directions of the arrows
do not matter.

The situation described in this section — having a theory which is
fully isotopy invariant but has negative da — is quite common. Funda-
mentally, as discussed in sections 14.1–14.2, the need to use negative d
comes from negative Frobenius-Schur indicators. There are many topo-
logical theories of this type — including very simple theories the semion
theory SU(2)1 and more generally theories like SU(2)k.

16.4 Appendix: Higher Fusion Multiplicities

As in section 9.5.3 when fusion multiplicities are greater than one, the
vertices have additional indices which we label with greek indices µ, ν, . . ..
For example, if a and b fuse to c with N c

ab > 1 then the vertex will have
an additional index µ ∈ 1 . . .N c

ab. Note that compared to section 9.5.3
we do not put black dots on the vertices here. In the conventions of the
current chapter we would then have
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b

a

c

e

dµ ν =
∑

fλτ

[
F badecf

]µν
λτ

b

a

c

e

f

λ

τ

Fig. 16.22 F -matrix for isotopy invariant theories with fusion multiplicity.

c d

a

b

µ ν
= δcdδµν

√
dadb
dc

c d

a

b

µ ν

Fig. 16.23 The locality principle for the isotopy invariant diagrammatic algebra
with fusion multiplicity.

=
∑

c,µ

√
dc
dadb

a b c

a b

a bµ

µ

Fig. 16.24 Insertion of a complete set of states with isotopy normalization and
fusion multiplicity.

a b

=
∑

c,µ

√
dc
dadb

[Rabc ]µµ

a b

b a

c

µ

µ

a b

=
∑

c,µ

√
dc
dadb

[Rabc ]−1
µµ

a b

b a

c

µ

µ

Fig. 16.25 Resolving a crossing with isotopy normalization and fusion multiplicity.
The square roots are taken negative if any only if da and db are both negative

Chapter Summary

• THis is an item
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Further Reading

This is some reading.
Levin-Lin?
Summary of properties of category?



Further Structure 17
Medium Material

In this chapter we will explore some further structure that is inherent
in topological theories.

17.1 Quantum Dimension

Recall that we defined da, the quantum dimension, in terms of how
fast the Hilbert space grows as we fuse together many a particles (See
Eq. 3.8)

Dim of M anyons of type a ∼ d
M
a

An alternative definition (Eq. 8.9) is that1 1Recall that Na is defined as the matrix
with components [Na]cb = Nc

ab which
are the fusion multiplicities.da = the largest eigenvalue of the matrix Na (17.1)

We have claimed several times that these quantum dimensions are (up
to a possible sign) equal to the value of a loop da in our diagrammatic
algebra. In this section we will finally prove this important result.
To make a connection to our diagrammatic algebra, let us consider

fusing two loops labeled a and b as shown in Fig. 17.12

ab =
∑

c

√
dc
dadb

c b a

=
∑

c

√
dc
dadb

ac b =
∑

c

N c
ab c

Fig. 17.1 Fusing two loops into a single loop. In the first line we use the completeness
relation Fig. 14.8, then we deform to the second line and finally in the last step we
remove the bubble using Fig. 14.7.

The result seems rather natural, that a and b can fuse together to form

2This result holds very generally. There are several possible worries one might have about this calculation which we should
dispell. First, in cases where Nc

ab > 1 one must conisder additional indices at the vertices, in which case we use Fig. 14.25 and
Fig. 14.24 in place of Fig. 14.8 and Fig. 14.7 in the derivation. Secondly, one might worry that for general theories, without
full isotopy invariance, going from the first line to the second line might be problematic. However, it turns out that one does
not need full isotopy invariance, just the pivotal property is enough to get to the second line (See section 14.7.1 and exercise
17.1).
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c in all possible ways. The derivation uses the completeness relation in
the first line (Fig. 14.8), then we deform to get to the second line, and
finally in the last step we remove the bubble using Fig. 14.7.
Now the value of a loop in our diagrammatic algebra is da. However,

if da is negative we must implement rule 0 from section 14.2.1 and we
always obtain a positive definite result |da| for a single loop (which is
appropriate for a diagram which can be interpreted as 〈state|state〉, see
Fig. 14.3). Thus the diagramatic manipulations of Fig. 17.1 give us33One says that the quantities |da| form

a representation of the fusion algebra.
Compare to Eq. 8.3. |da| |db| =

∑

c

N c
ab |dc| (17.2)

Eq. 17.2 has an interesting interpretation if we define a vector ~dabs
to have components |d|c with the vector index being c. We can then
rewrite the Eq. 17.2 as an eigenvalue equation

|d|a ~dabs = Na ~dabs

Since Na is a matrix of nonnegative numbers4, and ~dabs is a vector4The Perron-Frobenius theorem is usu-
ally applied to matrices of all posi-
tive numbers and is slightly weaker
when applied to the nonnegative case.
See the detailed discussion in appendix
17.7.

of positive numbers, we identify ~dabs as the so-called Perron-Frobenius
eigenvector of the matrix Na, and its eigenvalue |da| is guaranteed by
the Perron-Frobenius theorem (see appendix 17.7 ) to be the largest5

5Strictly speaking Na may have several
eigenvalues of the same absolute magni-
tude with the Perron-Frobenius eigen-
value being the only one which is real
and positive. This does not change our
conclusion.

eigenvalue of Na which, by Eq. 17.1 gives us

da = |da|

as claimed. This derivation does not rely on the theory having a well-
defined braiding.

17.2 The unlinking S̃-matrix

First let use the locality principle (or no-transmutation) principle (See
Fig. 8.7) to show that a closed loop of type a around a world line of
type x gives some constant which we call S̃ax as shown in Fig. 17.2.
(In fact using the R-matrix we can explicitly derive this identity and
evaluate S̃ax in terms of twist factors θ, the fusion multiplicities N c

ax

and the quantum dimensions d. See exercise 17.3. However, we will not
need this explicit expression.) Note in particular that S̃Ix = 1 since the
identity loop can be removed for free, and S̃aI = da since a single loop66Here if d is negative we include the

sign associated with rule 0 of section
14.2.1 in the evaluation of the diagram
so that we obtain a postive quantum
dimension d.

of a gives da.
Now, if we have two loops a and b around x, we can fuse the two loops

to all possible loops c as shown in Fig.17.3. This identity is entirely
analogous to that of Fig. 17.1. In essence we are fusing a and b to form
all possible strands c and then in the last step we apply S̃. On the other
hand, we could also evaluate the left hand side of Fig. 17.3 by applying
the identity of Fig. 17.2 twice in a row, as in Fig. 17.4.
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a

x

= S̃ax

x

Fig. 17.2 The locality principle tells us that the value of a loop of a around a

world line x is some number which we call S̃ax. (Indeed, we can use the R-matrix to
calculate S̃ax. See exercise 17.3.)

ab

x

=
∑

c

√
dc
dadb

c b a

x

=
∑

c

√
dc
dadb

ac

x

b =
∑

c

N c
ab c

x

=
∑

c

N c
abS̃cx

x

Fig. 17.3 Similar reasoning as in Fig. 17.1 allows us to write this diagrammatic
relationship.

ab

x

= S̃bx a

x

= S̃axS̃bx

x

Fig. 17.4 Application of S̃ twice (compare to Fig. 17.2).

Equating the result of Fig. 17.3 to that of Fig. 17.4 we obtain

S̃axS̃bx =
∑

c

N c
abS̃cx (17.3)

This result holds for any anyon theory with a well defined braiding (i.e.,
that satisfies the hexagon relationship). Note that in the special case
where x is the identity we just recover Eq. 17.2.

17.3 The (modular) S-matrix

Recall from section 7.3.1 that we defined the S-matrix (Eq. 7.6) in several
ways. On the one hand we defined

Sab = Z(S3; a loop linking b loop) (17.4)

whereas on the other hand, we said that S was (under certain conditions
that the theory has no transparent particles) a unitary transformation
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between two different bases for describing the Hilbert space of a torus.
Now recall our normalization of diagrams is given by diagram =

Z(S3; diagram)/Z(S3) (See Eq. 14.6), so we can write

Sab = a b × 1

D (17.5)

where we have defined

D =
1

Z(S3)

Using isotopy of diagrams and Hermitian conjugation it is easy to
establish (see exercise 17.2) that

Sab = Sba = Sāb̄ = Sb̄ā = S∗
āb = S∗

bā = S∗
ab̄ = S∗

b̄a (17.6)

And further by setting one of the indices to the vacuum I, we are left
with a single loop that evaluates to the quantum dimension7, hence7Here again we are using rule 0 from

section 14.2.1 so that a single loop al-
ways evaluates to a positive number
da = |da| independent of the sign of
da.

giving us
SIa = SaI = da/D. (17.7)

Let us now evaluate the S-matrix in terms of our unlinking matrix S̃.
By bending the top of x in Fig. 17.2 and forming a closed loop with the
bottom of x, we construct linked rings as shown in Fig. 17.5.

a b = S̃ab b = S̃ab db

Fig. 17.5 Evaluation of linked rings. In the case where db < 0, we have applied
rule 0 from section 14.2.1 so that the single loop gives us a positive db quantum
dimension.

Comparing to the definition of S in Fig. 17.5 we obtain

Sab = S̃ab db/D = S̃abSIb

or equivalently

S̃ab =
Sab
SIb

Plugging this into Eq. 17.3 gives us

SaxSbx
SIx

=
∑

c

N c
abScx. (17.8)

Again this is generally true for any braided anyon theory, i.e., any theory
which satisfies the pentagon and hexagon relations.

17.3.1 Unitary S = Modular

When S is unitary, we say the theory is modular8. It turns out that S
8We will explain the meaning of the
word “modular” in section 17.3.2.

is unitary if and only if the identity is the only transparent particles in
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the theory9. A particle a is said to be transparent if braiding a all the
9We ran into this concept as far back
as section 4.3.2

way around any other particle accumulates no phase. Equivalently, in
terms of the S-matrix we can write

a is transparent ⇔ Sax =
dadx

D for all x (17.9)

In other words, a full braiding of a with any particle is trivial10. 10An equivalent statement using the
ribbon identity Eq. 15.3 is that a is
transparent if and only if θc/(θaθb) = 1
for all b and c whenever Nc

ab 6= 0.

It is clear that an S matrix cannot be unitary if there is any transpar-
ent particle a besides the identity (since the row Sax and the row SIx
would be proportional to each other). What is not obvious is that the
absence of any transparent particle guarantees S is unitary. This state-
ment can be proven using our axiomatic diagrammatic principles (i.e.,
not invoking any of the topological discussion of section 7.3.1 above).
However, the proof is a bit complicated and we refer the reader to Ki-
taev [2006]; Etingof et al. [2015] for details.
As mentioned a number of times, in some sense all “well-behaved”

anyon theories are modular (we say they are modular tensor categories).
Unfortunately, there are common theories which are not modular. For
example, a simple theory of a single fermion which obtains a minus
sign under exchange. A full braiding gives a plus sign exactly like the
vacuum, and is hence non-modular (although it may have a well defined
braiding). It is usually the case that theories containing fermions are
non-modular.
Let us assume for the remainder of this section that we have a modular

theory, i.e., that S is unitary, as we had stated in section 7.3.1. First,
unitarity implies that

1 =
∑

a

|SaI |2 =
1

D2

∑

a

d
2
a

which thus allows us to identify11 11We conventionally choose the posi-
tive square root. Choosing the negative
square root describes a theory whose
central charge is different by 4 from the
positive square root case, which we can
see from Eq. 17.14 below.

D = +

√∑

a

|da|2 (17.10)

which is usually called the total quantum dimension. Note in particular
that this implies

SII = 1/D (17.11)

Again assuming a unitary S matrix we can multiply Eq. 17.8 by S−1 =
S† on the right to obtain the often quoted Verlinde formula12 12Verlinde [1988] derived this in the

context of conformal field theories. In
different context it was derived earlier
by Pasquier [1987].N c

ab =
∑

x

SaxSbx[S
−1]xc

SIx
=
∑

x

SaxSbxS
∗
cx

SIx
(17.12)

which tells us that all the information about the fusion algebra is con-
tained entirely within the S matrix!.
Alternatively, one can multiply Eq. 17.8 by S−1 = S† on the left to
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obtain (with S and N treated as matrices on the left)

[S†NaS]xy = δxy

(
Sax
SIx

)

This means that the S matrix (at least for modular theories) is the
unitary matrix that simultaneously diagonalizes all of the Na fusion
multiplicity matrices (We mentioned this previously after Eq. 8.12).
A useful quick application of the Verlinde formula, Eq. 17.12, is to

write an expression for the conjugation13 matrix13The word “conjugation” is meant
to evoke charge conjugatoin which
changes positive charges to negative
charges.

Cab ≡ δab̄

This is simply a permutation matrix that permutes each particle with
its antiparticle. Obviously C2 = 1 is the identity.
We can find a relationship between C and the S-matrix by writing C

as the fusion multiplicty matrix of two particles fusing to the identity

Cab = N I
ab =

∑

x

SaxSbx = [SST ]ab

where we have used the Verlinde formula to evaluate N I
ab along with SIx

being real. Finally using the fact S is symmetric we obtain

C = S2

17.3.2 The Modular Group and Torus
Diffeomorphisms

Let us define one more matrix, which is the diagonal matrix of the twist
factors

T̃ab = θaδab

It turns out to be more useful to absorb an additional complex phase
into this matrix, so let us define

T = T̃ e−2πic/24 (17.13)

where c is a real constant, known as the chiral central charge which is an
important piece of data for an anyon theory14. The central charge mod-

14We will run into the central charge
c again in section *** where we make
connection between TQFTs and 1+1
dimensional conformal field theories.
In a 1+1 dimensional chiral conformal
field theory, the specific heat is given
in terms of the central charge as cv =
πk2BTc/(3v) where v is the speed of
light, T is temperature, kB is Boltz-
mann’s constant π is pi and 3 is three.

ulo 8 can be calculated from the twist factors and quantum dimensions
via (Fröhlich and Gabbiani [1990]; Rehren [1990]),

e2πic/8 =
1

D
∑

a

d
2
a θa (17.14)

The set of operations generated by T and S form15 a group known as

15We do not need C as an independent

generator since C = S2.

the modular group.1616Be warned there are several closely
related groups that are sometimes
known as the modular group. S2 = C C2 = 1 (ST )3 = C (17.15)
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For proof of the last identity we again refer the reader to Kitaev [2006];
Etingof et al. [2015]. These relations are equivalent to the group SL(2,Z),
the group of two-by-two matrices with integer coefficients and unit de-
terminant which has generators

S =

(
0 −1
1 0

)
T =

(
1 1
0 1

)

It is easy to check that Eq. 17.15 are satisfied by these two by two
matrices.
The modular group has a beautiful topological interpretation: it is the

group of topologically distinct17 orientation preserving diffeomorphisms 17What we mean here is the so-called
“mapping-class group” of the torus sur-
face. I.e., two mappings of the torus
surface to the torus surface are con-
sidered to be the same if one can be
smoothly deformed into the other.

of the torus surface. To see how this works we consider a torus to be a
plane R2 with the lattice of integers Z2 modded out so that each lattice
point is identified with every other lattice point.

T 2 = R2/Z2

Any transformation on the plane that one-to-one maps lattice-points to
lattice points gives a representative diffeomorphism of the torus. Such
transformations are given by the elements of the group SL(2,Z) just by
mapping points ~v in the plane to A~v where A is an member of SL(2,Z)18. 18It is obvious that such a transforma-

tion of the plane corresponds to a dif-
feomorphism of the torus. What is a bit
less obvious is that all diffeomorphisms
of the torus are topologically equivalent
to (i.e, can be smoothly deformed into)
a linear map of this sort. See, for ex-
ample, Rolfson [1976]; Farb and Mar-
galit [2012] for detailed discussions of
this point.

This analogy with the diffeomorphisms of the torus is certainly not
coincidental! Let think back to the discussion of section 7.3 and 7.4. We
considered the solid torus D2 × S1 with a particle world line of type a
around the handle. We wrote the wavefunction on the surface as

|ψa〉 = |Z(D2 × S1; a)〉

which forms an orthonormal basis 〈ψa|ψb〉 = δab. As mentioned there,
this inner product corresponds to sewing together the two solid tori to
create S2×S1. However, we could also have sewn the tori together after
exchanging meridian and longitude to create S3, and the inner product
then becomes (See Eq. 7.6)

〈Z(S1 ×D2; b)|Z(D2 × S1, a)〉 = Sab

A different way of thinking of this is that we make a diffeomorphism on
the surface of the torus before gluing the two halves back togther. Thus
we could have said

〈ψb|Ŝ|ψa〉 = Sab

where Ŝ is the operator that makes the diffeomorphism on the surface
(the diffeomorphism precisely exchanges meridian and longitude).
Note further that Ĉ ≡ Ŝ2 exchanges the meridian and longitude twice,

giving a net effect of rotating the torus by 180 degrees. If we think back
to the solid torus with a world line of type a around the handle, the
rotation of the torus surface by 180 degrees changes the relative direction
of the embedded world line and thus changes a to ā, implementing the
conjugation operation C.
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Finally, the T̂ operation on the torus surface implements an elemen-
tary Dehn twist as described in section 7.4. The fact that the T opera-
tion on the state |ψa〉 corresponds to a twist factor θa is fairly obvious
from looking at Fig. 7.15. The presence of the additional complex factor
related to the central charge in Eq. 17.13 is a subtle point and stems
from a change in the 2-framing discussed in section 5.3.4.

17.4 Periodic Tables of TQFTs

As mentioned in sections 9.3 and 13.3, anyon theories (or TQFTs) are
extremely constrainted by the pentagon and hexagon equations. Indeed,
for any given set of fusion rules there are only a finite number of possi-
ble solutions up to gauge equivalence (Etingof et al. [2005]). Once one
includes additional conditions, such as the theory being modular, the
number of possible solutions drops even more. This makes it possible to
consider building a “periodic table” of possible TQFTs — i.e., a com-
plete list of all consistent modular solutions of pentagon and hexagon.
The procedure for building this table is to hypothesize that there are
only n different particle types, with n a small number. With fixed n one
can constrain the possible fusion rules, then pentagon solutions, and fi-
nally hexagon solutions. For modular tensor categories this program has
been carried out by Rowell et al. [2009] for up to four particle types1919See also earlier work by Gepner and

Kapustin [1995] as well as Bonderson
[2007].

Some of the key results from this periodic table is presented in table
17.1. In chapter 18 we will see a few of the basic principles used for
compiling such a table.
Extensions of the idea of a periodic table have been made in a number

of directions. Of note, the periodic table has been extended to include all
possible braided theories (solutions of pentagon and hexagon) without
imposing the modularity condition. Further since theories with fermions
are such an important special case, theories that only fail to be modular
due to a fermion, have been put in periodic tables as well. References
to these works are given in the further reading below.

17.5 Ω Strand (Kirby Color)

A particularly useful object to consider is a weighted sum of particle
types particular sum of particle types known as an Ω-strand, or some-
times “Kirby color” strand20, as shown (purple) in Fig. 17.6.20Sometimes the Ω strand is normal-

ized with an additional factor of D or
D−1 out front.

Ω =
1

D
∑

a

da a =
∑

a

SIa a

Fig. 17.6 A String of Kirby color (Ω-strand) is a weighted superposition of all anyon

string types20. Note that the Kirby color string does not have an arrow on it since
it is an equal sum over all particles and their antiparticles. Here d is the quantum
dimension, S is the modular S-matrix, and I is the identity, or vacuum, particle.

This weighted sum will occur in several different contexts, including
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Table 17.1 Rank≤ 4 modular tensor categories. From Rowell et al. [2009].
particle types Fusion rules # solutions Examples

I 1 (E8)1

I,X X2 = I 2 Z2 = SU(2)1 = Semion

I,X X2 = I +X 2 (G2)1=Fibonacci

I,X, Y X2 = Y , XY = I, Y 2 = X 2 Z3 = SU(3)1

I,X, Y X2 = I + Y , XY = X, Y 2 = I 8 SU(2)2, Ising, (E8)2

I,X, Y X2 = I +X + Y , XY = X + Y ,
Y 2 = I +X

2 SU(2)5/Z2

I,X, Y, Z X2 = Y = Z2, XZ = I = Y 2,
XY = Z, ZY = X

4 Z4 = SU(4)1

I,X, Y, Z X2 = I, XY = Z, XZ = Y ,
Y 2 = I, Y Z = X, Z2 = I

1
1

of type D(Z2)=Toric Code
of type (D4)1

3 of type Z2 × Z2

I,X, Y, Z X2 = I +X, XY = Z,
XZ = Y + Z, Y 2 = I, Y Z = X,
Z2 = I +X

4 Fibonacci × Z2

I,X, Y, Z X2 = I +X, XY = Z,
XZ = Y + Z, Y 2 = I + Y ,
Y Z = X +Z, Z2 = I+X +Y +Z

3 Fibonacci × Fibonacci

I,X, Y, Z X2 = I +X + Y ,
XY = X + Y + Z, XZ = Y + Z,
Y 2 = I +X + Y + Z,
Y Z = X + Y , Z2 = I +X

2 (G2)2, SU(2)7/Z2

Some comments on this table: G2, E8, D4 and SU(N) are Lie groups. Theories
listed, such as (G2)2 are Chern-Simon theories with the last subscript indicting the
level of the theory. SU(2)5/Z2 means start with the Chern-Simons theory SU(2)5 and
consider only the “even” subset of anyons, which form a complete theory by themselves.
(Similar for SU(2)7/Z2). D(Z2) is the quantum double of Z2 which we will discuss in
section *** . The counting of the number of solutions in most cases is obvious. For
SU(2)1, (G2)1, SU(2)5/Z2 and (G2)2 we have the right (R) and left (L) handed versions
of the theory (The left and right version of (D4)1 turn out to be the same). The 3 cases
of Fib × Fib and Z2 × Z2 correspond to taking L × L, R × R, and L × R. Note that
R × L is equivalent to L × R so does not count as a different theory. However, for Fib
×Z2, all four L×L, R×R, R×L and L×R are different. We will discuss the 8 versions
of anyon theories related to the Ising or SU(2)2 in section 18.3 below. Note that the
(E8)1 theories need not be entirely trivial – even though it has no nontrivial particles –
since it can have a central charge which is any integer multiple of 8. Note that nowhere
in this table do we have fusion multiplicity Nc

ab > 1.
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sections 22.3,***,*** below. The Ω-strand has some interesting proper-
ties. For example, in Fig. 17.7 we show the so-called “killing property”
of a loop of Ω — a loop of Ω allows only the identity to go through it:
all other particle types are “killed.”

Ω

x

=
∑

a

SIa a

x

=
∑

a

SIaS̃ax

x
= DδIx

I

Fig. 17.7 The killing property of the Ω-strand for modular theories. A loop of
Kirby color (Ω) allows no particles through it except the identity. In the final step
we use unitarity of S (and the fact that SIa = S∗

Ia).

A useful corrolary of the Killing property is given in Fig. 17.8.

a b

Ω=
∑

c

√
dc
dadb

ba

ba

Ω
c

= δab̄
D
da

a

a

Fig. 17.8 The Ω-strand joins two lines due to the killing property which we use in
the second step to force c to be the identity.

A loop of Ω strand with a twist, shown in Fig. 17.9, interestingly re-
produces our expression for the central charge modulo 8, as in Eq. 17.14.

=
1

D
∑

a

da

Ω

a

=
1

D
∑

a

d
2
aθ

∗
a = e−2πic/8

=
1

D
∑

a

da

Ω

a

=
1

D
∑

a

d
2
aθa = e2πic/8

Fig. 17.9 For modular theories, a twisted Ω-strand gives e±2πic/8 with c the (real)
central charge. See Eq. 17.14. (See also exercise 22.5)

17.6 Still Further Structure

Modular (and many non-modular) theories have a great deal of extra
structure that we have not even touched on. The theories are obviously
very highly constrained, so it is rather natural to expect that there will be
many nontrivial relationships between the quantities we have discussed.



17.7 Appendix: Perron-Frobenius Theorem 209

A useful relationship which is assigned as exercise 17.3 is

Sab =
1

D
∑

c

N c
ab̄

θc
θaθb

dc . (17.16)

Another interesting result is a theorem by Bantay [1997] which gives us
the following nontrivial relationship between the Frobenius-Schur indi-
cator κk of a particle k and the modular S matrix

∑

i,j

Nk
ijS0iS0j

θ2i
θ2j

=

{
κk = ǫksign(dk) k = k̄
0 k 6= k̄

(17.17)

A beautiful theorem by Vafa [1988] tells us that for any braided uni-
tary theory (modular or not) all the spin factors θa must be an nth root
of unity so that θna = 1 where the integer n is determined only by the
fusion multiplicity matrices N c

ab. For example, we have

∏

b

θXabb = 1 (17.18)

with
Xab = −2N b

aāN
b̄
aā −N b

aaN
b̄
āā + 4δab

∑

q

N q
aaN

q̄
āā

17.7 Appendix: Perron-Frobenius Theorem

The Perron-Frobenius theorem states that for a matrix with all positive
entries, there is a unique eigenvector with all positive entries (up to mul-
tiplication by an overall constant) known as the Perron-Frobenius eigen-
vector. The corresponding eigenvalue is the largest magnitude eigen-
value, and is positive. Further for a unitarily diagonalizable nonzero
matrix with all non-negative entries, if there exists an eigenvector with
all positive entries (up to multiplication by an overall constant), its
eigenvalue is positive and is of magnitude greater or equal to all other
eigenvalues. The application of the Perron-Frobenius theorem to the
fusion matrix Na is a bit tricky since the theorem is stronger when the
matrix being considered has strictly postive entries and the Na matrices
are only guaranteed to have nonnegative entries. To avoid this problem,
construct an arbitrary sum of the Na matrices M =

∑
a αaNa where all

the coefficients αa are positive. Since all the N ′
as have common eigen-

vectors (since they are normal matrices and they commute with each
other, see section 8.3.1), these are also the eigenvectors of the matrix
M . Further, all the elements ofM are strictly positive, so we may apply
the Perron-Frobenius theorem for postive definite matrices to M . We
thus obtain a Perron-Frobenius eigenvector of M with strictly positive
entries (up to a multiplicative constant). But the eigenvectors of Na
match those of of M so we have a postive definite eigenvector of Na
which then must be the Perron-Frobenius eigenvectors whose eigenvalue
is greater or equal to any eigevalue of Na.
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17.8 Appendix: Algebraic Derivation of the

Verlinde Form

In this section we show that we do not need the structure of braiding in
order to derive an equation of the Verlinde form, analogous to Eq. 17.12.
Let us begin by recalling from section 8.3.1 that for any topological the-
ory21,22 the fusion rules are described by fusion multiplicity matrices21Here we can mean any planar algebra

(unitary fusion category) or any 2+1
dimensional topological theory with a
braiding (unitary braided fusion cate-
gory).

22All we actually need is a commuta-
tive fusion ring with a unique identity
and inverses.

N c
ab which can be viewed as a set of square normal matrices Na with

indices b and c. As discussed in section 8.3.1 these normal matrices com-
mute with each other and therefore can be simultaneously diagonalized
by a matrix which we will call U (See Eq. 8.12)

Na = Uλ(a)U † (17.19)

where λ(a) is a diagonal matrix for each a. We note again that we will
discover below that for a so-called modular braided theory we will find
that S is the modular S-matrix. More generally we call U the mock
S-matrix.
From Eq. 17.19, the columns of U are the simultaneous eigenvectors

of the N matrices which we can make explicit as

∑

c

[Na]
c
bUcd = Ubdλ

(a)
d (17.20)

and no sum on d implied. Note, at this point, the columns of U may
be multiplied by an arbitrary phase (i.e., a phase redefinition of the
eigenvectors).
Since there is a particle type called the vacuum I (or identity) which

fuses trivially with all other particles, we have [Na]
c
I = δca so we have

Uad =
∑

c

[Na]
c
IUcd = UIdλ

(a)
d

so that

λ
(a)
d =

Uad
UId

(17.21)

substituting back into Eq. 17.19 we get the Verlinde formula

[Na]
c
b =

∑

x

Ubx
Uax
UIx

U∗
cx . (17.22)

This result is extremely general22.
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17.9 Appendix: Algebraic Derivation that

Quantum Dimensions Form a
Representation of the Fusion Algebra

Recall that the columns of U are the simultaneous eigenvectors of the
Na matrices. Invoking the Perron-Frobenius theorem, there must be a
particular index z such that23 the eigenvector Ubz has all postive entries 23This index z must be I in well

behaved modular anyon theories, but
more generally in fusion rings it could
be another index (Gannon [2003]).

with fixed z (up to an overall multiplicative constant). This is a common
eigenvector of all the Na matrices, and the corresponding eigenvalues
are λ

(a)
z . By the Perron-Frobenius theorem, since the eigenvector is all

positive λ
(a)
z must be the largest eigenvalue of Na. Recalling (Eq. 8.9)

that the quantum dimension can also be defined as the largest eigenvalue
of Na, we have

da = λ(a)z

Now let us multiply the Verlinde relation Eq. 17.22 on both sides by
dc = λ

(c)
z = Ucz/UIz (see Eq. 17.21) and sum over c. We have

∑

c

N c
abdc =

∑

x,c

Ubx
Uax
UIx

U∗
cx

Ucz
UIz

=
∑

x

Ubx
Uax

UIxUIz
δxz

=
Ubz
UIz

Uaz
UIz

= dadb

where we have used the fact that U is unitary. Thus we conclude

dadb =
∑

c

N c
abdc

Further Reading

The table from Rowell et al. [2009] was extended to five particle types
in Bruillard et al. [2015]; moon Hong and Rowell [2010] and to six in
Creamer [2019]. The modularity condition was relaxed to build a peri-
odic table of all unitary braided theories for up to four particles in Bruil-
lard [2016] and five in Bruillard and Ortiz-Marrero [2018]. Periodic table
for theories with fermions (which are a special subset of non-modular
theories) have been built in Bruillard et al. [2020] (See also Bruillard
et al. [2017]).

Exercises

Exercise 17.1 Using the pivotal property
Use the pivotal property (Section 14.7.1) to demonstrate the identity shown

in Fig. 17.10. You should not assume full isotopy invariance. Nor should you
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assume ǫ = +1 for any of the particles.
c b a = ac b

Fig. 17.10 This identity can be shown
without full isotopy invariance by using
the pivotal property.

Exercise 17.2 Symmetries of S
Use isotopy of diagrams and Hermitian conjugation of diagrams to show

the identities in Eq. 17.6.

Exercise 17.3 Evaluation of the S-link
(a) Use the R-matrices and Eq. 15.3 to derive the value of the matrix

S̃ax (See Fig. 17.2) in terms of fusion multiplicities, twist factors θa, and the
quantum dimensions da.

(b) From your result show that

a b =
∑

c

Nc
ab̄

θc
θaθb

dc

Note that this diagram differs from Sab by a factor of Z(S3) = 1/D.

Exercise 17.4 Product theories[Easy]
Given two anyon theories A and B with corresponding S-matrices SA and

SB.
(a) Show that the product theory A×B has S-matrix SA ⊗ SB .
(b) Show that A×B is modular if and only if both A and B are modular.
(c) Show that the central charge of the product theory is the sum of the

central charges of the constituent theories. I.e.,

cA×B = (cA + cB) mod 8 (17.23)

In fact, central charges strictly add in product theories. However, we have
only defined the central charge mod 8 so far!
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In this chapter we consider a few simple examples of anyon theories. Our
strategy will be the same in each case. First, we decide on a set of fusion
rules. From this we examine the possible planar planar diagram algebras.
To a mathematician these are known as spherical tensor categories (See
section 14.7.2). Once we have found the possible planar algebras we will
look for possible braidings to build full anyon theories.
All of the examples given here will enjoy full isotopy invariance (with

ǫa = +1, although if there are nontrivial Frobenius-Schur indicators we
will need negative d’s) so we will use the notation of chapter 16.

18.1 Z2 Fusion Rules

Let us start with the simplest system of particles we can imagine, an
identity 0 and a nontrivial particle 1. The simplest fusion rules we can
have are1

1We have switched notations — here
the vacuum is 0 not I, and the nontriv-
ial particle is 1. I hope this does not
cause confusion!

1× 1 = 0

which tells us that 1 is its own antiparticle 1 = 1̄ so we do not draw
arrows on the corresponding line. This is known as Z2 fusion rules and
is shown in Fig. 18.1. The corresponding fusion multiplicity matrix is
N0

11 = N0
00 = N1

10 = N1
01 and N1

11 = N0
10 = N0

01 = N1
00 = 0.

=
1 1 1 1

0

Fig. 18.1 Fusing two 1-particles to the
vacuum, shown in two notations.

Fig. 18.2 Examples of allowed vertices
for the Z2 fusion rules. A 1 particle
(drawn solid) comes into the vertex and
the 1-partice must also go out of the
same vertex. The 0 particle, the iden-
tity, is drawn dotted, but it need not be
drawn at all.Fig. 18.3 A loop gas has Z2 fusion rules. The loop gas drawn here is planar —

there are no over- or under-crossings.

With 0 being the identity, the only nontrivial vertices we can have
with these fusion rules is where one particle 1 comes in and one particle
1 also goes out as shown in Fig. 18.2. If one does not draw the identity
particle, diagrams must then be just a so-called loop gas as shown in
Fig. 18.3. The constraint N0

01 = N1
00 = N0

10 = 0 means that loops
cannot end, and N1

11 = 0 means that loops cannot intersect.
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Since the largest eigenvalue of [Na]
c
b is 1, we have quantum dimensions

d1 = d0 = 1 (See Eq. 8.9).
The Z2 loop gases were studied in Exercise 2.2 (where we allowed

over and undercrossings in addition to just planar diagrams), and we
will consider them again in section 19.1 below.
With these fusion rules, there are two sets of F -matrices that give

a consistent fully isotopy invariant planar algebras. These moves two
solutions correspond to d1 = ±1, which are the only two options given
d1 = 1.

18.1.1 d = +1 Loop Gas

Here we choose d1 = +1 for the nontrivial particle, in which case every
F which is nonzero is +1. (I.e., every F diagram where all vertices are
consistent with the fusion rules. See Fig 16.3). In other words, F badecf = 1
for every case where Nabd = Nced = Nbcf = Naef = 1 and F is zero
otherwise. We can write out explicitly the nonzero elements

F 000
000 = 1/d0 = 1 (18.1)

F 110
110 = 1/d1 = 1 (18.2)

F 110
001 = F 000

111 = 1 (18.3)

F 101
101 = F 011

011 = 1 (18.4)

F 101
010 = F 011

100 = 1 (18.5)

The first two lines are required from Eq. 16.4. Eq. 18.3 is from Eq. 16.7.
Eq. 18.4 and Eq. 18.5 can be derived from Eq. 18.2 and Eq. 18.3 by the
tetrahedral symmetry equation Eq. 16.17. Examples of these F -moves
are shown in Fig. 18.4 and 18.5.
The d = 1 planar loop gas turns out to be a relatively trivial diagram-

matic algebra. The value of every allowed diagram is unity! (or is zero
if there is anything disallowed in the diagram, such as the intersection
of loops.)

= F 011
011

= F 110
001

Fig. 18.4 These F -moves for the Z2

loop gas simply deform the path of the
particles. These are known as “isotopy”
moves.

= F 110
110

Fig. 18.5 This F -move for the Z2 loop
gas reconnects the paths of particles.
This is known as a “surgery” move.

We now turn to consider the possible braidings that we can impose
on this planar algebra. The only nontrivial R matrix element is R11

0 .
Using the hexagon equation 16.21 and setting a = b = c = d = 1 and
e = c = g = 0 we obtain (the only allowed value of f is 0)

[R11
0 ]2F 110

110 = [F 110
110 ]

2R10
1 (18.6)

The R on the right is unity, and the F ’s are all unity. Thus

[R11
0 ]2 = 1 (18.7)

This limits us to two possible anyon theories for the d = +1 loop gas:
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Bosons

We choose the R11
0 = +1 case. This gives us no phases or signs with

F moves or braiding. The corresponding twist factor (via Eq. 15.1) is
θa = +1 which corresponds to bosons.

Fermions

We choose the R11
0 = −1 case. This gives us minus sign under exchange

of identical partiecles. The corresponding twist factor (via Eq. 15.1) is
θa = −1 which corresponds to fermions.
For both bosons and fermions the S matrix describing the braiding is

S =
1√
2

(
1 1
1 1

)
(18.8)

which is not unitary, so neither of these two cases are modular2. 2Since this is not a modular theory, the
S matrix is not the matrix that diago-
nalizes the fusion rules! That matrix is
Eq. 18.14.18.1.2 d = −1 Loop Gas

Here we choose d1 = −1 for the nontrivial particle, in which case every F
which is consistent with the fusion rules is ±1. The signs of the nonzero
elements of F are given as follows

F 000
000 = 1/d0 = 1 (18.9)

F 110
110 = 1/d1 = −1 (18.10)

F 110
001 = F 000

111 = 1 (18.11)

F 101
101 = F 011

011 = 1 (18.12)

F 101
010 = F 011

100 = 1 (18.13)

As with the d = +1 loop gas, the first two lines are required from
Eq. 16.4. Eq. 18.3 is from Eq. 16.7. Eq. 18.4 and Eq. 18.5 can be
derived from Eq. 18.2 and Eq. 18.3 by the tetrahedral symmetry equation
Eq. 16.17. Note in particular how the signs work in Fig. 16.14 in the
definition of the tetrahedral diagram.
It is worth looking at the two different signs that F can take. (If

necessary, refer back to Fig. 16.3 for details of how the F -matrix is
defined). Moves such as shown in Fig. 18.4 simply deform the path
of the particle and do not incur a sign. However, the move shown in
Fig. 18.5 perform “surgery” on the parths and reconnect loops and does
change the sign. Such a surgery always changes the number of loops in
the diagram by one. The value of any loop diagram is thus given by

Value of (d = −1)
loop diagram

= (−1)number of loops

As discussed in detail in sections 14.2 (See also 16.3), while this is a
perfectly consistent planar diagrammatic algebra, it has non-positive
definite inner products and therefore is not appropriate for describing
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quantum mechanics.
However as discussed in 14.2.1 we can make make a proper unitary

theory out of the d = −1 loop gas just by implementing rule 0. So the
unitary evaluation of a diagram is

Value of (d = −1)
loop diagram
including rule 0

= (−1)number of loops+number of caps

For example, in Fig. 18.3 there are 10 loops and 14 caps, so the full value
of the diagram is +1.
The nontrivial particle here has a negative Frobenius-Schur indicator.

Here we have chosen to do our bookkeeping by working with a negative
d, by maintaining isotopy invariance of diagrams (with ǫ = +1) and
implementing rule 0 to obtain a unitary theory. There are other possible
ways to account for this sign, but in the end we will always have to pay
the price of a minus sign for a space-time wiggle such as Fig. 14.5.

Semions

We now consider possible braidings for the d = −1 loop gas. As in the
case d = +1, we can apply the hexagon to obtain Eq. 18.6. In this case,
however, F 110

110 = −1 so we obtain

[R11
0 ]2 = −1

Again there are two solutions R11
0 = ±i corresponding to right- and left-

handed semions. In either case wrapping a semion all the way around
another gives −1, so the S matrix is given by

S =
1√
2

(
+1 +1
+1 −1

)
(18.14)

This is unitary, telling us that the theory is modular.

18.2 Fibonacci Fusion Rules: The Branching

Loop Gas

We now consider Fibonacci fusion rules as discussed in sections 8.2.1
and 9.1 above. Here the nontrivial fusion rule is3

3Here we have switched back to the no-
tation of τ for the nontrivial particle
and I for the vacuum. Using 1 and 0 is
also common.

τ × τ = I + τ

Again τ = τ̄ is self-dual. These fusion rules allow vertices with three τ
particles (one coming from each direction as shown in Fig. 18.6) so the
loop gas can have branches as shown in Fig. 18.7.

Fig. 18.6 An allowed fusion vertex
(right) and a disallowed fusion vertex
(left) for the Fibonacci fusion rules.
The solid line is τ and the dotted line
is the identity. The vertices shown in
Fig. 18.2 are also allowed.

The fusion multiplicity matrix N c
ab is zero if exactly one of the indices

is τ and the other two are I. Otherwise N c
ab = 1. We can establish the

nonzero components of the F -matrices for these fusion rules:
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Fig. 18.7 A Fibonacci branching loop diagram allows intersections of loops, but no
loop ends.

F IIIIII = 1/dI = 1 (18.15)

F ττIττI = 1/dτ (18.16)

F ττIIIτ = F IIIτττ = 1 (18.17)

F ττIτττ = 1/
√
dτ (18.18)

F τττττI = 1/
√
dτ (18.19)

F τIττIτ = F IττIττ = 1 (18.20)

F τIτIτI = F IτττII = 1 (18.21)

F τττIττ = F ττττIτ = F Iτττττ = F τIττττ = 1 (18.22)

F ττττττ = −1/dτ (18.23)

As with the case of the Z2 loop gases, the first two lines are required from
Eq. 16.4. Eq. 18.17 and Eq. 18.18 are from Eq. 16.7. Eq. 18.19 comes
from Eq. 18.18 and Eq. 16.10. Eqs. 18.20, 18.21, and 18.22 can be derived
from Eqs. 18.16, 18.17, 18.18 and 18.19 by the tetrahedral symmetry
equation Eq. 16.17. Finally, Eq. 18.23 comes from the requirement that
the two by two matrix [F ττττ ] is a unitary matrix (See Fig. 16.3) which
we write out as4 4This F -matrix matches our previous

claim in Eq. 9.3. With any proposed
F -matrix, one should always check that
one has a valid solution of the pentagon
equation Eq. 9.7 (or Eq. 16.3). See ex-
ercise 9.4 for the Fibonacci case!

F ττττ =

(
1/dτ 1/

√
dτ

1/
√
dτ −1/dτ

)
(18.24)

The unitarity requirement on this matrix also gives us

1

d2τ
+

1

dτ
= 1 (18.25)

The solution to this is

dτ =
1 +

√
5

2

which matches the expected quantum dimension dτ given in Eq. 8.2 as
it must, given the considerations of section 17.1. Eq. 18.25 also has a
solution with dτ < 0. However, we cannot accept this solution because
it would violate Eq. 14.45. 5Since τ × τ = τ + . . . we need to have

sign[dτ ]× sign[dτ ] = sign[dτ ].As in the case of the Z2 loop gases, many of the F -matrix elements
correspond to simple deformations of paths (isotopy) as in Fig. 18.4.
The nontrivial F -moves (corresponding to the matrix F in Eq. 18.24)
are summarized in Fig. 18.8.



220 Some Simple Example

= 1
dτ

+
√

1
dτ

=
√

1
dτ

− 1
dτ

Fig. 18.8 The F -moves for the Fibonnaci branching loop gas. Note that the first
line is actually the insertion of a complete set of states as in Fig. 16.8

18.2.1 Braidings for Fibonacci Anyons

To determine the possible braidings for Fibonacci fusion rules, we must
solve the hexagon equation given the F matrices we just derived. This
is assigned as exercise 13.1. There are two possible solutions, a right-
handed solution given in Eq. 10.2, and a left-handed solutions which is
the complex conjugate of the right handed solution. These are the only
solutions of the hexagon equations for the Fibonacci fusion rules.

18.3 Ising Fusion Rules: A Two Species Loop
Gas

As discussed in section 8.2.2 the Ising fusion rules (also known as SU(2)2
fusion rules) are given by

ψ × ψ = I

ψ × σ = σ

σ × σ = I + ψ

with both particle types being self dual ψ = ψ̄ and σ = σ̄. These rules
describe a loop gases with two non-vacuum particles ψ (which we draw
as blue lines and loops in Fig. 18.9) and σ (which we draw red loops in
Fig. 18.9). The rule of this loop gas is that one may have a vertex with
two sigmas and one ψ, which appears as a blue line splitting off from a
red loop.

Fig. 18.9 A diagram with Ising fusion rules. Here σ is red and ψ is blue.

Looking at the first fusion rule, ψ × ψ = I, we realize this rule alone,
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is simply a Z2 fusion rule. Indeed, this tells us immediately that we have

1/dI = 1/dψ = 1

= F IIIIII = FψψIψψI = FψψIIIψ = F IIIψψψ = FψIψψIψ = F IψψIψψ = FψIψIψI = F IψψψII

as given in Eqs 18.1-18.5. One might wonder why we do not consider
dψ = −1. This is for the same reason why we could not consider negative
dτ in the Fibonacci case. Here we must have sign[dσ]sign[dσ] = sign[dψ ],
so we must have dψ positive.
Very similarly we have

F σσIσσI = 1/dσ

F σσIIIσ = F IIIσσσ = 1

F σIσσIσ = F IσσIσσ = 1

F σIσIσI = F IσσσII = 1

The first equation is from Eq. 16.4, and the second from Eq. 16.7. The
last two are derived from the first two via the tetrahedral symmetry
Eq. 16.17.
Further using Eqs. 16.7 and 16.16 we obtain

F σσIσσψ = F σσψσσI = 1/dσ (18.26)

F σσIψψσ = FψψIσσσ = F σψσψσI = FψσσσψI = 1 (18.27)

Enforcing unitarity on the two by two matrix [F σσσσ ] we get

F σσψσσψ = −1/dσ (18.28)

giving the two by two matrix the form

[F σσσσ ] =

(
1/dσ 1/dσ
1/dσ −1/dσ

)
(18.29)

The unitarity condition also gives us the condition that

dσ = ±
√
2

which is expected from section 8.2.2 since the fusion rules give us dσ =
|dσ| =

√
2. Both of these roots are viable solutions of the pentagon.

The remaining nonzero elements of F are obtained from Eq. 18.26-
18.28 by using tetrahedral symmetry Eq. 16.17 to obtain

1 = F σIσσψσ = F Iσσψσσ = F σψσσIσ = FψσσIσσ (18.30)

= F σIσψσψ = F Iσσσψψ = FψIψσσσ = F Iψψσσσ (18.31)

= FψσσσIψ = F σσψIψσ = F σσψψIσ = F σψσIσψ (18.32)

−1 = F σψσσψσ = Fψσσψσσ (18.33)

The nontrivial F -moves corresponding to the matrix Eq. 18.29 are
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shown in Fig. 18.10.

= 1
dσ

+ 1
dσ

= 1
dσ

− 1
dσ

Fig. 18.10 The nontrivial F -moves for the Ising fusion rules. Note that the first
line is actually the insertion of a complete set of states as in Fig. 16.8

18.3.1 Braidings For Ising Fusion Rules

The most straightforward way to find all the possible braidings for the
Ising fusion rules is to explicitly solve the hexagon equations 13.2 or
equivalently Eq. 16.216 . We here outline how we proceed (Exercise 18.1

6Since the F matrices are real, Eq. 13.3
and 16.22 are equivalent to Eq. 13.2 and
16.21.

asks you to work out the details!). For each possible settings of the
variables in the hexagon equation, we derive a different identity. For
each of the following cases, the F -matrices are simple scalars (1 and −1
only) so we derive

a = ψ, b = c = σ, d = I ⇒ Rσψσ Rσσψ = RσσI (18.34)

b = ψ, a = c = σ, d = I ⇒ Rψσσ Rσσψ = RσσI (18.35)

a = b = σ, c = ψ, d = I ⇒ [Rψσσ ]2 = RψψI (18.36)

a = b = σ, c = d = ψ ⇒ [Rψσσ ]2 = −1 (18.37)

For the following case one uses the two-by-two F matrix meaning we are
working with a two dimensional vector space and the hexagon gives us
two identities

a = b = c = d = σ, e = I ⇒
{

[RσσI ]2 = 1
dσ

(1 +Rψσσ )

RσσI Rσσψ = 1
dσ

(1−Rψσσ )
(18.38)

These equations are enough to pin down all of the possible solutions
for the R-matrix. From Eq. 18.36 and 18.37 we obtain

RψψI = −1

which also implies θψ = −1 from Eq. 15.2. Note that since ψ is a Z2

field with dψ comparing to our above discussion of the Z2 fusion rules
we already knew that we had to have ψ be either a fermion or a boson
(we could re-establish this by looking at the hexagon with only ψ and
I fields). The hexagon including the σ field now establishes ψ to be a
fermion!
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From Eqs. 18.34 and 18.35 and 18.37 we establish

Rσψσ = Rψσσ = ±i

This sign is an additional free choice we can make (in addition to the
choice of dσ = ±

√
2). To keep these independent choices straight we

will use the notation

dσ =
1
±

√
2 (18.39)

Rψσσ =
2
± i (18.40)

We now plug in our choices for dσ and Rψσσ into the first of Eq. 18.38
to solve for RσσI . This gives yet another independent choice of sign for

a square root which we label with
3
±. We thus obtain

RσσI = exp

[
2πi

(
3

8

)]
exp

[
2πi

(
3
± 1

4

1
∓ 1

8

2
± 1

16

)]

Note now that

θ∗σ = RσσI sign[dσ] = exp

[
2πi

(
5

8

)]
exp

[
2πi

(
3
± 1

4

1
∓ 3

8

2
± 1

16

)]

(18.41)
from which we see there are a total of eight possible choices, and they are
all of the possible odd-sixteenth roots of unity which is what we would
predict from the fusion rules given Eq. 17.18.
For the record, from Eq. 18.34, we also have

Rσσψ =
2
∓ iRσσI = exp

[
2πi

(
3

8

)]
exp

[
2πi

(
3
± 1

4

1
∓ 1

8

2
∓ 3

16

)]

We should also check that none of the other hexagon relations are vi-
olated for any of these eight solutions (We could for example, evaluate
the hexagon with a = d = ψ, b = c = σ or any of the other possible
combinations). Remarkably, perhaps, all eight solutions solve all the
hexagon relations with no violations (see exercise 18.1).
The eight possible solutions all have the same S-matrix (see exercise

18.2)

S =
1

2




1
√
2 1√

2 0 −
√
2

1 −
√
2 1


 (18.42)

The two possibilities

1
±= +

2
±= −

3
±= −

1
±= +

2
±= +

3
±= −

gives the Ising TQFT and its conjugate respectively. These cases have
dσ chosen positive.



224 Exercises

The two possibilities

1
±= −

2
±= +

3
±= −

1
±= −

2
±= −

3
±= +

correspond to SU(2)2 Chern-Simons theory and its conjugate respec-
tively. Both of these cases have dσ negative.

Further Reading

Exercises

Exercise 18.1 Using the Hexagon for Ising Fusion Rules
Use the hexagon relations to derive Eqns. 18.34-18.38. Confirm that the

eight solutions we find give no violations of any hexagon relations.

Exercise 18.2 S-matrix for Ising Fusion Rules
Explicitly derive the S-matrix for all eight solutions of the hexagon equation

for the Ising fusion rules and confirm that they all give Eq. 18.42. Thus confirm
that all eight solutions are modular. Hint: It might be easiest to use Eq. 17.16.

Exercise 18.3 Frobenius-Schur Indicator for Ising Fusion Rules
Use Eq. 17.17 to calculate the Frobenius-Schur indicator for the σ particle

in each of the eight possible solutions of the hexagon equation for the Ising
fusion rules. Show that the Frobenius-Schur indicator is negative exactly when
dσ is negative.

Exercise 18.4 Evaluating Diagrams I
Show that evaluation of the diagram in Fig. 18.7 gives −d9/2τ .

Exercise 18.5 Evaluating Diagrams II
Show that evaluation of the diagram in Fig. 18.9 gives d2ψd

3
σκσ.

Exercise 18.6 Deriving an F -matrix
(Easy) Consider a theory containing three particle types, I,A,B where I is

the identity. Let the nontrivial fusion rules be given by

B ×B = I

A× A = I +A

A×B = A

Let us assume we have a theory with full isotopy invariance and full tetrahedral
symmetry. There is only one set of F matrices for these fusion rules. Find
these F -matrices and convince yourself that it satisfies the pentagon equation.

Exercise 18.7 Deriving an F -matrix
(Hard) Consider a theory containing three particle types, I, S, V where I is

the identity. Let the nontrivial fusion rules be given by

S × S = I
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S × V = V

V × V = I + S + V

Let us assume we have a theory with full isotopy invariance and full tetrahedral
symmetry. There is only one set of F matrices for these fusion rules. Find
these F -matrices. (Hint: applying the techniques of this chapter will give
the correct solution as well as a spurious solution which you can eliminate by
showing it does not satisfy the pentagon equation.) Show that the hexagon
equaution is solved with Rabc = 1 for all a, b, c.





Temperly-Lieb Algebra and
Jones-Kauffman Anyons 19

Medium Hard Material

Let us look back at the Kauffman bracket invariant that we introduced
in chapter 2. In the current chapter we want to make use of these rules
and determine some of the properties of the corresponding anyons in the
langauge we have been developing since chapter 8. Our strategy will be
to first consider a planar diagram algebra in detail before considering
braiding properties in section 19.5 below.
So we start by considering a planar version of the Kauffman bracket.

I.e., we only consider diagrams with with no over- and under-crossings.
Our diagrams are isotopically invariant in the plane and the only addi-
tional rule then is that the a loop is given a value d as shown in Fig. 19.1.
As compared to the diagrammatic algebra we have constructed over the
last few chapters (roughly starting in chapter 8, and continuing through
chapter 16), one things that was missing in the discussion of the Kauff-
man bracket invariant is the idea of multiple particle types and fusion
rules. In this chapter we will try to construct particle types, fusion rules,
and F -matrices given only the rule 19.1 as a starting point. The planar
algebra of loops that we will construct is known as the Temperly-Lieb al-
gebra. (When we reintroduce braiding to our theory the resulting theory
is called called Jones-Kauffman, or Temperley-Lieb-Jones-Kauffman.)

= d

Fig. 19.1 The loop rule for the
Kauffman bracket invariant and the
Temperly-Lieb algebra.

Let us start by thinking a bit about what kind of particle types we
already have in our theory. Certainly we have the simple string1 which

1It is admittedly confusing that 1 is not
identity, but this is the usual notation!
It is (not coincidentally!) similar to
spins where spin 0 is the identity (no
spin), and spin 1 is nontrivial.

we will call “1”; and we always have a vacuum particles, which we will
call “0”. Now we would like to ask whether we can fuse two of these
1-strings together to make another particle.
Several things are immediately obvious. First consider the fact that

two 1-particles can fuse to the vacuum, or in other words, a 1-string
can go up and then turn down, as shown in Fig. 19.2. This tells us
immediately that

1 = 1̄.

The fact that 1 is its own antiparticle is why we do not draw arrows
on the 1-string. For simplicity, if a string is not labeled we will assume
it is a 1-string. Given that loop of 1-string is assigned the value d, we
identify this d1 (which is often called the quantum dimension, although
we have been reserving the words “quantum dimension” for d1 = |d1|).

=
1 1 1 1

Fig. 19.2 Fusing two 1-particles to the
vacuum

We might also consider the possibility that two of these 1-particles
can fuse to something besides the vacuum, in a way similar to that
shown in Fig. 19.3. This is a good idea, but it isn’t yet quite right. If

1 1

?

Fig. 19.3 Attempting to Fuse two
1-particles to something different from
the vacuum
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the two strings fuse to some object besides the vacuum 0, we have to
make sure that this new object is appropriately “orthogonal” to 0. This
orthogonality must be in the sense of the locality, or no-transmutation
rule (see Fig. 8.7): a particle type must not be able to spontaneously turn
into another particle type (without fusing with some other particle or
splitting). In Fig. 19.3 it looks like the two strings brought together could
just fuse together to form the vacuum as in Fig. 19.2, and this would
then turn the collection of two strings into the vacuum. To prevent
such transmutation, we will work with operators known as Jones-Wenzl
projectors.

19.1 Jones-Wenzl Projectors

Fig. 19.4 A cup (left) and a cap
(right).

The general definition of a projector is an operator P such that P 2 = P .
This means that P has eigenvalues 0 and 1. Let us think of a string
diagram as an operator that takes as an input strings coming from the
bottom of the page, and gives as an output strings going towards the top
of the page (compare Fig. 12.2). Now consider a set of n-strings traveling
together in the same direction (in what is often called a cable). The
Jones-Wenzl projection operator Pn operates on a set of n such strings
— it takes n-strings in and gives n-strings out — and it is defined such
that attaching a cup or a cap to the bottom or top of the operator gives
a zero result (See Fig. 19.4). The n-particle Jones-Wenzl projector Pn
acting on a cable of n-strings should be interpreted as the nth particle
species.
The purpose of the Jones-Wenzl projector is to fix the problem we

discovered with Fig. 19.3. That is, if a cable of two strings forms a
nontrivial particle (the particle we will call 2), we should not be able to
put a cap on the top of these two strings and transmute the 2-particle to
the vacuum. I.e., adding a cap should make the entire diagram vanish,
and this is the property we are looking for in the 2-string Jones-Wenzl
projector.
Let us now try to construct the 2-string Jones-Wenzl projector P2

out of two incoming 1-particles2 (two elementary strings ). To do this2The Jones-Wenzl projector, if you
want to defines one, for a single string
is the trivial operator. I.e., one string
comes in and the same string comes out
unchanged.

we first construct a different projector P̄2 that forces the two incoming
particles to fuse to the vacuum3 as shown in Fig. 19.5.

3The estute reader will notice that
a particle “turning around” as in
Fig. 19.2 is not quite the same as pro-
jecting to the 0 particle, due to the pref-
actor 1/d. We will return to this issue
in section 19.3 below.

P̄2 =
1

d
= P̄2

Fig. 19.5 The projector of two strings to the vacuum P̄2. This figure should
be thought of as an operator that takes as an input two strings coming in from
the bottom, and gives as an output two strings going out the top. Sometimes the
operator is represented as a labeled box as shown on the right.

To establish that this P̄2 operator is a projector we need to check that
[P̄2]

2 = P̄2. To apply the P̄2 operator twice we connect the two strings
coming out the top of the first operator to two strings coming in the
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bottom of the second operator. As shown in Fig. 19.6, using the fact
that a loop gets value d we see that [P̄2]

2 = P̄2 meaning that P̄2 is indeed
a projector.

[P̄2]
2 =

1

d

1

d
=

1

d2
=

1

d
= P̄2

Fig. 19.6 Checking that [P̄2]2 = P̄2. In the second step we have used the fact that
a loop gets the value d.

The Jones-Wenzl projector P2 for two strings is the complement of
the operator P̄2 we just found, meaning P2 = I− P̄2 where I is the iden-
tity operator, or just two parallel strings. Diagrammatically we have
Fig. 19.7. Since the P̄2 operator projects the two strings onto the vac-
uum, the P2 operator projects the two strings to a different orthogonal
particle type which we call 2.

− 1

d
P2 = = P2

Fig. 19.7 The projector of two strings to the nontrivial particle made of two strings

P2 = I − P̄2. Sometimes this projector is drawn as a labeled box, as on the right.

We can algebraically check that P2 is indeed a projector

P 2
2 = (I − P̄2)(I − P̄2) = I − 2P̄2 + P̄ 2

2 = I − P̄2 = P2

and also we can check that P2 is orthogonal to P̄2, by

P̄2P2 = P̄2(I − P̄2) = P̄2 − P̄ 2
2 = 0

and similarly P2P̄2 = 0.
Often it is convenient to draw these projection operators as a labeled

box, as shown on the right of Figs. 19.5 and 19.7. Sometimes instead of
drawing two lines with a projector P̄2 or P2 inserted, we simply draw a
single line with a label, 0 or 2 respectively as in the right of Fig. 19.10
or the left of Fig. 19.8.
It is useful to calculate the value of the of the 2-string loop4. This is 4In many references d2 is called ∆2

(and similarly dn is called ∆n). We will
stick with d to fit with the notation in
the rest of this book.

shown in Fig. 19.8.

d2 = 2 = P2 = − 1
d = d2 − 1

Fig. 19.8 Evaluating the 2-string loop.
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Abelian Case

In the case where d = ±1 it is easy to prove (see Exercise 2.2 and ***)
that two horizontal strings equals d times two vertical strings as shown
in Fig. 19.9. In this case, notice that the projector P2 = 0 since the
two terms in the projector in Fig. 19.7 are equal with opposite signs.
Correspondingly note that for d = ±1 (and only for these values), the
value of the 2-string loop is d2 = 0 as shown in Fig. 19.8, meaning that
no such 2-particle exists. Thus the only possible outcome of fusion of
two 1-strings is the vacuum as shown in Fig. 19.2. Thus the entire fusion
rules of these theories are

1× 1 = 0

where again 0 is the identity or vacuum. These abelian fusion rules
result in abelian braiding statistics.

For d = ±1 :

=
1

d

Fig. 19.9 Two cases where the Kauff-
man bracket invariant rules become
very simple. If you have not convinced
yourself of these rules, try to do so! (See
exercise 2.2). Note that d = 1 occurs
for bosons or fermions and d = −1 oc-
curs for semions.

These two possible cases here obviously correspond to the d = ±1
loop gases that we studied in sections 18.1.1 and 18.1.2 above. When
braidings are considered we obtain bosons or fermions for d = 1 and
left or right handed semions (SU(2)1) for d = −1. Since this has been
discussed in depth in section 18.1 we do not elaborate further here.

Two Strands in the General Case

For values of d not equal to ±1, the projector P2 does not vanish. This
means that two 1-strands can fuse to either 0 or 2 as shown in Fig. 19.10.
We can write the fusion rule as

1× 1 = 0 + 2

We might ask whether it is possible to assemble a third type of particle
with two strands. It is obvious this is not possible since P̄2 + P2 = I,
which means these two particle types form a complete set (P̄2 projects
the two particles to the vacuum, and P2 projects to the 2-particle type).

P̄2 or P2 =

1 1

0 or 2

Fig. 19.10 Two possible fusions of two
1-strands, drawn in two different no-
tations. A single line labeled 2 is in-
terpreted as two 1-strands traveling to-
gether with a P2 operator inserted. The
label 0 means the two strands fuse to
the vacuum as in Fig. 19.2.

Three Strands in the General Case

We can move on and ask what kind of particles we can make if we are
allowed to fuse three strands together. We want to try to construct
a three leg projector. The most general three legged operator we can
construct is of the form in Fig. 19.11.

P3 = α + β +γ + δ + ǫ

Fig. 19.11 The form of the most general three legged operator we can construct.
Where α, β, γ, δ, ǫ are arbitrary constants.
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We would like to find the three-string operator which is a projector. So
we should enforce P 2

3 = P3. However, there are other things we want to
enforce as well. Since 0 is the identity, we want 0 × 1 = 1 which means
we should not be able to fuse P̄2 (the projector of two strings onto the
vacuum) with a single strand to get P3. Diagrammatically this means
we must insist on relations like Fig. 19.12.

1 0

3

= = 0
P3

P̄2

Fig. 19.12 Insisting that 0× 1 does not give 3

This and analogous constraints allow us to insist on the conditions
shown in Fig. 19.13.

P3 = P3 = P3 = P3 = 0

Fig. 19.13 Four conditions that come from the fusion condition shown in Fig. 19.12.

However, we should alllow fusions of the form 1 × 2 = 3 as shown in
Fig. 19.14. Enforcing the condition in Fig. 19.13, along with P 2

3 =
P3 gives the form of P3 shown in Fig. 19.11 with the results that (see
Exercise 19.1)

α = 1

β = γ = − d

d2 − 1

δ = ǫ =
1

d2 − 1

1 2

3

=
P3

P̄2

Fig. 19.14 We allow 1× 2 = 3

We can do a short calculation in the spirit of Fig. 19.8 to obtain the
value of a loop of 3-string4, giving the result (See exercise 19.1) shown
in Fig. 19.15.

d3 = 3 = d(d2 − 2)

Fig. 19.15 Evaluating the 3-string loop.

Ising Anyons

In the case where d = ±
√
2 (and only in these cases) the three string

loop has d3 = 0 meaning that there is no 3-string particle. Equivalently
it is possible to show that P3 vanishes when evaluated in any diagram
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(See exercise 19.1). It is similarly possible to show that P4 = 0 and so
forth. Thus, for the case of d = ±

√
2 there are only three particle types

0, 1, and 2. In addition to the fusions we have already determined, we
have 2×2 = 0 as shown in Fig. 19.16 and 2×1 = 1 as shown in Fig. 19.17.
(Note that showing 2 /∈ 2 × 2 requires another explicit calculation, not
shown here! See exercise 19.1)

2 2

0

=
P2 P2

Fig. 19.16 2× 2 = 0.

2 1

1

= P2

Fig. 19.17 2 × 1 = 1. We recog-
nize this as the fusion 1 × 1 = 2 from
Fig. 19.10 just turned on its side.

We thus have the full set of nontrivial fusion rules

1× 1 = 0 + 2

2× 2 = 0

1× 2 = 1

which we recognize as Ising fusion rules (see sections 8.2.2 and 18.3)
where 1 = σ and 2 = ψ and 0 is the vacuum I

For d = ±
√
2 :

P2

P
2

P
2

= 0

Fig. 19.18 For d = ±
√
2 we have 2×2

not fusing to 2.

Recall in our discussion of Ising anyons in sections 8.2.2 and 18.3.
There we found that dσ = ±

√
2 and dψ = 1. This indeed agrees with

the present discussion: We obtain Ising fusion rules for d1 = dσ = ±
√
2

and evaluating using Fig. 19.8, we also have dψ = d2 = 1. Thus our
string algebra recovers details of the Ising fusion algebra.

19.2 General Values of d

The generalization of the above discussions for d = ±1 and d = ±
√
2 is

fairly straightforward. One can generally show the following properties
(See Kauffman and Lins [1994] and exercise 19.2). First, the Jones-
Wenzl projector for n+ 1 strands can always be written in terms of the
projector for n strands as shown in Fig. 19.19 (See exercise 19.2)

......

......
Pn+1 =

.....

.....
Pn − dn−1

dn

....
Pn

....
Pn

Fig. 19.19 Recursion Relation For Jones-Wenzl Projectors

Note in particular that if Pn vanishes, we can conclude that Pm van-
ishes for allm > n as well. We define dn of particle type n by connecting
n strings coming from the bottom of projector Pn to those coming from
the top as shown in Fig. 19.20.
Using the recursion shown in Fig. 19.19 and the definition of dn in

Fig. 19.20 we obtain the recursion relation (you can do this in your
head!)

dn+1 = d dn − dn−1 (19.1)

where we define d−1 ≡ 0 and d0 = 1 and hence d1 = d. This recursion
has the general solution

dn = Un(d/2) (19.2)
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dn = n =

...

...

....

....
Pn.....

Fig. 19.20 Evaluating the quantum dimension of the n-string particle. We connect
the n strings coming from the top of the projector Pn to those coming from the
bottom. Often this quantity is notated as ∆n.

where Un is the nth Chebyshev polynomial of the second kind. These
are defined by (See exercise 19.2)

Un(cos θ) sin θ = sin[(n+ 1)θ] (19.3)

A theory has a finite number of particle types if dn = 0 for some n (Such
that Pn vanishes for all p ≥ n). This situation occurs precisely when
(See exercise 19.2)

d = 2 cos

(
kπ

n+ 1

)
(19.4)

for5 some k ∈ 1, . . . , n. For values of d that are not of this form, one 5For odd n the k = (n+1)/2 case corre-
sponds to the unphysical case of d = 0.can construct an infinite number of orthogonal particle types (n-strand

projectors with different values of n), which indicates a badly behaved
theory. (I.e., the algebra never “closes”).
Once one constructs the appropriate n-strand projectors, the general

vertex between three different particle types can be constructed analo-
gous to that shown in Fig. 19.21. Consider a vertex between particle
types (a, b, c) as in with a, b, c,≥ 0 as in Fig. 19.22. The number of
strings going between the projectors (as in the fight of Fig. 19.21) is
given by

m = (a+ b− c)/2 = strings between a and b (19.5)

n = (a+ c− b)/2 = strings between a and c (19.6)

p = (b+ c− a)/2 = strings between b and c (19.7)

these quantities must be non-negative, and we must have all of these

4 5

3

=
P3

P 5

P
4

Fig. 19.21 The general vertex in the Temperly-Lieb algebra. Here the vertex is
shown for 4 and 5 fusing to 3.
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quantities integer, which is assured if

(a+ b+ c) is even (19.8)

Note that a, b or c are allowed to have the value 0, meaning no strings
come out that edge. These variables are also allowed to have the value 1
meaning a single string comes out the edge (and no projector is needed,
see note 2.)

a b

c

Fig. 19.22 A general vertex between
particle types (a, b, c) with a, b, c ≥ 0

One can show that a vertex between particle types (a, b, c) can be
nonzero only if further if the projector

P(a+b+c)/2 is nonzero (19.9)

This final conditon is nontrivial and we will not prove it in all generality
here (See for example, Kauffman and Lins [1994], for a proof). However,
Fig. 19.18 is an example of this condition: When d = ±

√
2, we’ve shown

that P3 vanishes and this implies the vertex (2, 2, 2) must also vanish.
The conditions we have just described for a vertex (m,n, p non-negative

integers and P(a+b+c)/2 nonzero) gives us the fusion relations for the the-
ory which are given by

a× b = |a− b|, |a− b|+ 2, . . . , min(a+ b, 2k − a− b)

where k is the largest integer such that Pk is non-zero.6

6This is entirely equivalent to the gen-
eral SU(2)k Chern-Simons fusion rules
where particles j take integer and half-
integer values and

j1 × j2 = |j1 − j2|, |j1 − j2|+ 1, . . . ,

min(j1 + j2, k − j1 − j2) (19.10)

where we have made the identifica-
tion that a in the Temperly-Lieb-Jones-
Kauffman theory is 2j. Note further
that in the case where k is infinitely
large (so that the final term in the se-
ries on the right of Eq. 19.10 is always
j1+j2), these fusion rules match the an-
gular momentum addition rules of reg-
ular SU(2).

With this definition of a vertex we can evaluate any planar diagram.
A particularly useful diagram is the version of the Theta diagram shown
in Fig. 19.23. The value of this diagram can be derived generally and is
given by

∆(a, b, c) = (d(a+b+c)/2)!
(dn−1)! (dm−1)! (dp−1)!

(da−1)! (db−1)!(dc−1)!
(19.11)

where we have defined

(dn)! ≡ dndn−1dn−2 . . . d2d1

with d1 = d and d0 = d−1 = 1. From Eq. 19.11 we see that ∆(a, b, c)
is symmetric in exchanging any of its arguments. Further we see that
the quantity vanishes when d(a+b+c)/2 vanishes which agrees with the
condition Eq. 19.9.

∆(a, b, c) =

a

b

c

Fig. 19.23 The Theta diagram in the
Temperly-Lieb-Jones-Kauffman theory.

While the most general derivation of Eq. 19.11 is somewhat compli-
cated (See Kauffman and Lins [1994]), it is easy enough to confirm it is
correct for a few examples (See exercise 19.3)
The value, Eq. 19.11, of the Theta diagram does not match what

we would have expected given the rules in chapter 16. Comparing to
Fig. 16.13 we would have expected the Theta diagram in Fig. 19.23 to
have a value

√
dadbdc which in general it does not here. We will now fix

this problem.
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19.3 Unitarization

The diagrammatic algebra we have constructed so far in this chapter
is a perfectly self-consistent algebra (See Kauffman and Lins [1994] for
a large amount of detail of this algebra). However , this algebra does
not fit the rules we have establshed in prior chapters. In section 19.2
we just found that the value of the Theta diagram does not match the
expectation from chapter 16. If we tried to work out further details of
the diagrammatic algebra, we would find other failures as well — for
example, we would find the F -matrices to be non-unitary! Fortunately,
it is not hard to modify the theory a small amount so that it fits within
our existing framework from chapter 16.

a b

c
= v(a, b, c)

a b

c

Fig. 19.24 A renormalized vertex between particle types (a, b, c) with a, b, c ≥ 0
marked with a blue dot on the left is defined in terms of the original vertex on the
right. We assume here that the vertex on the right, defined analogous to Fig. 19.21
is nonzero.

Θ(a, b, c) =

a

b

c

Fig. 19.25 The Theta diagram with
renormalized vertices.

Let us define a new vertex which is a constant multiple of the old
vertex as shown in Fig. 19.24. We define the rescaling factor as

v(a, b, c) =

√√
dadbdc

∆(a, b, c)

such that the value of the Theta diagram in Fig. 19.25 is now Θ(a, b, c) =√
dadbdc as we expect from Fig. 16.13. It turns out that this simple mod-

ification is sufficient to make the theory fit into the framework developed
in chapter 16.

19.4 F-matrices

We can now determine the F -matrices directly from the graphical al-
gebra. As a simple example, consider the F -matrices F 11α

11β (which we
abbreviate as Fαβ ) as shown in Fig. 19.26. Note that for this equation
we use renormalized vertices as defined in Eq. 19.24 and notated by dots
on the vertices.
This F -matrix equation is that of Fig. 16.3 for four incoming 1-string

particles. The F matrix is nontrivial since there is more than one fusion
channel when we fuse the 1’s together: 1× 1 = 0+ 2, so long as d 6= ±1
(in which case the 2-string particle vanishes). We can now rewrite the F -
matrix equation in terms of string diagrams as in Fig. 19.27. Note that in
Fig. 19.27, the prefactors of d/

√
d2 come from the vertex renormalization

factors v(1, 1, 2)2, and the quantities in brackets are P2 projectors which
force the two strings to fuse to the 2-particle.
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1

1

1

1
0

= F 0
0

1

1

1

1

0 + F 0
2

1

1

1

1

2

1

1

1

1
2

= F 2
0

1

1

1

1

0 + F 2
2

1

1

1

1

2

Fig. 19.26 The F -matrix in the Temperly-Lieb-Jones-Kauffman theory is unitary

when use renormalized vertices, indicated by dots. Here we have abbreviated F 11α
11β

as Fαβ for brevity.

= F 0
0 + d√

d2
F 0
2

[ ]
− 1
d

d√
d2

[ ]
− 1
d = F 0

2 + d√
d2
F 2
2

[ ]
− 1
d

Fig. 19.27 Explicitly writing out the F -matrix equations of Fig. 19.26. The pref-
actors terms in brackets are P2 projectors. The prefactors d2 is from the ver-
tex renormalization factors v(1, 1, 2)2 = d2/d2. (The other renormalization factor
v(1, 1, 0) = 1).

We then match up terms on the right and left of the graphical equa-
tions in Fig. 19.27. In the first line we see that the diagram on the left
is topologically like the first term in the brackets on the right, so we
have F 0

2 =
√
d2/d. Similarly the first term on the right is topologically

the same as the second term in the brackets, so F 0
0 = 1/d. Then in the

second line the second term in brackets on the left is topologically the
same as the first term in brackets on the right, so we have F 2

2 = −1/d.
Then among the remaining terms, the first term in brackets on the left,
the first term on the right, and the second term in brackets on the right,
are all topologically the same, so we have d/

√
d2 = F 0

2 − (1/
√
d2)F

2
2 or

F 0
2 = (1/d)(d2 − 1)/

√
d2. Finally using d2 = (d2 − 1) (See Fig. 19.8) we

obtain the full form of the F -matrix (and returning the 11 superscripts
and subscripts which we have suppressed)

[F 11
11 ] =




1
d

√
d2−1
d√

d2−1
d − 1

d


 (19.12)

Note that this matrix is properly unitary for any value of d. For d = ±
√
2

the matrix matches our expectation for the Ising fusion rules given in
Eq. 18.29.
With similar diagrammatic calculations, we can work out the F -
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matrices for any incoming and outgoing n-string particles. Detailed
calculations are given in Kauffman and Lins [1994]. However, note that
the results given there are nonunitary expressions due to the use of un-
rernormalized vertices.

19.5 Twisting and Braiding

So far we have not yet used the braiding rules of the Kauffman bracket
invariant, we have only used the loop rule and we have only considered
planar diagrams. We finally can reintroduce the braiding rules for the
Kauffman invariant for evaluating crossings as in Fig. 2.3 and thus we
are now considering a full anyon theory. As shown in Fig. 2.6, comparing
to Fig. 15.3 we see that the twist factor of the single strand is

θ∗1 = −A−3.

It is a reasonably straightforward exercise to use these crossing rules to
evaluate the twist factors for other particles in the theory (See exercise
19.5), as well as the R-matrices. Just to do a simple example, let us
evaluate R2

11 as shown in Fig. 19.28.

= A−1
1 1

2
+A

P2
= A−1

P2

=
P2

=
1 1

2

R11
2

1 1

2

Fig. 19.28 Evaluation of R11
2 = A−1 using the Kauffman bracket invariant. In

going from the first line to the second we invoke the bracket rules Fig. 2.3. The last
step invokes the fact that P2 is a projector orthogonal to the turn-around thus killing
the term with coefficient A.

We have already seen that in order to have a well-behaved theory with
a finite number of particle types, d must take some very special values
(Eq. 19.4). Also recall from Fig. 2.3 that d is related to A via

d = −A2 −A−2

This means that we must have (with k = 1, . . . , n)5

−A2 = exp (±iπk/(n+ 1))
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or

A = exp

(
1
± 2πi

[
1

4

2
± k

4(n+ 1)

])
(19.13)

where we have labeled the two different ± with two different superscripts
to keep track of them. Note that the first ± (with the superscript 1),
just changes the overall chirality of the theory.
Let us take, for example, the n = 3 case, meaning P3 vanishes and

we have Ising fusion rules as discussed in section 19.1. There are two
possible5 values of k given by k = 1 corresponding to d =

√
2 and k = 3

corresponding to d = −
√
2. Each of these has four possible choices of

the signs in Eq. 19.13, thus resulting in eight possible anyon theories.
This matches the eight theories with Ising fusion rules that we found in
section 18.3 above.
Just for completeness, let us determine the twist factors for the σ

particle for each of these anyon theories. We have

θ∗a = −A3 = exp

(
1
± 2πi

[
−1

4

2
± k

16

])

with k = 1 or 3. This gives all the possible odd-sixteenth roots of unity
as in Eq. 18.41.

Further Reading

• Louis Kauffman, Knots and Physics, World Scientific, (2001), 3ed.
Kauffman [2001]

• L. H. Kauffman and S. L. Lins, Temperley-Lieb Recoupling Theory

and Invariants of 3-Manifolds, Annals of Mathematics Studies, no
134, Princeton University Press (1994).
Kauffman and Lins [1994]

• Wang book for unitarization Wang [2010]

• some of the ideas date back to Penrose [1971]

Exercises

Exercise 19.1 Jones-Wenzl projectors P0, P2, and P3

For two strands one can construct two Jones-Wenzl projectors P0 and P2

as shown in Fig. 19.5 and 19.7.
(a) Show that these projectors satisfy P 2 = P , so their eigenvalues are 0

and 1. Further show that the two projectors are orthogonal P0P2 = P2P0 = 0.
(should be easy, we did this in lecture)

(b) Show that for d = ±1 we have P2 = 0 in the evaluation of any diagram.
The result means that in these models there is no new particle which can
be described as the fusion of two elementary anyons. Why should this be
obvious? Hint: Look back at the exercise 2.2.

(c) The three strand Jones-Wenzl projector must be of the form shown in
the figure 19.11.
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The coefficients α, β, γ, δ, ǫ are defined by the projector condition P 2
3 = P3

and also by the condition that P3 is orthogonal to P0 which is shown in the
Figs. 19.12 and 19.13.

Calculate the coefficients α, β, γ, δ in P3. Calculate the quantum dimension
d3 shown in Fig. 19.15.

(d) Choosing d = ±
√
2 show that P3 = 0 in the evaluation of any diagram.

We can then conclude that in this model there is no new particle that is the
fusion of three elementary strands. Hint: Try putting P3 within a some simple
diagrams and calculate the results.

(e) For the case of d = ±
√
2 show that, when evaluated in any diagram,

2× 2 /∈ 2. In other words, prove Fig. 19.18.

Exercise 19.2 More General Jones-Wenzl Projectors
(a) A Jones-Wenzl projector for n strands is defined both by P 2

n = Pn+1

as well as by being orthogonal to P0 analogous to Fig. 19.13. Assuming these
properties are satisfied for Pn show that they are satisfied for Pn+1 given by
Fig. 19.19. Hint: Use the fact that connecting up a single string from Pn+1

from top to bottom as in Fig. 19.29 must give something proportional to Pn
(Why?).

......

......
Pn+1

Fig. 19.29 This figure, with n strands
going in the bottom, and n strands
coming out the top, must be propor-
tional to Pn.

(b) Using Fig. 19.19 derive Eq. 19.1. Show that the solution to this equation
is given by Eqs. 19.2 and 19.3. Confirm the condition for dn to vanish given
in Eq. 19.4.

Exercise 19.3 Theta Diagram
(a) Show ∆(a+ 1, a, 1) = da+1. Hint: Use Fig. 19.29.
(b) More generally show ∆(a+ k, a, k) = da+1. Hint: Generalize Fig. 19.29

to the case where k strands are connected in a loop from the top to the bottom.

Exercise 19.4 F -matrix diagrammatics
Using the diagrammatic algebra, determine F 21α

12β and F 21α
21β for arbitrary d.

Confirm that your results are unitary matrices.

Exercise 19.5 Twists of Kauffman Anyons
Use the Kauffman bracket rules to calculate θa for the Pa kauffman anyon.

Show that
θ∗a = (−1)aA−a(a+2)

Hint: Try a = 2 then a = 3 to figure out the pattern.





Anyons from Groups 20
Medium Hard Material

In this chapter we will use the structure of discrete groups to build rules
for anyon theories1. There are two general approaches we will consider. 1In chapter *** (also section ***)

we discuss another construction of an
anyon theory from a discrete group,
known as the quantum double con-
struction. We defer discussion of that
construction for now.

In section 20.1 we will label our diagrams with group elements whereas
in section 20.2 we will label diagrams with group representations. As we
have done previously we will in each case consider planar diagrammatic
algebras first before considering braiding.

20.1 Fusion as Group Multiplication

One way to construct a wide variety of consistent planar diagrammatic
algebras is to construct our fusion rule based on the structure of a group.
In this approach we consider a discrete group G, and each element g ∈ G
is a particle type with the identity element I of the group being the
vacuum.
Fusion rules follows the rules for group multiplication. That is, for

g, h ∈ G
g × h = gh

which we draw as shown in Fig. 20.1.

g h

gh

=

g h

h−1g−1

Fig. 20.1 Fusion is defined by group
multiplication. On the right we show
the three particles orientied as all leav-
ing the vertex. With this orientation
when the three particles are multiplied
together in clockwise order, they should
fuse to the identity gh(h−1g−1) =
h(h−1g−1)g = (h−1g−1)gh = I.)

Since gg−1 = g−1g = I, antiparticles are given by the inverse elements
in the group, or ḡ = g−1. This means that in a diagram we may reverse
an arrow if we invert the group element as shown in Fig. 20.2.
Let us consider diagrams where each line is labeled by a group element

g ∈ G. Reversal of a line corresponds to inversion of the group element
as shown in Fig. 20.2 analogous to reversing an arrow in order to turn a
particle into its antiparticle.

g g−1

=

Fig. 20.2 Reversing an arrow inverts
the group element.

In cases where the group is abelian so that g × h = gh = hg = h× g
which is what we required for fusion of particle types in section 8.1 above.
In section 20.1.3 we will consider the possibility of using nonabelian
groups, but for now we will assume the group is abelian. We thus have
fusion rules given by group multiplication

Na
g,h = δa,gh = δa,hg

Since the result of any fusion is always uniquely defined by group mul-
tiplication (one never has a sum on the right hand side, such as g× h =
a+ b), the quantum dimension of every particle is dg = 1 meaning the
Hilbert space size does not grow with the number of particles.
An example of a planar diagram with this type of group multiplication

is shown in Fig. 20.3.
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b

a
ab

c

cab
d

dcab
dca

ca

Fig. 20.3 A planar diagram with fusion being defined as group multiplication. For
each vertex, if all arrows are pointed out of the vertex, then going around the vertex
clockwise, the group elements multiply to the identity, as shown in Fig. 20.1.

20.1.1 Group Cohomology

We now have the task of trying to construct consistent F -matrices for
our planar diagram algebra. This is an extremely well studied problem
in the field of group cohomology.2

2Group cohomology is a very general
framework which we will not delve into
more than is necessary. However, it
is worth knowing that it enters promi-
nently in a number of topological theo-
ries.

Consider a general group G. A so-called 3-cocyle of the group is given
by a function of three variables ω(a, b, c) where a, b, c ∈ G that satisfies

ω(a, b, c)ω(a, bc, d)ω(b, c, d) = ω(ab, c, d)ω(a, b, cd) (20.1)

Generally we will consider cases of ω being a U(1) valued complex phase.
In group cohomology notation we say that

ω ∈ H3(G,U(1)) (20.2)

Eq. 20.1 may look obscure, but it is actually just a translation of the
pentagon equation! Let us make the identification, in the notation of
chapter 9,

[F a,b,c(abc)](ab),(bc) = ω(a, b, c)

So that we have diagrammatically

a b c

ab

abc

= ω(a, b, c)

a b c

bc

abc

Fig. 20.4 The 3-cocycle is precisely an F -matrix. Compare to Fig. 9.1.

Examining the pentagon equation Eq. 9.7 and Fig. 9.7 we see that
this is precisely the same as Eq. 20.1 in a different language. Note that
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there is no sum over indices here (like the sum over possible elements
h in Eq. 9.7) since the fusion of any two group elements always gives a
unique group element as an outcome.

ab

a b

→ u(a, b)

ab

a b

Fig. 20.5 We have the freedom to
make a gauge transform of a vertex by
multiplying by a phase u(a, b).

As with F -matrices, it is possible to choose different gauges (See sec-
tion 9.4). In particular given a 3-cocycle (ie., a solution of the pentagon
equation) we can multiply each a, b vertex by a phase u(a, b) as shown
in Fig. 20.5 to transform the cocycle by

ω(a, b, c) → u(a, bc)u(b, c)

u(a, b)u(ab, c)
ω(a, b, c). (20.3)

By making such a gauge transform we generate additional solutions of
the pentagon equation. We view different solutions which are gauge
transforms of each other as being physically equivalent, We will typically
work with just one representative 3-cocycle for each equivalence class by
choosing a convenient gauge. It is useful to always work with a so-called
normalized gauge, where ω(a, b, c) = 1 whenever a = I or b = I or c = I.
(I.e, fusing with the vacuum gives no phase). Further we want to only
consider gauge transforms that maintain this normalized gauge, so we
must insist on u(I, g) = u(g, I) = u(I, I) = 1. Given this restriction
to normalized gauge, however, one still has a large additional gauge
freedom.
The 3-cocycle (pentagon) equation Eq. 20.1 typically will have more

than one gauge-inequivalent solution. Further, if we have two different
3-cocycles ω and ω′, we may multiply these together to generate another
solution ωω′ and we may invert ω to generate another solution. Thus,
the space of 3-cocycles H3(G,U(1)) in Eq. 20.2 is itself a group, known
as the third cohomology group of G with coefficients in U(1).
A trivial 3-cocycle ω(a, b, c) = 1 for all a, b, c ∈ G is always possible. In

this case all diagrams have value 1. However, for any group (beyond the
trivial group with only one element), there are always other possible 3-
cocycles as well. Such 3-cocycles and group cohomology in general have
been studied extensively in the mathematics and physics communities
and it is possible to simply look up the form of the possible 3-cocyles.
(See the end of the chapter for good references).
While all 3-cocycles provide a solution to the pentagon equation, they

do not always allow for full isotopy invariance as discussed in chapter 16.
Indeed, for any 3-cocycle ω, we will need to check whether it satisfies all
the requirements for full isotopy invariance. For example, if we want to
be able to freely turn up and down legs of a vertex as shown in Fig. 20.6.
Thus for full isotopy invariance (and allowing for d both +1 and −1)

we need to have

s(a, b)ω(a, a−1, b) = 1 (20.4)

s(a, b)ω(a, b−1, b) = 1 (20.5)
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for all a, b in the group with

s(a, b) =

{
−1 da = db = −1
+1 otherwise

(20.6)

While this condition seems quite restrictive, the gauge freedom Eq. 20.3
allows us often to achieve this.

b

a

a-1

a-1b

= s(a, b)ω(a, a-1, b)

b

a-1ba

a

ab-1

b-1
b

= s(a, b)ω(a, b-1, b)−1

a

bab-1

Fig. 20.6 Turning up and down relations (analogous to Fig. 14.10). The prefactor

s comes from the proper interpretation of the sign of the
√
d factors in 14.10. See

section 14.2.1.

A further item to note is that the Frobenius-Schur indicator for a
particle is

da = ω(a, a−1, a)

and if a is self-dual (a = a−1) this is the gauge invariant Frobenius-
Schur indicator. If we can do so, we will try to choose a gauge for our
3-cocyles such that we have full isotopy invariance (this is not always
possible) by choosing negative da but keeping ǫa positive as discussed in
section 14.2.1.

20.1.2 Simple Examples with G = ZN

For example, let us take a simple case of the group G = ZN , the group
of integers modulo N with the group operation being addition modulo
N . Since this group is abelian, we have g × h = h × g as we want for
fusion of particle types as described in chapter 8.
The inequivalent 3-cocyles of the group ZN can be written as (See

references at the end of the chapter)

ω(a, b, c) = exp

(
2πip

N2
a(b+ c− [b+ c]N )

)
(20.7)

where here a, b, c ∈ 0, . . . , N − 1, and the brackets [b + c]N means b + c
modulo N where the result is chosen to lie in the range 0, . . . , N − 1.
Here the index p is an integer in the range 0, . . . , N − 1 describing the
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N different gauge-inequivalent 3-cocyles.
The trivial 3-cocyle is given by p = 0 which gives ω = 1 always. The

nontrivial 3-cocycles are more interesting.

Z2

Lets consider the simple case of Z2 fusion rules. Here the group elements
are g = 0, 1 and the group operation is addition modulo 2. One has the
trivial 3-cocycle p = 0 in Eq. 20.7, giving ω = 1, or all F matrix elements
equal to 1, which we identify as being exactly the same as the d = 1
loop gas from section 18.1.1.
The only nontrvial 3-cocycle is the p = 1 case. Here, using Eq. 20.7

we determine the 3-cocycle is of the form

ω(a, b, c) =

{
−1 a = b = c = 1
+1 otherwise

(20.8)

We recognize this as being exactly the case of the d = −1 loop gas
from section 18.1.2 (This translates to saying that the F -matrix is −1 if
and only if all four incoming legs a, b, c and abc are in the 1 state as in
Eq. 18.10, and note that abc here means multiplication with the group
operation so is really (a+ b+ c)mod 2.).

Z3 and beyond

Generalizing the Z2 fusion to Z3, we now have g = 0, 1, 2 with the
group operation being addition modulo three. In this case we have
three different 3-cocycles, the trivial 3-cocycle (p = 0 in Eq. 20.7) and
two nontrivial 3-cocycles (p = 1 and p = 2 in Eq. 20.7).
While these nontrivial cocycles provide a valid solution to the pen-

tagon equation 20.1 (or Eq. 9.7) they are not in a form where they enjoy
full isotopy invariance. One can use gauge transforms Eq. 20.3 to try
to put the cocyles in different forms, but it is not possible to find a
gauge where both Eq. 20.4 and Eq. 20.5 are satisfied at the same time3.

3To see that it is not possible to achieve
full isotopy invariance note that from
Eq. 20.4 and 20.5, isotopy invariance re-
quires ω(1, 1, 2) = ±1 and ω(1, 2, 2) =
±1. However, for N = 3, the prod-
uct ω(1, 1, 2)ω(1, 2, 2) is gauge invari-
ant, and it is only ±1 for the case of
p = 0. See exercise 20.2.Nonetheless they still provide a consistent planar diagrammatic algebra,

although not a fully isotopy invariant one. Thus the only isotopy in-
variant case is the trivial cocycle p = 0. We will discuss the possible
braidings that are consistent with this planar algebra when we discuss
the trivial cocycle below.
One can further show that ZN for any odd N is similar to the case of

Z3: the only fully isotopy invariant case is the trivial cocycle p = 0. See
exercise 20.2. And this theory has N solutions of the hexagon equaation.
These are given in detail in appendix 20.4.
For ZN with N even, the situation is slightly more interesting. Here,

there are two possible values of p which can give an isotopy invariant
solution: p = 0 (the trivial cocycle similar to what we found in the N
odd case) and p = N/2, which is analogous to the nontrivial cocycle we
found for the Z2 case. (See exercise 20.2). For each of these values of
p there are N solutions of the hexagon equation. All of these cases are
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discussed in detail in appendix 20.4. Again, for other values of p we
have a perfectly consistent planar diagrammatic algebra, although not
a fully isotopy invariant one (no matter what gauge we choose).

Other abelian groups

Abelian groups are always of the form ZN1
×ZN2

×. . . with some number
of factors of cyclic groups ZN . We can look up the cocycles for such
groups in, for example, de Wild Propitius [1995] or Hu et al. [2013] or a
book on group cohomology! Note that the variety of different possible
cocycles grows when there are multiple ZN factors. We will not pursue
these theories further here4.4It looks like a fun exercise to explore

this!

20.1.3 Using Nonabelian Groups?

In the case where the group is nonabelian we deviate from what was
done when we discussed fusion of particle types in section 8.1 above.
In the discussion of fusion of particle types, we have always assumed
g× h = h× g and with a nonabelian5 group gh may not be the same as

5We have a bit of a language difficulty
here. Here we use the word nonabelian

to mean when g×h 6= h×g whereas pre-
viously (See section 8.2) we used non-
abelian to describe fusion rules where
there is more than one fusion channel,
such as g × h = a+ b+ . . ..

hg.
Why did we insist in chapter 8 that particle fusion should satisfy

g × h = h × g? If we think about particles living in three dimensions,
when we bring two particles, g and h together, looking at the system
from one angle it looks like g is to the right of h but looking at the two
particles from another angle, it looks like h is to the right of g. Thus
there is no way to decide whether the pair fuses to gh or hg.
However, if we are only concerned with a planar diagram algebra (or

a diagram algebra on the surface of sphere) then there is no ambiguity!
The surface we are considering is assumed to be oriented so we can
always unambiguously decide which particle is clockwise of which other
particle at a vertex. Thus we can make the general rule that for a
vertex to be an allowed fusion, the three particles leaving the vertex
must multiply in clockwise order to the identity as shown in the right of
Fig. 20.1. Thus, at least for planar diagrams we can generalize our rules
for particle fusion to allow non-commutative fusions.
All of the figures we have drawn in this section (Fig. 20.1 – Fig. 20.6)

have been drawn so as to be consistent with our rule for nonabelian
groups — that is, if all of the arrows are outgoing, when you multiply
the group elements clockwise around the vertex you obtain the identity.
For definiteness we discuss the example of the nonabelian group S3 in

the appendix section 20.5.

20.2 Fusion of Group Representations: Rep(G)

Another way to construct a consistent planar diagrammatic algebra is
to work with representations of discrete groups6. Suppose we have ir-

6To remind the reader, each discrete
group has a finite number of irreducible
representations, and any representation
of the group can be decomposed into
a direct sum of irreducible representa-
tions. See section 33.2.4.

reducable representations Ri of a group G. A tensor product of two of
these irreducible representations will necessarily decompose into a direct
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sum of irreducible representations. I.e., we have7 7If we write M ⊗ N = P we mean
the following. If Mab is a matrix
of dimension m and Ncd is a matrix
of dimension n then P is defined as
P(ac),(bd) = MabNcd and is of dimen-
sion nm. If we write P = N ⊕ M
we mean that P is block diagonal with
blocks N and M . Finally note that the
relation in Eq. 20.9 is an isomorphism
not an equality. One can choose a basis
such that the right hand side is block
diagonal, however, this is not the natu-
ral basis for the left.

Ra ⊗Rb ≃ Rc ⊕Rd ⊕ . . . (20.9)

with the sum on the right hand side being finite. We thus propose to
label a particle type for our diagrammatic algebra with an irreducible
group representation, and have the fusion relations be given by these
tensor product decompositions. Thus we interpret the tensor produt
equation Eq. 20.9 as a particle fusion relation

a× b = c+ d+ . . .

and accordingly a particle a’s corresponding to representation Ra has
antiparticle ā corresponding to the dual representation which we write
as Rā = R∗

a. This fusion category (this set of fusion rules with the
associated F -matrices) using the representations of the groupG is known
as Rep(G).
It is fairly easy using some tricks of group theory to determine the

fusion rules for discrete group representations. Recall that a represen-
tation R is a homomorphism8 from each group element g to a matrix

8Meaning a mapping where the
group operation is preserved:
ρR(g1)ρR(g2) = ρR(g1g2).

ρRmn(g) (See section 33.2.4). The trace of the representation matrix is
known as its character

χR(g) = Tr[ρR(g)]

One can either work out the characters of a group explicitly or (much
more commonly) just look them up on character tables, which can be
found in any group theory book or on the web.
Since Tr(ab) = Tr(ba) we have χR(g) = χR(hgh−1) meaning that the

character depends only on the so-called conjugacy class of the group
element g.
Characters combine in fairly simple ways under both direct product

and direct sum

χRa⊕Rb(g) = χRa(g) + χRb(g) (20.10)

χRa⊗Rn(g) = χRa(g)χRb(g) (20.11)

Further we have orthonormality relations for irreducible representations:9

9This orthonormality is derived triv-
ially from the grand orthogonality theo-
rem, Eq. 33.3. Since the character χ(g)
is a function of the conjugacy class of g
only it is sometimes more convenient to
replace the sum over all elements with
a sum over classes where we then also
include a factor of the number of ele-
ments in the class. So the left hand
side would read instead

∑

classesC

|C|
|G| [χ

Ra(g ∈ C)]∗ χRb(g ∈ C)

with |C| meaning the number of ele-
ments in class C.

1

|G|
∑

g∈G
[χRa(g)]∗ χRb(g) = δRa,Rb (20.12)

where the sum is over all elements g of the group G and |G| is the total
number of elements in the group. We can thus deduce the tensor product
decomposition10,11

10The
⊕

symbol here means a direct
sum of all the arguments. The prefactor
Nc
ab here means the Rc representation

occurs Nc
ab times in the direct sum.

11We have Ra ⊗ Rb ≃ Rb ⊗ Ra mean-
ing the two tensor products are isomor-
phic, but they are not equal. The two
matrices have their entries in different
places. See the definition in note 7 of
this chapter above.Ra ⊗Rb ≃

⊕

c∈ irreps

N c
abRc (20.13)
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identity rotations reflections
1 element 2 elements 3 elements

trivial rep (I) 1 1 1
sign rep (S) 1 1 -1
2d rep (V ) 2 -1 0

Table 20.1 Character table for the group S3. Notice the orthogonality of rows as
defined by Eq. 20.12.

where

N c
ab =

1

|G|
∑

g∈G
[χRc(g)]∗ χRa(g)χRb(g) (20.14)

or in our fusion product language

a× b = b× a =
∑

c

N c
ab c

Note that in the case where the group is abelian, the representations
themselves are also an abelian group (meaning N c

ab = N c
ba ∈ {0, 1}

only.)
It is not hard to show (See exercise **) that the quantum dimension

of a representation Ra is given by

da = χRa(e) (20.15)

where e is the identity element of the group.

Example: Representations of S3

As a simple example, let us consider the representations of the group S3

which can also be thought of as the symmetries of a triangle. To remind
the reader12 this group has 6 elements which can be written in terms of12The group S3 is also sometimes

known as the dihedral group with 6 ele-
ments, often denoted D3 or sometimes
D6. See section 33.2 for a few more de-
tails of this group.

two generators X (a reflection) and R (a rotation) with multiplcation
rulesX2 = R3 = e and XR = R−1X with e the identity. The 6 elements
can be written as e,R,R−1, X,XR,XR−1. There are three conjugacy
classes, which we will call the identity (e), the rotations (R, R−1) , and
the reflections (X , XR, XR−1).
There are also three irreducible representations13. The group has a13The number of irreducible reps is al-

ways equal to the number of conjugacy
classes.

character table as given in table 20.1. It is then easy to use Eq. 20.14
to determine the fusion laws for the representations, which are given by

I × I = I, I × S = S, I × V = V (20.16)

S × S = I, S × V = V (20.17)

V × V = I + S + V (20.18)

from which we see that I plays the role of the vacuum particle. Just as
an example, let us consider Eq. 20.18. From the character table we have
χV = (2,−1, 0) and so χV⊗V = χV χV = (4, 1, 0) = (1, 1, 1)+(1, 1,−1)+



20.2 Fusion of Group Representations: Rep(G) 249

class 1 -1 {±iσx} {±iσy} {±iσz}
elements 1 1 2 2 2

I 1 1 1 1 1
Rx 1 1 1 -1 -1
Ry 1 1 -1 1 -1
Rz 1 1 -1 -1 1
S 2 -2 0 0 0

Table 20.2 Character table for the group Q8. Notice the orthogonality of rows as
defined by Eq. 20.12.

(2,−1, 0) = χI + χS + χV .

Example: Quaternion Group Q8

The quaternion group14 can be defined as the eight two-by-two matri-

14The quaternions were famously dis-
overed by Hamilton. He was so ex-
cited by this discovery that he carved
them into the stone of Brougham
(Broom) Bridge in Dublin. There is
a plaque there today to commemorate
this event.

ces ±1,±iσx,±iσy,±iσz. The group has five conjugacy classes 1, −1,
{±iσx}, {±iσy}, {±iσz}, and correspodingly five representations. The
character table is given in table 20.2. From the character table it is easy
to use Eq. 20.14 to derive the nontrivial fusion rules (Again I plays the
role of the vacuum particle and we do not write its fusions)

Ri ×Ri = I i = x, y, z (20.19)

S ×Ri = S i = x, y, z (20.20)

Rx ×Ry = Rz (and cyclic permutations) (20.21)

S × S = I +Rx +Ry + Rz (20.22)

Note that S is the 2-dimensional representation given by the defining
two-by-two matrices.

20.2.1 F-Matrices

With a bit of work, the F -matrices (often known as 6j symbols in this
context) can also be derived using group theoretic methods. In general
this can be a bit complicated but the principle is straightforward group
theory. As usual we should think of F badecf as a basis transform (See
Fig. 16.3). In this case it is convenient to think of the process of b, a, e
and c fusing to the identity in different ways or equivalently, the tensor
product of Rb, Ra, Re and Rc fusing to the identity representation.

(1) ConsiderRa⊗Rb ≃
⊕

d̄N
d̄
abRd̄ and fuse with Rc⊗Re ≃

⊕
dN

d
ceRd.

The resulting representations, Rd and Rd̄ then fuse together to
form the identity representation. Such a process corresponds to
the diagram in the top of Fig 20.7 (same as the left of Fig. 16.3).

(2) Consider instead Rb ⊗ Rc ≃
⊕

f̄ N
f̄
bcRf̄ and fuse with Ra ⊗ Re ≃⊕

f N
f
aeRf , and finally fuse Rf̄ and Rf to form the identity repre-

sentation. Such a process corresponds to the diagram on bottom
of Fig 20.7 (same as the right of Fig. 16.3).
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b

a

c

e

d

b

a

c

e

f

Fig. 20.7 Fusion of representations.
Compare to the diagrams in Fig. 16.3.
The top figure can be thought of as the
d component of Ra ⊗ Rb ≃ ⊕

d̄N
d̄
abRd̄

fused with Rc ⊗ Re ≃ ⊕

dN
d
ceRd to

form the identity. The bottom figure
can be thought of as the f component of

Rb ⊗Rc ≃ ⊕

f̄ N
f̄
bcRf̄ fused with Ra⊗

Re ≃ ⊕

f N
f
aeRf to form the identity.

Both of these processes correspond to fusion of the four representa-
tions to the identity. The first, we might say is the identity component
of (Rb ⊗Ra)⊗ (Re ⊗Rc) whereas the second is the identity component
of (Rb ⊗Rc)⊗ (Ra ⊗Re). While these two tensor products are isomor-
phic, they are expressed in a different basis (see note 11 above). To find
the F -matrix F badecf

matrix relating these bases we simply have to find
the overlap between the d contribution to the overall identity represen-
tation in case (1) above with the f contribution to the overall identity
representation in case (2).

20.2.2 Some Simple Braidings for Rep(G)

So far we have only discussed consistent fusion of representations – i.e,
fusion rules that will satisfy the pentagon equation. Given a set of
F -matrices, we can then look for braidings, or R-matrices that satisfy
the hexagon. We already know that there will typically be multiple
solutions15 of the hexagon. Some of the braidings, however, can be

15Recall that if G is abelian, then the
representations of G are isomorphic to
the group G itself. In which case
Rep(G) is just the trivial cocylce of G.
As we discussed in section 20.1.2 and
20.4 the trivial cocycle of ZN has N
different braidings.

stated easily for any group G, as we now discuss.

Trivial Braidings: Bosons

It is always the case that the trivial braiding

Ra,ba×b = 1 (20.23)

provides a solution16 of the hexagon for Rep(G) for any group G. If
we choose this braiding we are describing particles that are bosons —
i.e., having trivial braiding17 and trivial spin θa = 1 — with internal

17Note that Rabc is gauge dependent,
so Eqs. 20.23 and 20.24 imply a gauge
choice. However, Rabc R

ba
c is gauge inde-

pendent, and θa is gauge independent.

quantum numbers given by the representations of the group G.

Fermions and Bosons

If it so happens that G contains an central element18 z such that z2 = e

18“Central” means that z commutes
with all the elements of the group. I.e.,
zg = gz for all g ∈ G.

with e the identity of the group, then each representation Ra can be
assigned a degree p(a) which is 1 or 0 depending on whether z acts as
the identity in the representation or acts as −1 in the representation19

19To see this consider applying z in

the representation twice ρR(z)ρR(z) =
ρR(z2) = ρR(e). This means that
ρR(z) can only act as the identity or
as minus the identity.

A consistent braiding is then given by (See exercise 20.5)

Ra,ba×b = (−1)p(a)p(b) (20.24)

In other words, we have declared a particle a to be if bosonic if p(a) = 0
(if ρRa(z) acts as 1) or fermionic p(a) = 1 (if ρRa(z) acts as −1).20

20Sometimes this braided solution to
the hexagon is called Rep(G, z) com-
pared to the fully bosonic solution
which can then be called Rep(G, e).
I.e., if you set z = e, the identity, then
you set all particles to be bosons.
16Not every set of fusion rules is consistent with the trivial braiding (For example, the Ising fusion rules, as discussed in
section 18.3.1, are not consistent with a trivial braiding). The fact that Rep(G) always allows a trivial braiding is a subtle,
but straightforward statement about using tensor products of representations to represent fusion of particle types. We are in
essence representing the braid operator by B(Ra ⊗Rb) = Rb ⊗Ra, i.e., we just re-order the tensor factors without adding any
phase. Realizing that the F -matrices are also just relating different re-orderings of tensor factors, this tells us that the two
paths through the hexagon must give the same result.
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The fermionc particles have θa = −1 whereas the bosonic particles have
θa = +1.
An nontrivial example of Rep(G, z) is given by the quaternion group

Q8 where we choose z = −1. It is easy to check that this makes the Ri
representations bosons, but the S representation is a fermion (note the
negative sign on the character χS(−1)).

20.2.3 Continuous (Lie) Group Representations?

One can imagine that instead of looking at the representations of dis-
crete groups, one considers instead the representations of Lie groups
(See section 33.2.3). For example, the different representations of the
group SU(2) are the different values of the spin quantum number j, and
these fuse together with the usual angular momentum addition rules.
Further, the F -matrices are (up to a normalization) precisely what we
call 6j symbols of angular momentum addition.
While such a scheme makes a perfectly good planar diagrammatic

algebra, the problem is that there are an infinite number of different
representations (For the case of SU(2) for example, the angulular mom-
mentum j can inifinitely large) and this violates our rule of having a
finite number of “particle types” for our diagrammatic algebra. Such
algebras can be problematic when used for physical purposes (For ex-
ample, as we will see in section 21.3 using a diagrammatic algebra with
an infinite number of representations for construction of a TQFT re-
sults in divergences). Schemes have been constructed to regularize such
a diagrammatic algebra and arrange that only a finite number of repre-
sentations ever occur – which are often known as “deformations” of the
Lie algebra representation21. The most common such deformations cor- 21The term “quantum group” is often

used. Be warned that a quantum group
is not a group.

respond precisely to the particle types of a corresponding Chern-Simons
theory at some finite level. For example, in the case of SU(2), one can
consider SU(2)k Chern-Simons theory which has deformed F -matrices
such that angular momentum j = 0, 1/2, . . . k/2 can occur, but one never
gets any higher angular momenta.

20.3 Parastatistics Revisited

Way back in section 3.5.1 we asked why we could not have exotic statis-
tics in 3+1 dimensions. While there are nontrivial representations of
the permutation group that would satisfy the quantum mechanical com-
position rule, we stated that additional constraints — such as particle
creation and annihilation and locality — limits us to just bosons and
fermions. We are now at the point where we can discuss exactly what
we mean by this.

b a

=

b a

Fig. 20.8 In 3+1 dimensions these
two pictures are topologically equiva-
lent. Thus all particles are transparent.
This implies Eq. 20.25.

The structure we have built up for anyons in 2+1 dimensions is that
of a braided unitary category: a set of particles with fusions, F -matrices
satisfying the pentagon, and R-matrices satisfying the hexagon. If we
try to do something similar in 3+1 dimensions we will no longer can have
nontrivial braiding of world lines since, as discussed in section 3.3.2, in
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3+1 dimension no knots can be formed in one-dimensional world lines.
Thus, we must impose the restriction shown in Fig. 20.8 that all particles
are transparent. In equations this can be stated as

Rabc R
ba
c = 1 (20.25)

for all a, b, c such that N c
ab > 0. If the condition Eq. 20.25 holds and yet

we have a solution of the hexagon equation, we say we have a symmetric
tensor category22. Thus if we are to construct an anyon theory with22A symmetric tensor category is in

some sense the exact opposite of a mod-
ular tensor category. For a modular
tensor category no particles are trans-
parent except the identity, whereas for
a symmetric tensor category all parti-
cles are transpartent.

point particles in 3+1 dimensions, it must be described by a symmetric
tensor category.
In fact we have already given two examples of symmetric tensor cat-

egories, in section 20.2.2: (a) the theory Rep(G) (or Rep(G, e)) which
describes bosons having internal quantum numbers given by the repres-
ntations of the group G, and (b) the theory Rep(G, z) where some of
the particles are instead declared fermions depending on how their cor-
responding representation transforms under the action of the element
z. The crucial theorem we mentioned in section 3.5.1, originally due to
Doplicher and Roberts (See also Müger [2007]; Deligne [2002]), is that
there are no other possibilities: Any symmetric tensor category is equiv-
alent to Rep(G) =Rep(G, e) if it has no fermions, or Rep(G, z) if it has
fermions. In other words for point particles in 3+1 dimensions, there
are only bosons and fermions; nothing else!

20.4 Appendix: Isotopy Invariant Planar
Algebras and Anyon Theories from

G = ZN Cohomology

Here we start with the cocycles for ZN given in Eq. 20.7 and we look for
isotopy invariant cases. We have two general types of isotopy invariant
solutions the p = 0 (trivial cocycle) solution, which exists for any N and
the p = N/2 case which exists for even N only. Let us discuss each of
these in a bit more detail.

20.4.1 Trivial Cocycle: Z(n)
N Anyons

For any ZN one can always choose p = 0 in Eq. 20.7 which gives the
trivial cocycle ω(a, b, c) = 1 for all a, b, c and we correspondingly have
da = 1 for all a.
Recall that these cocycles are really F -matrices, which have now all

been set to unity. We now want to determine the possible braidings for
this theory by using the hexagon Eq. 13.2. Plugging in F = 1 into the
hexagon, we obtain23

23Recall the notation [a]N means a
modulo N .

Rc,a[c+a]N
Rc,b[c+b]N

= R
c,[a+b]N
[c+a+b]N

(20.26)

There are exactly N solutions24 of this system which we label n =

24Examining ρc(a) = Rc,a
[a+c]N

we see

that ρc(a) is a group representation of
the group ZN , which can only be of the
form exp(2πipa/N) for some p. Finally
we invoke the symmetry 13.1.
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0, . . . , N − 1 which are given by

Ra,b[a+b]N
= exp

[
2πin

N
ab

]

where ab on the right is actual multiplication, not the group operation
which is addition modulo N . The twist factors are (using Eq. 15.2)

θa = e2πina
2/N

and the corresponding S matrix is (perhaps easiest derived with Eq. 17.16)

Sa,b =
1√
N

exp

[
4πin

N
ab

]

This is a modular theory only for N odd with n andN mutually prime25. 25For n = (N − 1)/2 the modular the-
ory matches the Chern-Simons theory
SU(N)1 with N odd.

These theories are sometimes known as Z(n)
N anyons (See Bonderson

[2007]).

20.4.2 Nontrivial Cocycle: Z(n)
N=2p

Here we considerN = 2p. The cocycle in Eq. 20.7 again hasN consistent
solutions of the hexagon equations, given by n = 0, . . . , (N − 1) in the
equation (See Bonderson [2007])

Ra,b[a+b]N
= exp

[
2πi(n+ 1

2 )

N
[a]N [b]N

]

with all da = +1, resulting in (from Eq. 15.1)

θa = exp

[
2πi(n+ 1

2 )

N
[a]2N

]
(20.27)

Sa,b =
1√
N

exp

[
4πi(n+ 1

2 )

N
[a]N [b]N

]
(20.28)

These are known as Z
(n+ 1

2
)

N anyon theories for obvious reasons. They
are modular when 2n+ 1 and p are coprime26. 26When n = (N/2 − 1) the modular

theory matches SU(N)1 with N even,
and when n = 0 the modular theory
matches U(1)N/2. Be cautioned that
there is some disagreement in the liter-
ature as to how you label the level of a
U(1) Chern-Simons theory.

These anyon theories, in the gauge given by Eq. 20.7 are not generally
isotopy invariant. We can generally make transformations to put these
results in potentially simpler forms.

Case I: p-odd

With N = 2p and p odd, the pth particle is self dual particle, and has
Frobenius-Schur indicator −1, which is a gauge invariant quantity. We
will thus need to push this sign onto d in order to have a fully isotopy
invariant theory. As discussed in section 14.2.1 we choose a gauge where

da = (−1)a
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(and as usual we are working with all ǫa = +1 for an isotopy invariant
theory). Note that the composition rule Eq. 14.4 is satisfied. In this
gauge the cocycle can be written as2727If we try to use the same rule for

N = 2p, with p even where we still set
da = (−1)a, this actually gives us the
trivial cocycle discussed above in a less
convenient gauge. Note that the self-
dual particle has d = +1 in the p even
case indicating that we do not need to
push any signs onto d.

ω(a, b, c) =

{
−1 a, b, c all odd
+1 otherwise

(20.29)

The hexagon equation now takes the form

Rc,a[c+a]N
Rc,b[c+b]N

= ω(a, b, c)R
c,[a+b]N
[c+a+b]N

which compared to Eq. 20.26 introduces a minus sign if all a, b, c, are
odd. This system of equations again has N solutions which we index as
n̄ = 0, . . . , N − 1,

Ra,b[a+b]N
= exp

[
2πin̄

N
[a]N [b]N

]
(i)r(a,b)

where r(a, b) = 1 if both a and b are odd and equals zero otherwise.
which gives us (using Eq. 15.1 or Eq. 15.2 with da = (−1)a and ǫa = +1)

θa = e2πin̄a
2/N (i)t(a)

where t(a) = 1 if a is odd and is zero otherwise. It is a short exercise to
show that this recovers the correct θa, Eq. 20.27, and S-matrix Eq. 20.28
with the mapping n̄ = n− (p− 1)/2. Again, the advantage of using this

gauge for the description of Z
(n+ 1

2
)

N anyons is full isotopy invariance (with
N = 2p and p odd).

Case II: p-even

In this case the Frobenius-Schur indicator of the self-dual particle is +1
so we can choose to work in a gauge where all da = +1. While it is
possible to make a gauge transform that puts the theory into an isotopy
invariant form, the transform is not particularly transparent. For this
reason it is often convenient to stay with the gauge given in Eq. 20.7.
However, it is not too hard to transform to an isotopy invariant gauge
if we would like.
An example of this, let us consider the nontrivial cocycle for the group

Z4. Here we can make a gauge transform (See exercise 20.2) such that

ω(a, b, c) =





−1 (a, b, c) = (1, 1, 1); (1, 2, 3); (2, 1, 2);
(2, 3, 2); (3, 2, 1); (3, 3, 3)

1 otherwise

(20.30)

and with d = 1 for all particles 0,1,2,3. This gives a fully isotopy invari-
ant theory. There are correspondingly 4 solutions of the hexagon given
by28 n = 0, 1, 2, 3 with

28This n is the same as that of
Eq. 20.28
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Ra,b[a+b]4
= exp

[
2πi(n+ 1

2 )

4
[a]4[b]4

]
(−1)r(a,b)

where r(a, b) = 1 for (a, b) = (1, 2), (1, 3), (2, 1), (3, 1) only and is zero
otherwise.

20.5 Appendix: Cocyles for S3

To give an example of a non-abelian group, let us look at the case of the
group S3. To remind the reader this group has 6 elements which can
be written in terms of two generators X and R with multiplcation rules
X2 = R3 = e and XR = R−1X with e the identity. The 6 elements can
be written as e,R,R−1, X,XR,XR−1. Let us write them as (A, a) =
XARa with A = 0, 1 and a = −1, 0, 1. There are 6 independent 3-
cocycles described by p = 0, . . . 5 in the equation (See references at the
end of the chapter)

ω((A, a), (B, b), (C, c)) = (20.31)

exp{iπpABC} exp
{
2πip

9
(−)B+Ca

{
(−)Cb+ c− [(−)Cb+ c]3

}}

where the bracket []3 indicates modulo 3 where the result is assumed to
be in the range −1, 0, 1.
Note that within S3 there is a Z2 subgroup consisting of e and X ,

or a = 0 with A = 0, 1. The first term on the right hands side,
exp(iπpABC), matches the two possible 3-cocyles from the Z2 group.
For even p it is the trivial cocycle, whereas for odd p we have a ω being
−1 only when A,B,C are all in the 1 state, equivalent to Eq. 20.8. The
second factor looks similar to the Z3 cocycles but only when C = 0.
Setting C = 0 for a moment, the same argument as in the Z3 case shows
that we cannot have full isotopy invariance unless p = 0 or p = 3, in
which case the second factor on the right hand side of Eq. 20.31 is trivial.
Thus this case of p = 3 gives an isotopy invariant cocyle which essen-
tially ignores the a variable of (A, a) and is equivalent to Eq. 20.8 for
the A variables with d(A,a) = (−1)A.

20.6 Details of Working out an F -matrix

Here we give a few more details of how we work out the F -matrix for
a group. Other, potentially more systematic schemes, can be found in
Refs. Hamermesh [1989]; Buerschaper and Aguado [2009]; Wang et al.
[2020] for example.
To impliment our procedure, we work with explicit D dimensonal ma-

trices ρRij for each D dimensional unitary representation R. We extract
the identity component of the fusion of the four particles by writing29

29This is a result of the grand orthogo-
nality theorem Eq. 33.3. If we sum over
all group elements we extract only the
identity representation.
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∑

g

ρRa(g)⊗ ρRb(g)⊗ ρRc(g)⊗ ρRe(g) = C
∑

d

wdw
†
d (20.32)

where wd is a unit length orthogonal DaDbDcDe dimensional vector
representing the process where a and b fuse to d̄ and also c and e fuse
to d, and C is an unimportant normalization constant. (Note there is a
gauge choice here in choosing the phase of wd). Similarly we can write

∑

g

ρRa(g)⊗ ρRc(g)⊗ ρRb(g)⊗ ρRe(g) = C
∑

f

zfz
†
f (20.33)

= C
∑

d

Pwdw
†
dP

T

where zd is a DaDbDcDe dimensional vector representing the process
where a and c fuse to f̄ and also b and e fuse to f . In the second line
of Eq. 20.33, the matrix P is simply a permutation matrix since the
two tensor products are isomorphic and simply have rows and columns
appropriately permuted.
The F matrix is then just given by the overlap

F badcef = w†
d · zf (20.34)

The challenge is then simply to extract the correct vectors wd and sim-
ilarly zf in Eq. 20.32 and 20.33.
We thus only need to buid up the tensor product in Eq. 20.32 and

20.33 step by step. We have

ρRa(g)⊗ ρRb(g) =
∑

d̄∈a×b

Dd̄∑

α,β=1

xd̄α [ρ
Rd̄(g)]αβ [x

d̄
β ]

† (20.35)

where the x’s are a set of orthonormal DaDb dimensional vectors (both
sides of this equation are DaDb dimensional matrices)30. The particular30In cases where N d̄

ab > 1 we must take
extra care to separate to add the mul-
tiple instances of each representation.
For simplicity let us assume Nd

ab = 0 or
1 only.

form of the x vectors can be extracted using the grand orthogonality
theorem Eq. 33.3. Performing the same decomposition for

ρRc(g)⊗ ρRe(g) =
∑

d∈c×e

Dd∑

γ,δ=1

ydγ [ρ
Rd(g)]γδ [y

d
δ ]

† (20.36)

To find the identity element of the fusion between the tensors in Eq. 20.35
and 20.36 we simply match up the d representations with the d̄ repre-
sentations. Thus we have

wdw
†
d ∼

∑

g

Dd∑

α,β,γ,δ=1

(
xd̄α [ρ

Rd̄(g)]αβ [x
d̄
β ]

†
)
⊗
(
ydγ [ρ

Rd(g)]γδ [y
d
δ ]

†
)

∼
Dd∑

α,β=1

(
xd̄α [x

d̄
β ]

†
)
⊗
(
ydα [y

d
β ]

†
)

(20.37)
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where in going to the second line we have used the grand orthogonality
theorem Eq. 33.3. Both sides of this equation are DaDbDcDe dimen-
sional matrices with a single nonzero eigenvalue, so it is then trivial to
extract wd. Then extracting zf by permuting rows of the vector wd as
noted in Eq. 20.33, we then determine the F -matrix using Eq. 20.34.
The procedure outlined here is fairly straightforward, although te-

dious. Equivalent schemes are outlined in Refs. Buerschaper and Aguado
[2009] and Wang et al. [2020]. In exercise 20.6 we walk through calcula-
tion of F -matrices for the representations of the group S3 whose fusion
rules we worked out in Eqs. 20.16–20.18 above.
As a final comment we note that there is a beautiful expression to

calculate the Frobenius-Schur indicator κ for a group representation R

κR =
1

|G|
∑

g

χR(g2) (20.38)

which gives ±1 if R is self-dual, and gives 0 for a non-self-dual represen-
tation. Recall that the Frobenius-Schur indicator is actually one of the
elements of the F matrix (See Eq. 14.3). Derivation of this formula is a
standard result in group theory (See, for example, Hamermesh [1989]).

Further Reading

Exercises

Exercise 20.1 Cocycle Equation
(a) Show that the 3-cocycle given by Eq. 20.7 satisfies cocycle condition

Eq. 20.1 and thus represents a valid cocycle.
(b) Show that Eq. 20.31 also satisfies Eq. 20.1.

Exercise 20.2 Isotopy Invariance of Cocycles
(a) Show that the cocycle Eq. 20.1 can only represent an isotopy invariant

diagram algebra only in the following cases:

• For n an odd integer, only when p = 0.

• For n an even integer, only when p = 0 or p = n/2

(b) For the case of n = 4 and p = 2, find the gauge transformation that
transforms Eq. 20.1 into Eq. 20.30.

Exercise 20.3 Quantum Dimension of a Representation
Prove Eq. 20.15. Hint: Remember that that quantum dimension da tells

you how the Hilbert space dimension grows as you fuse together the particle
a many times. Try fusing together many representations Ra ⊗ Ra ⊗ Ra . . .
and imagine decomposing the result into irreducible representations using the
orthogonality theorem for characters. Note that for characters χ(e) ≥ χ(g)
for e the identity represnentation.

Exercise 20.4 Frobenius-Schur Indicators in Rep(G)
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(a) Use Eq. 20.38 to calculate the Frobnius-Schur indicators of the repre-
sentations for the groups S3 and Q8.

(b) The dihedral group with 8 elements, D8 (sometimes called D4) is the
group of symmetries of a square. Look up the properties of this group. It
turns out that it has exactly the same character table as Q8 (!!). Show that
the Frobenius-Schur indicators do not match that of Q8.

Exercise 20.5 Bosons and Fermions in Rep(G, z)
Let z be a central element of the group G (i.e, zg = gz for all g ∈ G) such

that z2 = e, the identity. As in section 20.2.2 for a representation Ra set
p(a) = 0 if z acts as the idenity in representation Ra and set p(a) = 1 if z acts
as −1 in representation Ra.

(a) Show that if Ra ⊗ Rb = Rc ⊕ . . ., then p(a)p(b) = p(c). Hint, conisder
the characters χR(e) and χR(z).

(b) Given that setting all particles to bosons (i.e., Eq. 20.23) solves the
hexagon equation, show that Eq. 20.24 also provides a solution to the hexagon
equation.

Exercise 20.6 Some F matrix elements for representatons of S3 [Hard]

Let us consider the simplest nonabelian group S3,which we discuss in sec-
tions 20.5, 11, and 33.2.1.

We remind the reader taht this group has 6 elements which can be writ-
ten in terms of two generators X and R with multiplcation rules X2 =
R3 = e and XR = R−1X with e the identity. The 6 elements can be
written as e,R,R2, X,XR,XR2 which are grouped into conjugacy classes
{e}, {R,R2}, {X,XR,XR2} (See Table 20.1).

The three representations are as follows: The trivial represenatation has
ρI(g) = 1 for all g in the group. The sign rep has ρS(g) = 1 for g ∈ {e, R,R2}
and ρS(g) = −1 for g ∈ {X,XR,XR2}. (Note that since both these reps
are one dimensional, they are completely defined by the character table). We
write the two dimensional represenation in a unitary form as

ρV (X) =

(

−1 0
0 1

)

ρV (R) =
−1

2

(

1
√
3

−
√
3 1

)

with ρV (e) the identity matrix and all other matrices ρV (g) for the other
elements g in the group can be generated by using the group multiplication
properties. (Do this first, you will need it later!)3131 It may be useful to use a computer to

multiply matrices (Mathematica, mat-
lab, octave, and python are all fairly
convenient), since there are a lot of ma-
trix manipulations in this problem and
a single error will destroy the result.

Note that we already know the fusion rules for these representations as they
are given in Eqs. 20.16–20.18.

In this exercise we will calculate some F -matrix elements by focusing on the
most interesting case, where all four incoming lines in Fig. 16.3 are in the two
dimensional V representation. Thus we are interested in the unitary matrix
F V V dV V f .

(a) Using the grand orthogonality theorem (Eq. 33.3) find the decomposition

ρV (g)⊗ ρV (g) = xI [xI ]† + ρS(g)xS[xS]† +
2
∑

α,β=1

xV̄α [ρRd̄(g)]αβ [x
V̄
β ]

†

Hint: The one dimensional representations are easy to obtain since they can
be obtained by

(1/|G|)
∑

g

ρR(g)∗[ρV (g)⊗ ρV (g)]
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what remains is the two dimensonal representation.
(b) Given two dimensional matrices A,B,C,D find the permutation matrix

such that
P (A⊗B ⊗ C ⊗D)P T = A⊗ C ⊗B ⊗D

(c) Use Eq. 20.34 and 20.37 to show that the F matrix is given by

F V V dV V f =
1

2





1 1
√
2

1 1 −
√
2√

2 −
√
2 0









State Sum TQFTs 21
Medium Hard Material

Having learned about planar diagrammatic algebras we are now in a
position to explicitly construct a real 3D TQFT1. There are several steps 1The input for the construction in

chapter will be a planar diagram alge-
bra — we do not have to specify any

sort of R-matrix or braiding. It is a bit
surprising that one only needs a planar
algebra to make a 3D TQFT! In sec-
tion 21.2 we will input a spherical ten-
sor category whereas in section 21.4 we
will input a group and a 3-cocycle.

in this idea. We start by considering a closed 3D manifold M which we
discretize into tetrahedra (a so called simplicial decomposition of the
manifold). Next we construct a model, similar in spirit to statistical
mechanics, which sums a certain weight over all quantum numbers on
all edges of all tetrahedra. The weights being summed are defined in
terms of our planar diagrammatic algebra as we will see below. The
result of this sum is the desired TQFT partition function Z(M) which
we discussed extensively above, and particularly in chapter 7.
This discretization of a manifold into tetrahedra is very commonly

used in certain approaches to quantum gravity, which we will discuss in
section 21.3.

21.1 Simplicial Decomposition and Pachner
Moves

We start by considering a so-called simplicial decomposition of our man-
ifold. Such decompositions can be made of smooth manifolds in any
number of dimensions2. 2It is interesting (but beyond the scope

of this book) that manifolds exist in
dimension d ≥ 4 that cannot be
smoothed, and cannot be decomposed
into simplicies.

21.1.1 Two Dimensions

As a warm up let us think about two-dimensional manifolds. In two
dimensions, the elementary 2-simplex is a triangle, so this decomposition
is the familiar idea of triangulation shown in Fig. 21.1.
Since we are only concerned with the topology of the manifold, not the

geometry, the precise position of vertex points we use is irrelevant— only

Fig. 21.1 Some triangulations of 2-manifolds
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the connectivity of the points is important, i.e, the topological structure
of the triangulation network. Furthermore, a particular manifold, like a
sphere, can be triangulated in many different ways. It turns out that any
two different triangulations can be related to each other by a series of
elementary “moves” known as two-dimensional Pachner moves3,4, which3I encourage you to play with these two

moves and see how you can restructure
triangulations by a series of Pachner
moves.
4It is interesting to note that a Pach-
ner moves can be thought of as view-
ing a 3D tetrahedron from two oppo-
site directions. We can thus think of
2D Pachner moves as a cobordism (See
chapter 7) in 3D between a surface tri-
angulated with the initial triangulation
and a topologically equivalent surface
triangulated with the final triangula-
tion.

are shown in Figs. 21.2 and 21.3.

⇋

Fig. 21.2 The 1-3 Pachner move in two dimensions corresponds to adding or re-
moving a point vertex from the triangulation. This turns one triangle into three or
vice-versa.

⇋

Fig. 21.3 The 2-2 Pachner move in two dimensions corresponds to replacing two
adjacent triangles with two complementary triangles. This turns two triangles into
two different triangles.

Thus if we want to construct a manifold invariant (like Z(M) we
discussed in chapter 7) with a manifold represented in terms of a trian-
gulation we only need to find some function of the triangulation that is
invariant under these two Pachner moves.

21.1.2 Three Dimensions

The story is quite similar in three dimensions. Since we have been fo-
cused on 2+1 dimensional TQFTs we will mostly discuss three-dimensional
manifolds. We discretize any closed three-dimensional manifold5 by5For now let us focus on closed mani-

folds. We briefly discuss manifolds with
boundary in section 21.2.2.

breaking it up into tetrahedra (otherwise known as three-dimensional
simplices). Any two discretizations are topologically equivalent to each
other if they can be related to each other by a series of three-dimensional
Pachner moves6, which are shown in Figs. 21.4 and 21.5. Again, the key6Analogous to the 2D case (see note 4

above), the 3D Pachner moves can be
thought of as viewing a 4D-simplex (a
so-called pentachoron) from two oppo-
site directions.

point here is that if we can find some function of the the network struc-
ture that is invariant under the Pachner moves, we will have constructed
a topological invariant of the manifold.
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Fig. 21.4 The 1-4 Pachner move in three dimensions corresponds to adding or removing a point vertex to the tetrahedon
decomposition. This turns a single tetrahedron into four or vice versa. On the far right we show the four tetrahedron separated
for clarity.

Fig. 21.5 The 2-3 Pachner move in three dimensions corresponds to re-splitting a double tetrahedron (left) into three
tetrahedron (right). This turns a single tetrahedron into four or vice versa. On the far left we show the two tetrahedra
separated for clarity; and on the far left we have the three tetrahedra separated for clarity.

21.2 The Turaev-Viro State Sum

The idea of the Turaev-Viro state sum is to build a 3D manifold invariant
from one of the planar diagrammatic algebras we have been discussing
in chapters 8-20.
First, let us choose any particular planar diagrammatic algebra. We

take any decomposition of an orientable three dimensional manifold into
tetrahedra. Let each edge of this decomposition be labeled with one
of the quantum numbers (the particle labels) from the diagrammatic
algebra7. We then consider the following sum

7As we have been doing all along, when
we label an edge with a quantum num-
ber we must put an arrow on the edge
unless the particle type is self-dual.

ZTV (M) = D−2Nv
∑

all edge labelings

W (labeling) (21.1)
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where Nv is the number of vertices in the decomposition, and

D =

√∑

n

|dn|2

is the total quantum dimension (See Eq. 17.10). In Eq. 21.1, W is
a weight assigned to each labeling of all the edges8. We consider the8In the language of statistical physics

we can think of W as a Boltzmann
weight for each edge label configura-
tion, although it need not be positive,
or even real.

following definition of a weight assiggned to a given labeling of edges

W (labeling) =

∏
tetrahedra G̃(tetrahedron)

∏
edges dedge∏

triangles Θ̃(triangle)
(21.2)

Thus each tetrahedron is given a weight G̃, depending on its labeling,
each edge labeled a is given a weight da and each triangle is given a
weight Θ̃−1 depending on its labeling.
The weights G̃ and Θ̃ are very closely related to quantities G and Θ

we have already studied9 in chapter 16 for example10. The functions G̃9Many works, including the original
works by Turaev and Viro [1992],
use the diagrammatic algebra based
on Temperly-Lieb which we discussed
in chapter 19. However, in those
works, they have used the nonuni-
tary version of the diagrammatic al-
gebra without the vertex renormal-
ization which we introduce in section
19.3. In such an approach Θ(a, b, c)
is replaced by ∆(a, b, c), for example
(See Eq. 19.11). It is easy to show
that these vertex renormalization fac-
tors completely cancel and the end
value of the Turaev-Viro invariant is in-
dependent of whether the renormaliza-
tion factors are included or not. Indeed,
it is not necessary to have a fully uni-
tary algebra for the Turaev-Viro con-
struction to give a well behaved mani-
fold invariant. We only need a consis-
tent planar diagrammatic algebra. See
also next margin note!

10In chapter 16 we insist on a fully iso-
topy invariant algebra with tetrahedral
symmetry, and we will continue to as-
sume those simplifications here. How-
ever, for constructing a Turaev-Viro in-
variant it turns out to be sufficient to
have a spherical (hence pivotal) tensor
category as we discuss in chapter 12.
Full isotopy invariance is not required.
This is discussed in depth by Barrett
and Westbury [1996].

and Θ̃ are given by11

11See the comments in chapter 16
about how to choose the signs of the
square-roots in cases where some d’s are
chosen negative.

Θ̃




a

c b


 = Θ(a, b, c) =

√
dadbdc (21.3)

and

G̃




b

d
c

e

a f




= Gbadecf = F badecf df

√
dbdc
df

√
dade
df

(21.4)

Note that the tetrahedron shown here is different from the one shown
in Fig. 16.14 that defines G from a planar diagram (or perhaps more
properly a diagram drawn on the surface of a sphere). In fact the two
tetrahedra are dual to each other. For example, in Fig. 16.14 the lines
f, e, c̄ form a loop whereas f, ē, ā meet at a point. In the diagram in
Eq. 21.4 on the other hand e, f, c̄ meet at a point where f, ē, ā form a
loop. In Eq. 21.4 the three edges around any face must fuse together to
the vacuum. I.e., we have the four conditions

Nbad > 0 Ncd̄e > 0 Nfēā > 0 Nc̄f̄ b̄ > 0

or else G̃ will vanish. Note that, like G, the value of G̃ is unchanged
under any rotation of the tetrahedron.

21.2.1 Proof Turaev-Viro is a Manifold Invariant

The proof that ZTV (M) is a manifold invariant is not difficult — one
only needs to show that it is unchanged under the 1-4 and 2-3 Pachner
moves. This is basically an exercise in careful bookkeeping (see exercise
21.2). Roughly, however, it is easy to see how it is going to work.
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Let us first examine the 2-3 Pachner move shown in Fig. 21.5. On the
left we have two tetrahedra (call them 1 and 2) which are joined along
a triangle (call it α). On the right we have three tetrahedra (call them
3, 4 and 5 which are joined along three triangles (call them β, γ, and δ)
with the three triangles intersecting along a new edge down the middle
(shown vertical in the figure) which we label with the quantum number
n. To show that the ZTV remains invariant we need to show that

G̃(1)G̃(2)Θ̃(α) =
∑

n

G̃(3)G̃(4)G̃(5)Θ̃(β)Θ̃(γ)Θ̃(δ)dn

The factors of Θ̃ are simply factors of
√
da and these cancel some factors

of
√
da in the definition of G̃ in Eq. 21.4. After this cancellation what

remains is a relationship between two F ’s on the left and a sum over three
F ’s on the right. The relationship that remains is exactly the pentagon
equation Eq. 16.3 (or Eq. 9.7)! Thus any diagrammatic algebra which
satisfies the pentagon equation will result in a Turaev-Viro partition
function (Eq. 21.1) that is invariant under the 2-3 Pachner move!
The case of the 1-4 Pachner move is only a bit harder and we will

sketch the calculation here. The large tetrahedra on the left of Fig. 21.4
(lets call this large tetrahedron 1) needs to be equivalent to the four
smaller tetrahedra on the right (lets call these small tetrahedra 3, 4, 5
and 6) once we sum over the quantum numbers on the four internal edges
on the right. The three tetrahedra 3, 4 and 5 share a common edge, and
this is entirely analogously to the three tetrahedra we considered in the
case of the 2-3 Pachner move. Summing over the quantum number of
this common edge, and using the same pentagon relation replaces the
three tetrahedra 3, 4, 5 with two tetrahedra 1 and 2, where 1 is the large
tetrahedron and 2 includes exactly the same edges as the remaining
small tetrahedron 6. The tetrahedra 2 and 6 have 3 edges which are
not shared with tetrahedron 1 — these are the remaining internal edges
that need to be summed over. Summing over one of these internal edges,
one invokes the consistency condition Eq. 16.5 to create a delta function
which then kills one of the two remaining sums. The last remaining sum
just yields a factor of D2 =

∑
n d

2
n which accounts for the prefactor in

Eq. 21.1 being that we have removed one vertex from the lattice.

21.2.2 Some TQFT Properties

The Turaev-Viro state sum has all the properties we expect of a TQFT.
Although we need to discretize our manifold, the resulting “partition
function” ZTV (M) for a manifold M is a complex number which is
indeed independent of the discretization and depends on the topology
of the manifold only.
As we discuss at length in section 7.1 we would also like ZTV (M)

to represent a wavefunction if M is a manifold with boundary. To
remind the reader, the point of this construction is that when we glue
together two manifolds with boundary to get a closed manifold, this
corresponds to taking the inner product between the two corresponding
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wavefunctions to get a complex number.
To see how this occurs let us consider discretizing a manifold with a

boundary. Here the 3D bulk of the manifold M should be discretized
into into tetrahedra, and the 2D boundary surface Σ = ∂M should be
discretized into triangles. We divide the edge degrees of freedom into
bulk and boundary where a boundary edge is defined as an edge where
both vertices are on the boundary and all other edges are defined to be
bulk. We define Z(M) of such a discretized manifold with boundary as
a sum like Eq. 21.1 where the sum is only over the edges in the bulk,
leaving fixed (un-summed) the quantum numbers for the edges that live
entirely on the boundary (i.e., both vertices on the boundary). Thus for
manifolds with boundary we more generally write

ZTV (M; a1, . . . , aN) = D−2Nv−nvW ′(a, . . . , aN )
∑

bulk labelings

W (bulk labels)

where Nv is the number of vertices in the bulk and nv the number of
vertices on the boundary. The weight function W is exactly the same
as the weight function in Eq. 21.2 but only including edges, triangles,
and tetrahedra in the bulk (All tetrahedra are considered bulk, and a
triangle is considered boundary only when all three vertices are on the
boundary). Here a1, . . . , aN are the quantum numbers of the edges on
the boundary, and these are not included in the sum over bulk lables.
An additional weight is included which is a function of these boundary
edge labels

W ′(a1, . . . , aN ) =

√√√√
∏

boundary edges dedge∏
boundary triangles Θ̃(triangle)

The partition function ZTV (M; a1, . . . , aN ) is now a function of the edge
variables and is interpreted as a wavefunction12 |Z(M)〉 that lives on the12The wavefunction here takes some

complex scalar value as a function of
the physical variables which are the
quantum numbers on the edge.

boundary Σ = ∂M .
It is then quite natural to see how two manifolds can be glued together

along a common boundary as in Fig. 7.3. In that figure we have a closed
manifold M ∪Σ M′ where M and M′ are manifolds with boundary
joined along their common boundary Σ = ∂M = [∂M′]∗. When we
glue together M and M′ we obtain the partition function for the full
manifold as in Eq. 7.1 where we obtain the inner product by summing
over the degrees of freedom of the wavefunction — which in this case
means summing over the quantum numbers a1, . . . , aN of the edges on
the boundaries. In other words, we have

ZTV (M∪Σ M′) = 〈ZTV (M′)|ZTV (M)〉

=
∑

a1,...,aN

[ZTV (M′; ā1, . . . , āN)]
∗ ZTV (M; a1, . . . , aN) (21.5)

=
∑

j1,...,jN

ZTV (M′; a1, . . . , aN ) ZTV (M; a1, . . . , aN ) (21.6)
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where in the second line the edge variables in the first term are inverted
because the surface of M′ has the opposite orientation from the surface
of M. Going from the second to third line is an easy exercise (See
exercise 21.1). The final result is easily see to be the correct expression
for the Turaev-Viro invariant for the full manifold M∪M′. I.e., it now
sums over all the quantum numbers in both bulks and on the common
boundary.
As in section 7.2 on can generalize the idea of a TQFT to include

particle world lines (labeled links) as a well as the space-time manifold
M. As mentioned there we can roughly think of these world lines as
internal boundaries, and we just fix the quantum number of edges along
these hollow tubes to describe different world-line types. (See references
at the end of the chapter)

21.3 Connections to Quantum Gravity
Revisited

The Turaev-Viro invariant is a natural descendant of one of the very
earliest approaches to quantum gravity pioneered by Penrose [1971] and
Ponzano and Regge [1968]. Indeed much of the continued interest in
Turaev-Viro and similar state-sum invariants is due to this relationship.
An interesting approach to macroscopic general relativity, used for

example, in numerical simulation, is to discretize space-time into sim-
plices — tetrahedra in three dimensions or four dimensional simplices
(sometimes known as pentachora) in four dimensions13. The curvature 13It is also possible to discretize space

and leave time continuous. This leaves
some concerns with Lorentz invariance
but may have other advantages. Other
discretization approaches also exist, see
Regge and Williams [2000].

of the space-time manifold (the metric) is then determined by the lengths
assigned to the edges14.

14All of general relativity can be refor-
mulated in this discrete language. This
is known as Regge calculus. See Regge
[1961].

If one then turns to quantum gravity, one wants to follow the Feynman
prescription and perform a sum over all possible metrics as we discussed
previously in section 6.1. We can write a quantum partition function as

Z =

∫
Dg eiSEinstein[g]/~ (21.7)

We can imaging performing such as sum for a discretized system by
integrating over all possible lengths of all possible edges. However, not
all triangle edge length should be allowed — in Euclidean space one
must obey the crucial constraint of the triangle inequality15 15These inequalities must hold even

with a curved spatial metric.

l1

l3
l2 ⇒ |l1 − l2| ≤ l3 ≤ (l1 + l2) (21.8)

The key observation is that the triangle inequality is precisely the same
as the required inequality for regular angular momentum addition

j1 ⊗ j2 = |j1 − j2| ⊕ |j1 − j2|+ 1⊕ . . .⊕ |j1 + j2|. (21.9)

Thus it is natural to label each edge of with a quantum mechanical spin,
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and sum over all possible spins. Such an approach is known as a spin
network. We thus imagine building a Turaev-Viro model (Eq. 21.1) with
a planar diagrammatic algebra built from angular momentum addition
rules: quantum numbers are the angular momenta j, the fusion rules
are as given in Eq. 21.9, and the F -matrices are given by the regular
6j symbols of angular momenta addition16. Such a model turns out to

16Building a diagrammatic algebra
based on a Lie group (SU(2) in this
case) is mentioned in section 20.2.3
above.

be very precisely17 the quantum gravity partition function Eq. 21.7 (up

17Although the idea of spin networks
as a toy model for quantum gravity
goes back to Penrose [1971], and was
pursued further by Ponzano and Regge
[1968], it was only much later that
Hasslacher and Perry [1981] showed a
more precise equivalence of the model
to gravity.

to the fact that one still needs an additional sum over topologies of the
space-time manifold if one wants a full sum over all possible histories)!
As we expect from the discussion in chapter 6, the resulting description
of quantum gravity in 2+1D is a TQFT.
There is, unfortunately, one clear problem with this approach. Be-

cause there are an infinite number of different representations of SU(2)—
i.e., an infinite number of different values for the angular momentum
quantum number j — the partition function sum formally diverges. This
divergence becomes regularized if we find a way to consistently cut off
the sum over angular momenta at some maximum value k. Using the
diagrammatic rules of SU(2)k (the same diagrammatic rules we built up
in chapter 19, see in particular margin note 6) implements this cutoff
and yields a divergence-free result18.

18As we will see in section 22.3.2
below, the Turaev-Viro model built
from the SU(2)k diagrammatic rules
is equivalent to the so-called quantum-

double Chern-Simons theory SU(2)k ⊗
SU(2)−k . As we mentioned in section
6.3 above, such a Chern-Simons the-
ory is equivalent to 2+1D gravity with
a cosmological constant λ = (4π/k)2.
Taking the limit of large k then gives
the classical limit of simple SU(2) an-
gular momentum addition correspond-
ing to a universe with no cosmological
constant. 21.4 Dijkgraaf-Witten Model

Another state sum model of some interest is the so-called Dijkgraaf-
Witten model19 (Dijkgraaf and Witten [1990]). As with Turaev-Viro

19Robbert Dijkgraaf is a very promi-
nent theoretical physicist and string
theorist. His surname is likely to be dif-
ficult to properly pronounce for those
who are not from the Netherlands be-
cause the “g” is a gutteral sound that
only exists in Dutch. However, those
from the south of the Netherlands don’t
use the gutteral “g” and instead pro-
nunce it as Dike-Hraff, which is prob-
ably about the closest most English
speakers will get to the right result.
The word “Dijkgraaf” refers to an oc-
cupation: A Dijkgraaf is the person in
charge of making sure that water stays
in the ocean and does not flood the
cities and the rest of the Netherlands.

this model discretizes space into simplices and sums over possible labels
of all the edges.
In the Dijkgraaf-Witten model we choose a group G and we label

the edges of the simplices with elements from that group. The general
idea is very similar to that of Turaev-Viro just using the multiplication
properties of the group to give us a set of fusion rules as in section 20.1
and we use a 3-cocycle in place of the F -matrix20. These fusion rules

20For the case of an abelian group
Dijkgraaf-Witten is a special case of
Turaev-Viro. However Turaev-Viro
does not consider fusion rules where
g × h = h× g so for nonabelian groups
Dijkgraaf-Witten is not just a special
case of Turaev-Viro. The group need
not be abelian since we only need to
have an algebra that is consistent on a
plane (or sphere) in order to defne its
value on a tetrahedron (see the com-
ments in section 20.1.3).

require that multiplication of the group elements around every triangle
must result in the identity as shown in Fig. 21.6. This is the analog of
Eq. 21.3 where three quantum numbers around a triangle must fuse to
the identity. This condition is known as a “flatness” condition, with the
name coming from lattice gauge theory, which we will see in more detail
in chapter ***.

a

c b ⇒ cba = identity

Fig. 21.6 Multiplying group elements around a triangle in Dijkgraaf-Witten theory
results in the identity. This is known as the “flatness” condition
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As mentioned in section 20.1 when we use group multiplication for
fusion rules, the quantum dimensions21 of all the particles are all da = 21In chapter 20 we considered also the

possibily of da = −1 but this is a gauge
choice. We are always entitled to chose
+1 instead at the cost of possibly losing
isotopy invariance.

1. This means that in Eq. 21.2 both the da factor and the Θ̃ factor
are trivial. We are thus left with only the tetrahedron factor and the
Dijkgraaf-Witten partition function looks like a simplified version of the
Turaev-Viro case in Eqs. 21.1 and 21.2 given by22 22With apologies for using G and G̃ in

the same equation to mean completely
different things!ZDW (M) = |G|−Nv

∑

labelings

∏

tetrahedra

G̃(tetrahedron) (21.10)

where Nv is the number of vertices, |G| is the number of elements in
the group G, and the sum is only over labellings that satisfy the flatness
condition (Fig. 21.6).
The tetrahedral symbol G̃ is a bit more complicated than in the case

of the Turaev-Viro invariant. We do not generally have full tetrahedral
symmetry so it could matter which way we orient the tetrahedron when
we evaluate G̃. In order to define the tetrahedral symbol G̃ properly
we do the following: First we label each vertex in the system with a
unique integer (it will not matter which vertex gets which label!). Given
a tetrahedron with vertices i1, i2, i3, i4 we sort these vertices in ascending
order so that

[j1, j2, j3, j4] = sort[i1, i2, i3, i4] such that j1 < j2 < j3 < j4

we then define

G̃




i1

i2 i3

i4




= ω(gj2,j1 , gj3,j2 , gg4,g3)
s(j1,j2,j3,j4) (21.11)

Here gk,l is the group element on the edge directed from vertex k to
vertex l, and ω is the chosen 3-cocycle. The exponent s(j1, j2, j3, j4) is
either +1 or −1 depending on whether the orientation of the tetrahe-
dron defined by the ordered set of vertices [j1, j2, j3, j4] has the same or
opposite orientation as the manifold we are decomposing23. This pre- 23To find the orientation of a tetrahe-

dron, place j1 closest to you and see if
the triangle [j2, j3, j4] is oriented clock-
wise or counterclockwise.

scription gives a manifold invariant (The Dijkgraaf-Witten invariant) for
any choice of 3-cocycle even if the corresponding diagrammatic algebra
does not have isotopy invariance.

21.4.1 Other Dimensions

An interesting feature of Dijkgraaf-Witten theory is that essentially the
same recipe builds a Dijkgraaf-Witten TQFT in any number of dimen-
sions. One discretizes the D-dimensional manifold into D-dimensional
simplices (segments in 1D, triangles in 2D, tetrahedra in 3D, penta-
chora in 4D) and labels each edge with a group element g ∈ G and
each vertex is assigned an integer label. The flatness condition is al-
ways the same as that shown in Fig. 21.1 — multiplying the group ele-
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ments around a closed loop must give the identity. In D-dimensions we
build the partition function by multiplying a weight for each D-simplex,
where the weight is given now by a so-called D-cocycle24 which we call24I won’t give the most general defini-

tion of cocycle as this takes us too far
afield into group cohomology. However,
as with the 3-cocycle it is simply a func-
tion satisfying a particular cocycle con-
dition. See Eq. 20.1 for the 3D case and
Eq. 21.13 for the 2D case.

ωD(g1, g2, . . . , gD) which is now a function of D arguments. Finally, one
builds a partition function by summing over all possible labelings

ZDW (MD) = |G|−Nv
∑

labelings

∏

D-simplices

ωD(gj2,j1 , . . . , gjD+1,jD )
s(j1,...,jD+1)

(21.12)
As with the 3D case, the arguments of the cocycle gk,l are the group
elements along the edges of the simplex from vertex k to vertex l and
we always write them ordered such that j1 < j2 < . . . < jD. Finally
the exponent s is always ±1 depending on whether the orientation of
simplex described by the ordered set [j1, . . . , jD+1] matches that of the
underlying manifold or not.
As a quick example, let us consider the 2D case. The definition of a

2-cocycle ω2 is any function that satisfies the condition2525The 2-cocycle condition is equiva-
lent to the consistency condition for a
so-called “projective representation” of
the group. For projective representa-
tions we have the multiplication rule
ρ(g)ρ(h) = ω2(g, h)ρ(gh) whereas for
regular group representations we have
ω2 = 1. See section 33.2.4.

ω2(g, h)ω2(gh, k) = ω2(h, k)ω2(g, hk) (21.13)

In the partition function, Eq. 21.12, each triangle gets a weight given by
the cocycle. It is then easy to see that the cocycle condition is precisely
the condition necessary to make the partition function invariant under
the 2-2 Pachner move, as shown in Fig. 21.7. It is not a hard exercise to
demonstrate invariance under the 3-1 Pachner move as well (See exercise
21.3).

01

2 3

h

g

k

(gh)kgh

ω2(gh, k)

ω2(g, h)

=

01

2 3

ω2(h, k)

ω2(g, hk)

h

g

k

g(hk)
hk

Fig. 21.7 Each triangle satisfy the flatness condition Eq. 21.6 meaning multiplying
all three edges in order gives the identity. In the partition function each triangle
gets a weight given by the corresponding cocycle ω2 as written in black text. All
of the triangles in the figure are oriented positively s = +1. The cocycle condition
Eq. 21.13 guarantees that the product of the cocycles on the left equals the product
of the cocycle on the right.

21.4.2 Further Comments

One particularly interesting special case of Dijkgraaf-Witten theory is
the case of the trivial 3-cocycle where ω is always unity. In this case,
the argument of the sum in Eq. 21.10 (or more generally Eq. 21.12) is
just unity so the partition function just counts the number of flat field
configurations (See Fig. 21.6) and then divides by |G|Nv . This partition
function is exactly that of lattice gauge theory, as we will see in chapter
*** below, and the resulting topological quantum field theory is known
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as the quantum double of the group G. The more general case, with
a nontrivial cocycle is correspondingly sometimes known as “twisted”
gauge theory, where the cocycle is thought of as some sort of twist to
the otherwise simple theory.
A further interesting relatioship is that Dijgraaf-Witten theory can

be thought of as result of symmetry breaking an appropriately cho-
sen Chern-Simons theory (See for example Dijkgraaf and Witten [1990],
de Wild Propitius [1995]). One might imagine, for example, breaking a
compact U(1) Chern-Simons gauge theory into a discrete Zn group —
like breaking the symmetry of a circle into an n-sided regular polygon.
The particular cocycle one gets in the resulting Dijkgraaf-Witten theory
depends on the choice of the coefficient (the “level”) of the Chern-Simons
term.
Dijkgraaf-Witten theory has had extensive recent applications within

quantum condensed matter physics where it turns out that a classifica-
tion of so-called symmetry protected topological (SPT) phases is given in
terms of Dijkgraaf-Witten theories. We will briefly discuss SPT phases
in section *** below.

Further Reading

• The Turaev-Viro invariant was introduced in Turaev and Viro
[1992]. Rather interestingly Turaev and Viro were apparently un-
aware of the earlier work by Penrose, Ponzano, Regge and others
when they first discussed these state sums! The work was extended
to include all spherical fusion categories by Barrett and Westbury
[1996]. A recent rather complete discussion, including looking at
the possible world-lines and boundaries is given by in the book
Turaev and Virelizier [2017]. Unfortunately, these references and
many other works in the field are written in rather mathematical
language that is not particularly transparent for most physicists!

• It is worth commenting that the state-sum approach to quantum
gravity has been extended in a multitude of ways, and continues
to be an active area of research. Among the key directions are
extension to 3+1 dimensions (Ooguri [1992] and Crane and Yet-
ter [1993] for example), and extensions to Lorentzian signature
(Barrett and Crane [2000]). A nice general dicussion of discrete
approaches gravity is given by Regge and Williams [2000].

• One very popular extension of the spin-network modes, known as
a spin-foam, is to discretize space but allow the discretization to
change as a function of time. A nice review of this direction is
given by Lorente [2006].



272 Exercises

Exercises

Exercise 21.1 Some More Facts about Turaev-Viro
Consider a manifold M with boundary Σ which has been discretized into

tetrahedra on in the bulk and triangles on the surface. Let the edges on
the surface be labeled by j1, . . . , jN . Assume tha the theory has relflection
symmetry as in Eq. 16.14, show that

[ZTV (M; ā1, . . . , āN )]∗ = ZTV (M; a1, . . . , aN )

And as a result show that for a closed manifold Z(M) is real.

Exercise 21.2 Details of Turaev-Viro
Work carefully through the details of the proof that the Turaev-Viro parti-

tion function is invariant under Pachner moves.

Exercise 21.3 2D Dijkgraaf-Witten
The invariance of the two dimensional Dijkgraaf-Witten partition function

under the 2-2 Pachner move is established in section 21.4.1. Show that the
partition function is also invariant under the 3-1 Pachner move.



Formal Construction of TQFTs
from Diagrams: Surgery and
More Complicated 3-Manifolds1 22

Medium Hard Material

1Although this chapter is super inter-
esting and fun, physicists can probably
skip it on a first reading.

Having constructed diagrammatic algebras in 2+1 dimension2, we have

2I.e., including braiding again, which
we did not need to define the TQFTs
in chapter 21.

almost all we need to define a TQFT based on these diagrams. As dis-
cussed in section 14.3 our diagrammatic algebra which gave us a way
to evaluate a partition function Z(labeled link in S3)/Z(S3), or equiva-
lently Z(labeled link in S2×S1) with the caveat that no link goes around
the handle of S1. However, a TQFT should be able to evaluate a parti-
tion function in any arbitrary manifold M. Indeed, in the simplest case
we might dispense with the labeled link and want to find a partition
function of the manifold M alone.
In this chapter we develop a prescription for handling more compli-

cated manifolds. One important thing this will achieve will be to give a
formal definition to Chern-Simons theory, which we like to think of as
being defined as some sort of functional integral, but as pointed out in
section 5.3.4 is not really well defined in that language as such integrals
do not actually converge.
The way we will handle more complicated manifolds is by sewing

pieces of manifolds together with a procedure known as surgery.

22.1 Surgery

In chapter 7 we saw two examples of assembling manifolds by gluing
together pieces. We found that we could assemble together two solid
tori (D2 × S1) into either S3 or S2 × S1 depending on how we glue
together the S1×S1 surfaces. (In fact, one can consider gluing together
the surfaces in yet other ways to get even more interesting results3, but 3See for example the discussion in sec-

tion 7.4 as well as Rolfson [1976] for ex-
ample.

we will not need that for the moment). We would like to use this sort
of trick to study much more complicated three dimensional manifolds.
The understanding of three dimensional manifolds is a very rich and

beautiful problem4. In order to describe complicated manifolds it is
useful to think in terms of so-called surgery. Similar to what we were

4Many important results on three dimensional manifolds have been discovered recently. Perelman’s5 proof of the Poincaré
Conjecture, along with the methods he used are apparently extremely revolutionary and powerful. But this is way outside the
scope of our book!
5Grigori Perelman is a brilliant, but startlingly puzzling character. He famously declined the million dollar Millenium Prize
offered to him for proving the Poincaré conjecture in three dimensions. He turned down the Fields Medal as well.
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= ∪
S1 ∪ S1
( )∪

S2 = [S2 − (D2 ∪D2)] (D2 ∪D2)∪
S1 ∪ S1

Fig. 22.1 Writing a sphere M = S2 as the union of two manifolds glued along their

boundaries. M2 is the union of two disks D2 ∪ D2. M1 = S2 − (D2 ∪ D2) is the
remainder. The two manifolds are glued along their common boundary S1 ∪ S1.

discussing in section 7.3 — assembling a manifold by gluing pieces to-
gether — the idea of surgery is that we remove a part of a manifold and
we glue back in something different. Imagine replacing someone’s foot
with a hand!6 By using successive surgeries we will be able to construct6Prehensile toes could be useful I sup-

pose! any three-dimensional manifold7.
7We will only be concerned with ori-
entable manifolds

The general scheme of surgery is to first write a manifold as the union
of two manifolds-with-boundary sewed along their common boundaries.
If we have a closed manifold M that we would like to alter, we first split
it into two pieces M1 and M2 such that they are sewed together along
their common boundary ∂M1 = ∂M∗

2. So we have

M = M1 ∪∂M1
M2

We then find another manifold with boundary M′
2 whose boundary

matches M2, i.e,
∂M2 = ∂M′

2

We can then replace M2 with M′
2, to construct a new closed manifold

M′ as
M′ = M1 ∪∂M1

M′
2

We say that we have performed surgery on M to obtain M′. In other
words, we have simply thrown out the M2 part of the manifold and
replaced it with M′

2.

22.1.1 Simple Example of Surgery on a 2-manifold

To give an example of surgery consider the sphere M = S2 as shown
in Fig. 22.1. Here we write the sphere as the union of two disks M2 =
D2 ∪D2 and the remainder of the sphere M1 = S2 − (D2 ∪D2). These
are glued along their common boundary S1 ∪ S1.
Now we ask the question of what other 2-manifolds have the same

boundary S1 ∪ S1. There is a very obvious one, the cylinder surface!
Let us choose the cylinder surface M′

2 = S1 × I where I is the interval
(or D1). It also has boundary ∂M′

2 = S1 ∪ S1 as shown in Fig. 22.2.
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∪∪∂ = ∂( ) =

∂(S1 × I) = ∂(D2 ∪D2) = S1 ∪ S1

Fig. 22.2 The boundaries of the cylinder surface is the same as the boundary of
the two disks. Both boundaries are two circles. This means that we can remove two
disks from a manifold and sew in the cylinder.

Thus we can sew the cylinder surface in place where we removed
M2 = D2 ∪ D2, as shown in Fig. 22.3. The resulting manifold M′

is the torus T 2

∪
S1 ∪ S1

=

[S2 − (D2 ∪D2)] ∪ [S1 × I] = T 2

S1 ∪ S1

Fig. 22.3 Gluing the cylinder surface M′
2 = S1 × I to the manifold M1 = S2 −

(D2 ∪D2) along their common boundary S1 ∪ S1 gives the torus T 2. Note that the
object on the right is topologically a torus.

Thus we have surgered a sphere and turned it into a torus. Note
that there is another way to think of this procedure. If M = ∂N then
surgery on M is the same as attaching a handle to N . In the case we
just considered we would take N = B3 the 3-ball (sometimes denoted
D3), and we attach a handle D2 × I, the solid cylinder. We obtain the
new manifold N ′ which is the solid torus, whose boundary is T 2 the
torus surface. This is written out in the diagram Fig. 22.4

N = B3 ∂N = M = S2

↓ Add Handle ↓ Surgery

Solid Torus ∂(Solid Torus) = T 2

Fig. 22.4 Handle attaching on the manifold N is the same as surgery on a manifold
M = ∂N .
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22.1.2 Surgery on 3-manifolds

We can also perform surgery on three-dimensional manifolds8. Start8This is the part that is guaranteed to
make your head explode. with a simple closed 3-manifold M, such as S3 (or, even simpler to

think about, consider M = R3 and let us not worry about the point at
infinity). Now consider a solid torus

M2 = D2 × S1

embedded in this manifold. The surface ∂M2 = S1×S1 = T 2 is a torus
surface. Now, there is another solid torus with exactly the same surface:

M′
2 = S1 ×D2

These two solid tori differ in that they have opposite circles filled in.
Both have the same S1 × S1 surface, but M2 has the first S1 filled in
whereas M′

2 has the second S1 filled in.
The idea of surgery is to remove M2 and replace it with M′

2 to gener-
ate a new manifold M′ with no boundary9. The reason this is difficult9Stop here, think about what we have

done. Collect the pieces of your ex-
ploded head.

to visualize is because if we start with a very simple space like M = R3

the new structure M′ is not embeddable within the original manifold
M.
This procedure, torus surgery on a 3-manifold,is called Dehn surgery.

Another way to describe what we have done is that we have removed
a solid torus, switched the meridian and longitude (switched the filled-
contractable and the unfilled-uncontractable) and then glued it back in.
In fact, one can make more complicated transformations on the torus
before gluing it back in (and it is still called Dehn surgery, see section
7.4) but we will not need this.
It is worth noting that the solid torus we removed could be embedded

in a very complicated way within the original manifold — i.e, it could
follow a complicated, even knotted, path, as in the figure on the right
of Fig. 7.10. As long as we have a closed loop S1 (possibly following a
complicated path) and it is thickened to D2 in the direction transverse
to the S1 path, it is still a solid-torus topologically.

22.2 Representing Manifolds with Knots

22.2.1 Lickorish-Wallace Theorem

An important theorem10 of topology is due to Lickorish [1962] and Wal-10In Witten’s groundbreaking paper on
the Jones polynomial (Witten [1989]),
he states the theorem without citation
and just says “It is a not too deep re-
sult. . . ”. Ha!

lace [1960].

Theorem: Starting with S3 one can obtain any closed connected
orientable 3-manifold by performing successive torus surgeries, where
these tori may be nontrivially embedded in the manifold (i.e., they may
folllow some knotted path).

One has the following procedure. We start with a link (some knot
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possibly of several strands), embedded in S3. Thicken each line to a
solid torus. Excise each of these solid tori, and replace them by tori
with longitude and meridian switched11. Any possible 3-manifold can

11See also section 7.4.

be obtained in this way by surgering an appropriately chosen link. We
summarize with the mapping

Link in S3 surger−→ Some M3 (22.1)

We can thus represent any three dimensional manifold as a link in
S3. If we think of a topological quantum field theory as being a way to
assign a complex number to a three dimensional manifold, i.e., Z(M) we
realize that what we are now looking for is essentially a knot invariant
— a way to assign a number to a knot. We exploit this connection
further when we discuss the Witten-Reshitikhin-Turaev invariant below
in section 22.3.

22.2.2 Kirby Calculus

It turns out that not all topologically different links, when surgered, give
topologically different manifolds. Fortunately, the rules for which knots
give the same manifolds have been worked out by Kirby [1978]. These
rules, known as Kirby calculus, are stated as a set of transformation
moves on a link which change the link, but leave the resulting manifold
unchanged. There are several different sets of moves that can be taken
as “elementary” moves which can be combined together to make more
complicated transformations. Perhaps the simplest set of two elementary
basic moves are known as Kirby moves which we will present here12. We

12If one does not start with the knot

embedded in S3, one may need a third
move known as “circumcision”. This
says that if any string loops only once
around another string (without twist-
ing around itself and without loop-
ing around anything else), both strings
may be removed. I.e., in Fig. 22.5, both
strings may be removed (independent
of how the string going off to the left
forms any knot).

will not rigorously prove that these moves leave the manifold unchanged,
but we will give rough arguments instead.

Fig. 22.5 A circumcision. Both
strings can be removed. This is a third
Kirby move which is implied by the first
two if you start with a link embedded
in S3 but is more generally an indepen-
dent move that is required. See for ex-
ample Roberts [1997].

Kirby Move 1: Blow Up/ Blow Down:13
13The nomenclature is obscure when
discussing 3-manifolds, but makes sense
when one discusses 4-manifolds. See
any of the books on 4-manifold topol-
ogy listed at the end of the chapter.

One can add or remove a loop with a single twist, as shown in Fig. 22.6,
to a link and the manifold resulting after surgery remains unchanged.

Addition or Removal of

or

Fig. 22.6 Blow up/ Blow down. Addition or removal of an unlinked loop with a
single twist leaves the 3-manifold represented by surgery on the knot unchanged.

Argument: First let us be a bit more precise about the surgery
prescription. Given a link, we think of this link as being a ribbon (usually
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we draw it with blackboard framing, see section 16). Thicken each strand
into a solid torus, and draw a line around the surface of this torus that
follows one of the edges of the ribbon. Remove this solid torus, but the
torus surface that remains still has the line drawn around it. Reattach
a new solid torus where the new meridian (the circle surrounding the
contractable direction) follows precisely this line.

Fig. 22.7 A line that wraps both the
longitude and meridian of the torus. If
we thicken the knot shown in Fig. 22.6
to a torus and draw a line around
the longitude of the torus, then try to
straighten the torus out to remove the
twist, the straight line ends up looking
like this.

Now consider a twisted loop as in Fig. 22.6 embedded in S3. As shown
in Fig. 2.7 a string with a small twist loop as in Fig. 22.6 can be thought
of as a ribbon with a twist (but no loop) in it. Let us use this description
instead. Thicken the loop to a torus, and then the ribbon traces out a
line as shown in Fig. 22.7 on the torus surface. We remove the solid torus
and insert a new torus where the meridian follows the twisted line on the
surface of the hole that is left behind. This is exactly the construction
of L(1, 1) = S3 described in 7.4 above (it is (1, 1) since the blue line goes
around each handle once), thus showing an example of how surgery on
the twisted loops in Fig. 22.6 does nothing to the manifold.

Kirby Move 2: Handle-Slide:14
14The nomenclature “handle slide”
comes from an interpretation of this
move as sliding handles around on a
manifold. Consider the example used
in section 22.1.1 where we attached a
handle to a ball and obtained a solid
torus. We could also attach two han-
dles and get a two-handled solid torus.
Here it doesn’t matter where the han-
dles are attached to the sphere – they
can be slid around. Indeed, they can
even be slid over each other (where one
handle attaches to some point on the
other handle). It is the sliding of a han-
dle over another handle which gives this
move its name.

A string can be broken open and pulled along the full path of another
string, and then reconnected, and the resulting manifold remains un-
changed. See Fig. 22.8 or 22.9.

↔

Fig. 22.8 A handle-slide move. (See Fig. 22.9 for another example.) Both left and
right sides of this picture represent the same 3-manifold after surgery. Note that we
should always view both strings as ribbons, and we need to keep track of how many
self-twists the ribbon accumulates when it is slid over another string.

Argument: Consider the simple handle-slide shown in Fig. 22.9. Let
us think about what happens when we surger the horizontal loop. First
we thicken the horizontal loop into a torus (as shown), then we exchange
the contractable and non-contractable directions. In this procedure, the
longitudinal direction (The long direction) of the torus is made into
something contractable. This means (after surgery) we can pull the far
left vertical line through this torus without touching the three vertical
blue lines. Thus the right and left pictures must describe the same man-
ifold. While it is a bit harder to argue generally, this principle remains
true even if the torus is embedded in the manifold in a complicated way,
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↔

Fig. 22.9 An example of a simple handle-slide move.

as in Fig. 22.8.

Two links in S3 describe the same 3-manifold if and only if one link
can be turned into the other by a sequence of these Kirby moves as well
as any smooth deformation of links (i.e., regular isotopy). Note that
if we have two disconnected links L1 and L2 which surgered give two
manifolds M1 and M2 respectively,

L1
surger−→ M1

L2
surger−→ M1

then if we consider a link L1 ∪ L2 which is the disconnected union of
the two links (i..e, the two links totally seperated from each other) it is
fairly easy to see that we obtain the so-called connected sum15 of the 15To form a connected sum of two d-

dimensional manifolds, one deletes a
small d-dimensional ball in each of the
manifolds and sews together the two
boundry spheres. For example in two
dimensions the connected sum of two
two-dimensional torus surfaces is a two-
handled torus surface:

T 2 #T 2 = two handle torus

.

two manifolds which we write as follows:

L1 ∪ L2
surger−→ M1#M2

22.3 Witten-Reshitikhin-Turaev Invariant

By using the ideas of surgery, we are now in a position to use our dia-
grammatic algebra to handle complicated manifolds. Recall that one of
the definitions of a TQFT is a mapping from a manifold M to a complex
number Z(M) in a way that depends only on the topology of the mani-
fold (for example, Eq. 5.16 or Fig. 7.1 but without the embedded link).
By using surgery (Eq. 22.1) we can describe our manifolds as links in
S3. If we can then find a link invariant that is unchanged under Kirby
moves, we will effectively have something we can use as a manifold in-
variant. Thus we are now looking to construct a link invariant, and our
diagrammatic algebra will provide exactly what we need!
We want to have a link invariant which is fully isotopy invariant (since

Kirby calculus is isotopy invariant). In the simplest case let us assume
we have no negative Frobenius-Schur indicators16 so we can take all
da = da positive and we have a fully isotopy invariant diagram algebra
for links (as discussed in section 14.3).
The key to this construction is to consider a link of the Ω (Kirby)
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strands discussed above in section 17.5.
This link made of Ω is represents the link to be surgered, and thus rep-

resents our manifold. Let us now consider a manifold invariant defined
as

ZWRT (M) =
1

D
[
e2πic/8

]σ ( Evaluate link made of Ω-strands where
surgery on link in S3 gives M

)

(22.2)

where σ is the so-called signature of the link, defined to be the number
of positive eigenvalues minus the number of negative eigenvalues of the
matrix of linking numbers linkij between the (possibly multiple) strands
of the link (The diagonal element linkii is just the self-linking or writhe
of strand i. See section 2.6.2 for definition of linking number17).17Note that to calculate a linking ma-

trix, we must orient all of the strands
(i.e., put arrows on them). It does not
matter which way these arrows point.

It is not so obvious that the definition in Eq. 22.2 should provide a
manifold invariant. What we would need to show is that ZWRT (M)
gives the same output for any link that describes the same M. In ther
words we have to show that the expression on the right hand side of
Eq. 22.2 is unchanged when we make Kirby moves on the link.
Let us consider the first Kirby move, the addition of a twisted loop

as in Fig. 22.6. Using Fig. 17.9, the adding such a twisted loop mul-
tiplies the value of the link (the final term in Eq. 22.2) by e±2πic/8 (±
depending on which way the loop is twisted). However, the addition of
the twisted loop also changes the signature of the link σ by ∓1 thus pre-
cisely canceling this factor. Thus the expression in Eq. 22.2 is certainly
unchanged under the first Kirby move18, the Blow-Up/Blow-Down.18The killing property of Fig. 17.7 also

makes Eq. 22.2 invariant under the
third Kirby move, Fig. 22.5.

We now turn to the second Kirby move. Here we show a rather re-
markable property of the Ω-strand — it is invariant under handle slides!
(up to phases which are properly corrected by the prefactor of Eq. 22.2).
The derivation of this result is given in Fig. 22.10. One must be a bit cau-
tious in applying this handleslide law, as the strand being slid (say the
left strand in Fig. 22.10) can develop self-twists if it slides over a strand
(say the right, Ω-strand in Fig. 22.10) which itself has twists. However,
the phase prefactor of Eq. 22.2 is designed to precisely account for this.
Thus Eq. 22.2 is unchanged under Kirby moves and therefore gives an
invariant of the manifold.
The manifold invariant Eq. 22.2 is known as the Witten-Reshetikhin-

Turaev invariant, and was invented by Reshetikhin and Turaev [1991].
The reason it also gets named after Witten is that it gives a rigorous re-
definition of the Chern-Simons manifold invariants (Eq. 5.16) discussed
byWitten [1989]. This is a rather important result being that the Chern-
Simons functional integral is not well defined as an integral! (See the
comments in section 5.3.4)19.

19We mention in section 5.3.4 that
the Chern-Simons partition function,
among other reasons for being ill-
defined, actually depends on a so-
called 2-framing of the manifold.
The Reshitikhin-Turaev invariant cor-
responds to choosing so-called canoni-

cal framing. This is discussed in depth
by Atiyah [1990b]; Kirby and Melvin
[1999].

16In the more general case where we have negative Frobenius-Schur indicators, we can use the scheme of section 14.5 to insure
isotopy invarience. It is also possible to work work with negative da’s as discussed in section 14.2.1 and not apply rule 0.
In many discussions of Reshitikhin-Turaev invariant, this is essentially what is done. Note that in this case the Kirby color
Fig. 17.6 is then defined with da/D rather than da/D. The identities of Fig. 17.7 and 17.9 still hold.
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a Ω
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∑
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a b
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Fig. 22.10 Proof that the Ω strand satisfies the handle-slide. Here we show that any strand a can freely slide over
the Ω strand in the sense of Fig. 22.8. The Ω strand on the right is meant to be connected up to itself in some way
in a big (potentially knotted or linked) loop which we don’t draw. In going from the first to the second line, and also
in going from the second to the third line we have used the completness relation Eq. 16.8. The equality in the second
line is just sliding the vertex from the top (where a and b split from c) all the way around the b strand on the right
until it almost reaches the bottom a, b, c vertex. Note that if there are fusion multiplicites Nc

ab > 1 then there are
additional sums over the vertex variables µ as in Eq. 16.24. However, this does not alter the result.

Note the multipication law for connected sums of manifolds

ZWRT (M1#M2) =
ZWRT (M1)ZWRT (M2)

D (22.3)

This multiplication law is from the fact that surgery on disjoint union of
links gives a connect sum of manifolds (Eq. 22.2) and the evaluation of
the disjoint union of links gives the product of the individual evaluation
of the two links20. 20Note that some references redefine

ZWRT without the factor of 1/D
out front such that Z(M1#M2) =
Z(M1)Z(M2) instead.

Further one can extend these manifold invariants to give a topological
invariant partition function of a labeled link within a manifold as in
Fig. 7.1 (this was one of our general definitions of what we expected
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from a TQFT). To make this extension we simply define

ZWRT (M; labeled link) =
1

D
[
e2πic/8

]σ




Evaluate link made of(
Ω-strands where

surgery on link in S3 gives M
∪ labeled link

)




In other words, we simply include the labeled link into the diagram to
be evaluated.
Without ever saying the words “path integral” or “Chern-Simons ac-

tion” we think of an anyon theory as simply a way to turn a link of
labeled world lines into a number (like evaluating a knot invariant, but
with rules for labeled links), and surgery on Ω strands allows us to rep-
resent complicated manifolds.

22.3.1 Some examples

It is worth working through a few examples of calculating the Witten-
Reshitikhin-Turaev Invariant for a few simple manifolds.
For M = S3, we don’t need to surger the manifold at all, so don’t

need any Ω link at all. The value of the (empty) link is normalized to
unity and including the prefactor in Eq. 22.2 (with signature zero) we
obtain

ZWRT (S
3) = 1/D

which matches our expectations given Eqs. 17.11 and 7.7.
For M = S2 × S1 we need to surger a single loop in S3 to obtain

S2 × S1 (See exercise 22.1). Thus we need to evaluate a single loop of
Ω string. It is an easy calculation to evaluate a loop of Ω

=
∑

a

da
D a =

∑

a

d2a
D = D (22.4)

Thus including the prefactor in Eq. 22.2 (the signature of the link is
zero) we obtain

ZWRT (S
2 × S1) = 1

which is in agreement with Eq. 7.8.

Fig. 22.11 Borromean Rings. Cutting
any one strand disconnects the other
two. Surgery on this link in S3 creates
the three-torus S1 × S1 × S1.

Finally let us consider the three-torus manifold M = S1 × S1 × S1 =
T 2 × S1 = T 3. First, we note that surgery on the Borromean rings21

(Fig. 22.11) yields the three torus (See exercise 22.3). To evaluate
the link we use the corroloary of the killing property of the Ω strand,

21The rings are named for the crest of the royal Borromeo family of Italy, who rose
to fame in the fourteenth century. However the knot (in the form of three linking
triangles) was popular among Scandinavian runestones five hundred years earlier and
were known as “Walknot” or “Valknut”, or “the knot of the slain.”
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Fig. 17.8 to show (See exercise 22.4.)

ZWRT (T
3) = number of particle species (22.5)

which matches the prediction from Eq. 7.3 along with Eq. 7.5.

22.3.2 Turaev-Viro Revisited: Chain-Mail and the
Turaev-Walker-Roberts Theorem

Using the ideas of surgery Roberts [1995] produced a beautiful geometric
proof of the Turaev-Walker theorem (Turaev [1992, 1994]; Walker [1991])
which relates the Turaev-Viro invariant to the Chern-Simons (Witten-
Reshitikhin-Turaev) invariant of a manifold. The result is, given a mod-
ular tensor category (a modular anyon theory) we have

ZTV (M) = |ZWRT (M)|2 (22.6)

We will not give the full proof here, only the general idea.
First we will require one more minor collorary. Similar to Fig. 17.8

we have the identity shown in Fig. 22.12 (See exercise 22.6).

ba c

Ω =
D

Θ(a, b, c)

a b c

a b c

Fig. 22.12 The Ω strand fuses three lines due to the killing property. Here we
have assumed an isotopy invarient theory as discussed in chapter 16, so we can draw
vertices with all three lines pointing in the same direction so a, b, c fuse together to
the identity.

We now want to construct a link of Ω strands which evaluates to
the same value as the Turaev-Viro invariant discussed in chapter 21.
Recall that to define the Turaev-Viro invariant, we first make a simplicial
decomposition of the manifold, breaking it up into tetrahedra, we label
each edge, and we sum a certain weight over all possible labelings as
given in Eq. 21.1.
Given our simplicial decomposition here we will instead construct a

link of Ω strands via the following procedure: Put one loop of Ω following
the edges of each triangular face (colored gold in Fig. 22.13), and one
loop of Ω around the waist of each edge (colored purple in Fig. 22.13) in
such a way that the two types of strands link with each other. Such a
link is known as chain-mail22 . We then define the so-called chain-mail

22When I have given talks on this
subject I have been surprised to dis-
cover that many people don’t know that
chainmail is a medieval type of armor
made of linked metal loops. Of course
those who had misspent youth play-
ing Dungeon’s and Dragons, or reading
the Lord of the Rings are very familiar
with the concept and can tell you why
Mithril is the best type of chainmail.

invariant of the manifold M as

CH(M) = D−Nv−Ntet
(

Evaluate Chain-Mail Link of Ω strands
for simplicial decomposition of M

)

(22.7)
where Nv is the number of vertices in the simplicial decomposition and
Ntet is the number of tetrahedra23.

23More generally the chain-mail link
can be defined for any handlebody de-

composition of the manifold where Ω
loops are put around 1-handles and 2-
handles and Nv is then the 0-cells and
Ntet is the 3-cells.
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First, it is extremely easy to prove that the chain-mail invariant is
independent of the particular simplicial decomposition (and hence is a
manifold invariant as claimed). We need only show that it is unchanged
under the Pachner moves (Fig. 21.4 and 21.5). This can be done entirely
geometrically using only the killing property (Fig. 17.8) and the handle-
slide property (Fig. 22.13) of the Ω strand (this is exercise 22.7).
Moreover, it is not hard to show that the chain-mail invariant is actu-

ally equal to the Turaev-Viro invariant. To do this we directly evaluate
the chain-mail link. We start by using idenity 22.12 on each Ω strand
attached to each face (those drawn as gold in Fig. 22.13). This generates
a factor of D/Θ(a, b, c) for each face. The remaining Ω strands (purple
in Fig. 22.13) are decomposed into sums of all quantum numbers as per
the definition of Ω in Fig. 17.6 each weighted by da/D. This leaves
one tetrahedron of particle strings per simplex as shown on the right
of Fig. 22.13. (Note that the remaining tetrahedron of strings to be
evaluated is a tetrahedral diagram dual to the original tetrahedron, in
agreement with the discussion below Eq. 21.4).

⇒ =
∏

faces

D
Θ(face)

∏

edges

∑

da

da
D

a

a

b

b

c

c

Fig. 22.13 The chain-mail invariant is equivalent to Turaev-Viro. We start with a simplicial decomposition on the
left. To form the chain-mail link we put one Ω-loop around each triangular face (gold in the figure) and one Ω loop
around each edge (purple in the figure) such that the gold and purple are linked. Let the gold loops “kill” the three
purple strands that go through them using Fig. 22.12 to leave only tetrahedra (blue on the right) dual to the original
tetrahedra.

Putting together the factors we have obtained leaves us with the chain-
mail invariant (including the prefactor in the definition) being given by

CH(M) =
DNf

DNv+Ne+Ntet

∑

edge labels

∏
tetrahedra G̃(tetrahedron)

∏
edges dedge∏

triangles Θ̃(triangle)

with Nv, Ne, Nf , Ntet being the number of vertices, edges, faces (trian-
gles), and tetrahedra respectively. Finally using the well-known topolog-
ical fact that in three dimensions, the Euler characteristic Ntet −Nf +
Ne − Nv is zero, the factors of D are reassembeled to give exactly the
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definition of the Turaev-Viro invariant Eq. 21.1 thus deriving

CH(M) = ZTV (M)

Finally we turn to briefly discuss the derivation of the Turaev-Walker
theorem Eq. 22.6. The key to this derivation is the fact24 that if one 24This key fact is not too hard to

prove — it requires only about two
paragraphs in the original workRoberts
[1995]. However, it requires some
knowledge of handlebody theory, so we
will not discuss it here.

uses a particularly simple decomposition of the manifold, surgery on the
chain-mail link generates the connected sum of the original manifold M
and its mirror image M

Chain-mail link for M surger→ M#M (22.8)

Evaluating the chain-mail link is therefore essentially equivalent to eval-
uating ZWRT (M#M)
Using the equivalence between chain-mail and the Turaev-Viro invari-

ant we thus have (Eq. 22.3)

ZTV (M) ∼ ZWRT (M#M) ∼ ZWRT (M)ZWRT (M) ∼ |ZWRT (M)|2

We have written this equation with ∼ rather than an equality because
we have dropped factors of D. To get these right we have to know more
details about the particular decomposition of the manifold for which
Eq. 22.8 holds so that we can keep track of the factors of D in the
definition of the chain-mail invariant (Eq. 22.7). Keeping track of these
factors carefully one obtains the desired Eq. 22.6.

Further Reading

Reshetikhin and Turaev [1991]; Lickorish [1993]; Witten [1989].
For more detailed discussion of Surgery and Kirby Calculus, as well

as a nice discussion of manifold invariants, see Prasolov and Sossinsky
[1996]
Roberts/Blanchet refinement.
Mention Crane-Yetter
The following references are standards for Surgery and Kirby Calculus,

although they emphasize four dimensional topology. Gompf and Stipsicz
[1999]; Kirby [1989]; Akbulut [2016].

Exercises

Exercise 22.1 Surgery on a Loop
Beginning with the three-sphere S3, consider the so-called “unknot” (a sim-

ple unknotted circle S1 with no twists) embedded in this S3. Thicken the circle
into a solid torus (S1×D2) which has boundary S1×S1. Now perform surgery
on this torus by excising the solid torus from the manifold S3 and replacing
it with another solid torus that has the longitude and meridian switched. I.e.,
replace S1 ×D2 with D2 × S1. Note that both of the two solid tori have the
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same boundary S1 ×S1 so that the new torus can be smoothly sewed back in
where the old one was removed. What is the new manifold you obtain? (This
should be easy because it is in the book!).

Exercise 22.2 Surgery on the Hopf Link [Not hard if you think about it
right!]

Fig. 22.14 A Hopf Link

Consider two linked rings, known as the Hopf link (See Fig. 22.14). Consider
starting with S3 and embedding the Hopf link within the S3 with “blackboard
framing” (i.e., don’t introduce any additional twists when you embed it).
Thicken both strands into solid tori and perform surgery on each of the two
links exactly as we did above. Argue that the resulting manifold is S3.

Exercise 22.3 Surgery on the Borromean Rings [Hard]
Consider the link shown in Fig. 22.11 known as the Borromean rings. Con-

sider starting with S3 and embedding the Borromean rings within the S3 with
“blackboard framing”. Thicken all three strands into solid tori and perform
surgery on each of the three links exactly as we did in the previous two prob-
lems. Show that one gets the three torus as a resul. Hint 1: Think about
the group of topologically different loops through the manifold starting and
ending at the same point, the so-called “fundamental group” or first homotopy
group. (See section 33.3). Hint 2: If we say a path around the meridian of one
of the three Borromean rings (i.e., threading though the loop) is called a and
the path around the meridian of the second ring is called b, then notice that
the third ring is topologiclly equivalent to aba−1b−1. Hint 3: In some cases
the fundamental group completely defines the manifold! (Don’t try to prove
this, just accept this as true in this particular case.)

Exercise 22.4 Evaluation of Borromean Ring Ω-Link
Use Fig. 17.8 to evaluate the Ω-link of Borromean rings shown in Fig. 22.11.

Use this to establish Eq. 22.5. Note that the signature of the link is zero.

Exercise 22.5 Product of Blow Up and Blow Down
Use the handle-slide and the killing property of Ω to prove that the diagram

made of two oppositely twisted Ω loops, as shown in Fig. 22.15, gives the
identity.

ΩΩ

Fig. 22.15 The product of these two
oppositely twisted Ω loops gives the
identity.

Exercise 22.6 Killing Three Strands with Ω
Prove the relationship shown in Fig. 22.12.

Exercise 22.7 Pachner Moves and the Chain-Mail Invariant
Using killing moves (Fig. 17.8) and handle-slides (Fig. 22.15) show that the

chain mail invariant Eq. 22.7 is unchanged under Pacher moves (Fig. 21.4 and
21.5). The answer is given by Roberts [1995], but it is a fun exercise. Looking
up the answer spoils the fun!



Anyon Condensation 23
Medium Easy Material

A physical mechanism that is very commonly discussed (in one language
or another) is the idea of anyon condensation. The idea is modeled on
the notion of conventional Bose-Einstein condensation. Under certain
conditions one can imagine anyons forming a superfluid state, akin to a
Bose-Einstein condensate. One can imagine making a condensate form
either by continuously reducing the temperature with a fixed Hamilto-
nian, or by continuously changing the Hamiltonian at fixed (perhaps
zero) temperature1. If one begins with a consistent anyon theory before 1A phase transition that occurs at zero

temperature as some parameter of the
Hamiltonian is changed is often known
as a “quantum phase transition”.

the condensation, the system after the condensation will also be a con-
sistent anyon theory, which we call the condensed theory2. It is believed

2It is sometimes possible that the con-
densed theory is a trivial theory —
having only the vacuum particle type,
and zero central charge. We should
think of that as just being an uninter-
esting insulator. Strictly speaking this
is a TQFT, just a very trivial one.

that all continuous phase transitions that can occur between different
anyon theories can be described in terms of anyon condensation3.

3First order, or discontinuous, phase
transitions can always occur between
any two phases of matter.

There is a very detailed theory of anyon condensation, worked out by
Bais and Slingerland [2009] and others (see references at end of chapter).
Here we will give an abbreviated discussion, along with a few explicit
examples.
Let us review some aspects of Bose condensation (See Leggett [2006]

or Annette [2004] for much more information about the physics of super-
fluids and condensates). Recall that in a Bose condensate a macroscopic
number of the particles reside in one special lowest-energy single-particle
eigenstate which we call the condensate wavefunction. For a uniform sys-
tem (say with periodic boundary conditions) the wavefunction for this
single particle eigenstate is just a constant

ψ(r) =
1√
V

(23.1)

with V the volume of the system. It is crucial that bosons accumulate
no phase or sign when they are braided around each other or exchanged
with each other. If they were to accumulate any phase or sign, this
would prevent them from remaining in the eigenstate Eq. 23.1 which is
everywhere real and positive. This gives us:

Principle 1: Bosons must experience no net phase or sign
when they move around then comes back to the same con-
figuration — i.e., when bosons exchange or braid with other
particles in the condensate.

Indeed, accumulating no sign when exchanging with other identical
particles is the very definition of a boson4.

4It is possible that the condensate
wavefunction has a spatial structure
such as eiφ(r), which happens when
there is, say, a vortex within the con-
densate. What is crucial is that when
bosons move around within the conden-
sate, when they get back to the same
many-particle configuration the phase
is the same as when they started.

With interacting bosons, one does not strictly have Bose condensation
(not all of the bosons occupy the same single particle eigenstate, since
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interactions kick the particles out of this eigenstate). Nonetheless, in-
teracting bosons can condense to form superfluids which share many of
the properties of Bose condensates. In particular, one still has the idea
of a condensate wavefunction (or order parameter), and in order to form
a condensate, no phase or sign must be accumulated when the particles
exchange and braid.
To describe a condensate wavefunction (or order parameter) micro-

scopically, one writes55For systems with strictly fixed to-
tal number of particles this expecta-
tion would be zero and one instead
looks at 〈ψ̂†(r)ψ̂(r′)〉 in the limit of
r very far from r′. This is known as
“Off-Diagonal Long Ranged Order” or
ODLRO.

φ(r) = 〈ψ̂(r)〉
where ψ̂(r) is the (second quantized) operator which annihilates a parti-
cle at position r. For noninteracting bosons, where many bosons are in
the single particle wavefunction Eq 23.1, we obtain |φ|2 = N0/V where
N0 is the number of bosons in the single eigenstate.
The fact that this order parameter is (at least locally) number noncon-

serving (it destroys a particle) gives us the second important principle

Principle 2: Bosons can be freely absorbed by, or emitted
from, the condensate.

23.1 Condensing Simple Current Bosons

We now would like to generalize the idea of Bose condensation to anyon
theories. For simplicity we are going to restrict our attention to bosons
that are also simple currents.6 To remind the reader, a particle, let us6In the language of of conformal field

theory, condensation of a simple cur-
rent is known as “extension of the chiral
algebra.”

call it J , is a simple current if N c
Ja = 0 or 1 for all particle types a and

c. This condition is equivalent7 to the statement that JN = I for some

7This condition is also equivalent to
either of the following also equivalent
statements:

(a) J × J̄ = I.

(b) dJ = 1

integer N where I is the identity (where JN here means N factors of J
fused together).
For a particle J to condense, it must be a boson. This means that it

must have trivial braiding with itself.

RJ,JJ×J = 1

or equivalently a trivial spin factor (See Eq. 15.1)

θJ = 1

which is what we expect for a boson. This condition implements the
above Principle 1: the boson must not experience a nontrivial phase
as it exchanges with another particle as this would prevent a condensate
wavefunction from forming.
Within the condensate, bosons may fuse with each other to form par-

ticles Jp for any value of p. It is not hard to show that all such resulting
particle types must also be bosons θJp = 1 and further, they all must
braid trivially with each other (See exercise 23.1).
While one can condense bosons that are not simple currents (See ref-

erences at the end of the chapter), the rules for doing so are a bit more
complicated and we will not discuss it here, as most of the important
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physics is elucidated just for this special case.
We will start with an initial anyon theory which we call A. Within

this anyon theory, we assume there is a bosonic simple current J which
we intend to condense to form a new anyon theory. The final anyon
theory that comes out at the end of the condensation procedure will be
called U .
We can think of anyon condensation as proceeding in two conceptual

steps as shown in Fig. 23.1. In between the initial theory A and the final
theory U there is another theory T which is not a full anyon theory, but
rather a fusion algebra (or planar diagram algebra), as we will discuss
further in a moment.

Uncondensed anyon theory A

⇓ identify (and split)

Fusion algebra T (edge theory)

⇓ confine

Condensed anyon theory U
Fig. 23.1 Condensing one anyon theory to another can be described as having two
“steps”. The original anyon theory is labeled A and the final anyon theory is labeled
U . In between we have the intermediate theory T which is not generally a full-fledged
anyon theory, but rather a fusion algebra (planar diagram algebra). The first step
from A to T involves identification and possibly splitting. The second step from T
to U involves confinement.

23.2 Identification Step

The first step in the condensation process is the identification step. In
this step we group the particle types from the uncondensed theory A
into so-called orbits.

Definition: The orbit of a particle type a under the action of J is
the set of all particle types b ∈ A such that b = Jp × a for some integer
p. We denote the orbit as [a]J , or when it not ambiguous we just write
[a].

One should be cautioned8 that the orbit [a] is the same as orbit [b] if 8This can sometimes cause some nota-
tional confusion. It is often useful to
choose a single representative of each
orbit so that each orbit is uniquely de-
noted as a particular [a] and one never
writes [b] if b = Jq × a.

b = Jq × a for any q.
Further, we note that if N is the smallest integer such that JN = I

then there are at most N particle types in any given orbit, although
there may be fewer particles in an orbit, as we will discuss in detail in
section 23.4.
The physical point here is that all of the particles types in the same

orbit of the original theory A are identified as being the same particle
type in the T theory. The physical reason for this isPrinciple 2: bosons
can be freely emitted from or absorbed into the condensate. A particular
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particle a can absorb a boson from the condensate and become J × a or
it can absorb two bosons from the condensate to become J2 × a and so
forth. The quantum number a is no longer a conserved quantum number
(and therefore is not a valid particle type), but the orbit [a] remains
conserved and can play the role of a particle type in the condensed
theory. The orbits in the condensed theory will inherit fusion rules
from the fusion rules of the uncondensed theory (with some potential
complications we will address in section 23.4).

23.2.1 Orbits of maxmum size

Here we will consider the case where all of the orbits are of maximum
size. I.e., all orbits have exactlyN particle types in them (where N is the
smallest positive integer so that JN = I). We will return to the more
complicated case where not all orbits are of maximum size in section
23.4.
We start with the original theoryA, and each particle a can be mapped

to an orbit [a] in the T theory. The fusion rules of the T theory are
inherited from the fusion rules of the orginal anyon theory in a natural
way which we can write in terms of the fusion multiplicity matrices as

N
[c]
[a],[b] = N c

a,b

Note in particular that the identity particle I of the A theory maps to
the orbit [I] which becomes the identity particle of the T theory.

Example: Z(3+1/2)
8

Let us consider the anyon theory Z(3+1/2)
8 discussed in section 20.4.2

which is equivalent to the Chern-Simons theory SU(8)1. There are 8
particles which we label p = 0, . . . , 7 with fusion rules

p× p′ = (p+ p′) mod 8 (23.2)

and p = 0 is the identity. The corresponding twist factors are

θp = exp

[
2πi7

16
p2
]

(23.3)

We notice that p = 4 has trivial twist factor θ4 = 1 and is therefore a
boson. Let us call this bosonic particle J , and we notice that J2 = I so
the maximum orbit size is 2.
In this model we have four different orbits under the action of fusing

with the boson J , and each of these orbits is of maximum size 2. Let us
write down these orbits (Recalling that [a] means the orbit of a)

[0] which is also equal to [4]

[1] which is also equal to [5]

[2] which is also equal to [6]
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[3] which is also equal to [7]

The meaning here should be obvious. Remembering that the boson J ,
which is particle p = 4 can be absorbed or emitted for free, we then for
example, must identify particles 1 and 5 into a single orbit since fusing
1 with 4 gives 5 and fusing 5 with 4 gives 1.
These four different orbits comprise the particle types of the interme-

diate T theory. Let us denote these four orbits as [p] with p = 0, . . . 3.
The fusion rules are inherited from the original uncondensed anyon fu-
sion rules (Eq. 23.2) in an obvious way giving

[p]× [p′] = [(p+ p′) mod 4 ] (23.4)

with [0] playing the role of the identity in the T theory. To see how
these fusion rules come from those of Eq. 23.2, consider, for example,
[1] × [2] = [3]: Here either 1 or 5 (the two particle types in the orbit
[1]) fused with either 2 or 6 (the two particle types in the orbit [2]) will
always give us 3 or 7 (the two particle types in the orbit [3]).

23.3 Confinement Step

The particle types in the intermediate theory T form a consistent fu-
sion algebra (and indeed a consistent planar diagrammatic algebra) but
they do not generally form a consistent anyon theory, as they do not
have generally have a consistent braiding (or solution to the hexagon
equations). The reason for this is that some of the particles in T are
not valid particles of the final condensed anyon theory U and must be
thrown out.
The reason some particles of T are not valid anyons in the condensed

phase is that they braid nontrivially with the condensed boson. Trying
to put a particle within the condensate that braids nontrivially with
the condensed boson would violate Principle 1: when a boson in the
condensate moves around, the phase must be the same when it arrives
back at the same point. We thus have the rule that any particles a (or its
orbit [a]J ) allowed in the final condensed theory U must braid trivially
with the condensate, meaning that

Ra,JJ×aR
J,a
J×a =

θJ×a
θa

= 1 (23.5)

where we have used Eq. 15.3 and the fact that θJ = 1. Since J × a and
a are in the same orbit [a] the condition Eq. 23.5 can be rephrased by
saying that an orbit (a particle type of the T theory) is allowed into the
final anyon theory U if all of the particles in the orbit have the same
spin factor θ. Such particles that are allowed in U we say are deconfined,
meaning that they can travel freely within the condensate. The particle
types from T that braid nontrivially with the condesate are not allowed
within the condensate and we say they are confined.
Although the confined particles of the T theory are not part of the
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final condensed anyon theory, they still have physical meaning. The
full T theory can be physically realized as a 1+1 dimensional theory
living on the edge of a droplet of the U anyon theory living inside a
larger region of the A uncondensed theory. The reason for this is that
if we restrict motion of particles to a one-dimensional edge, there is no
possibility of braiding one particle around each other and there is thus
no problem with any of the particles of the full T theory — both the
confined and deconfined particles can live there. The T theory, since it
describes a 1+1 dimensional edge is not a braided anyon theory, but is
rather a fusion algebra (or a planar diagram algebra).
If we try to drag one of the confined particles of the T theory into the

condensed U droplet, its nontrivial braiding with the condensate creates
a “branch-cut” in the condensate along its path into the condensate and
destroys the condensate along this path. This costs an energy propor-
tional to the distance the particle has been dragged into the U region.
Thus there is a force pushing these confined particle back to the edge of
the droplet. The particles are confined to the edge.

Z(3+1/2)
8 Again

Let us return to our example of Z(3+1/2)
8 and determine which of our

orbits (particle types of T ) are confined or deconfined. Recall the rule
that an orbit is deconfined if all of hte constituent particles in the orbit
have the same twist factor θ. From Eq. 23.3 we have

θ0 = θ4 = 1

θ1 6= θ5

θ2 = θ6 = −i
θ3 6= θ7

Thus, the only two particle types allowed in the final condensed U theory
are the orbits [0] (which is the identity) and [2] with corresponding spin
factors θ[0] = 1 and θ[2] = −i. The only nontrivial fusion we obtain from
Eq. 23.4 is

[2]× [2] = [0].

We thus recognize this condensed anyon theory as the (left-handed)
semion theory! Further we establish that if we condense a semion droplet
within a Z(3+1/2)

8 background there will be two additional particle types
([1] and [3]) that remain confined at the edge of the droplet.

23.4 Splitting: Orbits not of maximum size

Above in section 23.2.1 we assumed all of the orbits were of maximum
size. That is, if N is the smallest positive integer so that JN = I, then
all orbits are of size N .
If we have a situation where some orbits are not of maximum size,

then we have a new physical phenomenon, known as splitting. This
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phenomenon is a reflection of the fact that assigning each orbit [a] from
the uncondensed theory A to be a particle type of the intermediate
theory T will not give an acceptable fusion algebra. Let us see how this
happens.
Let us suppose we have some particle a such that Jp × a = a with

0 < p < N (In fact, p must divide N). We start by recalling

a× ā = I + . . .

On the other hand, we can also write

a× ā = (Jp × a)× ā = Jp × (a× ā) = Jp × (I + . . .) = Jp + . . .

We thus conclude that we must have9 9In fact we can generalize this argu-
ment to give

a× ā = I + Jp + J2p + . . . JN−pa× ā = I + Jp + . . . (23.6)

Now we claim that this feature will result in the orbits inA not producing
an acceptable fusion algebra in T . Let us see how this happen. As in
the previous example, let us divide all of the particles in A into their
orbits under the aciton of J , which we write as [a]. The fusion equation
Eq. 23.6 then would imply the fusion for the orbits

[a]× [ā] = [I] + [Jp] + . . .

= [I] + [I] + . . . (23.7)

where here we have used that [Jp] is in the J orbit of the identity (i.e.,
[Jp] = [I]). Eq. 23.7 now presents an inconsistency as one of our rules of
fusion algebras (Eq. 8.5) is that N I

aā = 1, i.e., the identity field should
occur only once on the right hand side. We conclude that this is not
acceptable as a fusion algebra for T .
To resolve this problem the orbit [a] must split into multiple particle

types in T which we will write as [a]i with i = 1, 2, . . . , qa for some
number qa. Let us
Most generally we can write the mapping between the original A and

T as

a→
qa∑

i=1

nai [a]i

where now [a]i are particle types of the T theory.
If the orbit of [a] is maximal, then [a] does not need to split, meaning

(na1 = 1 and qa = 1, and we don’t need to write a subscript on [a]).
However, if the orbit is not maximal, then [a] must split into multiple
different particles [a]1, [a]2, . . . such that the twist factors all agree

θ[a]i = θa . (23.8)

As in the simple case with no splitting, the fusion rules of the T theory
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must be consistent with those of the uncondensedA theory. In particular

a× b =
∑

c

N c
ab c

in the A theory implies
(

qa∑

i=1

nai [a]i

)
×
(

qb∑

i=1

nbi [b]i

)
=
∑

c

N c
a,b

(
qc∑

i=1

nci [c]i

)

within the T theory. This consistency implies the relationship

da =

qa∑

i=1

nai d[a]i (23.9)

between the quantum dimensions in the A theory (left) and the quantum
dimensions in the T theory (right). Once the particles have split, it is
then possible to have a consistent set of fusion rules in the T theory.
Once these fusion rules have been established, one can determine which
fields are confined in order to determine the final condensed anyon theory
U .
While the phenomenon of identification (section 23.2) has a fairly

obvious physical interpretation, it is often not as obvious how to interpret
the phenomenon of splitting — except to say that it is required for
consistency. However, a physical understanding is given by realizing
the presence of a condensate can cause certain physical quantities to be
locally conserved where they are indefinite in the uncondensed phase.
It is the presence of these new locally conserved quantities which allow
us to form [a]i where i can take qa different values — corresponding
to the qa different values that the conserved quantity may take. This
picture of emergent conserved quantities is elucitated by Burnell et al.
[2011, 2012].

Example: SU(2)4

Let us consider the example of the Chern-Simons theory SU(2)4. We
list the fields, their quantum dimensions, and their fusion rules in table
23.1.
We notice that particle 4 is a simple current with orbit of length 2

(4× 4 = 0). Let us now list the orbits in this theory

[0] = [4] Maximum size orbit (also the identity)

[1] = [3] Maximum size orbit

[2] Not a maximum size orbit. This orbit must split

These orbits are just read off from the bottom line of the table 23.1:
under fusion with the field 4, we have 0 mapping to 4 and vice versa; we
have 1 mapping to 3 and vice versa, but 2 just maps to itself.
The fusion rules for the orbits, which we read off of table 23.1, are10

10Just to give an example, consider
[1] × [1]. Each factor of [1] could ei-
ther represent the particle 1 or the par-
ticle 3 = 1 × 4. So the result of this
fusion [1] × [1] could be 1 × 1 = 0 + 2
or 1 × 3 = 2 + 4 or 3 × 1 = 2 + 4 or
3 × 3 = 0 + 2. In all cases the result
contains one particle from the [0] orbit
and one from the [2] orbit. Thus giving
[1]× [1] = [0] + [2].
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particle d θ
0 1 1

1
√
3 e2πi/8

2 2 e2πi/3

3
√
3 e2πi5/8

4 1 1

× 1 2 3 4
1 0 + 2 1 + 3 2 + 4 3
2 1 + 3 0 + 2 + 4 1 + 3 2
3 2 + 4 1 + 3 0 + 2 1
4 3 2 1 0

Table 23.1 Data for SU(2)4. Left: quantum dimensions and twist factors for the
different particles. Note that 0 is the identity. Right: Nontrivial fusion rules. Note
that the fusion rules are given by Eq. 19.10, and the quantum dimensions are given
by Eq. 19.2 given d =

√
3. You can check the consistency of da with the fusion rules

by using Eq. 8.9 (i.e, da should be the largest eigenvalue of the fusion matrix [Na]cb).
Particle 4 is a simple currrent boson which we will attempt to consdense.

[1]× [1] = [0] + [2]

[1]× [2] = [1] + [1]

[2]× [2] = [0] + [2] + [0]

where [0] is the identity orbit. It is the last line here which demonstrates
explicitly the problem noted in Eq. 23.7 — we should not have the
identity twice on the right hand side. To fix this problem we split the
particle [2] into two pieces [2]1 and [2]2.

[1]× [1] = [0] + [2]1 + [2]2 (23.10)

[1]× ([2]1 + [2]2) = [1] + [1] (23.11)

([2]1 + [2]2)× ([2]1 + [2]2) = [0] + ([2]1 + [2]2) + [0] (23.12)

While this is not quite the full fusion rules of the T theory, one can
nonetheless extract11 a unique set of fusion rules for the T theory con-
sistent with Eq. 23.10-23.12, which are shown in table 23.2.

particle d θ

[0] 1 1

[1]
√
3 e2πi/8

[2]1 1 e2πi/3

[2]2 1 e2πi/3

× [1] [2]1 [2]2

[1] [0] + [2]1 + [2]2 [1] [1]

[2]1 [1] [2]2 [0]

[2]2 [1] [0] [2]1

Table 23.2 Data for the intermediate T theory obtained from condensing the 4
particle in SU(2)4. This is the fusion theory describing the edge of a condensed
droplet.

11Eq. 23.10 is already written as a proper fusion rule. Eq. 23.11 implies [1]×[2]1 = [1]
and [1] × [2]2 = [1]. Next we note that the left hand side of Eq. 23.12 can be
rewritten as ([2]1× [2]1)+([2]2 × [2]2)+2 ([2]1× [2]2) which, comparing to Eq. 23.12,
immediately implies that [2]1 × [2]2 = [0]. To pin down the remaining fusion rule we
use associativity [2]2 = ([2]1 × [2]2)× [2]2 = [2]1(×[2]2 × [2]2) which implies the only
consistent set of fusion rules to be [2]2 × [2]2 = [2]1 and [2]1 × [2]1 = [2]2.
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Several things are worth noting on this table. First, note that d[2]1 +
d[2]2 is the same as d2 from the original SU(2)4 as is required by Eq. 23.9.
Secondly note that the twist factors are unchanged (even if a particle
type splits) as stated in Eq. 23.8.
We can obtain the final U anyon theory, with a proper braiding, by

throwing out the particles that are confined. Looking back at table 23.1
we see that the orbit [1] is made up of particles 1 and 3 which have
different spin factors. This implies that particle [1] must be confined
(it braids nontrivially with the condensate, see Eq. 23.5). However, the
orbit [2] is made of a single particle type and therefore is deconfined
(even if it splits). Thus our final anyon theory after confinement is given
by table 23.3. We recognize the resulting anyon theory as SU(3)1 or
equivalently Z1

3. See section 20.4.1.

particle d θ

[0] 1 1

[2]1 1 e2πi/3

[2]2 1 e2πi/3

× [2]1 [2]2

[2]1 [2]2 [0]

[2]2 [0] [2]1

Table 23.3 Data for the final U anyon theory obtained from condensing the 4

particle from SU(2)4. We recognize this theory as SU(3)1 or equivalently Z1
3.

23.5 Other Features of Condensation

A few other features of condensation are worth mentioning. First, if we
start with a modular anyon theory, A, then the condensed theory U is
also modular. Further for modular theories, the central charge (modulo
8) remains unchanged

cA = cU mod 8 (23.13)

Secondly, there is a beautiful relationship between the total quantum
dimensions of the uncondensed theory A, the fusion algebra T and the
final theory U . Recalling that total quantum dimension is defined by

D = +

√∑

a

d2a

We then have DA
DT

=
DT
DU

(23.14)

Let us check these relations for the SU(2)4 condnensation example.
From tables 23.1, 23.2, and 23.3 we obtain

DA=SU(2)4 =
√
12 DT =

√
6 DU=SU(3)1 =

√
3

in agreement with Eq. 23.14. Also (From Eq. 17.14) we can calculate
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that
cSU(2)4 = cSU(3)1 = 2 (mod 8)

in agreement with Eq. 23.13.

23.6 Cosets

In Chern-Simons theory, one of the most common ways to construct
new TQFTs is the idea of a coset theory first discussed in the context of
conformal field theory (See Di Francesco et al. [1997]; Moore and Seiberg
[1989]; Goddard et al. [1985]). Given Lie groups G and H such that H
is a subgroup of G, we may consider theories Gk (Chern-Simons theory
G at level k) and correspondingly Hk′ . There is then a well defined
way to make a so-called coset theory which we write as Gk/Hk′ . One
rough physical interpretation of this construction is that we are gauging
the subgroup H , essentially making these degrees of freedom redundant.
One can have more complicated cosets where we embedH into a product
of Lie groups G×G′, to construct coset theories like Gk ×Gk′/Hk′′ .
While cosets of this type can seem quite complicated, they actually

have an extremely simple interpretation in terms of boson condensation.
To construct Gk/Hk′ we first construct Gk × Hk′ where the overbar
means we should switch the chirality of the theory12. Then if we con- 12In Chern-Simons theory, G−k = Gk.

Switching chirality in the diagrammatic
algebra can be achieved by evaluating
the mirror image of the diagram.

dense all possible simple current bosons in the product theory Gk×Hk′

we obtain the coset theory Gk/Hk′ . (This is much simpler than the con-
ventional coset construction!) This technique can be generalized in an
obvious way. For example, to construct Gk×Gk′/Hk′′ we first construct
Gk × Gk′ × Hk′′ and then condense all of the simple current bosons.
Note that given Eq. 23.13 and Eq. 17.23 the central charge of a coset is
equal to the sum of central charges in the numerator minus the sum of
central charges in the denominator.

Example: SU(2)2/U(1)2

To construct the coset SU(2)2/U(1)2 we want to first construct SU(2)2×
U(1)2 and then condense all simple current bosons. Let us recall the data
for SU(2)2 (See section 18.3.1) and U(1)2 (See section 20.4.2) which are
shown in Table 23.4.
The product theory SU(2)2 × U(1)2 has particles types of the form

(a, b) where a is from the SU(2)2 theory and b is from the U(1)2. The
twist factor of such a product particle is θ(a,b) = θaθb.
One can see from the table that product particle (ψ, 2) is a boson

simple current (twist factor θ = 1), so we can condense it. (In fact,
not including the identity particle (I, 0), this is the only boson simple
current). The there are 12 particles in the product theory which divide
into 6 orbits which all are of maximum size (so there is no splitting).
These orbits (under the action of fusion with the (ψ, 2) boson) are

[I, 0] = [ψ, 2] ; [σ, 0] = [σ, 2] ; [ψ, 0] = [I, 2]
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SU(2)2

particle d θ

I 1 1

σ
√
2 e2πi3/16

ψ 1 −1

× σ ψ

σ I σ

ψ σ I + ψ

U(1)2

particle d θ
0 1 1

1 1 e2πi7/8

2 1 −1

3 1 e2πi7/8

i× j = (i+ j) mod 4

Table 23.4 Data for SU(2)2 (top) and U(1)2 (bottom). The overline indicates we
take the mirror image theory, meaning all of the twist factors are complex conjugated
compared to the definition given in section 20.4.2.

[I, 1] = [ψ, 3] ; [σ, 1] = [σ, 3] ; [ψ, 1] = [I, 3]

These are the six particle types of the T theory. Finally, examin-
ing the twist factors we can see that only the three orbits [I, 0] and
[σ, 1] and [ψ, 0] are deconfined. The final condensed anyon theory U =
SU(2)2/U(1)2 is given in table 23.5. We recognize this result as being
simply the Ising TQFT (See section 18.3.1).

particle d θ

[I, 0] 1 1

[σ, 1]
√
2 e2πi1/16

[ψ, 0] 1 −1

× [σ, 1] [ψ, 0]

[σ, 1] [I, 0] [σ, 1]

[ψ, 0] [σ, 1] [I, 0] + [ψ, 0]

Table 23.5 The final anyon theory data for the coset SU(2)2/U(1)2 is just the Ising
TQFT.

Further Reading

Bais and Slingerland [2009] is the original discussion of anyon conden-
sation. Full disclosure, I was the referee for this paper. I spent a lot
of time reading it in great detail and I ended up deciding it was pretty
brilliant.
A nice review of the physics of anyon condensation is given by Burnell

[2018].
Eliëns et al. [2014] gives methods of extracting detailed data, such as

F -matrices of a condensed theory from the data for the uncondensed
theories.
Neupert et al. [2016] is also a good refernce on the mathematics of

condensation.
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Much of the structure of anyon condensation (at least for condensation
of simple currents) was worked out originally in the context of so-called
“fixed point resolutions” of conformal field theories. See for example,
Schellekens [1999]
Chapter 32 shows how to use the computer program Kac to work out

the results of certain condensations.

Exercises

Exercise 23.1 Fusion of Bosonic Simple Currents
Given an anyon theory with a bosonic simple current J , such that RJ,J

J2 = 1
and JN = I , show that all of the particle types Jp with 0 < p < N are also
bosons, and further that the braiding any two of these particle types is trivial

RJ
p,Jp

′

Jp+p
′ = 1. Hint: This is fairly trivial given some results of chapter 20.

Exercise 23.2 Splitting
Consider SU(2)2 ×SU(2)2. There is a single simple current boson that can

be consdensed. Find the T theory (there is a splitting!) and the final U theory
after condensation.

Exercise 23.3 Cosets
(a) Calculate the properties of the coset SU(16)1/SU(2)2.
(b) Calculate the properties of the coset SU(2)1 × SU(2)1/SU(2)2.
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Introducing Quantum Error
Correction 24

Easy Material

Before we look at the toric code, it is worth introducing some ideas of
quantum error correction. While initially the ideas of error correction
may seem somewhat different from what we have been discussing, we will
see that (at least some quantum error correcting codes) are extremely
closely related to the topological ideas we have been discussing in prior
chapters. Some of this material may be well known to most readers, but
we reiterate it for completeness and to orient the discussion.

24.1 Classical Versus Quantum Information

24.1.1 Memories All alone in the moonlight!

Classical Memory

The unit of classical information is a bit2 — a classical two state system 2You almost certainly know this al-
ready!which can take the values 0 or 1. A memory with N bits can be in any

one of 2N states — each state corresponding to a particular bit-string,
such as 011100111.

Quantum Memory

The unit of quantum information is the quantum bit or qubit2 which is
a quantum two state system — i.e. a two-dimensional complex Hilbert
space spanned by vectors which we usually call |0〉 and |1〉. A qubit can
be in any state

|ψ〉 = α|0〉+ β|1〉
with arbitary complex prefactor α, β (where we normalize wavefunctions
so |α|2 + |β|2 = 1).
A quantum memory with N qubits is a vector within a 2N dimensional

complex Hilbert space. So for example, with 2 qubits the general state
of a system is specified by four complex parameters

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉 (24.1)

with the normalization condition |α|2 + |β|2 + |γ|2 + |δ|2 = 1. So to
specify the state of a quantum memory with 2 bits, you have to specify
four complex parameters, rather than, in the classical case just stating
which of the four states the system is in.



304 Introducing Quantum Error Correction

24.2 Errors

An error is some process which accidentally changes the state of the
memory away from the intended state. Often we take as an error model
the case where only one bit or one qubit is effected at a time (a “minimal”
error) although more complicated errors can occur in practice.

24.2.1 Classical Error Correction

There is a simple way to protect the information stored in a classical
memory from errors. Instead of storing a single bit 0 or 1, we will
store multiple copies of the bit. For example in Table 24.1 we use three
“physical” bits to store one “logical” bit of information.

logical bit physical bits
0 000
1 111

Table 24.1 Three bit repetition code. Stores a single logical bit of information
using three physical bits.

Our memory should always either be in the state 000 or 111 — we
call these two possibilities the code space. If we detect the system being
in any other state of the three bits (i.e., not in the code space) we know
an error has occured. If an error does occurs on one of the physical bits
(i.e., if one of the bits is accidentally fliped) we can easily find it, because
it would leave our memory with not all of the physical bits being the
same. For example, if our system starts as 000, an error introduced on
the second bit would leave it in the form 010. Then, by just using a
majority-rule correction system, it is easy to figure out what happened
and flip the mistaken bit back. So our error correction protocol would
be to continuously compare all three bits, if they don’t all match, flip the
one which would bring them back to matching. Assuming errors are rare
enough (and only occur on one bit at a time3) this scheme is an effective3If two bit flips happen at the same

time, then an uncorrectable logical er-
ror occurs. It is thus imperitaive that
we check the state of our physical bits
very frequently so that we catch errors
and correct them before multiple errors
can occur.

way to prevent errors. For added protection one can use more redundant
physical bits, such as five physical bits or seven physical bits for a single
logical bit. Such larger codes could withstand several bit-flip errors at
a time and would still allow successful correction. For example, the five
bit code could withstand two bit-flip errors at a time and correction via
majority rule would still be successful.
One might think the same sort of approach would work in the quantum

world: make several copies of the qubit you want to protect, and then
compare them to see if one has changed. Unfortunately, there are two
big problems with this. The first is the so-called no-cloning theorem —
it is not possible to make a perfect clone of a qubit. The second problem
is that measuring a state inevitably changes it.
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24.3 Quantum No Cloning Theorem

Because the quantum no-cloning theorem is such an integral part of the
discussion surrounding quantum error correction (and because the proof
is easy) it is worth going through the proof.
The result (usually credited to Wootters and Zurek [1982] and Dieks

[1982]) is such a straightforward result of quantum mechanics that some
people have argued whether it deserves to be called a theorem. Nonethe-
less, the statement of the “theorem” is as follows:

Theorem: Given a qubit in an arbitrary unknown state |φ1〉 and
another qubit in a known initial state |φ2〉, there does not exist any
unitary operator U (i.e., any quantum mecahnical evolution) such
that

U( |φ1〉 ⊗ |φ2〉 ) = eiχ(φ1) |φ1〉 ⊗ |φ1〉 (24.2)

for all possible input |φ1〉.

The point of the theorem is that there is no way to copy |φ1〉 into the
auxiliary qubit |φ2〉. The reason we are looking for a unitary operator U
is that all time evolutions in quantum mechanics correspond to unitary
operators4. The phase eiχ allows some arbitrary phase to occur during 4One can object that one can make

a measurement that has the effect of
projecting, rather than a unitary op-
eration. However, there a philsophy
known sometimes as “The Church of
the Larger Hilbert Space” which says
that we should simply treat our mea-
surement apparatus as part of the
quantum mechanical system, in which
case all time evolutions become uni-
tary again. The reason it is called a
“church” is because it is almost a re-
ligious view of how one should think
about quantum measurements.

the cloning process which we can allow to be a function of the cloned
state |φ1〉.

Proof of Theorem: Suppose such a unitary operator as specified
in Eq. 24.2 did exist. This means we can properly copy two orthogonal
states |0〉 and |1〉, meaning

U( |0〉 ⊗ |φ2〉 ) = eiχ(0) |0〉 ⊗ |0〉
U( |1〉 ⊗ |φ2〉 ) = eiχ(1) |1〉 ⊗ |1〉

Quantum mechanical operators must be linear so we can try applying
this operator to the linear superposition α|0〉+ β|1〉 and we must get

U( {α|0〉+ β|1〉 } ⊗ |φ2〉 ) = α eiχ(0)|0〉 ⊗ |0〉+ β eiχ(1)|1〉 ⊗ |1〉.

But this is not what a putative cloning device must give. Instead a clone
of the bit should have given the outcome

eiχ(α|0〉+β|1〉)[α|0〉+ β|1〉]⊗ [α|0〉+ β|1〉]

which is not generally the same result. Thus no cloning device is con-
sistent with the linearity inherent in quantum mechanical evolution. �
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24.4 Quantum Error Correction

Perhaps the most surprising thing about quantum error correction is
that it is possible at all! This was discovered in 1995 by Shor [1995],
and shortly thereafter by Steane [1996a, b].
In the next chapter we will introduce the toric code (Kitaev [1997]),

which is a quantum error correcting code closely related to anyons. How-
ever, here, we will briefly introduce a very simple error correcting code
introduced in the original work by Shor [1995] to try to explain how such
codes typically work.
Let us consider the following simplified problem. Suppose we know

that the only error that can ever occur on our physical system is the
application of a Pauli σx operator. i.e, a so-called bit-flip error. We can
protect our qubit from such an error in the following way:
Given a qubit

|ψ1〉 = α|0〉+ β|1〉 (24.3)

let us encode this physical qubit into three logical qubits5

5This does not violate the no-cloning
theorem, since we are entangling two
qubits with the initial qubit, rather
than cloning the initial qubit. This pro-
cedure can be achieved with a quantum
circuit as shown in Fig. 24.1.

|ψ3〉 = α|000〉+ β|111〉 (24.4)

where by |000〉 we mean |0〉 ⊗ |0〉 ⊗ |0〉 and similarly for |111〉.

|ψ1〉

|0〉

|0〉

Fig. 24.1 The output of this quantum
circuit, on the right, is the wavefunction
|ψ3〉 as in Eq. 24.4. The notation ⊕ in-
dicates a controlled not gate (CNOT)
where the lower bit is controlled by the
bit |ψ〉1 such that the output of the
lower bits is |1〉 if and only if the input
bit in |ψ1〉 is |1〉. See the discussion in
section 11.4.1.

We must not measure any of the three physical bits since this will
collapse the entire wavefunction to either |000〉 or |111〉. However, we
can measure the product of two bits, such as6,7

6When we use Pauli matrices we are
thinking of |0〉 as being spin up and |1〉
as being spin down. So σz |0〉 = |0〉 and
σz |1〉 = −|1〉.
7We can also define Ô13, but this is re-
dundant information since

Ô13 = Ô12Ô23

Ô12 = σ1
zσ

2
z Ô23 = σ2

zσ
3
z (24.5)

The wavefunction |ψ〉3 is in a +1 eigenstate of the operator Ô12 so we can
measure this operator without collapsing the wavefunction. The purpose
of this operator is to check that bits 1 and 2 are the same. Similarly
Ô23 checks that bits 2 and 3 are the same. These operators are known
as syndrome operators since they are meant to diagnose whether the
wavefunction has developed any “sickness”, i.e, whether an error has
occurred
If we find that both operators Ô12, Ô23 are in the +1 eigensate, then

we conclude that all three bits are the same, so the wavefunction is
properly in the code space (I.e., is of the form of Eq. 24.4). However,
if one (or both) of these operators are measured in the −1 eigenstate,
then we know that an error has occurred. Assuming no more than one
σx error has occurred (i.e., we start with a wavefunction of the form of
Eq. 24.4 and only one physical bit is flipped over) we can easily identify
the problematic bit. For example, if σx has been applied to bit 1, then
we would find Ô12 in the −1 eigenstate but Ô23 remains in the +1
eigenstate. We can then correct the problematic bit by flipping it over
again with σx. The error detection and correction rules are given in
table 24.2.
Note that these stabilizer operators do not collapse superpositions of

the form of Eq. 24.4 since they do not actually measure the value of any
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error stabilizers with fix by
created by −1 eigenvalue applying

σ1
x Ô12 σ1

x

σ2
x Ô12 , Ô23 σ2

x

σ3
x Ô23 σ3

z

Table 24.2 Error Detection and Correction Rules for Eq. 24.4. If an error is created
by the operator in the first column, the stabilizer(s) in the middle column will be
measured to have a −1 eigenvalue, indicating an error. The error is corrected with
the operator in the right column.

of the bits, they only check to see if two bits are the same as each other.
One might think that Eq. 24.4 (along with the error correction rules of

table 24.2) would constitute a quantum error correcting code. Unfortu-
nately, this is not the case. While we have constructed a code which can
correct errors created by σx (i.e., bit flip errors) one can also have errors
created by σz (Errors created by σy can be thought of as the product of
σz and σx). Applying a σz operator to any of the three bits in Eq. 24.4
results in

|ψ3〉 = α|000〉 − β|111〉
and this cannot be detected by our stabilizers Ô12 and Ô23.
Shor [1995] found that it is indeed possible to protect a qubit from

both σx and σz errors by using 9 physical qubits. His encoding of the
qubit in Eq. 24.3 is as follows

|ψ9〉 = α [(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉)]
+ β [(|000〉 − |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉)]

(24.6)

The bits have been grouped in threes, and each set of three acts effec-
tively like the above code Eq. 24.4. The stabilizers of this code are then
as follows:

Ô12 = σ1
zσ

2
z Ô23 = σ2

zσ
3
z (24.7)

Ô45 = σ1
zσ

2
z Ô56 = σ2

zσ
3
z (24.8)

Ô78 = σ1
zσ

2
z Ô89 = σ2

zσ
3
z (24.9)

Ô1−6 = (σ1
xσ

2
xσ

3
x)(σ

4
xσ

5
xσ

6
x) (24.10)

Ô4−9 = (σ4
xσ

5
xσ

6
x)(σ

7
xσ

8
xσ

9
x) (24.11)

The first three lines are analogous to the stabilizers in Eq. 24.5 and are
meant to repair bit flips (σx errors). For example, if Ô12 is measured in
eigenvalue −1 but all other Ôij have eigenvalue +1 then we know that
the first bit has been flipped over and needs to be repaired by applying
σ1
x again.
The more interesting stabilizers are the final two lines. In fact, these

are again quite similar to the simple stabilizers we considered in Eq. 24.5,
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but in a different basis.
To see this, first note the following two identities on three qubits

(σ1
xσ

2
xσ

3
x) (|000〉 ± |111〉) = ± (|000〉 ± |111〉) (24.12)

and
σjz (|000〉 ± |111〉) = (|000〉 ∓ |111〉) (24.13)

for j = 1, 2 or 3. Let us now think of (|000〉+ |111〉) as being some
effecive spin up and (|000〉 − |111〉) as being some effective spin down.
Then σjz in Eq. 24.13 plays the role of an effective spin flip operator (lets
call it X123) and (σ1

xσ
2
xσ

3
x) in Eq. 24.12 measures the state of the spin

(lets call this operator Z123). The stabilizers in Eq. 24.10 and 24.11 can
then be rewritten as operators on three of these effective qubits

Ô1−6 = Z123Z456 Ô4−9 = Z456Z789

entirely analogous to the stabilizers Eq. 24.5.
To be more explicit, given Eq. 24.12 we have that (σ1

xσ
2
xσ

3
x) or (σ

4
xσ

5
xσ

6
x)

or (σ7
xσ

8
xσ

9
x) to the wavefunction in Eq. 24.6 will multiply the second line

of Eq. 24.6 by −1. However, the stabilizers Ô1−6 and Ô4−9 consist of
two of these groups of three operators, so this minus sign will be applied
twice. This means that Eq. 24.6 is a +1 eigenstate of these stabilizers.
Let us again consider three qubits and ask what happens if we apply

σz to superpositions of the type that occur in Eq. 24.6. We have
(it does not matter which of the three σz ’s is applied, the result is the

same) which then changes the sign of the eigenvalue under σ1
xσ

2
xσ

3
x. It

is precisely this
Thus we are able to conclude the following table

error stabilizers with fix by
created by −1 eigenvalue applying

σ1
z or σ2

z or σ3
z Ô1−6 σ1

z

σ4
z or σ5

z or σ6
z Ô1−6 , Ô4−9 σ4

z

σ7
z or σ8

z or σ9
z Ô4−9 σ7

z

24.5 Introducing the Toric Code

Perhaps the most surprising thing about quantum error correction is
that it is possible at all! This was discovered by Peter Shor in 1995 (and
shortly thereafter by Andrew Steane). We will describe the Toric code
approach to error correction which is potentially the conceptually most
simple error correction scheme, as well as being very possibly the most
practical to implement in real systems8!

8The statement that it is the most
practical is based on the fact that the
so-called surface codes (which is es-
sentially the toric code) has the high-
est known error threshold — meaning
you can successfully correct even highly
faulty qubits with this technique com-
pared to other techniques which require
your qubits to be much closer to perfect
to begin with. To evaluate the quality
of a code one must make reasonable as-
sumptions about how likely a physical
qubit is to fail and compare this to how
quickly one can test for errors and cor-
rect them. NEED CITATION HERE?

As with so many great ideas in this field, the Toric code was invented
by Kitaev (Kitaev 1997).
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24.5.1 Toric Code Hilbert Space

We imagine an Nx by Ny square lattice with spins on each edge, where
the edges of the lattice are made periodic hence forming a torus (hence
the name “toric”). The total number of spins is N = 2NxNy and corre-
spondingly the dimension of the Hilbert space is 2N .

Fig. 24.2 The Hilbert space of the toric code — an Nx by Ny square lattice with
spins (dots) on each edge wrapped up to make it periodic in both directions — i.e.,
a torus. Hence the name. There are 32 spins in this picture so the Hilbert space has
dimension 232.

We will work with a basis in our Hilbert space of up and down spins9. 9Caution: In the literature about half
of the world uses the up-down or σz
eigenstates as a basis, and half of the
world uses the σx eigenstates as a basis.

A convenient notation is then to color in the edges containing down spins
but leave uncolored the edges with up spins. See Fig. 24.3.

Fig. 24.3 A particular basis state of the Hilbert space, working in the up-dpwn
basis (z-eigenstates). Here we denote down spins by thick (red) lines. And up spins
are denoted by not coloring in the edges.

Note that it is not crucial that we are working with a square lattice,
or that we are even working on a torus (although it is crucial that the
surface has noncontractable loops). We could work with other types
of lattices — the honeycomb will be useful later. In fact even irregular
lattices (which are not really lattices, since they are irregular, and should
be called ‘graphs’) can be used. However it is a lot easier to continue
the discussion on this simple square-lattice-torus geometry.
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24.5.2 Vertex and Plaquette Operators

Let us now define some simple operators on this Hilbert space.
First, given a vertex α which consists of four incident edges i ∈ α, we

define the vertex operator

Vα =
∏

i∈vertex α
σzi

This operator simply counts the parity of the number of down spins
(number of colored edges) incident on the vertex. It returns +1 if there
are an even number of incident down spins at that vertex and returns −1
if there are an odd number. (And in either case, as is obvious, V 2

α = 1).
This is depicted graphically in Fig. 24.4. Note that there are a total of
NxNy vertex operators.

Fig. 24.4 The vertex operator returns +1 if there are an even number of incident
down spins at that vertex and returns −1 if there are an odd number.

Note that it is possible (and useful) to define a corresponding projec-
tion operator

Ṽα =
1

2
(1− Vα) (24.14)

which has eigenvalues 0 for an even number of incident down spins or 1
for an odd number. This is a projection operator because Ṽα = Ṽ 2

α .
We now define a slightly more complicated operator known as the

plaquette operator. Given a plaquette β which contains four edges in a
square i ∈ β we define

Pβ =
∏

i∈plaquette β
σxi

which flips the state of the spins on all of the edges of the plaquette as
depicted in Fig. 24.5. There are a total of NxNy plaquette operators.
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Fig. 24.5 The plaquette operator flips the state of the spin on the four edges of a
plaquette.

As with the vertex operator, P 2
β = 1 meaning Pβ has eigenvalues +1

and −1. We can similarly define a projector

P̃β =
1

2
(1− Pβ) (24.15)

which satisfies P 2
β = Pβ .

It is a bit more difficult to describe what the eigenstates of the pla-
quette operators are. In the basis we are using, the spin-up/spin-down
basis corresponding to uncolored and colored edges, the Pβ operator is
off-diagonal — it flips spins around a plquette. As such, the 0 eigenstate
of P̃β operator (i.e, the 1 eigenstate of Pβ) is obtained by adding the
state of a plaquette to the flipped state of the plaquette as shown in Fig.
24.6. The orthogonal superposition (adding the two states with a - sign)
will give the other eigenstate.

Fig. 24.6 A linear superposition of
a flipped and unflipped plaquette is a
+1 eigenstate of Pβ or equivalently a 0
eigenstate of P̃β . The -1 eigenstate is
given by the orthogonal superposition,
i..e, the superposition with a - sign be-
tween the two terms.

Operators Commute

I claim all of the plaquette operators and all of the vertex operators
commute with each other. It is obvious that

[Vα, Vα′ ] = 0

since Vα’s are only made of σz operators and all of these commute with
each other. Similarly

[Pβ , Pβ′ ] = 0

since Pβ ’s are made only of σx operators and all of these commute with
each other.
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The nontrivial statement is that

[Vα, Pβ ] = 0

for all α and β. The obvious case is when Vα and Pβ do not share any
edges — then the two operators obviously commute. When they do
share edges, geometrically they must share exactly two edges, in which
case the commutation between each shared σxi and σzi accumulates a
minus sign, and there are exactly two shared edges so that the net sign
accumulated is +1 meaning that the two operators commute.

Is the set of operators complete?

We have NxNy vertex operators and NxNy plaquette operators — all of
these operators commute, and each of these operators has 2 eigenvalues.
This appears to match the fact that there are 2NxNy spins in the system.
So is our set of V and P operators a complete set of operators on this
Hilbert space? (I.e., is it true that describing the eigenvalue of each of
these operators must determine a unique state of the Hilbert space?)
It turns out that the V and P operators do not quite form a complete

set of operators on the Hilbert space. The reason for this is that there
are two constraints on these operators

∏

α

Vα = 1

∏

β

Pβ = 1

To see that these are true, note that each edge occurs in exactly two
operators Vα. Thus when we multiply all the Vα’s together, each σzi
occurs exactly twice, and (σzi )

2 = 1. Thus the product of all the Vα’s is
the identity. The argument is precisely the same for multiplying together
all of the Pβ ’s.
Thus we can freely specify the eigenvalues of (NxNy−1) operators Vα,

but then the value of the one remaining Vα is then fixed by the values
chosen for the other (NxNy − 1) of them. Similarly with the Pβ ’s. So
specifying the eigenvalues of these commuting operators specifies only
2(NxNy−1) degrees of freedom, and since we started with 2NxNy spins,
we still have 2 degrees of freedom remaining. These two degrees of
freedom are going to be two error protected qubits in this scheme for
building a quantum error correcting code.
Note that this result, of having two degrees of freedom that remain

unspecified by the plaquette and vertex opertaors, is not unique to hav-
ing used a square lattice (we can use triangular lattice, honeycomb, or
even irregular grids), but depends only on having used a torus. If we use
a g-handled torus we will have 2g degrees of freedom (i.e., 2g qubits)
remaining. To see this we use the famous Euler characteristic. For
any decompositon of an orientable 2-manifold into a grid, we have the
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formula

2−2g = (Number of Vertices)−(Number of Edges)+(Number of Faces)

where g is the number of handles on the manifold. Since there is one
spin on each edge we have

Number of Vertex Ops + Number of Plaquette Ops− 2 + 2g

= Number of Spins

We can read this as follows. The right hand side is the total number of
degrees of freedom. On the left we can specify all the eigenvalues of the
vertex and plaquette operators, then there are 2 constraints, so subtract
two, and this leaves us with 2g unspecified degrees of freedom.

24.5.3 Building the Code Space

We are going to state two rules for constructing our code. We are imag-
ining here that we have a great deal of control over the spins (the mi-
croscopic qubits) making up our system and we can impose these rules
by fiat.

Rule 1: Specify that Vα = 1 for every vertex (or equivalently Ṽα =
0.).

This assures that there are an even number of down spins (red lines)
incident on every vertex. It is easy to see that this can be interpreted
as a constraint that one must consider only loop configurations of these
red lines. There can be no ends of lines, and no branching of lines. See,
for example, fig. 24.7

Fig. 24.7 A loop configuration consis-
tent with the constraint that Vα = 1 on
every vertex. There must be an even
number of red lines incident on every
vertex.

The idea of an error correcting code is that once we construct our
code, we will have some way to check that this Rule 1 is satisfied and if
it is not satisfied we should have some way to fix it without destroying
our encoded quantum information.

Rule 2: Specify that Pβ = 1 for every plaquette (or equivalently
P̃β = 0.).

As mentioned above in Fig. 24.6 this assures that every plaquette is
in an equal superpositon of flipped and unflipped states with a plus sign
between the two pieces. Note in particular that, because the Pβ and Vα
operators commute, the action of flipping a plaquette will not ruin the
fact that Rule 1 is satisfied (that is, that we are in a loop configuration).
The quantities Vα and Pβ are known as the stabiizers of the code —

they are meant to stay constant and are checked for any errors which
are indicated by the fact that their value has changed.
We thus have the following prescription for constructing a wavefucn-

tion that satisfies both Rule 1 and Rule 2: First start in any state of
spins up and spins down which satisfies rule 1, i.e., is a loop configura-
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tion. Then add to this in a superposition every configuration that can
be obtained by flipping plaquettes. We thus have

|ψ〉 =
∑

all loop configs that can
be obtained by flipping pla-
quettes from a reference
loop config

|loop config〉 (24.16)

By adding up all such configurations, we assure that every plaquette is
in the correct superpositon of flipped and upflipped and we satisfy Rule
2.
The key queston is whether one can obtain all loop configurations

by starting in a referecnce configuratation and flipping plaquettes. The
answer is that you cannot: Flipping plaquettes never changes the parity
of the number of loops running around the handle. To see this, try
making a cut around a handle of the torus, as shown in Fig. 24.8. If one
flips a plaquette (blue in the fig) along this cut (green inn the fig), it
does not change the parity of the number of red bonds that the cut goes
through. Thus there are four independent wavefunctions of the form

Fig. 24.8 Making a cut around one of
the handles of torus, one can see that
flipping a plaqutte, such as the blue
one, does not change the parity of the
number of red bonds cutting the green
line. Further, it does not matter where
(at which y-coordinate) the green cut is
made, the number of red bonds it cuts
is always even.

of Eq. 24.16, which are different in whether the reference configuration
has an even or an odd number of red bonds going around each handle.
All of these states satisfy the constraints rules that all Vα = 1 and all
Pβ = 1 . We will call these states

|ψee〉 |ψeo〉 |ψoe〉 |ψoo〉

where e and o stand for an even or an odd number of red lines going
around a given handle. So for example, we have

|ψee〉 =
∑

all loop configs that have
an even number of red
bonds around both handles

|loop config〉

Or graphically, we have Fig. 24.9
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Fig. 24.9 Graphical depiction of |ψee〉 which has an even number of strings running
around each handle, and |ψeo〉 which is even around the first handle odd around the
second.

The most general wavefunction we can write that satisfies the two
above rules, that all Vα = 1 and all Pβ = 1 is thus of the form

|ψ〉 = Aee|ψee〉+Aeo|ψeo〉+Aoe|ψoe〉+Aoo|ψoo〉 (24.17)

for arbitrary coefficients Aee, Aeo, Aoe, Aoo. It is these coefficients which
are the two qubits of quantum information that we are trying to protect
with this coding scheme (exactly like Eq. 24.1). We will refer to wave-
functions of the form of Eq. 24.17 as the “code-space”. We refer to these
two bits as being the ”logical” qubits – the information we are trying to
protect. The underlying spins on the lattice that make up the code are
sometimes called the ”physical” qubits.
Note that in order to turn the |ψee〉 wavefunction into the |ψeo〉 we

need to insert a single loop around a handle — this involves flipping
an entire row of spins at once. If one were to try to flip only some
of these spins, we would have an incomplete loop — or an endpoint –
which violates the rule that Vα = 1 for all vertex sites — i.e, not in the
code-space. It is this fact that allows us to test for errors and correct
them efficiently, as we shall see.

24.6 Errors and Error Correction

Let us now turn to study possible errors in more detail. What does an er-
ror look like in this system? Imagine a demon arrives and, unbeknownst
to us, applies an operator to one of the spins in the system.

24.6.1 σx Errors

Let us first consider the case where that operator happens to be a σx

on bond i. This operator commutes with all the plaquette operators
Pβ but anticommutes with the vertex operators Vα which intersect that
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bond. This means, if we start in the code space (all Vα = +1), and
apply this error operator σxi , we then end up in a situation where the
the two vertices attached to the bond i are now in the wrong eigenstate
Vα = −1. To see this more clearly starting in the original state |ψ〉 we
have

Vα|ψ〉 = |ψ〉
meaning we start in the +1 eigenstate, now apply the error operator σxi
to both sides

σxi |ψ〉 = σxVα|ψ〉 = −Vασxi |ψ〉
or

Vα[σ
x
i |ψ〉] = −[σxi |ψ〉]

showing we end up in the −1 eigenstate of the vertex operator.
To show these errors graphically we will no longer draw the up and

down spins (the red bonds) but instead we just draw the σx operator as
a blue line, and the vertices which are in the −1 eigenstate as a red X
as shown in Fig. 24.10.

Fig. 24.10 A σx operator applied to
the bond creates two vertices in the
Vα = −1 eigenstate.

So it is clear what our error correction protocol must do. It must
frequently measure the state of the Vα operators, and if it finds a pair
in the V = −1 state, we know that a σx has been applied on the inter-
vening bond. Once we have identified the error it is easy to correct it by
applying σx on the same bond, thus returning the system to its original
state and to the code space.
Now suppose that the demon is very fast and manages to make several

such errors very quickly. If these errors are well separated from each
other, we will easily find multiple pairs of vertices in the V = −1 state,
with the pair separated from each other by one bond distance. These
can similarly be caught by our correction scheme and repaired, returing
us to the code space again.
However, it could be the case that two errors are on bonds that share

a vertex , as shown on the left of Fig. 24.11, the vertex that is shared
gets hit by σx twice and is thus in the V = +1 state. Only the two
vertices at the end of the ”string” are in the V = −1 state and are then
detectable as errors.
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Fig. 24.11 Left: When two σx errors are made on bonds that share a vertex, the
shared vertex is hit with σxi twice, and thus becomes V = +1 again. Only the two
vertices at the end of the ”string” are in the V = −1 state. Middle: A longer string
of errors. Note that we can only measure the endpoints of the string, not where the
errors were made, so we cannot tell if the error string goes down two steps then two
steps to the right, or if goes two steps to the right then down two steps. Right

If we detect the errors as in the middle panel and we try to correct it by dragging
the errors back together, but we choose the incorrect path for the string, we end up
making a closed loop of σx operators – which acts as the identity on the code space,
so we still successfully correct the error!

Nonetheless, the error correction scheme is still fairly straightforward.
One frequently checks the state of all the vertices and when V = −1
is found, one tries to find the closest other error to pair it with – and
then apply σx operators to correct these errors (you can think of this
as dragging the errors back together and annihilating them with each
other again).
It is important to realize that we cannot see the error operators (which

we have drawn as a blue string) themselves by making measurements on
the system – we can only detect the endpoints of string, the vertices
where V = −1. For example, in the middle panel of figure 24.11 we
cannot tell if the error string goes down two step and then to the right,
or if it goes to the right one step and then down two steps. We only
know where the endpoints of the string are.
Now if we detect the two errors in the middle panel of Fig. 24.11,

we may try to correct these errors by guessing where the blue string is
and applying σx along this path to bring the endpoints back together
and reannihilate them. However, it is possible we guess incorrectly as
shown in the right panel of Fig. 24.11. In this case we will have ended
up producing a closed loop of σx operators applied to the original state.
However, a product of σx operators around a closed loop is precisely
equal to the product of the plaquette operators Pβ enclosed in the loop.
Since the code space is defined such that all of hte plaquettes operators
are in the +1 eigenstate, this loop of σx acts as the identity on the code
space, and we still successfully correct the error.
On the other hand, if a loop of errors occurs which extends around

a handle , and the V = −1 errors annihilate again (think of this as
dragging the error all the way around the handle and re-annihilating it
again) then, although we return to the code-space (there are no V = −1
vertices) we have changed the parity of the number of down spins around
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a handle thus scrambling the quantum information and make an error
in the logical bits. In fact what we get in this case is the transform that
switches the even and odd sectors around one handle :

Aee|ψee〉+Aeo|ψeo〉+Aoe|ψoe〉+Aoo|ψoo〉 −→
Aoe|ψee〉+Aoo|ψeo〉+Aee|ψoe〉+Aeo|ψoo〉

However, the general idea of the toric code is that by having a very
large torus, it requires a very large number of errors to make this loop
around the handle and actually scramble the quantum information (the
logical qubits). If we are continuously checking for V = −1 errors we
can presumably correct these errors before a logical error can arise.

24.6.2 σz Errors

We can also consider what happens if the error is not a σx operator
applied to the system, but rather a σz operator. Much of the argument
in this case is similar to that above.
Since the σz operator on an edge anticommutes with the two neigh-

boring plaquettes Pβ which share that edge, the resulting state will have
Pβ = −1 for these two plaquettes as shown on the left of Fig. 24.12. Re-
call that this eigenstate of the plaquette operator is a superposition of
the flipped and unflipped plquettes similar to that shown in Fig. 24.6
but with a minus sign between the two terms.

Fig. 24.12 Left: When a σz error is applied to a bond, the plaquettes on either side
end up in the P = −1 state Middle: A string of several σz errors. Right A closed
loop of σz errors. This is equal to the product of all of the enclosed Vα operators.
In the code space, this is equal to +1.

Analogous to the above discussion, our σz error correction proto-
col should frequently check for pairs of neighboring plaquettes where
Pβ = −1 and if these are found the protocol should correct the error by
applying σz to the intervening edge. As above, if several σz errors are
created, they can form a string, as shown as blue bonds in the middle of
Fig. 24.12. As above, one is not able to actually detect the string, but
can only see the endpoints as plaquettes where P = −1. Analogous to
the above case, if from errors, or from an attempt to correct errors, the
σz error string forms a closed loop as in the right of Fig. 24.12, this loop



24.6 Errors and Error Correction 319

of σz operators is equal to the product of the enclosed Vα operators.
Since within the code space, Vα = 1, a closed loop returns the system
its original state. Another way of seeing this is to think in terms of the
red loops of down spins discussed above. The σz operators register −1
each time they intersect a red loop. On the other hand the red loops
must be closed so the number of intersections between a red loop and a
dlow3e loop of the blue σz error string in the figure must be even (since
a red loop going into the region surrounded by the string must also come
out), thus forcing the product of the blue σz operators to have a value
of 1.
On the other hand, if the loop of σz operators goes all the way around

the handle, it then scrambles the logical qubits. In particular, one can
see that if there is a string of σz going all the way around a handle as
shown as the blue bonds in Fig. 24.13, this operator then counts the
parity of the number of red bonds going around the dual handle, as
shown in the figure. Thus, applying the string of σz operators around

Fig. 24.13 If a string of σz goes
around a handle, it measures the par-
ity of the number of red strings going
around the dual handle.

the handle makes the transformation

Aee|ψee〉+Aeo|ψeo〉+Aoe|ψoe〉+Aoo|ψoo〉 −→
Aee|ψee〉+Aeo|ψeo〉 −Aoe|ψoe〉 −Aoo|ψoo〉

24.6.3 σy Errors

A basis for a complete set of operators applied to a single spin is given
by σx, σy, and σz (as well as the identity). We have discussed errors
created by σx and σz , but what about σy . Here we simply use the fact
that

σy = iσxσz

So if we have an error correction protocol that removes both σx and σz

errors, being that the two procedures don’t interfere with each other, we
will automatically correct σy errors in the process!

24.6.4 More Comments on Errors

(1) A key point to take away here is that the only process which can
cause logical erorrs is if an error string goes all the way around one of the
handles. Further (and this is a related statement) the only operator that
can distinguish the different elements of the code space from each other
are string operators that go all the way around the handles. The latter
(related) statement is qutie necessary, since being able to distinguish the
different wavefunctions from each other is equivalent to causing an error
since it amounts to a measurement of the logical bits.
(2) As mentioned above, the toric code as a method of storing quantum
information is considered the “best” quantum error correcting code. We
define the quality of a code as follows: We define a time unit as the
amount of time it takes us to make a measurement of a quantity such as
Vα or Pβ . Then we assume there is some rate of errors being introduced
to the underlying physical bits (the spins) per time unit. Given these
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parameters, the toric code is able to reliably correct the largest possible
error rate per time unit of any known quantum error correcting code.
(CITE)
(3) While we have introduced the toric code on a torus (hence the name)
so that it stores 2 logical qubits of information, as mentioned above, if
we go to a higher genus surface (either a closed manifold with handles,
or a surface with holes cut in it) we can store 2g qubits where g is the
genus of the surface.

24.7 Toric Code as Topological Matter

We have introduced the toric code as a way to store quantum infor-
mation — being stabilized by an error correction protocol that actively
checks the value of the vertex and plaquette operators. However, it is
quite easy to convert this story to a a realization of topologically or-
dered quantum matter — a physical system that is described at low
temperature and long wavelength by a topological quantum field theory.
In this case the physical system will be stabilized by the existence of an
energy gap to excitations and the fact that our system will be kept at
low temperature.
To recast the toric code as topologically ordered matter, we simply

write a Hamiltonian which is a sum of commuting operators

H = −
∑

vertices α

Vα −
∑

plaquettes β

Pβ (24.18)

Here we have set the energy unit to unity. The Hamiltonian is made
of a sum of commuting projectors with eigenvalues ±1 so the ground
state space is described by simply setting all of the Vα = 1 and Pβ = 1.
I.e., the ground state space is exactly the code space. There will be a
four-fold degenerate ground state corresponding to the four orthogonal
wavefunctions in the code space. If Vα = −1 or Pβ = −1 this corresponds
to a particle excited out of the ground state.
It is sometimes more convenient to work with the projectors Ṽα and

P̃β defined by Eqs. 24.14 and 24.15. Writing

H̃ =
∑

vertices α

Ṽα +
∑

plaquettes β

P̃β (24.19)

which differs from Eq. 24.18 only be a factor of 2 and an overall con-
stant. The advantage of H̃ is that it is a sum of commuting projection
operators. This is often convenient because it means that the ground
state has energy 0 and each excitatation has unit energy.

24.7.1 Excitations

The types of particle-excitations we can have are given as follows:
(1) We can have a vertex where Vα = −1 instead of Vα = +1. We call

this an “electric particle” which we write as e.
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(2) We can have a plaquette where Pβ = −1 instead of Pβ = +1. We
call this a “magnetic particle” which we write as m.
The nomenclature for these particles due to a relationship with lattice

gauge theories which we will discuss below.
Since vertex defects e’s are produced in pairs, and can be brought

back together and annihilted in pairs, we know we must have

e × e = I

Similarly since plaquette defects m are produced in pairs, and can be
brought back together and annihilated in pairs we must also have

m×m = I

We might then wonder what happens if we bring together a vertex and a
plaquette defect. They certainly do not annihilate, so we define another
particle type, called f , which is the fusion of the two

e×m = f

We then have
f × f = I

which we can see by associativity and commutativity

f × f = (e ×m)× (e ×m) = (e× e)× (m×m) = I × I = I

These are the only particle types there are. Note that they form a closed
set under the fusion rules. There are no non-abelian fusions here so we
assume we have an abelian model of some sort.
Note that there are exactly four particle types (including the identity),

and there are exactly four ground states!
The full fusion relations are given by the table in Fig. ??.

× I e m f
I I e m f
e e I f m
m m f I e
f f m e I

Fig. 24.14 Fusion Table for the Toric
Code

24.7.2 Braiding Properties

e is a boson

Let us first consider the e particles. These are both created and moved
around by applying σx operators. All of the σx operators commute with
each other, so there should be no difference in what order we create,
move, and annihilate the e particles. This necessarily implies that the
e particles are bosons. There are several ”experiments” we can do to
sow this fact. For example, we can create a pair of e’s move one around
in a circle and reannihilate, then compare this to what happens if we
put another e inside the loop before the experiment. We see that the
presence of another e inside the loop does not alter the phase of moving
the e around in a circle10.

10The experiment just described, while quite clear only tells us that e is either a
boson or a fermion (since a fermion taken in a loop all the way around another



322 Introducing Quantum Error Correction

m is a boson

Entirely analogously we can argue that m is also a boson. m is both
created and moved by the σz operator and all of these operators com-
mute with each other. The exact same argument (here without detail)
shows us that m must be a boson.

Braiding e and m

Here is where it gets interesting. Suppose we create an e particle and
move it around in a circle then reannihilate. This is exactly the process
shown in the right panel of Fig. 24.11 and is the product of a string of
σx operators. Recall that the reason this process does not accumulate a
phase is because the string of σx operators around the loop is equivalent
to the product of the Pβ plaquette operators enclosed — and in the
ground state, the Pβ operators are in the +1 state. However, if there is
one m particle inside the loop, this means that one of the Pβ operators
is actually in the −1 state. In this case the phase of taking the e particle
around in a loop is actually −1. So there is a phase of -1 for taking e
around m.
We can check that it is precisely equivalent if we take an m particle

around an e. Taking an m around in a loop is the process shown on the
right of Fig. 24.12 and is the product of a string of σz operators. Recall

fermion also accumulates no phase since it is equivalent to two exchanges).
To determine the phase of an exchange, we are going to attempt to do a twist in a
world line as in Fig. 2.6 or 15.2. Considering Fig. 24.15

Fig. 24.15 Vertices are labeled with letters and bonds are labeled with numbers.

Now suppose there is initially an e particle at position a. One experiment we can
do is to apply (reading right to left) σx1σ

x
7σ

x
6σ

x
5σ

x
4σ

x
3σ

x
2σ

x
1 . This just moves the

particle starting at a around in a loop (reading right to left abgfedcba) and brings
it back to the original position. We can compare this to the following operations
σx1σ

x
2σ

x
1σ

x
7σ

x
6σ

x
5σ

x
4σ

x
3 . This instead creates a pair of e particles at positons c and d,

moves the particle at d in a loop (bgfe) around c and anihilates it with the particle
at a, then finally moves the particle from e to replace the particle initially at a. This
process is precisely the twist factor process from Fig. 2.6 or 15.2. However, since the
σx operators all commute, it must also be equal to the previously described process
which just moves one particle around in a loop without introducing any twist. Hence
we conclude that the e particle is a boson.
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that the reason this process does not accumulate a phase is because the
string of σz operators around the loop is equivalent to the product of
the Vα vertex operators enclosed — and in the ground state, the Vα
operators are in the +1 state. However, if there is one e particle inside
the loop, this means that one of the Vα operators is actually in the −1
state. In this case the phase of taking the m particle around in a loop
is actually −1. So there is a phase of -1 for taking m around e.

Properties of f , the fermion

Since f is made up of an m bound to an e, it is easy to see that taking
e around f accumulates a phase of -1 and taking m around f also accu-
mulates a phsae of -1. More interesting is the properties of a single f .
We claim that f is a fermion. The easiest way to see this is to check its
phase under a twist as shown in Fig. 24.16

Fig. 24.16 The f = e×m particle is a fermion, since e braiding around m gives a
-1 sign.

Note that taking f all the way around f will result in a net + sign.

24.7.3 Modular S-matrix

We can summarize these findings with a modular Sij matrix, which lists
the braiding result obtained by taking particle i around particle j as
shown in Fig.7.13. Listing the particles in the order I, e,m, f we can
write S as in

S =
1

D




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




where unitarity fixes the total quantum dimension D = 2.

24.7.4 Flux Binding Description

We can describe the physics of the toric code phase in a flux binding
description somewhat analogous to Chern-Simons theory. Here let us
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define

electric particle = e = particle bound to 1 unit of electric charge

magnetic particle = m = particle bound to π units of magnetic flux

fermion = f = particle bound to 1 unit of electric charge and π units
of magnetic flux

It is easy to see that this charge and flux will correctly give the +1
and -1 phases accumulated from braiding particles.

24.8 Robustness of the Toric Code Phase of
Matter – Example of Topologically
Ordered Matter

The excitation gap in of the toric code “protects” it from small pertur-
bations and changes in the Hamiltonian. Indeed, the phase is “robust”
against any small variations in the details of the Hamiltonian. To see
this, let us suppose we have

H = Htoric code + λδH

where H is the toric code Hamiltonian defined above, and δH is some
arbitrary Hamiltonian (with local terms only) and λ is some small pa-
rameter. The claim is that for small enough λ, the topological properties
of the phase of matter (such as the 4-fold degenerate ground state, and
the exitations with their braiding statistics) will remain unchanged.
The easiest fact that we can test is that the four ground states remain

robust and unmixed by the perturbation. To see this, let us pick some
particular form for the δH such as a sum of σx on all edges

δH =
∑

i

σxi

(we will realize that the actual form we choose won’t matter for the
argument we make here). Now let us treat δH in perturbation the-
ory. In the absence of the perturbation, we have four ground states
|ψee〉, |ψeo〉, |ψoe〉, |ψoo〉. Then if we add the perturbation order by or-
der to one of these ground states, qualitatively we obtain1111This is a Brillouin-Wigner perturba-

tion theory, where successive terms are
rigorously λ/∆ smaller. |ψ̃〉 = |ψ〉+ (GδH)|ψ〉+ (GδH)2|ψ〉+ . . .

and the energy modified by the perturbing Hamiltonian is then

E = 〈ψ̃|Htoric + δH |ψ̃〉

where here G is the greens function, which includes an energy denomi-
nator at least as big as the excitation gap ∆, so that successive terms in
the expansion are smaller by order λ/∆. The point here is that at M th
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order in perturbation theory, we can only generate wavefunctions that
differ from the original ground state by M applications of δH . Now re-
call that one cannot even distinguish the ground state sectors from each
other unless one has a string operator that wraps all the way around the
torus. Thus, the result of this calculation is identical for the four ground
states out to very high order of perturbation theory, and any splitting
of the four ground state sectors (or any mixing of the sectors) will be
suppressed exponentially as (λ/∆)L which can be made arbitrarily small
for a big system. It is clear that this general argument is not specific to
the particular form of δH we have chosen.
One can go further and ask what happens to the excited particles

when a perturbation is applied to the system. Similarly, we can per-
form a perturbation series. Here what happens is that the particles —
which started as point defects — develop a nonzero length scale. As
one moves a distance x further away from the particle, the influence of
the presence of that particle decays as (λ/∆)x. Again, if λ is small,
then from a sufficiently far distance away, the particle again looks like a
point. In particular, if one particle is braided around another at a suf-
ficient distance away, it accumulates the expected phase that the pure
toric code would have predicted. There are several strong arguments for
this. First, we can explicitly write an expression for the braiding phase
and show that the corrections do indeed drop exponentially by exactly
the same arguments. Secondly, we recall the idea of rigidity presented
in section ?? — it is not possible that the braiding phases in a theory
change an arbitrarily small amount.

24.9 The Notion of Topological Order

The type of protection from small perturbations that we have just dis-
covered is the basis for a very useful definition of topological order. A
topologically ordered system will have multiple degenerate ground states
when put on a surface with nonzero genus (i.e., a a torus, or a system
with a hole cut in it) which we call |ψα〉. To have topological order we
should expect

〈ψi|any local operator|ψj〉 = Cδij

where C depends on the particular operator and there may be corrections
that are only exponentially small in the size of the system. In other
words, the multiple ground states locally look just like each other, but
are mutually orthogonal.





Kitaev’s Generalized Toric Code:
The Quantum Double of a
Group — Lattice Gauge Theory 25

Medium Material

Kitaev constructed an ingenious way to build a topological model from
an arbitrary group G on a lattice. This is very much the generalization
of the toric code, except that instead of using simple spins on edges,
we give the edges values of elements of the group. The construction is
based on lattice gauge theory, and will include the toric code as a simple
example, where the group is Z2, the group with two elements1.

1I present this model on the “dual”
graph compared to Kitaev’s presenta-
tion.

We begin by defining a graph (which could be a regular lattice, or
could be disordered). We define an orientation to each edge as an arrow
as given in Fig. 25.1

Fig. 25.1 Part of a directed graph.

We choose a group G with group elements g ∈ G. The Hilbert space
is defined by labeling edges with the group elements g. Inverting the
arrow on an edge has the effect of inverting the group element g → g−1

as shown in Fig. 25.2.

Fig. 25.2 Inverting the direction on
an edge inverts the group element.

We now define a vertex operator Vα for a vertex α with all arrows
pointed in as a projector which enforces that the product of group el-
ements around the vertex to be the identity e, as shown in Fig. 25.3.
This is the string-net vertex fusion rule.2

2Note that if we have three edges com-
ing into a vertex labeled g1, g2, g3 the
condition g1g2g3 = e is equivalent to
g2g3g1 = e and g3g1g2 = e.

Fig. 25.3 Definition of Vα when all arrows are directed into the vertex (if a vertex
is directed out, one can invert the arrow and invert the group element). The vertex
operator gives zero unless the product of group elements around the plaquette gives
the identity element e

We can then define a plaquette operator Pβ(h) to premultiply the
(clockwise orientied) group elements around a plaquette β by the group
element h, as shown in Fig. 25.4.
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Fig. 25.4 The plaquette operator Pβ(h) premultiplies all of the clockwise oriented
bonds by the element h.

The total plaquette operator (the one that will enter the Hamiltonian)
is then defined to be

Pβ =
∑

g∈G
Pβ(g)

It is easy to see that the plaquette operator and the vertex operator
commute.

Relation to toric code

How does this related to the toric code? Consider the group Z2 of two
elements where we write the two elements as {1,−1}. We can think of
these as being spin up and spin down on the lattice. Since g = g−1 for
every element we don’t need to put arrows on the lattice.

Pβ(1) = identity operator

Pβ(−1) = multiply all edges by -1. (i.e. flip all edges)

and we have
Pβ = Pβ(1) + Pβ(−1)

whereas the vertex operator is given by

Vα =

{
1 if an even number of edges are spin down
0 if an odd number

we see that (up to the constants being added which are not interesting)
these are simply the toric code vertex and plaquette operators.
Working with abelian groups, this new toric code is a fairly straightfor-

ward generalization of the toric code we have already studied. However,
the generalization to nonabelian groups is more nontrivial, and requires
some amount of group theory to understand. The resulting TQFT is
known as the quantum double (or Drinfeld double) of the group. The
particles types of the TQFT are given by (C, χ) where C is a conju-
gacy class and χ is an irreducible representation of the centralizer of the
conjugacy class3. Generically one will have nonabelian anyons. I will

3Two elements g and h of a group are

called conjugate if g = uhu−1 for some
u in the group. A conjugacy class is
a set of elements of a group that are
all conjugate to each other. A group is
naturally partitioned into nonintersect-
ing conjugacy classes. A centralizer of
an element g is the set of all elements
of the group u that commute with it
ug = gu. not go through this argument in detail. See Kitaev for more. (Also cite

Propitius)
This model by Kitaev is essentially a lattice gauge theory. Essen-
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tially the wavefunction is given by a unique state plus everything that
is “gauge equivalent” (meaning can be obtained by plaquette flips). Let
us think in terms of the dual lattice for a moment (so plaquettes become
dual-vertices and vertices become dual-plaquettes). The sum over group
elements of Pβ(h) enforces gauge invariance of the theory at the dual
vertices. The vertex operator Vα then assures there is no magnetic flux
penetrating the dual plaquette.

25.0.1 ZN toric code

The generalization of the toric code to theories built on the group ZN
(group of integers under addition modulo n) is rather straightforward,
and also results in an abelian TQFT. The electric and magentic particles
then have ZN fusion rules instead of Z2 as in the toric code. We can
think of this still as being a string net — with the new string net fusion
rules at the vertex being now given by the structure of the group G.
Merge these
Perhaps the most simple generalization of the toric code is the ZN

toric code. Here each edge of the lattice is labeled with an element of
the group ZN , i.e., an integer modulo N with the group operation of
addition. It is easy to work out that one obtains a correpsonding ZN
electric charge at the vertices and ZN magnetic charge on the plaquettes.
Let us call the elementary electric charge e, and the elmentary magnetic
charge m. These have the property that eN = mN = I. We then have
N2 particle types that we can label as

(i, j) = ei ×mj

with i and j being chosen from 0, . . . (N − 1), with the fusion rules
corresponding to just addition of the i and j indices modulo N . The e
and m particles again are bosons (they braid trivially with themselves).
However, as in the Z2 case braiding an e around an m is nontrivial4: 4One might wonder where we have bro-

ken time reversal to get a complex
phase. In fact we have not broken time
reversal — however, we did have to
make a choice as to which particle we
would call e. If we had chosen the par-
ticle eN−1 = e−1 instead to be the el-
ementary particle, the phase would be
reversed.

here it gives a phase of e2πi/N .

25.1 Ground State Degeneracy in the General

Nonabelian Case

While the full particle spectrum for the Quantum Double of a nonabelian
group is tricky to calculate, it is not too difficult to calculate the ground
state degeneracy on a torus (and hence determine the number of anyons
in the theory). Here we use to our advantage that we can use any lattice
we like to cover the torus, so we might as well choose a simple one like
that shown in Fig. 25.5. In that lattice covering of the torus, there are
two vertices, and the vertex operator then requires that abc = I and
a−1b−1c−1 = I. This then implies that

ab = ba = c−1



330 Kitaev’s Generalized Toric Code: The Quantum Double of a Group — Lattice Gauge Theory

a
b

bc c

Fig. 25.5 The simplest possible decomposition of a torus into a single plaquette with
three edges and two trivalent vertices. Here the dotted lines are periodic boundary
conditions on the torus. The edges are labeled with particle types. The vertex
conditions require abc = I and a−1b−1c−1 = I.

g

Fig. 25.6 The simplest possible decomposition of a torus into a single plaquette with
three edges and two trivalent vertices. Here the dotted lines are periodic boundary
conditions on the torus. The edges are labeled with particle types. The vertex
conditions require abc = I and a−1b−1c−1 = I.

and in particlular a and b must commute.
Now let us think about the plaquette operator. In this lattice three is

only a single
Use Burnsides lemma (otherwsie known as the lemma not by Burn-

sides)



More Generalizing The Toric
Code: Loop Gases and String
Nets 26

Medium Material

The general ideas presented with the toric code can be further gener-
alized topologically ordered phases of matter. They key generalizations
were made by Levin and Wen. Also we will discuss in some of the lan-
guage of the work of Freedman et al. And for the doubled Fibonacci
model, Fidkowski et al.
A key idea is that the underlying lattice is not very crucial to the

details of the toric code. Indeed, we can write the toric code on any
lattice structure and even on an irregular lattice, so it is often useful to
dispense with the lattice altogether. This simplifies a lot of the thinking
and allows us to generalize the model fairly simply. In fact it will allow us
to manipulate our loop gas using the same sort of diagrammatic algebra
we have been using all along! If we want to put the model back on a
lattice at the end of the day, we can do this (we show an example in the
double semion model) although it can start to look a bit more ugly.

26.1 Toric Code Loop Gas

We start by abstracting the toric code to simply a gas of fluctuating
non-intersecting loops — no longer paying attention to a lattice. An
example of a loop gas configuration is shown in Fig. 26.1 Note, since

Fig. 26.1 A loop gas in 2d. We can
think of this as particle world-lines in
1+1 d.

this is in 2d, there are no over and under crossings — we can think about
this picture as being some sort of world-lines for particles in 1+1d.
We can write the toric code wavefunction in the form of

|ψ〉 =
∑

all loop configs that can be
obtained from a reference
loop config

|loop config〉 (26.1)

Where the types of “moves” one can make are similar to the diagram-
matic moves we have been discussing for world lines in 2+1 d previously.
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Move 1: ”Isotopy” = smooth deformation of a loop. As shown in
Fig. 26.2. We have always allowed smooth deformations in our diagram-
mmatic algebras.

Fig. 26.2 Isotopy (Top) Off the lattice this is just deformation of a line. (Bottom)
on the lattice, this is implemented by flipping over the blue plaquettes.

Move 2: ”Adding or removing a loop”. As shown in Fig. 26.3

Fig. 26.3 Adding or Removing a loop (Top) Off the lattice (Bottom) On the
lattice we flip the shown plaquettes.
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Move 3: ”Surgery” or reconnection of loops. As shown in Fig. 26.4

Fig. 26.4 Loop Surgery (Top) Off lattice surgery (Bottom) On lattice, flip the
shown plaquettes

We can summarize these rules with simple skein-like relations as shown
in Fig. 26.5

Fig. 26.5 ”Skein” relations for the toric-code loop gas. The unity on the right of the
top line means that the amplitude in the superposition that forms the wavefunciton
is unchanged (multiplied by unity) under removal or addition of a loop.

The ground state obviously decomposes into four sectors on a torus
depending on the parity of the number of loops going around the handles
of the torus.
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26.1.1 Excitations of the Loop Gas

An end of a string in a loop gas corresponds to some sort of excitation
(like a vertex excitation on the lattice). However, on the lattice, the
vertex excitation could be either e or f , so how do we distinguish these
off the lattice?
First we note that the string can end in many ways as shown in

Fig. 26.6.

Fig. 26.6 Ends of strings can be wrapped either way, and multiple times. a and b
are different, c is equivalent to b by surgery. Similarly d and e are both the equivalent
to a.

However, it turns out, due to the surgery rule, that there are actually
only two inequivalent endings, a, and b from this list. To see this

Fig. 26.7 Loop equivalences. Surgery is done inside the light green circles. The
final equality on the lower right is just pulling the string tight.

We now attempt to figure out the nature of these excitations by ap-
plying the twist operator θ̂ which rotates the excitation by 2π. This
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rotation wraps an untwisted particle’s string into a loop as shown in
Fig. 26.8

Fig. 26.8 Rotation

From these relations we can determine that the eigenvalues of the
rotation operator are +1, correpsonding to the e particle and −1 corre-
sponing to the f particle, as shown in Fig. 26.9.

Fig. 26.9 The eigenvectors of the rotation operator θ̂

Thus, the electric particle is the superposition of a straight line and a
twisted line. This may seem surprising, because on the lattice it seems
that we can make a pair of e particles flipping a single bond, which might
seem like just a straight line between the two endpoints. However, we
must also consider the possibility that the endpoint is surrounded by a
loop when the defect line is created!
The magnetic particle m can be constructed by fusing together e× f .

The result should be the same as our prior definition of the magnetic par-
ticle. Recall that the ground state should be a superposition of no-loop
and loop (with a positive sign). This is what we learned from considering
a plaquette operator to be a minimal loop. If we take a superposition
with a minus sign, we get something orthogonal to the ground state,
which should be the magnetic particle, as shown in Fig. 26.10.
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Fig. 26.10 The black disk is some region of our model. Forming a superposition
of this region, and this region with a loop around it, with a minus sign between the
two pieces, must be orthogonal to the ground state — it puts a magnetic excitation
m in the region.

26.2 The Double Semion Loop Gas

A rather minor modification of the skein rules for the loop gas results
in a somewhat different topological phase of matter. Consider changing
the rules so that each loop removal/addition, and each surgery, incurs
a minus sign. Note that these two minus signs are consistent with each
other because each surgery changes the parity of the number of loops in
the system.

Fig. 26.11 ”Skein” relations for the double-semion loop gas. Each loop re-
moval/addition and each surgery incurs a minus sign. Note that these are the same
as the Kauffman rules when we considered semions.

Note that these rules were precisely the skein rules we used for the
Kauffman invariant when we considered semions!
From these rules we expect wavefunctions of the form

|ψ〉 =
∑

all loop configs that can be
obtained from a reference
loop config

(−1)Number of Loops|loop config〉

(26.2)
We can think of the prefactor (−1) to the number of loops, as being the
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wavefunction written in the basis of loop configurations.
As with the toric code, there should be four ground states on the torus

corresponding to the different possible parities around the two handles.

26.2.1 Microscopic Model of Doubled Semions

We now turn to try to build a microscopic hamiltonian for the doubled
semion loop gas. First, however, we realize that there is a problem with
constructing this on a square lattice. When four red lines touch at a
corner we cannot tell if we have a single loop or two loops (See right of
Fig.26.12). To avoid this problem we switch to using a trivalent network
(the word ”lattice” is not really appropriate, despite the fact that most
people in condensd matter would call it a trivalent lattice). The simplest
trivalent network is the honeycomb.

Honeycomb’s Good

A rather trivial generalization is to change the lattice to a honeycomb
as shown in Fig. 26.12. The advantage of this structure is that loops
cannot intersect as they can (at the 4-fold corner) on the the square
lattice.

Fig. 26.12 Left: Toric code on a honeycomb, loops are nonintersecting. Right: On
the square lattice loops can intersect at corners and one cannot tell if this picture
represents one loop or two.

As in the previous square case, the vertex operator must assure that
an even number of red bonds intersect at each vertex, and the plaquette
operator now flips all six spins around a plaquette.
In fact, any trivalent network will be suitable. In all cases the vertex

operator enforces that we are considering only loop gases – now with
no self-intersections allowed. The plaquette operators will flip all of the
bonds around a plaquette, as in the toric code, but will now assign signs
such that creating or destroying a loop incurs a minus sign.
To see how this can be achieved consider Fig. 26.13. Depending on the

initial state, when the plaquette is flipped, one may or may not obtain
a minus sign.
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Fig. 26.13 Some plaquette flips for the double semion model on the hexagon. The
top line obviously adds a loop, so should get a minus sign. The second line just
stretches a loop over a plaquette, so does not get a minus sign. The third line is a
surgery so gets a minus sign. The fourth line is a double surgery, so gets no minus
sign.

One way of determining if one should or should not get a minus sign
is to count the number of red bonds touching the outside of the hexagon
(sometimes called the outside ”legs”). Because red bonds form closed
loops, the number of red legs of a hexagon must be even. If the number
of red legs is a multiple of four, then one gets a minus sign in the flip.
One can thus write a plaquette operator for the hexagon as

P ′
β =


 ∏

i∈ plaquette β
σxi


 (−1)

1
4

∑
j∈ legs of β (σzj+1)

The overall Hamiltonian for this model is then

H = −
∑

vertices α

Vα −
∑

plaquettes β

P ′
β

This Hamiltonian was first written down by Levin and Wen.

26.2.2 Double Semion Excitations

The addition of the sign in the surgery rule changes the effect of ro-
tations. We now have the added sign in Fig. 26.14 Resulting in the

Fig. 26.14 Surgery incurs a minus
sign. Compare to fig. 26.7

effect of rotation being Fig. 26.15 Again we can use these to give us the

Fig. 26.15 Surgery incurs a minus
sign. Compare to fig. 26.7

eigenstates of the rotation operator as shown in Fig. 26.16
Thus we have two particle types with twist factors i and −i. These

are right and left-handed semions. It is interesting that we used the
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skein rules for a model of semions to build our loop gas, and we got out
two types of particles — Both right and left handed semions. This is
perhaps to be expected, since nowhere in our input rules did we ever
break “time-reversal” or say whether the original theory was right or
left handed — it comes out to be both!

Fig. 26.16 Eigenstates of the rotation operator for the doubles semion model.

As with the toric code, there is also a magnetic particle which can be
thought of as a fusion between the left and right handed particle — or
could just be considered as a superposition analagous to Fig. 26.10, ex-
cept now with a plus sign (since the ground state now is a superposition
with a minus sign, being that a loop addition now incurs a minus sign).
Thus the duouble semion model has four particles I, φ, φ∗,m where φ
and φ∗ are the right and lefthanded semions. The full fusion rules are
given in Fig. 26.17.

× I φ φ∗ m
I I φ φ∗ m
φ φ I m φ∗

φ∗ φ∗ m I φ
m m φ∗ φ I

Fig. 26.17 Fusion Table for Double
Semion Model

Quantum Doubling: We emphasize again that we started with a
theory having the kauffman rules of a model of semions (but we did not
need to put in the braiding by hand) and we got out a theory that has
both right and left handed semions. This priniciple is very general. If
we start with any theory of anyons and build a quantum loop gas from it
(not putting in any of the braiding relations) we will get out the doubled
theory, meaning it has both right and left handed versions of the theory.
As mentioned above the ground state should be thought of a the

positive eigenstate of the operator shown in Fig. 26.10 (including the
minus sign). Note that this combination of identity minus the string
with a prefactor of 1/D = 1/

√
2 is precisely the Ω strand (or Kirby

color) of the original semion theory (which has only two particles, the
identity or vacuum, and the semion or single string)1 If we think in three 1To check that this is indeed the

Kirby color, show that a loop of this
Kirby string will annihilate a flux go-
ing through the loop as in Section ??,
and gives D on the vacuum.

dimensions, the ground state is defined as having no flux through any
loops.

26.3 General String Net

Given our success with the loop gases, we would like to generalize the
idea to more general so-called ”string-nets”. In the case of the double
semion model as discussed above, we can really think of the loops as
being particle world-lines living in the plane (but with no crossings al-
lowed). We would like to upgrade this idea to a set of world-lines, still
living in a plane, but where different types of particles are allowed, and
they can fuse and split (but again, we allow no braiding). This type
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of multi-valued loop gas should look familiar from Kitaev’s generalized
toric code, although the construction here is more general still since the
edge labels need not form a group.
Thus in these string net models, we allow branching of loops, and we

allow strings of different colors as shown in Fig. 26.18. We can think of
this as being similar to the fusion diagrams we have encountered before
– the allowed branchings being given by the allowed fusions of the string
types. (We do not allow strings to go over or under each other though!).
We would like to similarly define a wavefunction to be of the form

Fig. 26.18 A general string net, that
allows branching, here with two colors. |ψ〉 =

∑

string
nets

Φ(net config) |net config〉

where the prefactors Φ(net config) satisfy some graphical rules as shown
in Fig. 26.19.

Fig. 26.19 Rules for a string net. The grey regions are meant to be the same on
both the left and the right of the diagram. Figure stolen from Levin and Wen.

The meaning of these rules are as follows: The first rule is simply
saying that we can deform one of the strings without chaning the value
of the prefactor Φ. The second rule says that removal of a loop multiplies
the prefactor Φ by a constant which we call the quantum dimension of
the loop da. The third rule is just our ”locality” principle — if a quantum
number i enters a region, that quantum number must also come out of
the region. This rule is irrelevant in the case of teh the toric code and
the double semion theory, because loops are not allowed to branch. The
final rule is a more complicated one which allows for the possibility of
making an “F-move” on a diagram – relating the prefector on the left to
a sum of prefactors of diagrams on the right. The analogue F move in
the toric code and double semion model are the second lines of Fig. 26.5
and Fig. 26.11.
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It is important to note that the F -matrix used to define define the
string net (last line of Fig. 26.19) must satisfy the pentagon equations
for consistency. It is crucial to note that one need not have define any
R matrices, since the string net model is defined entirely in 2d without
having any crossings of strings — so the F matrices do not have to
correspond to an actual anyon theory. The theory that results is known
as a Drinfeld double or quantum double.
Note however, certain F -matrices do have corresponding R matrices

which solve the hexagon equations. In this case, it is possible to think of
the string net model as being built from an underlying anyon theory —
the resuling topological theory is the simple ”double” of the underlying
anyon theory (i.e, just a right handed and a left handed copy of the
theory). The ground state will then be the D eigenstate of the Kirby
color loop – which makes it fairly easy to write a Hamiltonian on a lattice
for this string net model.

26.4 Doubled Fibonacci Model

As an example, let us try to build a string net model from from the Fi-
bonacci anyon theory. Again we will not put in the braiding information,
we only put in the fusion algebra.
We will write the identity (or vacuum) particle as no-line and the

Fibonacci particle τ as a red line, Since τ × τ can fuse to τ we expect
that this loop gas will allow our (red) loops to branch. We thus call this
version of a loop gas a “string net” (or a branching loop gas) as in Fig.
26.20.

Fig. 26.20 A branching string net for
the doubled Fibonacci model.

Starting with Eq. 9.2, we consider the following F -moves as shown in
Fig. 26.21

Fig. 26.21 Rules for building the doubled Fibonacci model.

Where here φ = (1+
√
5)/2 and (the values of these coefficients come

from the values of the F -matrix in Eq. 9.2.
We also expect to have rules of the form of Fig. 26.22 The first and

Fig. 26.22 Rules for building the dou-
bled Fibonacci model.

second rules2 are results of locality. The final rule is the usual rule that a

2In fact we can prove that the tadpole
rule must be zero. This is a homework
problem!
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loop can be removed and replaced by a number. This final rule also tells
us that the ground state should be a D eigenstate of the Kirby string
operator — since the Kirby Ω string is a sum of 1/D times the identity
operator and d/D times a loop of τ , whose value is now d, adding a
Kirby string give 1/D + d2/D = D
We can then pin down the values of d and X in these equations. To do

this, we connect the strings on the right of Fig. 26.21 to give Fig. 26.23.

Fig. 26.23 Starting with Fig. 26.21 and closing strings to the right hand. The black
strings should be imagined to be red — they are drawn black so one can see what is
added compared to Fig. 26.21

Using the laws above we these equations are translated to

d = φ−1 + φ−1/2X

0 = φ−1/2 − φ−1X

which we solve to obtain

X = φ1/2

d = φ−1 + 1 = φ

The fact that d = φ is not surprising being that this is the expected
quantum dimension for a Fibonacci particle.
With the values we obtain for X and d, we now have a full set of rules

in Fig. 26.21 and 26.22. We can then write a ground state wavefunction
of the form

|ψ〉 =
∑

all string net configs that
can be obtained from a ref-
erence config

Φ(net config) |net config〉

This looks quite similar to our above toric code loop gas, except now
we allow branching string nets instead of just loops, and also the kets
have a prefactor Φ. These prefactors are chosen such that the algebraic
rules described above are satisfied. I.e., removing a loop increases Φ by
a factor of d. Removing a bubble (as in the upper left of 26.22) increases
Φ by a factor of X . Then F tell us the relationship between three values
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of Φ where changes in the diagram are made as shown in Fig. 26.21.

26.4.1 Excitations

As with the double-semion model we should be able to determine the
quasiparticle eigenstates by looking at how a single line can end in a
defect. We claim that all possible line endings can be reduced, by F -
moves, to one of the three possible endings shown in Fig. 26.24 Just

Fig. 26.24 Possible string endings in
the doubled Fibonacci string net model.

as an example, consider the ending shown on the left of Fig. 26.25. By
using an F -move, it is reduced to a combination of the three presented
above.

Fig. 26.25 An example of reducing a more complicated string ending into one fo
the three endings shown in Fig. 26.24.

As in the case of the toric code and the double semion model, we
can figure out the twist factors by rotating these diagrams as shown in
Fig. 26.26 and then using F -matrices to reduce the result back to linear
combinations of the same three possible endings.
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Fig. 26.26 The rotation operator Θ̂ applied to the possible string endings. Then
using F matrices we reduce the results to linear combinations of the same endings.

We can write these diagrammatic equations more algebraically by

Θ̂




a
b
c


 =




0 φ−1 φ−1/2

1 0 0

0 φ−1/2 −φ−1






a
b
c




The eigenvectors of this matrix are the particle types with definite twist
factrors given by their eigenvalues under rotation.
With a bit of algebra it can be shown that the eigenvalues of this

matrix are given by

θ = eiπ4/5, e−iπ4/5, 1,

The first two correspond to the expected spin factors for a right-handed
Fibonacci anyon τ or left-handed Fibonacci anyon τ∗ (recall that we
worked out the spin factor using the hexagon equation earlier. See 13.3.).
The final possibility represents the fusion of these two objects τ×τ∗. In-
deed, these are all of the possible particle types in the doubled-Fibonacci
theory. Since the theory was based on a full anyon theory with braiding
fully defined, we expected to get both a right- and left-handed copy of
the Fibonacci model and indeed we did. (We never broke time rever-
sal in the definition of the model so we should get both hands of the
theory!).

26.4.2 Ground State Degeneracy

It is a bit tricky to figure out the ground state degeneracy here. Using
the above skein rules, any configuration can be reduced to a linear com-
bination of four simple configuation – corresponding to the possibilities
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of having a loop, or not having a loop, around each handle. An example
of reducing two loops around a handle to a linear combination of zero
and one loop is given in Fig. 26.27

Fig. 26.27 Reducing two loops around a handle to a linear combination of one loops
and zero loops.

26.5 Add details of Levin Wen Model on the
Lattice?

26.6 Appendix: S-matrix for Fibonacci Anyons

Without doing much work, we can figure out the S-matrix for Fibonacci
anyons. There are only 2 particles in the theory I and τ . Further we
know that the quantum dimension of τ is φ = (1 +

√
5)/2. Thus, the

total quantum dimension is D2 = 1+φ2 = 2+φ and the S matrix must
be of the form

S =
1

D

(
1 φ
φ y

)

where the constraint of unitarity immediately fixes y = −1.
We can check this by using F and R matrices to determine the value

of two linked rings explicitly as shown in Fig. 26.28
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Fig. 26.28 Calculating the nontrivial element of the Fibonacci anyon S-matrix.

Exercises

Exercise 26.1 Quasiparticles in Toric Code Loop Gas
As discussed in lecture, the toric code ground state can be considered to be

a loop gas with the rules given in Fig. 26.29

Fig. 26.29 Loop gas rules for the toric
code

Certain quasiparticle excitations can be indicated as ends of strings in the
loop gas.

(a) Show that the linear combinations of string ends shown in the figure
26.30 are eigenstates of the rotation operator – with the boson accumulating
no phase under rotation and the fermion accumulating a minus sign. (We did
this in lecture so it should be easy).

Fig. 26.30 Boson and Fermion quasiparticles as string ends in the toric code loop
gas

(b) Consider exchanging two such quasiparticles. To get a general idea of
how the calculation goes, you will have to evaluate diagrams of the form of
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Fig. 26.31. Show that one obtains bosonic or fermionic exchange statistics
respectively for the two linear combinations shown above.

Fig. 26.31 Braiding defects

(c) [Harder] Consider fusing the boson (the electric particle e) and the
fermion together. Show that this creates a magnetic defect which does not
have a trailing string. You will have to recall that the operator that creates a
magnetic particle is sum of the identity operator and minus an operator that
draws a loop all the way around the region. (This operator is a projector that
forces a magnetic defect into a region; the orthogonal projector assures that
there is no magnetic defect within the region).

Exercise 26.2 Quasiparticles in Double Semion Loop Gas
As discussed in lecture, the doubled semion model ground state can be

considered to be a loop gas with the rules given in Fig. 26.32. Note that these
rules are the same as the semion rules from the problem “Abelian Kauffman
Anyons” which we considered earlier (although in that model there is only one
chirality of semion particle!)

Fig. 26.32 Loop gas rules for the dou-
bled semion model

Again certain quasiparticle excitaitons can be indicated as ends of strings
in the loop gas.

(a) Show that the linear combinations of string ends shown in the figure
26.33 are eigenstates of the rotation operator – with the two particles accu-
mulating a factor of i or −i under rotation (We also did this in lecture so it
should be easy).

Fig. 26.33 Semion and anti-semion string ends in the doubled semion loop gas

(b) Consider exchanging two such quasiparticles. Show that under exchange
one obtains factor of i or −i as expected for semions and anti-semions. Note:
The anti-semion is not the antiparticle of the semion (I know it is bad nomen-
clature!) – The antisemion is the opposite handed particle. The semion is its
own antiparticle.

(c) [Harder] Consider fusing the semion and anti-semion together. Show
that this creates a “magnetic defect.” What is the projector that produces a
magnetic defect in a region?

Exercise 26.3 Double Fibonacci String Net
(a) As discussed in lecture, the double Fibonacci model ground state can

be viewed as a branching string net with graphical rules given by Fig. 26.34
(Compare to the problem on Fibonacci pentagon relation) where φ−1 = (

√
5−

1)/2. In the ground state no endpoints of strings are allowed, but branching
is allowed.

To complete the graphical rules we must also use the rules shown in Fig. 26.35
for some values of the variables, d, X and T .
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Fig. 26.34 String net rules for the doubled Fibonacci model

Fig. 26.35 Additionnal string net rules for the doubled Fibonacci model

(a) Show that the consistent solutions is d = φ with X = φ1/2 and T = 0.
We did much of this in lecture. What was left out is proving that any T 6= 0
solution is not self-consistent. Hint: Try evaluating a circle with three legs
coming out of it. That should enable you to derive a useful identity. Then see
if you can use this identity to derive a contradiction when T 6= 0.

(b) Consider quasiparticles which are the ends of strings. The general form
of a quasiparticle is as shown in Fig 26.36 with coefficients a, b, c that need
to be determined. Find the eigenvalues/eigenvectors of the rotation operator
to determine the quasiparticle types and their spins. (We did most of this in
lecture except the explicit evaluation of the eigenvalue problem!) Compare
your result to the result of the problem “Fibonacci Hexagon Equation”.
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Fig. 26.36 Combination of defect types for the doubled Fibonacci model





Introduction to Quantum Hall
— The Integer Effect 27

Medium Material

The fractional quantum Hall effect is the best studied of all topologically
ordered states of matter. In fact it is the only system which is extremely
convincingly observed to be topologically ordered in experiment1. We 1There are a good number of other

contenders now. Probably the most
convincing other case is 3HeA phase
2d films. Although very few experi-
ments have actually been done on this.
Other strong contenders include Majo-
rana wires, certain exotic superconduc-
tors, and a few frustrated quantum spin
systems.

will thus spend quite a bit of time discussing quantum Hall effects in
detail. Before we can discuss fractional quantum Hall effect we need to
discuss the basics, i.e., the integer quantum Hall effect.

27.1 Classical Hall Effect

In 1879 Edwin Hall discovered that when a current is run perpendicular
to a magenetic field, a voltage is generated perpendicular to both field
and current, and proportional to both (See Fig. 27.1). This voltage is
now known as the Hall voltage. Drude theory, treating a metal as a gas
of electrons, explains the Hall voltage as being a simple result of the
Lorentz force on electrons.

Fig. 27.1 Hall voltage VH perpendicular to both magnetic field and current, and
proportional to both. Also one measures a longitudinal voltage in the same direction
as the current, roughly independent of magnetic field.

27.2 Two-Dimensional Electrons

In the late 1960s and early 70s semiconductor technology made it possi-
ble to do experiments with electrons that live in two dimensions. First
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MOSFETs2 and later quantum wells were used to provide a confining2Metal Oxide Semiconductor Field Ef-
fect Transistors potential for electrons in one direction3, leaving motion only in the two
3More recently people have been able
to produce materials like graphene
which are literally one atom thick!

remaining dimensions. As an example we will consider a quantum well
structure, which is layered in the ẑ direction as shown in Fig. 27.2.

Fig. 27.2 Top A quantum well structure is a quasi-two-dimensional layer of one
semiconductor sandwiched between two other semiconductors. Bottom The po-
tential felt by an electron is like a particle in a box. If the energy is low enough,
the electron is stuck in the lowest particle-in-box wavefunction ϕ0(z) giving a total
wavefunction Ψ = ϕ0(z)ψ(x, y) and having strictly two dimensional motion.

The electron moving in the z-direction experiences a strong confine-
ment, such as the particle-in-box confinement shown in Fig. 27.2. The
wavefunction of the electron then takes the form ϕ(z) in the z-direction.
If the energy (i.e. the temperature and coulomb interaction) is very
low compared to the gap between the particle-in-box states, then the
electron is frozen in the lowest particle-in-box state ϕ0(z) and the total
wavefunction of the electron is Ψ(x, y, z) = ϕ0(z)ψ(x, y) leaving only the
x and y degrees of freedom. Thus we have a strictly two dimensional
electron.
More recently two dimensional electronic systems have also been ob-

served in single-layer atomic systems such as graphene. (Although even
then, the same argument needs to be used — that the motion of the
electron is “frozen” in the z-direction and only has freedom to move in
x and y).
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27.3 Phenomenology of Integer Quantum Hall

Effect

In 1980 Klaus von Klitzing, having just left a postdoctoral position at
Oxford, went to a new job at Grenoble carrying some new high mobility4

two dimensional electron samples grown by (now Sir) Michael Pepper at
Cambridge. He put them in high magnetic field and cooled them down
to a few degrees Kelvin temperature where he discovered something very
different from what Hall had seen a hundred years earlier. An example
of this type of experiment is shown in Fig. 27.3.

Fig. 27.3 An example of an Integer Quantum Hall experiment. The plateaus in

VH are such that VH = (1/i)(h/e2)I with i the integer displayed over the plateau
— where h is Planck’s constant and e is the electron charge. At the same magnetic
field where a plateau occurs in VH the longitudinal voltage drops to zero. Note
that at very low field, the Hall voltage is linear in B and the longitudinal voltage is
independent of B, as would be predicted by Drude theory.

At low magnetic field, the longitudinal voltage is relatively constant
whereas the Hall voltage is linear in magnetic field — both of these are
precisely what would be predicted by Drude theory. However, at high
magnetic field, plateaus form in the Hall voltage with concomitant zeros
of the longitudinal voltages. The plateaus have precisely the value

VH =
1

i

h

e2
I

4Meaning very clean
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where I is the current, h is Planck’s constant and e is the electron charge.
Here i is an integer as shown in the figure. Or equivalently we have

RH =
1

i

h

e2
= 1/GH (27.1)

with RH the Hall resistance where GH the Hall conductance. Where
we have plateaus in the Hall voltage, we have zeros in the longitudinal
voltage and resitstance

RL = 0

which implies we have a dissipationless state — similar to a superfluid.
These statements become increasingly precise as the temperature is low-
ered.
We should remember that conductivity and resistivities are both 2

by 2 matrices and are inverses of each other5. In this quantum Hall5These are 2 by 2 matrices because they
relate the vector electric field E to the
vector current j

state, these matrices are both purely off-diagonal. Thus we have the
interesting situation that both the diagonal part of the conductivity (the
longtidinal conductivity) is zero, and the diagonal part of the resistivity
(the longitudinal resistivity) is also zero.
The plateau RH = (1/i)(h/e2) occurs near the magnetic field such

that the so-called filling fraction ratio

ν =
nφ0
B

is roughly the integer i. Here n is the 2d electron density and φ0 is the
quantum of magnetic flux

φ0 = h/e

When von Klitzing discovered this effect he noticed mainly that the
plateaus in the Hall resistance are extremely precisely given by Eq. 27.1
and the plateaus are extremely flat. He submitted his manuscript to
PRL claiming that this would be a useful way to make a new resis-
tance standard6,7. In fact the result has been shown to be precise and6The referee mentioned that at the

time they already had resistance stan-
dards which were better than his ini-
tial measurement of one part in 106,
but proposed would be a uniquely good
measurement of the ratio h/e2. The pa-
per was resubmitted proposing to use
the effect as a precise measurement of
the fine structure constant. The paper
was accepted and the Nobel Prize for
von Klitzing followed in 1985.

7The quantum Hall effect is used as a
metrological resistance standard, and it
is proposed that the Ohm will soon be
defined in terms of the result of quan-
tum Hall experiments.

reproducible to better than a part in 1010. This is like measuring the
distance from London to Los Angeles to within a fraction of a millimeter.
This accuracy should be extremely surprising. The samples are dirty,
the electrical contacts are soldered on with big blobs of metal, and the
shape of the sample is not very precisely defined.

27.4 Transport in Zero Disorder

In strictly zero disorder it is easy to show that the longitudinal resistance
is zero and the Hall resistance is precisely linear in the magnetic field.
This is a simple result of Galilean/Lorentz invariance. Suppose we have
a two dimensional disorder-free system of electrons in the x, y plane and
a magnetic field B = Bẑ in the ẑ-direction perpendicular to the plane.
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The Lorentz force on an electron will be

F = −e (E+ v ×B)

If we then boost into a moving frame where

v =
E× ẑ

|B|

in this new frame we obtain F = 0, so the ground state must be station-
ary in this frame.
Then we boost back into the lab frame, and we obtain a current

j = −env =
−enE× ẑ

|B|

thus giving us

RL = 0

RH =
B

ne

which is exactly the prediction that Drude would have made for a dis-
order free system.
While this calculation is rigorous even with the effects of quantum

mechanics and interactions, it relies on having strictly zero disorder.

27.5 The Landau Problem

In order to understand quantum Hall effect, we should start by under-
standing the physics of a charge particle in a Magnetic field — a prob-
lem first studied by Landau. For simplicity we assume our electrons are
spinless (indeed, the spins tend to be polarized by the magnetic field
anyway.) We will consider an electron in the x, y plane, with a magnetic
field of magnitude B in the z direction. We will assume the system is
periodic in the y direction with length Ly, but opern in the x direction,
with length Ly (i.e., we are working on a cylinder actually). We will
eventually consider a small amount of disorder (as we showed above this
is crucial!), but for now let us assume the system has no disorder.
The Hamiltonian is

H0 =
(p+ eA)2

2m

where e and m are the electron charge and mass, and A is the vector po-
tential. We then have to choose a particular gauge to work in. Later on
we will want to work in symmetric gauge (there is a homework problem
on this!) For now we will work in the so-called “Landau” gauge

A = Bxŷ
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which does indeed satisfy

B = ∇×A = Bẑ

as desired. The Hamiltonian is thus

H0 =
1

2m

(
(p2x + (py + eBx)2

)

where pj = −i~∂j.
The Hamiltonian is then translationally invarient in the ŷ direction,

so we can write the wavefunction as

ψ(x, y) = φky (x)e
ikyy

and due to the periodicity in the y-direction, we have

ky =
2πn

Ly

for some integer n. Plugging in this form gives a familiar Schroedinger
equation

(
p2x
2m

+
1

2
mω2

c (kyℓ
2 + x)2

)
φky (x) = Eφky (x) (27.2)

where ℓ is the so-called magentic length

ℓ =
√
~/(eB)

and ωc is the cyclotron frequency

ωc = eB/m.

We recognize this Schroedinger equation as being just a harmonic oscil-
lator where the center of the harmonic potential is shifted to x = −kyℓ2.
Thus the eigenenergies are of the usual harmonic oscillator form

Ep = ~ωc

(
p+

1

2

)
(27.3)

where p is an integer. These quantized energy states are known as Lan-
dau levels. The form of the wavefunction will be harmonic oscillator on
the x direction and plane-wave in the y-direction as shown in Fig. 27.4.
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Fig. 27.4 The shape of the wavefunction of an electron in a magnetic field using
Landau gauge. The form of the wavefunction will be harmonic oscillator on the x
direction and plane-wave in the y-direction

Fixing the energy by fixing p in Eq. 27.3, the value of ky is quantized
in units of 2π/Ly. Further, the position x ranges over Lx, meaning that
ky ranges over Lx/ℓ

2. Thus the total number of possible values of ky is

Number of states in a Landau level =
LxLy
2πℓ2

=
Area B

φ0

where
φ0 = h/e

is the magnetic flux quantum. Thus, the number of states in a Landau
level is equal to the number of magnetic flux quanta of magnetic field
incident on the plane.
We can plot the density of states for electrons in a magnetic field, as

shown in Fig. 27.5

Fig. 27.5 The density of states for
spin-polarized (or spinless) electrons in
a magnetic field. At energies equal
to half-odd integer multiples of the
cyclotron frequency, there is a spike
of degenerate states, with degeneracy
Area B

φ0 .

When there are multiple electrons present, we define the filling frac-
tion to be the number of these Landau levels which are completely filled
with electrons.

ν =
nφ0
B

where n is the density of electrons. Or equivalently we can write a
relationship between the number of electrons in the system, Ne and the
number of magnetic flux Nφ

Ne = νNφ

Incompressility of Integer Number of Filled Landau Levels:

When some integer number of Landau levels is filled, the chemical poten-
tial lies in the middle of the gap between the filled and unfilled states —
analogous to a band insulator. In this case the the system is incompress-
ible. This means there is a finite energy gap to creating any excitations
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— i.e., all excitations must involve removing an electron from a filled
Landau level, promoting it above the energy gap to place it in an empty
state. In particular excitations which change the density (compressions)
are gapped. Further, at this precise integer filling fraction, the longi-
tudinal conductivity is zero, and the Hall conductivity is precisely the
quantized value RH = ne/B = (1/i)(h/e2).
If we were to control the chemical potential in the experiment, we

would have our answer as to why the Hall conductivity shows plateaus
— for any value of the chemical potential, except for the special values
µ = (~ωc)(p + 1/2) with integer p, the electron number is pinned to
N = Nφ/i where i is an integer, precisely i Landau levels are filled,
there is a gap to excitations, and the Hall conductivity would be precisely
quantized. However, in real experiments, it is actually the density that
is fixed — which means that generically the chemical potential does
sit in the degenerate band µ = (~ωc)(p + 1/2) for some integer p and
generically the filling fraction is tuned continuously and is not quantized.
Thus the incompressible state is very fine tuned. It occurs only for a

very precise (integer) value of the filling fraction —for all other values
of the filling fraction, some Landau level is partially filled and (at least
neglecting interactions) the system would be extremely compressible, as
there are many zero energy excitations corresponding to rearrangements
of the electrons (which orbitals are filled and which are empty) within
the partially filled Landau level.
While the system does have a gap under fine tuning, we will need

something that will preserve the special properties of the fine tuned state
even when we move away from the filling fraction which is precisely an
integer. What does this is actually disorder — it will provide a reservoir
for excess electrons (or holes) added (or subtracted) from the integer
filled state. With disorder, the special properties of the quantized state
are made robust.

What Does Disorder Do?

As mentioned above, we will need to add disorder to the system in order
to achieved quantized Hall effect. What is the effect of this disorder?
Disorder will spread out the energies in the band by having some regions
where the potential is higher than average and some regions where the
potential is lower than average. This spreads the sharp peak in the
density of states into a broader band, as shown in Fig. 27.6.

Fig. 27.6 The density of states for
spin-polarized (or spinless) electrons in
a magnetic field with disoder. The
Landau bands are spread out, with lo-
calized eigenstates in the tails and ex-
tended eigenstates near the middle.

Since current tends to flow perpendicular to potential gradients (i.e., it
is hall current), eigenstates tend to follow contours of constant potential.
Thus many of the eigenstates at high and low energy will be trapped in
local minima or maxima — isolated in a hill or valley and circling the
peak or bottom. The result is that the eigenstates in the edge of the
band experience localization, whereas (at least some) eigenstates near
the center of the band as shown in Fig. 27.6.
When the chemical potential is anywhere in the localized states, then

at low enough temperature, the electrons cannot move at all. Although
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there are states at this energy, they are all localized and electrons cannot
jump between them. Hence we expect in this case that the DC dissipi-
tave conductance goes to zero. (For dissipitive conductance to occur, an
electron has to be excited up to the next delocalized band.) The state
remains incompressible for filling fractions even away from the precise
integer value of ν.
What is not obvious is (a) that the Hall conductance should be pre-

cisely quantized, and (b) that we should have Hall conductance at all.

27.6 Laughlin’s Quantization Argument

In 1981, shortly after von Klitzing’s discovery of quantum Hall effect,
Bob Laughlin8 presented an argument as to why the Hall conductance 8Laughlin would later go on to win a

Nobel Prize for his explanation of frac-
tional quantum Hall effect, which we
will start discussing in chapter ***.

must be precisely quantized. The argument relies on gauge invariance.
We first need to present a key theorem which comes from gauge invari-
ance.

27.6.1 Byers and Yang Theorem

Consider any system (made of electrons and protons and neutrons) with
a hole cut in it, as in Fig. 27.7. Now put some magnetic flux Φ through

Fig. 27.7 The Byers-Yang theorem
states that threading any integer num-
ber of flux quanta through a hole in
a system leaves the eigenspectrum un-
changed.

the hole in such a way that the flux does not touch any piece of the
system, but just goes through the hole. By the Aharanov-Bohm effect,
the charged particles in the system cannot detect the flux if it is an
integer multiple of the flux quantum φ0. In fact the statement can be
made stronger: The eigenspectrum of the system is precisely the same
when an integer number of flux is inserted through the hole. This result
is known as the Byers9-Yang10 theorem (1961).

9Nina Byers was just starting as an
assistant professor at UCLA when she
proved this theorem. In the late 60s
and early 70s she oscillated between
Oxford (Somerville college) and UCLA,
but eventually converged to UCLA. She
told me personally that she regretted
leaving Oxford. She passed away in
2014.
10Yang is C.N.Yang, who won a No-
bel Prize in 1957 along with T. D.
Lee for his prediction of parity non-
conservation of the weak interaction.

To prove this theorem we use gauge invariance. One is always free to
make a gauge transformation

A′(r) = A(r) + (~/e)∇χ(r)

Ψ′(r1, . . . rN ) =



N∏

j=1

eiχ(rj)


Ψ(r1, . . . rN )

which leave the physical electromagentic field completely unchanged and
changes the gauge of the wavefunction. The meaning of gauge invariance
is that if we have a solution to the Schroedinger equation for Ψ and A
at energy E, then we also have a solution at the same energy E for Ψ′

and A′.
When the physical geometry we are concerned with is non-simply

connected, we can make gauge transforms which are non-single-valued,
such as

χ(r) = mθ(r)

wnere θ is the angle around the center. Making this gauge transform
leaves the eigenspectrum of the system unchanged. However, the flux
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enclosed

Φ′ =
∮

A′ · dl =
∮

A · dl+ 2πm~/e = Φ+mφ0

has changed by an integer number of flux quanta.

27.6.2 Quantization of Hall Conductance

Laughlin’s argument applys the Byers-Yang theorem to the Quantum
Hall case. Consider a two dimensional electron system cut in an annu-
lus11 as shown in Fig. 27.8. Here we put the entire system in a uniform

11For studying current flow in mag-
netic fields, the annulus is knowni
as ”Corbino” geometry, after O. M.
Corbino, who studied this in 1911.

magnetic field (so that we have Landau levels) and we arrange such that
the chemical potential is in the localized part of the band so that at low
enough temperature the longitudinal (dissipitive) conductivity is zero.
We then adiabatically insert an additional flux Φ(t) through the center

of the annulus and turn it on slowly from zero to one flux quantum. Due
to the Faraday’s law, an EMF is generated around the annulus

E = −dΦ
dt

=

∮
dl · E

If there is a Hall conductance, GH then this generates a radial current

J = GHE

Fig. 27.8 Insertion of Flux Φ(t)
through the center of an annulus of
two-dimensional electrons in a uniform
magnetic field. Adiabatically increas-
ing the flux creates an electric field in
the annular direction which then, by
the Hall conductivity, creates current in
the radial direction.

As we slowly increase the flux by an amount ∆Φ we have a total
charge ∆Q moved from the inside to the outside of the annulus given by

∆Q =

∫
dtJ(t) = GH

∫
dt E(t) = −GH

∫
dt
dΦ(t)

dt
= −GH∆Φ

Now the key to the argument is the Byers-Yang theorem. If we choose
∆Φ = φ0 a single flux quantum, then the final eigenstates of the sys-
tem must be precisely the same as the initial eigenstates of the system.
Since we have changed the system adiabatically (and there is a gap to
excitations when the states at the chemical potential are localized due
to disorder) the system must stay in the ground state12 and the inser-

12There is a subtlely here. With disor-
der, there are actually low energy ex-
citations, but they require very long
range hops of localized electrons which
cannot be made. So the system is “lo-
cally” gapped.

tion of the flux quantum must take us from the ground state back to
the very same ground state. The only thing that might have changed
during this process is that an integer number p of electrons may have
been transferred from the inside of the annulus to the outside. Thus we
have

−pe = ∆Q = −GH∆Φ = −GHφ0 = −GH(h/e)

Thus we obtain the quantized Hall conductance

GH = p(e2/h)

with p an integer!
Thus we see that the Hall conductance experiment is really some sort
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of ”spectroscopy” to measure the charge on the electron! (hence the
precision of the effect).
Although we have shown the the Hall conductance must be quantized,

what we have not shown is that it must be nonzero! Afterall, since the
chemical potential is in a localized band, it looks like electrons simply
can’t move at all. We will return to this issue in section 27.8 below.

27.7 Edge States

The bulk of a quantum Hall system is gapped, but on a finite system
there are always low energy modes on the edges. (This is always true
for any chiral topological system. Although achiral systems can have
fully gapped edges). Even though the bulk is incompressible, the shape
of the edge can be deformed as suggested in Fig. 27.9. Now let us

Fig. 27.9 A deformation of the edge
is a low energy edge excitation which
moves along the edge due to E×B drift.

think about the dynamics of a bump on the edge. On the edge of the
system we always have an electric field (this is the potential that holds
the electrons in the system— otherwise they would just leak out!). Since
we have E × B, we expect a drift velocity for all the electrons on the
edge. Thus we expect edge dynamics to be basically just movement of
charge along the edge.

27.7.1 Landau Gauge Edge Picture for Integer
Quantum Hall

Recall in Landau gauge (See section 27.5) the wavefunctions are plane
waves in the y direction, but are harmonic oscillator states in the x
direction. We now impose an additional confining potential in the x
direction near the edges of the system as shown in Fig. 27.10.

Fig. 27.10 Low energy edge excitations

The addition of the confining potential V (x) simply adds this poten-
tial to the 1-d schroedinger equation 27.2. If the confining potential
is fairly smooth, it simply increases the energy of the eigenstates when
the position x = −kyℓ2 gets near the edge of the system as shown in
Fig. 27.10.
In the case of the integer quantum Hall effect, all of the eigenstates of
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some particular Landau level (the lowest Landau level in the figure) are
filled within the bulk. At some point near the edge, the Landau level
crosses through the chemical potential and this defines the position of
the edge. Since the eigenstates are labeled by the quantum number ky
it is possible to create a low energy excitation by moving an electron
from a filled state near the edge just below the chemical potential to
an emtpy state near the edge just above the chemical potential. The
excitation will have momentum ~∆ky. 13 We thus have a 1-d system
of fermions filled up to a chemical potential and they flow only in one
direction along each edge — i.e., they are chiral fermions.

27.8 The Halperin Refinement of Laughlin’s

Argument

A more careful version of Laughlin’s argument was made by Halperin
immediately after Laughlin’s initial work. The key here is to think of a
geometry where much of the system is free of disoder. In particular we
consider the geometry shown in Fig. 27.11.

13The change in energy will be

∆E =
∂V

∂x
∆x =

∂V

∂x
ℓ2∆ky

Thus the edge velocity is given by

v =
1

~

∂E

∂k
=

1

~

∂V

∂x
ℓ2

If the chemical potential along the one edge is raised by ∆µ, a range of k-states

∆k =
∆µ

ℓ2 ∂V
∂x

will be filled. Since the spacing between adjacent k states is 2π/Ly this corresponds
to an increase in electrons per unit length along the edge of

∆n1d =
2π∆µ

ℓ2 ∂V
∂x

These then carry a net 1d electron current density

j = −ev∆n1d = −e( 1
~

∂V

∂x
ℓ2)

2π∆µ

ℓ2 ∂V
∂x

= −(e/h)∆µ

which is precisely the expected quantized Hall current flowing along the edge. (∆µ =
−e∆V ).
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Fig. 27.11 The Halperin geometry. The same as the Laughlin annulus geometry,
except here we add disorder only in part of the annulus. We have also shown (dark
blue) a single particle eigenstate in the clean region, which forms a circle (with a
small gaussian cross-section).

Here, the disorder is confined to only part of the annulus, the inner-
most and outer-most regions of the annulus being disorder-free. Within
the clean regions we can solve for the eigenstates using symmetric gauge
(this is a homework problem, but we will also discuss further in the next
chapter). The eigenstates are indexed by their angular momentum m,
and in the Lowest Landau level, for example, they are given by

ϕm ∼ zme−|z|2/(4ℓ2)

where z = x+ iy is the complex representation of the position. A radial
cut of one of these eigenstates gives a gaussian wavepacket14 at radius 14Just find the maximum of |ψm|2.
ℓ
√
2m— very similar to what we had in Landau gauge, but now these

eigenstates are indexed by angular momenta instead of linear momenta,
and they go around in circle instead of going straight.
Let us imagine the chemical potential above the middle of a Landau

level (say above the middle of the lowest Landau level) until it sits in a
localized piece (at least within the disordered region the wavefunctions
are localized). Since this is above the middle of the Landau level, the
Landau level is completely filled in the clean region. The only low energy
excitations are the edge states!
Now, let us track what happens to the eigenstates as we change the

flux through the hole. If the flux through the hole is an integer (in
units of the flux quantum φ0), then the angular momentum is also an
integer. However, if the flux through the hole is an integer plus some
fraction α, then the angular momentum quantum number must also be
an integer plus α. Thus, as we adiabatically increase the flux by one
flux quantum, we adiabatically turn each m eigenstate to m+ 1. Thus
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we are continuously pushing out electrons to the next further out radial
wavefunction.
Now when we are in the disordered region of the annulus, we do not

know any details of the shape of the eigenstates. All we know is that
after insertion of a full flux quantum we must get back to the same many
body eigenstate that we started with. However, we also know that an
additional electron is being pushed into the disordered region from the
clean region on the inside, whereas an electron is also being extracted
into the clean region on the outside. Thus the disordered region must
also convey exactly one electron (per Landau level) when a flux quantum
is inserted adiabatically. An electron state is moved from one edge state
on the inside to an edge state on the outside.
This argument pins down that the Hall conductance is not zero, but

is h/e2 times the number of Landau levels that are filled (in the clean
regions).

Exercises

Exercise 27.1 Quantum Hall Conductivity vs Conductance

Fig. 27.12 A 2D electron gas of arbitrary shape with contacts 1,2,3,4 attached on
its perimeter in clockwise order

Consider a two dimensional electron gas (2DEG) of arbitrary shape in the
plane with four contacts (1,2,3,4) attached at its perimeter in a clockwise order
as shown in Fig. 27.12. The conductivity tensor σij relates the electric field
to the current via

ji = σijEj (27.4)

where indices i and j take values x̂ and ŷ (and sum over j is implied). Assume
that this is a quantized hall system with quantized hall conductance s. In
other words, assume that

σ =

(

0 s
−s 0

)

(27.5)

Show that the following two statements are true independent of the shape of
the sample.

(a) Suppose current I is run from contact 1 to contact 2, show that the
voltage measured between contact 3 and 4 is zero.

(b) Suppose current I is run from contact 1 to contact 3, show that the
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voltage measured between contact 2 and 4 is V = I/s.
Note: The physical measurements proposed here measure the conductance

of the sample, the microscopic quantity σ is the conductivity.

Exercise 27.2 About the Lowest Landau Level
If you have never before actually solved the problem of an electron in two

dimensions in a magnetic field, it is worth doing. Even if you have done it
before, it is worth doing again.

Consider a two dimensional plane with a perpendicular magnetic field ~B.
Work in symmetric gauge ~A = 1

2
~r × ~B.

(a) (This is the hard part, see below for hints if you need them.) Show that
the single electron Hamiltonian can be rewritten as

H = ~ωc(a
†a +

1

2
) (27.6)

where ωc = eB/m and

a =
√
2ℓ

(

∂̄ +
1

4ℓ2
z

)

(27.7)

with z = x+ iy and ∂̄ = ∂/∂z̄ with the overbar meaning complex conjugation.
Here ℓ is the magnetic length ℓ =

√

~/eB.
(b) Confirm that

[a, a†] = 1 (27.8)

and therefore that the energy spectrum is that of the harmonic oscillator

En = ~ωc(n+
1

2
) (27.9)

(c) Once you obtain Eq. 27.6, show that any wavefunction

ψ = f(z)e−|z|2/4ℓ2 (27.10)

with f any analytic function is an eigenstate with energy E0 = 1
2
~ωc. Show

that an orthogonal basis of wavefunctions in the lowest Landau level (i.e., with
eigenenergy E0) is given by

ψm = Nmz
me−|z|2/4ℓ2 (27.11)

where Nm is a normalization constant. Show that the maximum amplitude
of the wavefunction ψm is a ring of radius |z| = ℓ

√
2m and calculate roughly

how the amplitude of the wavefunction decays as the radius is changed away
from this value.

(d) Defining further

b =
√
2ℓ

(

∂ +
1

4ℓ2
z̄

)

(27.12)

with ∂ = ∂/∂z, Show that the operator b also has canonical commutations

[b, b†] = 1 (27.13)

but both b and b† commute with a and a†. Conclude that applying b or b† to
a wavefunction does not change the energy of the wavefunction.

(e) show that the ẑ component of angular momentum (angular momentum
perpendicular to the plane) is given by

L = ẑ · (~r × ~p) = ~(b†b − a†a ) (27.14)
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Conclude that applying b or b† to a wavefunction changes its angular momen-
tum, but not its energy.

(f) [Harder] Let us write an arbitrary wavefunction (not necessarily lowest
Landau level) as a polynomial in z and z̄, times the usual gaussian factor.
Show that projection of this wavefunction to the lowest Landau level can be
performed by moving all of the z̄ factors all the way to the left and replacing
each z̄ with 2ℓ2∂z.

Hints to part a: First, define the antisymmetric tensor ǫij , so that the vector
potential may be written as Ai =

1
2
Bǫijrj . We have variables pi and ri that

have canonical commutations (four scalar variables total). It is useful to work
with a new basis of variables. Consider the coordinates

π
(α)
i = pi + α

~
2ℓ2

ǫijri (27.15)

=
~
ℓ2
ǫijξj (27.16)

defined for α = ±1. Here α = +1 gives the canonical momentum. Show that

[

π
(α)
i , π

(β)
j

]

= iαǫijδαβ
~2

ℓ2
(27.17)

The Hamiltonian

H =
1

2m
(pi + eAi)(pi + eAi) (27.18)

can then be rewritten as

H =
1

2m
π
(+1)
i π

(+1)
i (27.19)

with a sum on i = x̂, ŷ implied. Finally use

a = (−π(+1)
y + iπ(+1)

x )
ℓ√
2~

(27.20)

b = (π(−1)
y + iπ(−1)

x )
ℓ√
2~

(27.21)

to confirm that a and b are given by Eqs. 27.7 and 27.12 respectively. Finally
confirm Eq. 27.6 by rewriting Eq. 27.19 using Eqs. 27.20 and 27.21.

A typical Place to get confused is the definition of ∂. Note that

∂z = ∂̄z̄ = 1 (27.22)

∂̄z = ∂z̄ = 0 (27.23)

Hints to part f: Rewrite the operators a, a†, b, b† such that they operate on
polynomials, but not on the Gaussian factor. Construct z̄ in terms of these
operators. Then project.



Aside: A Rapid Introduction to
Topological Insulators 28

Medium Material

The integer quantum Hall effect is one of the simplest examples of what
is now called a “topological insulator”. To explain what this is, and why
it is interesting, let us review some basic facts about band structure and
non-interacting electrons.1 1In this chapter we are thinking about

non-interacting electrons in periodic
potentials!

28.1 Topological Phases of Matter

We will consider systems of electrons in some periodic environment —
which is what an electron would experience in a real material crystal2. 2Some of the ideas discussed here do

not depend too much on the system be-
ing precisely periodic.

We can thus describe our system as some single electron kinetic energy
and some periodic potential — or equivalently as some tight-binding
model. Bloch’s theorem tells us that the eigenstates of such a periodic
Hamiltonian can be written in the form

|Ψαk〉 = eik·r|uαk〉

where α is the band index, and uα
k
(x) is a function periodic in the unit

cell.
The eigen-spectrum breaks up into bands of electron states. If a (va-

lence) band is completely filled and there is a gap to next (conduction)
band which is empty, we generally call the system a band insulator. The
conventional wisdom in most solid state physics books is that such band
insulators carry no current. This wisdom, however, is not correct. A
prime example of this is the integer quantum hall effect! As we have
just seen for the integer quantum Hall effect we have a filled band and
a gap in the single electron spectrum. And while such a system carries
no longitudinal current (and correspondingly has σxx = 0) it does carry
Hall current with σxy = ne2/h.
One might object that the integer quantum Hall effect is not really a

valid example, because it does not have a periodic potential. However,
it is certainly possible to add a very weak periodic potential to the
quantum Hall system and maintain the gap.
It turns out that there is a topological distinction in the wavefunctions

for the quantum Hall effect versus what we think of as a traditional band
insulator. One way to describe this is to think of the band structure as
being a mapping from the Brillouin zone (inequivalent values of k) to
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the space of possible wavefunctions

k → uα
k
(x). (28.1)

Once we have such a mapping we can ask about whether there are topo-
logically different mappings, or whether one mapping can be continu-
ously deformed to another.
An analogy is to consider a mapping from a circle S1 to a circle S1,

eiθ → eif(θ)

Here, one can topologically classify the mapping by its winding number.
One such mapping cannot be continuously deformed into another if the
two mappings have different winding numbers.
Similarly we can define a “winding number” (known as a “Chern”

number) of the band structure map Eq. 28.1 for two dimensional systems.
This integer topological quantity turns out to be precisely the quantized
Hall conductance in units of e2/h. We give an explicit expression for
this quantity in section *** below. Similar topological definitions of
“winding numbers” of the map Eq. 28.1 can be given in any dimension.
If we imagine continously changing the physical Hamiltonian, this

Chern number, which must be an integer, cannot change continously.
It can only change by making it impossible to define a Chern number.
This happens when if the system becomes a metal — i.e, if the gap be-
tween the filled and empty state closes. Thus we cannot deform between
different topological classes without closing the gap.
Indeed, this general picture gives us a simple rule for topological clas-

sification:

Definition of Topological Phase: Two gapped states of matter
are in the same topological phase of matter if and only if you can
continuously deform the Hamiltonian to get from one state to the
other without closing the excitation gap.

Although in this chapter we are concerned with non-interacting electrons
only, this sort of definition can obviously be used much more generally
to distinguish different phases of matter. Further this definition fits with
our intuition about topology

Two objects are topologically equivalent if and only if you can con-
tinuously deform one to the other.

In the context of noninteracting electron band structure, one can de-
fine topologically “trivial” phases of matter to be those that can be
continuously deformed without closing the gap into individual atomic
sites with electrons that do not hop between sites. (A ”trivial” band
structure). Phases of matter that cannot be continuously deformed to
this trivial band structure without closing a gap are known as topologi-
cally nontrivial.
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28.1.1 Gapless Edges

The existence of gapless edge states on the edge of integer quantum Hall
samples is one of the fundamental properties of topologically nontrivial
phases of matter (at least when one is considering topological properties
of noninteracting electron band structure). We can give a rough argu-
ment about why edge states always come with topologically nontrivial
phases.
Suppose we have a Hamiltonian that is almost periodic, but the poten-

tial is a very function of position, say in the x-direction. In other words
if we move very far in the x-direction the Hamiltonian changes smoothly
from H(x1) to H(x2), but locally both of these look like simple periodic
Hamiltonians. If H(x1) and H(x2) are not in the same topological phase
of matter, than for some x between x1 and x2, we have H(x) describing
some gapless system — i.e., an edge state between the two phases.
For example, in the case of the integer quantum Hall effect, we can

think of H(x1) as being the Hamiltonian of the system in the bulk which
has nonzero Chern number, and H(x2) as being the Hamiltonian outside
of the system, or the vacuum, which is topologically trivial and has zero
Chern number. Somewhere between the two, the gap must close to give
a metal where the Chern number changes. This is the edge state.

28.2 Curvature and Chern Number

The Gauss-Bonnet theorem give an beautiful connection exists between
topology and geometry. The statement of the theorem is that for any
closed two dimensional orientable surface the integral of the Gaussian
curvature K over the surface gives 2π(2− 2g) where g is the number of
handles of the surface. Or mathematically3 3The definition of Gaussian curvature

K at a point is 1/K = ±rmaxrmin
where rmax and rmin are the maximum
and minimum radii of curvatures of the
surface at that point. The sign of K
is taken to be negative if the surface
is saddle-like at that point rather than
dome-like.

2π(2− 2g) =

∫

M

KdS

One can check, for example, with a sphere of radius R we haveK = 1/R2

and g = 0, so that both sides give 4π independent of R. The interesting
point here is that if you dent the sphere, you increase the curvature at
some points, but you decrease it at other points such that the integral
of the curvature over the surface remains the same. The only way to
change this quantity is to rip the surface and add a handle!
It turns out that we can define a similar curvature that describes the

topological index (the Chern-number) of the band structure. Let us
define what is known as the Berry curvature of the αth band

Fα(k) = ǫij〈∂kiuαk|∂kjuαk〉

The topological Chern-number of the αth filled band is then given by
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the integral of the Berry curvature over the Brillouin zone,

Cα =
1

2π

∫

BZ

dk Fα(k)

which is analogously quantized to be an integer.
In appendix *** we use the Kubo formula to calculate the Hall con-

ductivity and we find that it is related to the Chern number by4

4The realization that the Hall conduc-
tance is the topological Chern number
in 1982 was made in a famous paper
known as TKNN. This is one of key
contributions that earned a Nobel Prize
for David Thouless in 2016.

σxy =
e2

h

∑

filled bands α

Cα

Considering Laughlin’s proof that the Hall conductance is quantized,
this might be considered a sufficient proof that the Chern number must
be quantized as well. To see how this occurs mathematically, see ap-
pendix ***.

28.3 Symmetry Protection

Symmetry is one of the most fundamental ideas in modern physics. We
often think about how physics changes when a symmetry is forced on a
system. Considering the above definition of topological phases of matter
in section 28.1, one may generalize this idea to systems with symmetry.

Definition of Symmetry Protected Topological Phase: Two
gapped states of matter are in the same symmetry protected topo-
logical phase of matter if and only if you can continuously deform
the Hamiltonian to get from one state to the other without closing
the excitation gap or breaking the given symmetry.

The most interesting example of this is time reversal symmetry. Sys-
tems without magnetism and without magnetic impurities are time-
reversal symmetric. In three dimensions, it turns out that there are no
band structures that satisfy the above definition of a nontrivial topolog-
ical phase of matter. In other words, all gapped periodic single-electron
Hamiltonians can be deformd to a trivial Hamiltonian without closing
the gap. However, if we enforce time reversal invariance, it turns out
that there are band structures that cannot be deformed into the trivial
band structure without closing the gap or breaking symmetry. These are
known as “topological insulators” and are formally symmetry protected
topological phases, where the symmetry is time reversal.

28.4 Appendix: Chern Number is Hall
Conductivity

Here we calculate the Hall conductivity by simple time dependent per-
turbation theory and demonstrate that it is the same as the Chern num-
ber.
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The general rule of time dependent perturbation theory is that if a
system is exposed to a perturbation δH(t) the expectation of an operator
O at some later time is given by

〈O(t)〉 = i

~

∫ t

−∞
dt′〈[O(t), H(t′)]〉

If we consider an electric field at frequency ω we write this in terms of
the vector potential. Applying a perturbing vector potential we have

δH =

∫
dxA(x, t) · j(x, t)

From perturbation theory we then have

〈ja(x, t)〉 =
i

~

∫ t

−∞
dt′
∫
dx′〈[ja(x, t), jb(x′, t′)]Ab(x′, t′)
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Medium Material

charge-flux
Having determined that the quantum Hall effect is some sort of spec-

troscopy on the charge of the electron, it was particularly surprising
in 1982 when Dan Tsui and Horst Stormer1 discovered quantum Hall 1Stormer had recently invented the

idea of “modulation doping” semicon-
ductors, which is a technique to obtain
extremely clean two dimensional elec-
tron systems — a prerequisite for ob-
serving fractional quantum Hall effect.

plateaus at fractional values of the filling fraction

ν = p/q

with Hall resistance

RH =
h

e2
q

p

with p and q small integers. This effect is appropriately called the Frac-
tional quantum Hall effect.
The first plateau observed was the ν = 1/3 plateau2 , but soon there- 2The legend is that Tsui very pre-

sciently looked at the data the moment
it was taken and said “quarks!” realiz-
ing that the fractional plateau implied
charge fractionalization!

after many more plateaus were discovered3. The Nobel Prize for this

3Over 60 different fractional quantum
Hall plateaus have been discovered!

discovery was awarded in 1998.
Given our prior gauge invariance argument that quantum Hall effect is

measuring the charge of the electron — and that this is enforced by the
principle of gauge invariance, it is hard to understand how the fractional
effect can get around our prior calculation.
Two things must be true in order to have quantized Hall effect

(a) Charge must fractionalize into quasiparticles with
charge e∗ = e/q, for example in the case of ν = 1/q.

(b) The ground state on an annulus must be degenerate,
with q different ground states (in the case of ν = 1/q)
which cycle into each other by flux insertion through the
annulus.

We should not lose sight of the fact that these things are surprising
— even though the idea of degenerate ground states, and possibly even
fractionalized charges, is something we have perhaps gotten used to in
our studies of topological systems.
Given the Laughlin argument that inserting a flux though the annulus

pumps an integer number of electrons from one side to the other, it is
perhaps not surprising that fractional quantization of the Hall conduc-
tance must imply that a fractional charge has been pumped from one
side of the annulus to the other (hence point (a) above). The way we
get around the gauge invariance argument that implies the charge must
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be an integer is by having multiple degenerate ground states. In our
argument for the Integer quantum hall effect we used adiabaticity, and
the existence of a gap, to argue that we must stay in the ground state.
However when there are multiple ground states (point (b) above) we
can only argue that we must always be in some ground state. Thus, for
example, in the case of ν = 1/3 where there are three ground states, the
cycle of inserting flux is

insert φ0−→ |GS1〉 insert φ0−→ |GS2〉 insert φ0−→ |GS3〉 insert φ0−→ |GS1〉 insert φ0−→

where GS here means ground state. Each insertion of flux pumps
e∗ = e/3 charge from one side to the other. After three fractionally
charged particles move from one side to the other, this amounts to a
single electron being moved from one side to the other, and we return
to exactly the same ground state as we started with.
So now we need only figure out how it is that this unusual situation of

fractionalized charges, and multiple ground states (indeed, this situation
of a topological quantum field theory!) comes about.

Want an incompressible state: Ignore disorder for now

We need to understand how we have an incompressible state when a
Landau level is partially filled. As with the integer case, disorder will
be important in allowing us to have plateaus of finite width, but the
fundamental physics of the fracitonal quantum Hall effect comes from the
fact that we have a gapped incompressible systems at a particular filling
fraction. We can thus choose to consider a system free from disorder
with the understanding that localization of excitations will be crucial to
actually observe a plateau.

Why This is a Hard Problem: Massive Degeneracy

We restrict our attention to a clean system with a partially filled (say,
1/3 filled) Landau level. If there are Ne electrons in the system, there
3Ne available single electron orbitals in which to place these electrons.
Thus in the absence of disorder, and in the absence of interaction, there
are (

3Ne
Ne

)
∼ (27/4)Ne

multiparticle states to choose from — and all of these states have the
same energy! In the thermodynamic limit this is an insanely enormous
degeneracy4. This enormous degeneracy is broken by the interaction

4For example, if our system of size 1

square cm has a typically 1011 electrons
in it, the number of degenerate states at
ν = 1/3 is roughly 10 to the 100 billion
power! Way way way more than the
number of atoms in the universe.

between the electrons, which will pick out a very small ground state
manifold (in this case being just 3 degenerate ground states), and will
leave the rest of this enormous Hilbert space with higher energy.
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29.0.1 Our Model Hamiltonian

Since we are to neglect disorder, we can write the Hamiltonian for our
system of interacting electrons as

H =
∑

i

(pi + eA(ri))
2

2m
+
∑

i<j

V (ri − rj)

where the first term is just the kinetic energy of the electrons in the
magnetic field, as discussed in Section 27.5, and the second term is
the interaction beween the electrons, which we might take to be of 1/r
Coulomb form, or perhaps a modified Coulomb form depending on the
physical situation we are concerned with5. 5For example, we could have a screened

Coulomb potential if there are polariz-
able electrons nearby. The finite width
of the quantum well also alters the ef-
fective Coulomb interaction.

Now we have already analyzed the first term in this Hamiltonian back
in Eq. 27.5, resulting in the structure of Landau levels. If we further
assume that the cyclotron energy ~ωc (the energy gap between Landau
levels) is very large compared to the interacton energy scale V , then
we can assume that there is very little effect of higher Landau levels
— the interaction simply breaks the massive degeneracy of the par-
tially filled Landau level without mixing in the higher Landau levels (or
putting holes in any completely filled Landau levels below the chemical
potential). Another way to say this is that we are pursuing degenerate
perturbation theory. The kinetic energy is completely determined (we
just fill up Landau levels from the bottom up) and interaction only plays
a role to break the degeneracy of the partially filled level.
The effective Hamiltonian is then just

H =
∑

i<j

V (ri − rj) (29.1)

where the Hilbert state is now restricted to a single partially filled Lan-
dau level. But here it might look like we are completely stuck. We
have an enormously degenerate Hilbert space — and we have no small
parameter for any sort of expansion.
Laughlin’s insight was to simply guess the correct wavefunction for

the system!6. In order to describe this wavefunction we need to have

6Decades of experience doing compli-
cated perturbation theory led many
people off on the wrong path — towards
complicated calculations — when they
should have been looking for something
simple!a bit more elementary information about wavefunctions in a magnetic

field (some of this is a homework problem!).

29.1 Landau Level Wavefunctions in
Symmetric Gauge

We will now work in the symmetric gauge where the vector potential is
written as

A =
1

2
r×B

where the magnetic field is perpendicular to the plane of the sample.
(We can check that this gives ∇×A = B.
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In this gauge, lowest Landau level wavefunctions (as mentioned before
in section 27.8) take the form77We will ignore the spin degree of free-

dom as before.

ϕm(z) = Cmz
me−|z|2/(4ℓ2) (29.2)

where
z = x+ iy = reiθ

is the complex representation of the particle coordinate, ℓ =
√
~/eB is

the magnetic length, Cm is a normaliztion constant and here m ≥ 0 is
an integer. The most general lowest Landau level wavefunction for a
single particle would be f(z) times the gaussian factor for any analytic
function f .
Note that the higher Landau level wavefunctions can all be obtained

by application of a raising operator (which involve some prefactors of z∗)
to the lowest Landau level wavefunctions. This algebra is discussed in a
homework problem, so we will not belabor it here. A key point is that
all Landau levels are effectively equivalent and any partially filled higher
Landau level is equivalent to a partially filled lowest Landau level with
an appropriately modified interaction. As such, we will focus exclusively
on the lowest Landau level from here on.
Let us take a close look at the structure of the wavefunctions in

Eq. 29.2. First we note that ϕm is an eigenstate of the angular mo-
mentum operator L̂ (centered around the point z = 0)

L̂ ϕm = ~mϕm

Secondly we should examine the spatial structure of ϕm. Writing |φm|2 ∼
r2m exp(−r2/(2ℓ2)) and differentiating with respect to r we find that the
maximum of this function is at radius

r = ℓ
√
2m

Thus the function roughly forms a gaussian ring at this radius. The
area enclosed by this ring is πr2 = 2πmℓ2 = mφ0/B, which contains
precisely m quanta of magentic flux.

29.1.1 What We Want in a Trial Wavefunction

In building a trial wavefunction for fractional quantum Hall effect, sev-
eral rules will be important to follow

(1) Analytic Wavefunction: The wavefunction in the lowest Lan-
dau level should be comprised of single particle wavefunctions ϕm —
that is, it must be a polynomial in z (with no z∗’s) times the gaussian
factors. In other words we should have88The polynomial can also be chosen so

as to have all real coefficients. This
is becuase the Hamiltonian, once pro-
jected to a single Landau level, i.e.,
Eq. 29.1, is time reversal symmetric.

Ψ(r1, . . . , rN ) = (Polynomial in z1, . . . zN)
N∏

i=1

e−|zi|2/(4ℓ2)
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(2) Homogeneous in Degree: Since the Hamiltonian is rotationally
invariant, we can expect that the eigenstates will be angular momentum
eigenstates. Since the L̂ operator counts powers of z, this means that
the (Polynomial in z1, . . . zN ) part of the wavefunction must be homo-
geneous of degree.

(3) Maximum Power of zi is Nφ = Ne/ν: Since the radius of
the wavefunction is set by the exponent of zm, the full radius of the
quantum Hall droplet is given by the largest power of any z that occurs
in the wavefunction. Since the area enclosed by the wavefunction should
correspond to Nφ fluxes, this should be the maximum power.

(4) Symmetry: The wavefunction should be fully antisymmetric due
to Fermi statistics, assuming we are considering fractional quantum Hall
effect of electrons. It is actually very useful theoretically (and does
not seem out of the question experimentally!9) to consider fractional 9While no one has yet produced frac-

tional quantum Hall effect of bosons in
the laboratory, proposals for how to do
this with cold atoms or interacting pho-
tons are plentiful, and it seems very
likely that this will be achieved in the
next few years.

quantum Hall effect of bosons as well — in which case the wavefunction
should be fully symmetric.

Even given these conditions we still have an enormous freedom in
what wavefunction we might write down. In principle this wavefunc-
tion should depend on the particular interaction V (r) that we put in
our Hamiltonian. The miracle here is that, in fact, the details of the
interaction often do not matter that much!

29.2 Laughlin’s Ansatz

Laughlin simply guessed that a good wavefunction would be of the
form10 10Note that this wavefunction is not

normalized in any sense. The issue of
normalization becomes important later
in ***.

Ψ
(m)
Laughlin =

∏

i<j

(zi − zj)
m

N∏

i=1

e−|zi|2/(4ℓ2)

The proposed wavefunction is properly analytic and homogeneous in
degree. The maximum power of the wavefunction is

Nφ = m(N − 1)

thus corresponding to a filling fraction

ν = N/Nφ → 1/m in large N limit

And the wavefunction is properly antisymmetric for m odd, and is sym-
metric for m even.
It is worth noting that for m = 1 the Laughlin wavefunction corre-

sponds to a filled Landau level — that is, a single slater determinant
filling all of the orbitals from m = 0 to m = Nφ = N − 1. (This is a
homework problem!)
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It is also worth noting that the density of the Laughlin wavefunction
is completely constant in a disk up to its radius (and then the density
falls quickly to zero). This constancy of density is proven by plasma
analogy (which is another homework problem)11.
Why should we think this wavefunction is particularly good? As two

particles approach each other, the wavefunction vanishes as m powers.
This means that the particles have low probability of coming close to
each other — thus keeping the interaction energy low.
Being that the polynomial in each variable is of fixed degree Nφ, the

polynomial has a fixed number of analytic zeros. For the Laughlin wave-
function all of these zeros are on the positions of the other particles —
thus the wavefunction arranges that the particles stay as far away from
each other as possible in some sense.

29.2.1 Exact statements about Laughlin
Wavefunction

It turns out that the Laughlin wavefunciton is actually the exact ground
state of a special inter-particle interaction12.12This was discovered by Haldane in

1983, then again by Trugman and
Kivelson and also Pokrovski and Ta-
lapov in 1985. Bosons at ν = 1/2

Consider a system of bosons with the interparticle interaction given by1313Actually this is a very realistic inter-
action for cold atom bosonic quantum
Hall effect, should it be produced in the
future.

V = V0
∑

i<j

δ(ri − rj)

with V0 > 0. This is a non-negative definite interaction.
It is clear that the ν = 1/2 Laughlin state of bosons Ψ

(m=2)
Laughlin has

zero energy for this interaction, since there is zero amplitude of any two
particles coming to the same point. Further, however, the Laughlin state
is the highest density wavefunction (lowest degree polynomial) that has
this property14. For example, the Laughlin state times any polynomial14Although with some thought this fact

seems obvious, proving it rigorously is
tricky.

is also a zero energy state of this interaction, but since it has been mul-
tiplied by a polynomial, the total degree of the wavefunction is higher,
meaning the wavefunction extends to higher radius, making the system

11Roughly the story is as follows. The probability |Ψ(z1, . . . , zN )| of finding particles
at position z1, . . . , zN can be phrased as a classical stat mech problem of a one-
component 2d coulomb plasma in a background charge, by writing

|Ψ|2 = e−βU(z1,...,zN )

with β = 2/m and

U = −m2
∑

i<j

log(|zi − zj |) +
m

4

∑

i

|zi|2

where the first term is the coulomb interaction in 2d, and the second term is a
background charge — which happens to be the charge associated with a uniform
positve background (an easy thing to check using gauss’s law). Assuming this plasma
screens the background charge, it will be of uniform density up to a constant radius.
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less dense. A schematic of the ground state energy as a function of filling
fraction for this case is shown in Fig. 29.1.

Fig. 29.1 Schematic of the ground state energy as a function of filling fraction for
bosons with delta function interaction.

The key point is that the ground state energy has a cusp, which means
there is a jump in the chemical potential

µ =
∂E

∂N

This is precisely the same “incompressibility” as we have in the case of
noninteracting electrons — where the chemical potential jumps between
Landau levels! As in that case we presume that the presence of a cusp
in the free energy, in the absence of disorder, will be enough to give us
a plateau when disorder is added back in.
Now while we can easily show that there is a change of behavior at

ν = 1/2 in this plot, it is somewhat more difficult to be convincing that
the slope coming from the right is finite — i.e., that the gap is actually
finite. In order to do that, we would need to think about the elementary
excitations, or resort to numerics.

Fermions at ν = 1/3

The arguments given for bosons at ν = 1/2 can be easily generalized to
the case of fermions (i..e, electrons) at ν = 1/3 (and more generally to
any ν = 1/m.) Obviously a δ-function interaction will no longer do the
job, since for fermions Pauli exclusion prevents any two fermions from
coming to the same point already. However, consider an interaction of
the form

V = V0
∑

i<j

∇2δ(ri − rj)
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Given a wavefunction Ψ(r1, . . . , rN ) the interaction energy will be

E =
∑

i<j

∫
dr1 . . .drN |Ψ|2 ∇2δ(ri − rj)

Writing

Ψ(dr1 . . .drN ) = φ(z1 . . . zN )

N∏

i=1

e−|zi|2/(4ℓ2) (29.3)

with φ meaing the analytic polynomial part, for fermionic wavefunctions
(that must vanish when ri = rj) the expression for the energy can be
integrated by parts15 using ∇2 = 4∂z∂z∗ to give15Generally one would expect deriva-

tives of the gaussian part as well when
we integrate by parts. However, be-
cause the polynomial is antisymmetric,
the derivitive must act on the poly-
nomial part to prevent the wavefunc-
tion from vanishing when particle coor-
dinates coincide.

E =
∑

i<j

∫
dr1 . . .drN |∂ziφ|2 δ(ri − rj)

N∏

i=1

e−|zi|2/(2ℓ2)

Thus we have a non-negative definite interaction. Further, if the
wavefunction vanishes as a single power when two particles come to-
gether, then ∂zφ will be nonzero and we will get a postive result (Since
∂zi(zi − zj) is nonzero). However, if the wavefunction vanishes as three
powers ∂zφ will remain zero (since ∂zi(zi − zj)

3 goes to zero when
zi = zj)

16.16Note that by antisymmetry the wave-
function must vanish as an odd number
of powers as two particle positions ap-
proach each other.

Thus, entirely analously to the above case of ν = 1/2 with the δ-
function interaction, the Laughlin m = 3 (ν = 1/3) wavefunction is the
exact ground state (unique highest density zero energy wavefunction)
of the ∇2δ-function interaction. With similar ideas, one can construct
interactions for which any ν = 1/m Laughlin wavefunction is exact.

29.2.2 Real Interactions

Obviously electrons do not interact via a ∇2δ interaction. They inter-
act via a Coulomb interaction17 What is perhaps surprising is that the17In higher Landau levels, although the

interaction is Coulomb, when the single
Landau level problem is mapped to a
single partly filled lowest Landau level
(See the comments after Eq. 29.2), the
interaction gets modified – this mainly
effects the short range behavior.

Laughlin wavefunction is an almost perfect representation of the actual
ground state. This statement comes from numerical tests. For exam-
ple, for 9 electrons (on a spherical geometry to remove edge effects) the
dimension of the fully symmetry reduced Hilbert space18 is 84, and yet

18The full Hilbert space is 45207 di-
mensional!

the Laughlin trial wavefunction has an overlap squared of .988 with the
exact ground state of the Coulomb interaction. This is absurdly accu-
rate! The energy of the Laughlin wavefunction differs from the energy of
the exact Coulomb ground state by less than a part in two thousand19.

29.3 Quasiparticles

The Laughlin quantum hall ground state is a uniform density fluid (we
will actually show this as a homework problem). Density perturbations
are made in discrete units of charge known as quasiparticles. Positively

19I need to recheck this number***.
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charged bumps of charge (opposite the charge of the electron) are known
as quasiholes and negatively charged bumps of charge (same charge of
the electron) are quasielectrons.

29.3.1 Quasiholes

For the quasiholes, it is fairly easy to guess their wavefunction (and
indeed this was done by Laughlin). We start by considering adding a
quasihole at postion 0. This leaves the system rotationally invariant.
We guess the solution

Ψqh(0) =

[
N∏

i=1

zi

]
ΨLaughlin

where 0 indicates we have put the quasihole at position 0. Here the
degree of the polynomial is increased by one for every variable, so each
filled orbital gets pushed out to the next orbital. This leaves precisly one
empty orbtial open at positon 0. Since our wavefunction has filling frac-
tion ν, this means that on average a fraction ν of the orbitals are filled.
Thus leaving the orbital at the center completely empty corresponds to
a positive charge of +ν, and our quasihole has a positive charge

e∗ = νe.

Another way to think about the same wavefunction is to imagine
adiabatically inserting a quantum of flux φ0 at positon 0. Analogous
to the Laughlin argument for integer quantum Hall effect, This creates
an azimuthal EMF. Since the system has quantized Hall conductance
σxy = νe2/h, the total charge created is νe = σxyφ0. Then once we
have inserted the flux, the flux quantum can be gauged away leaving
only the quasihole behind.
One can make quasiholes at any location w analogously,

Ψqh(w) =

[
N∏

i=1

(zi − w)

]
ΨLaughlin

although this is no longer an angular momentum eigenstate. We can
similarly consider multiple quasiholes the same way

Ψqhs(w1, . . . , wM ) =

[
M∏

α=1

N∏

i=1

(zi − wα)

]
ΨLaughlin

Several interesting comments at this point:

(1) While the z’s are physical electron coordinates, the w parameters
are simply parameters of the wavefunction and can be chosen and fixed
to any value we like. The wavefunction Ψ(w1, . . . wM ; z1, . . . zN) is then
the wavefunction of electrons z in the presence of quasiholes at fixed w
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positions.

(2) Note that the phase of the wavefunction wraps by 2π when any
electron moves around the position of a quasihole.

(3) For the special ultra-short-range wavefunctions for which the Laugh-
lin ground state is an exact zero energy eigenstate, then this Laughlin
quasihole is also an exact zero energy eigenstate (albeit one with lower
density than the ground state since a hole has been inserted). Take for
example the case of ν = 1/2. With a δ-function interaction, the energy is
zero because no two particles come to the same point. Multiplying this
wavefunction by any polynomial (as we have done to insert quasiholes)
maintains this property and we still have a zero energy eigenstate. As
is the case for the Laughlin ground state, the quasihole is not exact for
the Coulomb interaction, but is extremely accurate numerically.

(4) At ν = 1/m, if we insert m quasiholes at the same point w, then
the wavefunction is just the same as if we were to have an electron e at
the point w (although the electron is not there). Thus we expect that
“fusing” m quasiholes together should precisely make an anti-electron
(or a real hole).

29.3.2 Quasielectrons

The quasi-electron is a bump of negative charge (i.e, same charge as the
electron). Unlike the case of quasiholes, there are no exact wavefunctions
that we know of for quasi-electrons (not even for special short range
interactions).
Whereas the quasi-hole increases the total degree of the polynomial

wavefunction (thereby decreasing the density of the system) the quasi-
electron should decrease the total degree of the wavefunction. Again,
Laughlin made a very good guess of what the wavefunction for the quasi-
electron should be. Considering a quasi-electron at the origin, we can
write

Ψqe(0) =

([
N∏

i=1

∂

∂zi

]
φ

)
N∏

i=1

e−|zi|2/(4ℓ2)

where as in Eq. 29.3 we have written the Laughlin wavefunction as the
polynomial part φ times the gaussian factors. Obviously the derivative
correctly reduces the degree of the polynomial by one in each varaible z,
thus reducing the net angular momentum of each paricle by one. Each
particle moves to lower radius by one orbital, thus giving a pile-up of
charge of e∗ = −eν at the origin.
In analogy to (but opposite that of) the quasihole, we might have

looked for a quasi-electron where electrons accumulate a phase of −2π
when an electron moves around the quasiparticle. One might think of
the operator z∗, but this operator does not live in the lowest Landau
level. However, the projection of this operator to the lowet Landau level
is given by

PLLLz
∗ = 2ℓ2

∂

∂z



29.4 Digression on Berry’s Phase 383

(This is a homework assignment!).
As mentioned above, the Laughlin quasi-electron is not exact for any

known system. However, it is a fairly good trial wavefunction numeri-
cally for the Coulomb interaction. Note however, that other forms for
the quasi-electron wavefunction have been found to be somewhat more
accurate.
One can move the quasielectron to any position in a similar way as

for quasiholes giving a wavefunction of the form

Ψqes(w) =

([
N∏

i=1

(
2ℓ2

∂

∂zi
− w∗

)]
φ

)
N∏

i=1

e−|zi|2/(4ℓ2)

29.3.3 Fractional Charge and Statistics?

The quasiparticles of the Laughlin state thus have fractional charge.
One should not lose sight of how surprising this is — that particles can
emerge that are a fraction of the “elementary” particles of the system.
If we lived at very low energy, we would experience these quasiparticles
as the fundamental particles of the system and would not know of the
existence of the underlying electron.
Once one accepts fractionalized charge, it is perhaps not surprising

to discover that they also have fractional statistics. Proving this state-
ment is nontrivial, and we will do it in several ways. Note that since
the quasiparticles are charged, moving them around in a magentic field
incurs phases. We would like thus like to compare the phase of moving
a particle in a loop versus moving a particle in a loop when another
particle might be inside the loop, see fig. 29.2

Fig. 29.2 To find the statistical phase, we compare moving a particle in a loop
versus moving it in the same loop when another particle is inside the loop.

We shall perform this comparison next after we introduce Berry’s
phase, which is the effect which produces the statistical phase we are
interested in.

29.4 Digression on Berry’s Phase

The Berry phase20 is one of the most fundamental ideas of modern 20Berry’s work on Berry Phase in 1984
had a number of precursors, most no-
tably the work of Pancharatnam in
1956.

physics. We recall the adiabatic theorem. If you start in an eigenstate
and change a Hamiltonian sufficiently slowly, and there are no level
crossings, then the system will just track the eigenstate as it slowly



384 Introduction to Fractional Quantum Hall Effect

changes — i.e., it remains in the instantaneous eigenstate. However,
during this process it takes a bit of thought to figure out what happens
to the phase of the wavefunction.
To see how this correction arises, let us consider a Hamiltonian H(R)

which is a function of some general parameters which we will summarize
as the vector R. In our case these parameters are going to represent the
quasiparticle position — we will insert this information into the Hamilto-
nian by having some trapping potential which induces the quasiparticle
at the point R and we can then move around the trapping potential in
order to move the particle. Let us write the instantaneous (here nor-
malized!) eigenstate as |ψ(R)〉. So we have

H(R)|ψ(R)〉 = E(R)|ψ(R)〉

Now let us write the full, time dependent wavefucntion as

|Ψ(t)〉 = eiγ(t) |ψ(R(t))〉

so we are allowing for an additional phase out front of the instantaneous
eigenstate. The time dependent Schroedinger equation is

i~
∂

∂t
|Ψ(t)〉 = H(R(t))|Ψ(t)〉

[
−~γ̇ + i~

∂

∂t

]
|ψ(R(t))〉 = E(R(t))|ψ(R(t))〉

Projecting this equation onto the bra 〈ψ(R)| we obtain

γ̇ = −E(R(t))/~− i

〈
ψ(R(t))

∣∣∣∣
∂

∂t

∣∣∣∣ψ(R(t))

〉

Integrating over some path R(t) from some initial time ti to some final
time tf gives

γ(tf )− γ(ti) = − 1

~

∫ tf

ti

E(R(t))dt − i

∫
Rf

Ri

dR · 〈ψ(R) |∇R|ψ(R)〉

The first term is the expected dynamical phase — just accumulating a
phase with time proportional to the energy. The second term on the right
is the Berry phase contribution — a line integral along the particular
path that R(t) takes. Note that this term depends only on the geometry
of the path and not on how long one takes to move through this path.
In this sense is it s a geometric phase.

29.5 Arovas-Schrieffer-Wilczek Calculation of

Fractional Statistics

This section follows the approach of Arovas, Schrieffer and Wilczek21.21Wilczek won a Nobel for his work on
assymptotic freedom. Schrieffer won a
Nobel for his work on BCS theory of
superconductivity. Arovas was a grad
student at the time.
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Let us consider a ν = 1/m wavefunction for a quasihole

Ψ(w) = N (|w|)
[
N∏

i=1

(zi − w)

]
Ψ

(m)
Laughlin

and we will imagine moving around the position w in a circle of con-
stant radius as shown in the right of Fig. 29.2. Here we have inserted a
normalization constant out front, which can be shown to be a function
of radius only. (This is argued by plasma analogy, which is part of the
homework). We will then parameterize22 the position of the particle by 22On can choose a more general path

for the particle but we will then need
the detailed form of N (w). See the dis-
cussion below in section ***

the angle θ and w = |w|eiθ .
The Berry phase from moving the particle in a loop will then be

∆γ = −i
∫ 2π

0

dθ 〈Ψ(θ)|∂θ|Ψ(θ)〉

where we have written |Ψ(θ)〉 to mean |Ψ(|w|eiθ)〉. We then have

∂θ|Ψ(θ)〉 = ∂w

∂θ

(
∑

i

−1

zi − w

)
|Ψ(θ)〉

Thus we have

〈Ψ(θ)|∂θ|Ψ(θ)〉 = ∂w

∂θ

∑

i

〈
Ψ(θ)

∣∣∣∣
−1

zi − w

∣∣∣∣Ψ(θ)

〉

Thus from taking w around in a circle we obtain the Berry phase23

∆γ = −i
∮
dθ 〈Ψ(θ)|∂θ |Ψ(θ)〉

= −i
∮
dw
∑

i

〈
Ψ(w)

∣∣∣∣
−1

zi − w

∣∣∣∣Ψ(w)

〉

Now the integral around the loop of 1/(z − w) accumulates 2πi if and
only if zi is inside the loop. Thus we obtain the phase

∆γ = 2π 〈number of electrons in loop〉
= 2π(1/m)Φ/φ0 = γAB

where Φ is the flux enclosed by the loop and φ0 is the flux quantum (and
here we have used ν = 1/m). This is precisely the expected Aharonov-
Bohm phase that we should expect for moving a charge e/m around a
flux Φ.
Now we consider putting another quasiparticle in the center of the

loop as shown in the left of Fig. 29.2. Using a normalization factor that
is again a function of |w| only, the same calculation holds, but now the

23The way this is written it is obviously a bit nonsense. Please fix it. I wrote this
footnote, but now I don’t see what is wrong with what I have here! ***
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number of electrons enclosed has changed by one quasiparticle charge
e/m. Thus the phase is now

∆γ = γAB + γstatistical

where the additional phase for having gone around another quasihole is
given by

γstatistical = 2π/m

or in other words we have fractional statistics! For example, for the
Laughlin state at ν = 1/2, we have semionic statistics.
A more detailed version of this calculation (we will do this below)

shows that the path of the particle does not matter —- the total phase
is always the Aharanov-Bohm phase for taking a particle around flux,
added to the statiscal phase of taking it around another quasiparticle.

Comment on the Fusion/Braiding Rules, and Chern-Simons
theory

For the ν = 1/m Laughlin state thus we have a situation where the
elementary quasi-holes have statistics θ = 2π/m. We can assume that
their antiparticles will have the same statistics (both opposite “charge”
and “flux” in a charge-flux model). We also have that the fusion of m
elementary quasi-electrons or quasi-holes forms an an electron or anti-
electron.
In the case where m is even, the underlying “electron” is a boson, in

which case we can think of this electron as being identical to the vacuum
— it has trivial braiding with all particles and it is essentially condensed
into the ground state as some sort of background superfluid. Thus we
have a simple anyon theory with m particle types.
On the other hand, when m is odd, we have the situation (discussed

in our “charge-flux composite” section ***) where the fusion of m ele-
mentary anyons forms a fermion — and so there are actually 2m par-
ticle types — the fermion full-braids trivially with everything, but has
fermionic statistics with itself. This situtation is “non-modular” — it
does not have as many ground states as it has particle types. There are
only m ground states, despite 2m particle types.

29.6 Gauge Choice and Monodromy

The Laughlin wavefunction with M quasiholes takes the form

Ψ(w1, . . . , wM ; z1, . . . , zN) = (29.4)

N (w1, . . . , wN )

[
M∏

α=1

N∏

i=1

(zi − wα)

]
Ψ

(m)
Laughlin(z1, . . . , zN)

where N is a normalizing factor.
By using a plasma analogy (this is a homework assignment) we find
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that the normalization must be of the form

|N (w1, . . . , wM )| = C
∏

α<β

|wα − wβ |1/m
M∏

α=1

e−|wα|2/(4ℓ∗2)

where C is some constant and

ℓ∗ =

√
~

e∗B

is the effective magnetic length for a particle of charge e∗ = e/m. This
choice of normalization assures that

〈Ψ(w1, . . . , wM )|Ψ(w1, . . . , wM )〉

independent of the position of the quasiholes.
Now, we can choose the phase of the factor N arbitrarily — this

is essentially a gauge choice. In the above Arovas, Schrieffer, Wilczek
calculation above, we chose the phase to be real. However, this is just a
convention. An intersting different convention is to choose

N (w1, . . . , wN ) = C
∏

α<β

(wα − wβ)
1/m

M∏

α=1

e−|wα|2/(4ℓ∗2) (29.5)

which is known as holomorphic or “fractional statistics” gauge – here
the fractional statistics of the quasiparticles are put explicitly into the
wavefunction! Note here that this function is not single valued in the
w-coordinates. In this gauge, we see that the wavefunction has branch
cuts and can be thought of as having Riemann sheets. This may look
problematic, but it is not. While a wavefunction must be single-valued
in the physical electron coordinates, the w’s are just parameters of the
wavefunction, and we are allowed to choose wavefunctions’ phase con-
ventions in any way we like – even in non-single-valued ways as we have
done here.
What we would want to confirm is that the physical phase accumu-

lated in moving one quasihole around another is independent of our
gauge choice. To this end we note that the total phase accumulated
can be decomposed into two pieces, the so-called monodromy and the
Berry phase. The monodromy is the phase explicitly accumulated by
the wavefunction when one coordinate is moved around another.

Total Phase = Monodromy+ Berry Phase

In the above Arovas-Schrieffer-Wilczek calculation, we chose the phase
of the normalization to be everywhere real. So there is no monodromy
— no explicit phase as we move one particle around another. However,
in fractional statistics gauge we see a phase of 2π/m for each particle
which travels counterclockwise around another. In both gauges the total
phase should be the same, so in the holomorphic gauge, the statistical



388 Introduction to Fractional Quantum Hall Effect

part of the phase should be absent. Let us see how this happens.

29.6.1 Fractional Statistics Calculation: Redux

Let us consider the case of two quasi-holes and repeat the argument
of Arovas-Schrieffer-Wilczek but in holomorphic gauge. Putting one
quasihole at postition w and another at position w′ the wavefunction is

Ψ(w) = C(w − w′)1/me−(|w|2+|w′|2)/(4ℓ∗2) ×∏

i

(zi − w)(zi − w′)
∏

i<j

(zi − zj)
∏

i

e−|zi|2/(4ℓ2)

with C chosen so that Ψ is normalized independent of the quasihole
coordinates.24 Let us parameterize the path of a quasiparticle as w(τ).

24Strictly speaking the wavefunction is
normalized in this form only if w and
w′ are not too close together — keep-
ing them a few magnetic lengths apart
is sufficient. This all comes from the
plasma analogy calculation.

We can write the Berry phase as

∆γ = −i
∮
dτ〈Ψ(τ)|∂τ |Ψ(τ)〉

We write
∂

∂τ
=
∂w

∂τ

∂

∂w
+
∂w∗

∂τ

∂

∂w∗ (29.6)

Now, because we are using holomorphic gauge of the wavefunction the
∂/∂w∗ only hits the gaussian factor, so we have

〈Ψ(w)|∂w∗|Ψ(w)〉 = − w

4ℓ∗2
〈Ψ(w)|Ψ(w)〉 = − w

4ℓ∗2

To evaluate the derivative ∂/∂w we integrate by parts so that it acts
on the bra rather than the ket. Now since the bra is completely anti-
holomorphic in w except the gaussian, the derivative acts only on the
gaussian again to give

〈Ψ(w)|∂w |Ψ(w)〉 = ∂w [〈Ψ(w)|Ψ(w)〉] − [∂w〈Ψ(w)|] |Ψ(w)〉
=

w∗

4ℓ∗2
〈Ψ(w)|Ψ(w)〉 = w∗

4ℓ∗2

Note that the derivative on 〈Ψ|Ψ〉 here is zero because the wavefunction
is assumed normalized to unity for every value of w.
We then have the Berry phase given by

∆γ = −i
∮
dτ〈Ψ(τ)|∂τ |Ψ(τ)〉 = −i 1

4ℓ∗2

∮
(dww∗ − dw∗w)

where we have used Eq. 29.6. We now use the complex version of Stokes
theorem25 to obtain25The complex version of Stokes is as

follows. Using w = x+ iy
∫

∂A
(Fdw −Gdw∗)

= 2i

∫

A
(∂w∗F + ∂wG)dxdy

∆γ =
Area

ℓ∗2
= 2π(1/m)Φ/φ0

which is the Aharanov-Bohm phase corresponding to the flux enclosed
in the path – without giving the fractional statistical phase which has
now been moved to the monodromy!
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The key point here, which we emphasize, is that if we work with nor-
malized holomorphic wavefunctions (i.e., holomorphic gauge), then the
fractional statitics are fully explicit in the monodromy of the wavefunc-
tion — we can read the statistics off from the wavefunction without
doing any work!

29.7 Appendix: Building an Effective

(Chern-Simons) Field Theory

We can consider writing an effective field theory for this ν = 1/m quan-
tum Hall system. First let us think about how it responds to an exter-
nally applied electromagnetic field. It should have its density locked to
the magnetic field, so we should have a change of electron density (In
this section we set ~ = e = 1 for simplicity)

δn = j0 =
1

2πm
δB

Similarly we should expect a quantized Hall conductance, here with j
being the current of electrons

ji = − 1

2πm
ǫijEj

Both of these can be summarized as the response to a perturbing vector
potential

jµ =
−1

2πm
ǫµνλ∂νδAλ (29.7)

We must, of course have charge conservation as well. This is easy to
enforce by writing the current in the form

jµ =
1

2π
ǫµνλ∂νaλ (29.8)

which then automatically satisfies

∂µj
µ = 0

In this language, the effective Lagrangian that produces Eq. 29.7 as an
equation of motion is then

L =
−m
4π

ǫµνλaµ∂νaλ +
1

2π
ǫµνλAµ∂νaλ + jµq aµ

where jq is the quasiparticle current. Note that without the Aµ term,
this is the same Chern-Simons theory we used for describing fractional
statistics particles (now the quasiparticles).
To see the coupling to the external vector potential, note that the

general (Noether) current associcated with the local gauge symmetry
will be

jµ =
∂L
∂Aµ
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which matches the expression from Eq. 29.8. By differentiating the La-
grangian with respect to aµ we generate the equations of motion Eq. 29.7.
More here

29.8 Appendix: Quantum Hall Hierarchy

Good reference is https://arxiv.org/abs/1601.01697
Shortly after the discovery of the Laughlin ν = 1/3 state additional

fractional quantum Hall plateaus were discovered at filling fractions such
as ν = 2/3, 2/5, 3/7 and so forth. By now over 60 different plateaus have
been observed in experiment!
The Laughlin theory only describes filling fractions ν = 1/m but it

contains in it the right ideas to build possible theories for many of these
fractions.
There are several approaches to building a hierarchy of quantum Hall

states, however perhaps the most intuition comes from the original ap-
proaches by Haldane and Halperin in 1983.
The general idea is to begin with a Laughlin wavefunction for N elec-

trons with coordinates zi for ν = 1/m then change the magnetic field to
add a large number M of quasiparticles (say in the form of 29.4, in the
case of quasiholes) at coordinates wα. Thus our wavefunction we write
as

Ψ(w1, . . . wM ; z1, . . . zN )

as written in Eq. 29.4. We then write a pseudowavefunction to describe
some dynamics of the quasiholes which we write as

φ(w1, . . . , wM )

An electron wavefunction is generated by integrating out the quasihole
coordinates. Thus we have

Ψ̃(z1, . . . zN ) =

∫
dw1, . . .dwM φ∗(w1, . . . , wM )Ψ(w1, . . . wM ; z1, . . . zN )

The general idea of this scheme is that the pseudo-wavefunction can itself
be of the form of a Laughlin wavefunction. In the original Laughlin
argument we wrote down wavefunctions for both boson and fermion
particles. Here, the particles w are anyons, so we need to write a slightly
different form of a wavefunction. We expect

φ(w1, . . . , wM ) =
∏

α<β

(wα − wβ)
1
m

+p

with p an even integer. The fractional power accounts for the fact
that the anyon wavefunction must be multi-valued as one particle moves
around another. The factor p is to include a “Laughlin” factor repelling
these anyons from each other without further changing the statistics.
The condensation of these quasi-particles into a Laughlin state gener-
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ates a wavefunction for the filling fraction

ν =
1

m± 1/p

with the ± corresponding to whether we are condensing quasiparticles
or quasiholes. One can continue the argument starting with these new
fractions and generating further daughter states and so forth. At the
next level for example, we have

ν =
1

m± 1
p± 1

q

By repeating the procedure, any odd denominator fraction ν = p/q can
be obtained.
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Exercises

Exercise 29.1 Filled Lowest Landau Level
Show that the filled Lowest Landau level of non-interacting electrons (a

single slater determinant) can be written as

Ψ0
m = N

∏

1≤i<j≤N
(zi − zj)

1
∏

1≤i≤N
e−|zi|2/4ℓ2 (29.9)

with N some normalization constant. I.e, this is the Laughlin wavefunction
with exponent m = 1.

Exercise 29.2 Laughlin Plasma Analogy
Consider the Laughlin wavefunction for N electrons at positions zi

Ψ0
m = N

∏

1≤i<j≤N
(zi − zj)

m
∏

1≤i≤N
e−|z|2/4ℓ2 (29.10)

with N a normalization constant. The probability of finding particles at po-
sitions {z1, . . . , zN} is given by |Ψm(z1, . . . zN)|2.

Consider now N classical particles at temperature β = 1
kbT

in a plane
interacting with logarithmic interactions v(~ri − ~rj) such that

βv(~ri − ~rj) = −2m log(|~ri − ~rj |) (29.11)

in the presence of a background potential u such that

βu(|~r|) = |~r|2/(2ℓ2) (29.12)

Note that this log interaction is “Coulombic” in 2d (i.e., ∇2v(~r) ∝ δ(~r)).
(a) Show that the probability that these classical particles will take po-

sitions {~r1, . . . , ~rN} is given by |Ψ0
m(z1, . . . zN)|2 where zj = xj + iyj is the

complex representation of position ~ri. Argue that the mean particle density
is constant up to a radius of roughly ℓ

√
Nm. (Hint: Note that u is a neu-

tralizing background. What configuration of charge would fully screen this
background?)

(b) Now consider the same Laughlin wavefunction, but now with M quasi-
holes inserted at positions w1, . . . , wM .

Ψm = N (w1, . . . , wM )





∏

1≤i≤N

∏

1≤α≤M
(zi − wα)



Ψ0
m (29.13)

where N is a normalization constant which may now depend on the positions
of the quasiholes. Using the plasma analogy, show that the w−z factor may be
obtained by adding additional logarithmically interacting charges at positions
wi,with 1/m of the charge of each of the z particles

(c) Note that in this wavefunction the z’s are physical parameters (and the
wavefunction must be single-valued in z’s), but the w’s are just parameters of
the wavefunction – and so the function N could be arbitrary — and is only
fixed by normalization. Argue using the plasma analogy that in order for the
wavefunction to remain normalized (with respect to integration over the z’s)
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as the w’s are varied, we must have

|N (w1, . . . , wM )| = K
∏

1≤α<γ≤M
|wα −wγ |1/m

∏

1≤α≤M
e−|wα|2/(4mℓ2) (29.14)

with K a constant so long as the w′s are not too close to each other. (Hint: a
plasma will screen a charge).





Fractional Quantum Hall Edges 30
Medium Material

30.1 Parabolic Confinement

For studying fractional quantum Hall edge states, it is perhaps most
useful to consider a parabolic confinement potential. Considering the
simple particle Hamiltonian, and adding this confining potential to the
kinetic energy we have

Hconfined = H0 + γr2

where H0 is the single particle Hamiltonian in the asence of the confine-
ment.
Since the confinement is rotationally symmetric, we can still classify

all eigenstates by their angular momemtum quantum numbers. Using
symmetric gauge we can still write the single particle eigenstates as1 1Note that the parabolic confinement

modifies the magnetic length.

ϕm ∼ zme−|z|2/(4ℓ2)

where m is the eigenvalue of the angular momentum2 operator L̂. Since 2We drop the ~ from the angular mo-
mentum operator so its eigenvalues are
just numbers.

the radius of these states is r ≈ ℓ
√
2m it is not surprising that the

confinement energy γr2 of each eigenstate is proportional to m. We
thus have

Hconfined = H0 + αL̂

for some constant α.
For integer filling, the edge excitations are very much like the edge

excitations we discussed above in Landau gauge. A round quantum Hall
droplet fills m states up to a chemical potential along the edge. One
can add a small amount of angular momentum to the edge by exciting
a filled state from an m just below the chemical potential to an empty
state just above the chemical potential.

30.2 Edges of The Laughlin State

We now consider adding an interaction term so as to produce a fractional
quantum Hall state. It is convenient to think about the limit where the
cyclotron energy is huge (so we are restricted to the lowest Landau level),
the interaction energy is large, so we have a very well formed quantum
Hall state, and finally, the edge confinement is weak.
In particular if we choose to consider the special ultra-short range

interaction potentials (such as δ function for bosons at ν = 1/2) we still
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have the ground state given exactly by the Laughlin state

Ψ
(m)
Laughlin =

∏

i<j

(zi − zj)
m

N∏

i=1

e−|zi|2/(4ℓ2)

such that it has zero interaction energy. The angular momentum of the
Laughlin ground state is just the total degree of the polynomial

Lground = m
N(N − 1)

2

with confinement energy

Eground = αm
N(N − 1)

2

While the Laughlin state has zero interaction energy it is also the case
that any polynomial times the Laughlin state also has zero interaction
energy since multipying by a polynomial does not ruin the fact that the
wavefunction vanishes as m or more powers as two particles approach
each other. Thus we can consider all possible wavefunctions of the form

Ψ = (Any Symmetric Polynomial)Ψ
(m)
Laughlin

where we insist that the polynomial is symmetric such that the symmetry
of the wavefunction remains the same (i.e, antisymmetric for fermions
and symmetric for bosons).
If the degree of the symmetric polynomial is ∆L, then we have

L = Lground +∆L

E = Eground + α∆L

We can organize the possible excitations by their value of ∆L. We thus
only need to ennumerate all possible symmetric polynomials that we can
write in N variables of some given degree ∆L.
We thus need some facts from the theory of symmetric polynomials.

The symmetric polynomials on the N variables z1, . . . , zN form a so-
called “ring” (this means you can add and multiply them). A set of
generators for this ring is given by the functions

pm =

N∑

i=1

zmi

This means that any symmetric function on N variables can be written
as sums of products of these functions3. Thus it is extremely easy to3In fact because the interaction Hamil-

tonian that we are studying is purely
real when written in the ϕm basis, we
can take the coefficients in the polyno-
mials to be entirely real too. See foot-
note ****

count symmetric functions. Of degree 1, we have only p1. At degree 2,
we have p21 and also p2. Thus the vector space of symmetric polynomials
of degree two (with real coefficients) is two dimensional. We can build
a corresponding table as shown in Table 30.1.
Thus the number of edge excitations at a given angular momentum
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L− Lground dimension basis functions Energy
1 1 p1 α
2 2 p2, p1p1 2α
3 3 p3, p2p1, p1p1p1 3α
4 5 p4, p3p1, p2p1p1, p1p1p1p1 4α
5 7 p5, p4p1, p3p2, p3p1p1, p2p2p1, p2p1p1p1, p1p1p1p1p1 5α

Table 30.1 Table of Symmetric Polynomials

follows a pattern, 1, 2, 3, 5, 7, . . . with energy increasing linearly with the
added angular momentum. Note that this result holds also for the ν = 1
Laughlin state (i.e., for the integer quantum Hall effect), and matches
the counting for excitations of a chiral fermion (try this exercise!4 )

30.2.1 Edge Mode Field Theory: Chiral Boson

An equivalent description of the edge modes is given by the Hamiltonian

H =
∑

m>0

(αm)b†mbm

where the b†m are boson creation operators satisfying the usual commu-
tations

[bm, b
†
n] = δnm

and we think of these boson creation operators b†m as creating an el-
emetary excitation of angular momentum m on the ground state which
we will call |0〉 for now. We can build a table describing all of the states
in fock space of this Hamiltonian, ordered by their angular momentum as
shown in Table 30.2. We see the fock space is precisely equivalent to the
above table of polynomials. In fact the analogy is extremely precise. In
the thermodynamic limit, up to a known normalization constant, appli-
cation of b†m is precisely equivalent to multiplication of the wavefunction
by pm.
These operators describe a chiral boson – chiral because they only have

4To get you started, consider filled states in a line filled up to the chemical potential.
We can think of these as dots in a row. For example, let the ground state be

. . . • • • • • • ◦ ◦ ◦ ◦ . . .
where • means a filled single particle eigenstate and ◦ means empty. Now if we add
one unit of (angular) momentum, we have the unique state

. . . • • • • • ◦ • ◦ ◦ ◦ . . .
adding two units can be done in two ways

. . . • • • • • ◦ ◦ • ◦ ◦ . . .
and

. . . • • • • ◦ • • ◦ ◦ ◦ . . .
thus starting the series 1, 2, 3, 5, 7 . . ..
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L− Lground dimension basis fock states Energy

1 1 b†1|0〉 α

2 2 b†2|0〉, b†1b
†
1|0〉 2α

3 3 b†3|0〉, b†2b
†
1|0〉, b†1b

†
1b

†
1|0〉 3α

4 5 b†4|0〉, b†3b
†
1|0〉, b†2b

†
1b

†
1|0〉, b†1b

†
1b

†
1b

†
1|0〉 4α

Table 30.2 Fock Space for Chiral Bosons

positive angular momentum m > 0 not negative angular momentum.5

30.3 Appendix: Edges and Chern-Simons

theory

The existence of the edge theory could have been predicted from the ef-
fective Chern-Simons Lagrangian of the bulk. As mentioned previously,
the Abelian Chern-Simons action is gauge invariant on a closed mani-
fold. However, for a manifold with boundary, the action is not gauge
invariant. This is what is known as an anomaly. The solution to this
problem is that the action becomes gauge invariant only once it is added
to an action for the low energy edge theory! We will not go through the
detailed argument for this here.

5An achiral bose field on a circle requires both positive and negative angular mo-
mentum modes).



Conformal Field Theory
Approach to Fractional
Quantum Hall Effect 31

Medium Material

In the last chapter we saw that we have an edge theory which is a chiral
boson — a 1+1 dimensional dynamical theory. We can think of this
theory as being a 2 dimensional cut out of a 3 dimensional space-time
manifold. Now in a well-behaved topological theory, it should not matter
too much how we cut our 3-dimensional space-time manifold. Thus we
expect that the same chiral bose theory should somehow also be able to
describe our 2+0 dimensional wavefunction. Since all chiral topological
theories have gapless edges, this approach can be quite general.
1+1 dimensional gapless theories can all be described by conformal

field theories (CFTs) possibly perturbed by irrelevant operators. And
conformal field theories in 1+1 dimension are particularly powerful in
that they are exactly solvable models, which can be used to describe
either the dynamics of 1+1 dimensional systems or classical statistical
mechanical models in 2 dimensions.
While we cannot provide a complete introduction to CFT here (see

Ginsparg’s lectures, Fendley’s notes, or for a much more complete dis-
cussion, see the Big Yellow Book), it turns out that we need very little of
the machinery to proceed. Furthermore, a large fraction of this machin-
ery will look extremely familiar from our prior study of TQFTs. Indeed,
there is an extremely intimite connection between CFTs and TQFTs —
and much of what we know about TQFTs has grown out of the study
of CFTs.
We will begin by seeing how this works for the chiral boson, which is

perhaps the simplest of all 1+1d CFTs. Below we will show how the
scheme works in more detail in the context of quantum Hall physics.
This approach, first described by Moore and Read, has been extremely
influential in the development of TQFTs and their relationship to the
quantum Hall effect.

31.1 The Chiral Boson and The Laughlin

State

An interesting feature of theories in 1+1d is that they can often be
decomposed (mostly1) cleanly into right moving and left moving pieces.

1There may be issues with the decom-
position, for example, in the case of
the boson, there is a complication as-
sociated with the so-called zero-mode,
which we will ignore for simplicity.

So for example, if we take the simplest possible 1+1 d system, a free
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boson, we can write an achiral Lagrangian density for a field Φ(x, t) as

L ∝ (∂µΦ)(∂
µΦ)

This can be decomposed into right and left moving pieces as

Φ(x, t) = φ(x− vt) + φ̄(x+ vt)

where φ is right-moving and φ̄ is left-moving and these are two different
fields. For simplicity we will set the velocity v = 1.
In the previous chapter we deduced that the edge theory of the Laugh-

lin state could be described by a chiral boson Hamiltonian

H =
∑

m>0

(αm)a†mam

Quantizing the boson lagrangian we find that22We have dropped the zero mode here.

φ(x) =
∑

m>0

i√
m
e2πimx/La†m + h.c. (31.1)

where L is the (periodic) length of the system.
We will often work in complex coordinates x and τ = it, so we have

we write Φ(z, z∗) where z = x+ iτ and z∗ = x− iτ correspond to right
(holomorphic) and left-moving (antiholomorphic) coordinates.
As free bose fields, we can use Wick’s theorem on the fields φ and all

we need to know is the single two point correlator3

3Perhaps the easiest way to see this is
to calculate directly from Eq. 31.1. See
exercise ***. Another way to obtain
this is to aim for the achiral result

〈Φ(z, z∗)Φ(z′, z′∗)〉 = − log(|z − z′|2)
To see where this comes from, it is eas-
iest to think about a 2d classical model
where the action is

S = (8π)−1
∫

dxdy|∇Φ|2

With a partition function

Z =

∫

DΦ e−S[Φ]

It is then quite easy to calculate the cor-
relator 〈ΦkΦk′〉 = δk+k′ |k|−2. Fourier
transforming this then gives the result.

〈φ(z)φ(z′)〉 = − log(z − z′)

Note that we think of this correlation function as a correlation in a 1+1d
theory even though we are working with complex z.
From this chiral φ operator we construct the so-called vertex operators

Vα(z) =: eiαφ(z) :

where : : means normal ordering4 A straightforward exercise (assigned4The usual understanding of normal or-
dering is that when we decompose a
field into creation and annihilation op-
erators, we can normal order by mov-
ing all the annihilation operators to the
right. Another way to understand it
is that when we expand the exponent
eiαφ(z) = 1+ iαφ(z) + (iα)2φ(z)φ(z) +
. . .. There will be many terms where
φ(z) occurs to some high power and
that looks like a divergence because the
correlator of two φ fields at the same
position looks log divergent. Normal
ordering is the same as throwing out
these divergences.

as homework!) using Wick’s theorem then shows that

〈Vα1
(z1)Vα2

(z2) . . . VαN (zN )〉 = e−
∑
i<j αiαj〈φ(zi)φ(zj)〉

=
∏

i<j

(zi − zj)
αiαj (31.2)

so long as ∑

i

αi = 0 (31.3)

(otherwise the correlator vanishes).



31.1 The Chiral Boson and The Laughlin State 401

31.1.1 Writing the Laughlin Wavefunction

We then define an “electron operator” to be

ψe(z) = Vα(z)

where we will choose
α =

√
m

This then enables us to write the holomorphic part of the Laughlin
wavefunction as

Ψ
(m)
Laughlin = 〈ψe(z1)ψe(z2) . . . ψe(zN )Q̂〉 =

∏

i<j

(zi − zj)
m

The index α must be chosen such that α2 is an integer such that the
wavefucntion is single valued in the electron coordinates. Note that here
although the correlator means a 1+1d theory, we are constructing a
wavefunction for a 2d system at fixed time!
Here, the operator Q̂ can be chosen in two different ways. One pos-

sibility is to choose Q̂ = V−Nα, i.e., a neutralizing charge at infinity
such that Eq. 31.3 is satisfied and the correlator does not vanish. This
approach is often used if one is only concerned with keeping track of the
holomorphic part of the wavefunction (which we often do). A more phys-
ical (but somewhat more complicated) approach is to smear this charge
uniformly over the system. In this case, the neutralizing charge, almost
magically, reproduces precisely the gaussian factors that we want!5. 5To see how this works, we divide

the background charge into very small
pieces (call them β) to obtain a corre-
lator of the form

em
∑
i<j log(zi−zj)−ǫ

√
m

∑
i,β log(zi−zβ)

the term with ǫ2 we throw away as we
will take the limit of small ǫ. Now here
we realize that we are going to have a
problem with branch cuts around these
small charges — which we can handle
if we work in a funny gauge. Changing
gauge to get rid of the branch cuts we
then get only the real part of the second
term. The second term is then of the
form
∑

i,β

log(|zi − zβ |) →
∫

d2r log(|z − r|)

where we have taken the limit of in-
creasing number of smaller and smaller
charges. We define this integral to be
f(z). It is then easy to check that
f(z) ∼ |z|2 which is most easily done
by taking ∇2f(z) and noting that log is
the coulomb potential in 2d so Gauss’s
law just gives the total charge enclosed.

Thus we obtain e−|z|2 as desired. A
more careful calculation gives the con-
stant correctly as well.

31.1.2 Quasiholes

Let us now look for quasihole operators. We can define another vertex
operator

ψqh(w) = Vβ(w)

and now insert this into the correlator as well to obtain

Ψqh(w) = 〈ψqh(w)ψe(z1)ψe(z2) . . . ψe(zN)Q̂〉 (31.4)

=

[
∏

i

(zi − w)β
√
m

]
Ψ

(m)
Laughlin

Since we must insist that the wavefunction is single valued in the z
coordinates, we must choose

β = p/
√
m

for some positive integer p, where the minimally charged quasiparticle
is then obviously p = 1. (Negative p is not allowed as it would create
poles in the wavefunction).
Further, using this value of the the charge β, along with the smeared

out background charge, we correctly obtain the normalizing gaussian
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factor for the quasiparticle

e−|w|2/(4mℓ2)

This is the correct gaussian factor, with an exponent 1/m times as big
because the charge V1/

√
m is 1/m times as big as that of the electron

charge V√m.
If we are now to add multiple quasiholes, we obtain the wavefunction

Ψ(w1, . . . , wM ) = 〈ψqh(w1) . . . ψqh(wM )ψe(z1) . . . ψe(zN )Q〉 (31.5)

= C
∏

α<β

(wα − wβ)
1/m

M∏

α=1

e−|wα|2/(4ℓ∗2)
[
M∏

α=1

N∏

i=1

(zi − wα)

]
Ψ

(m)
Laughlin

which is properly normalized

〈Ψ(w1, . . . wM )|Ψ(w1, . . . wM )〉 = Constant

and is in holomorphic gauge. As discussed previously in chapter ***
with a normalized holomorphic wavefunction we can simply read off the
fractional statistics as the explicit monodromy.
Note that we can consider fusion of several quasiparticles

V1/
√
m × V1/

√
m → V2/

√
m (31.6)

Fusion of m of these elementary quasiholes produces precisely one elec-
tron operator V√m. Since the electrons are “condensed” into the ground
state, we view them as being essentially the identity operator, at least in
the case of m even, which means we are considering a Laughlin state of
bosons. Thus there are m species of particle in this theory. In the case
of m odd, we run into the situation mentioned in chapter *** where the
electron is a fermion, so really there are 2m species of particles in the
theory.
The idea is that by using conformal field theory vertex operators we

automatically obtain normalized holomorphic wavefunctions and we can
determine the statistics of quasiparticles straightforwarldy. This is a key
feature of the Moore-Read approach. While there is no general proof
that this will always be true (that the resulting wavefunctions will be
properly normalized) it appears to hold up in many important cases.
We hope now to generalize this construction by using more com-

plicated conformal field theories. This then generates more compli-
cated fractional quantum Hall wavefunctions corresponding to more
complcated TQFTs.
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31.2 What We Need to Know About

Conformal Field Theory

I can’t possibly explain CFT in a few pages. (See the big yellow book.
Ginsparg’s lectures are nice for introduction. So are Fendley’s notes),
but given what we already know about TQFTs many of the rules are
going to seem very natural. Indeed, much of the math of TQFTs arose
via CFTs.
CFTs are quantum theories in 1+1 dimension6. They are generically

6We will restrict our attention to uni-
tary CFTs so that these are well be-
haved 1+1 d theories. Although certain
2 dimensional stat mech models can be
related to non-unitary CFTs, these do
not correspond to well behaved TQFTs.highly interacting theories, and most often it is impossible to write an

explicit Lagrangian for the theory, but due to the special properties
of being in 1+1 and having conformal invariance (guaranteed by being
gapless in 1+1 d) these models are exactly solvable.
A particular CFT is defined by certain information known as con-

formal data, which basically mimics the defining features of a TQFT:

(1) There will be a finite set7 of so-called primary fields, which we 7A nonrational CFT may have an infi-
nite number of particle types, but these
are badly behaved and do not appear to
correspond to nice TQFTs.

might call φi(z) (or we may use other notation). These are analogous
to the particle types in a TQFT. Every CFT has an identity field often
called I (which isn’t really a function of position). Correlators of these
fields

〈φj1 (z1) . . . φjN (zN )〉
are always holomorphic functions of the z arguments, although there
may be branch cuts.

(2) Each primary field has a scaling dimension8 or conformal
weight or conformal spin, which we call hi. The scaling dimension of
I is hI = 0. We have see these quantities before when we discussed twists
in world lines. Often we will only be interested in h modulo 1, since the
twist factor is e2πih. Each primary field has descendant fields which are
like derivatives of the primary and they have scaling dimensions hi plus
an integer (we will typically not need these, but for example, ∂zφi has
scaling dimension hi + 1).

(3) Fusion relations exist for these fields, which are associative and
commutative

φi × φj =
∑

k

Nk
ijφk

where fusion with the identity is trivial

I × φj = φj

8In CFT we have the powerful relation that if we make a coordinate transform w(z)
then any correlator of primary fields transforms as

〈φi1 (w1) . . . φiN (wN )〉 =
[

(

∂w1

∂z1

)−hi1
. . .

(

∂wN

∂zN

)−hiN
]

〈φi1 (z1) . . . φiN (zN )〉

However, we will not need this relationship anywhere for our discussion!
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As with TQFTs, each particle type has a unique antiparticle. We will
give a clearer meaning to these fusion relations in a moment when we
discuss operator product expansion.

The expectation of any correlator in the theory is zero unless all the
fields inside the correlator fuse to the identity. For example, if we have a
Z3 theory where it requires three ψ particles fuse to the identity, then we
would have 〈ψ(z)ψ(w)〉 = 0. We saw this law previously in the neutrality
condition for the chiral boson. The expectation of the identity I is unity.

The fundamental theorem we need, which is beyond the simple anal-
ogy with TQFT is the idea of an operator product expansion. The
idea is that if you take two field operators in a conformal field theory
and you put them close together, the product of the two fields can be
expanded as sum of resulting fields

lim
w→z

φi(w)φj(z) =
∑

k

Ckij(w − z)hk−hi−hjφk(z) + . . .

Here the Ckij are coefficients which crucially are zero when Nk
ij is zero.

In other words, when two fields are taken close together, the result looks
like a sum of all the possible fusion products of these field. On the right
hand side note that by looking at the scaling dimensions of the fields,
we obtain explicit factors of (w − z). The . . . terms are terms that are
smaller (less singular) than the terms shown and are made of descendant
fields and higher powers of (w − z). Crucially, no new types of branch
cuts are introduced except those that differ by integers powers from (and
are less singlar than) those we write explicitly.
The convenient thing about the operator product expansion (or “OPE”)

is that it can be used inside expectation values of a correlator. So for
example

lim
w→z

〈ψa(w)ψb(z) ψc(y1)ψd(y2) . . . ψn(ym)〉 =
∑

k

Ckab(w − z)hk−ha−hb〈ψk(z) ψc(y1)ψd(y2) . . . ψn(ym)〉

31.2.1 Example: Chiral Boson

The free boson vertex Vα has scaling dimension

hα =
α2

2

The fusion rules are
VαVβ = Vα+β

corresponding to the simple addition of “charges”. The resulting oper-
ator product expansion is then

Vα(w)Vβ(z) ∼ (w − z)αβVα+β(z)
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where we have used the notation ∼ to mean in the limit where w goes
to z, and where the exponent is here given as

hα+β − hα − hβ =
(α+ β)2

2
− α2

2
− β2

2
= αβ

Note that this fusion law for the chiral boson gives more precise meaning
to the fusion law we wrote in Eq. 31.6. ***(clean this up)**

31.2.2 Example: Ising CFT

The Ising CFT is actually the CFT corresponding to a 1+1 d free
fermion, so it is particularly simple. The theory has three fields, I, σ, ψ
with scaling dimensions

hI = 0

hσ = 1/16

hψ = 1/2

The fact that hψ = 1/2 is an indication that it is a fermion. The
nontrivial fusion rules are (exactly as in the Ising TQFT *** previously)

ψ × ψ = I

ψ × σ = σ

σ × σ = I + ψ

As in the case of TQFTs, it is the multiple terms on the right hand side
that make a theory nonabelian.
We can write the operator product expansion

ψ(w)ψ(z) ∼ (w − z)hI−hψ−hψI + . . .

∼ I

w − z
+ . . .

The antisymmetry on the right hand side is precisely the behavior one
should expect from fermions. It is crucial to note that within the . . . all
terms are similarly antisymmetric (and are less singular). Similarly, we
have

ψ(w)σ(z) ∼ (w − z)hσ−hσ−hψ σ(z) + . . .

∼ (w − z)−1/2 σ(z) + . . .

where again the . . . indicates terms which have the same branch cut
structure but are less singular . In other words, wrapping w around z
should incur a minus sign for all terms on the right.
Finally we have the most interesing OPE9 9Remember these exponents of 1/8 and

3/8 from the Ising anyon homework
problems? ***σ(w)σ(z) ∼ CIσσ(w − z)−1/8I + Cψσσ(w − z)3/8ψ(z) + . . . (31.7)

where all terms in the . . . must have branch cuts that match one of the
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two leading terms.
Let us consider calculating a correlator,

lim
w→z

〈σ(w)σ(z)〉

Since from rule (4) above, the two fields must fuse to the identity, we
must choose the identity fusion channel only from the OPE. We then
obtain

lim
w→z

〈σ(w)σ(z)〉 ∼ (w − z)−1/8 (31.8)

On the other hand, calculating

lim
w→z

〈σ(w)σ(z)ψ(y)〉

in order to fuse to the identity, we must choose the ψ fusion of the two σ
fields such that this ψ can fuse with ψ(y) to give the identity. We thus
have

lim
w→z

〈σ(w)σ(z)ψ(y)〉 ∼ (w − z)3/8 (31.9)

Similarly one can see that fusion of two σ’s in the presence of any even
number of ψ fields will be similar to Eq. 31.8, whereas in the presence
of any odd number of ψ fields it will be like Eq. 31.9.
Since the Ising CFT is actually a free fermion theory, we can use

Wick’s (fermionic) theorem for correlators of the ψ fermi fields with the
added information that10,1110Insert footnote or appendix that de-

rives this. See Yellow Book for now!
11Add footnote on wick’s theorem?*** 〈ψ(z)ψ(w)〉 = 1

z − w

which is exactly true, not only in the OPE sense. However, we cannot
use Wick’s theorem on correlators of the σ fields which are sometimes
known as “twist” fields — we can think of these as altering the boundary
conditions

31.3 Quantum Hall Wavefunction Based on
Ising CFT: The Moore-Read State

Let us try to build a quantum Hall wavefunction based on the Ising CFT.
We must first choose a field which will represent our electron. One might
guess that we should use the fermion field. However, when two ψ fields
come together the correlator (and hence our wavefunction) diverges, so
this cannot be acceptable. Instead, let us construct an electron field
which is a combination of the Ising ψ field and a chiral bose vertex Vα

ψe(z) = ψ(z)Vα(z)

These two fields are from completely different 1+1d theories and are
simply multiplied together.
We then look at the operator product expansion to see what happens
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when two electrons approach each other

ψe(z)ψe(w) ∼
[

I

z − w

] [
(z − w)α

2

V2α

]

where the first bracket is from the Ising part of the theory and the second
bracket is from the bose part of the theory. In order for this to not be
singular, we must have α2 be a positive integer. If we choose

α2 = m

withm odd we have an overall bosonic operator (ψe(z)ψe(w) = ψe(w)ψe(z))
whereas if we choosem even we have an overall fermionic operator. How-
ever, we cannot choose m = 0 since that leaves a singularity. Thus we
have the electron operator of the form

ψe(z) = ψ(z)V√m(z)

with m ≥ 1. Using this proposed electron operator we build the multi-
particle wavefunction

Ψ = 〈ψe(z1)ψe(z2) . . . ψe(zN )Q〉

where Q is the background charge for the bose field. Since the Ising and
bose fields are completely seperate theories we can take the expectation
for the bose field to give

Ψ = 〈ψ(z1)ψ(z2) . . . ψ(zN)〉
∏

i<j

(zi − zj)
m

N∏

i=1

e−|zi|2/(4ℓ2)

where the correlator is now in the Ising theory alone.
Now the Ising correlator must be zero unless there are an even number

of ψ fields (since we need them to fuse to the identity). If the number
of fermi fields is indeed even, then we can use the fact that ψ is a free
fermi field and we can invoke Wick’s theorem to obtain

〈ψ(z1)ψ(z2) . . . ψ(zN )〉 = A
[

1

z1 − z2

1

z3 − z4
. . .

1

zN−1 − zN

]

≡ Pf

(
1

zi − zj

)
(31.10)

Here A means antisymmetrize over all reordering of the z’s. Here we
have written the usual notation for this antisymmetrized sum Pf which
stands for “Pfaffian”12. Thus we obtain the trial wavefunction based on 12Several interesting facts about the

Pfaffian: A BCS wavefunction for a
spinless superconductor can be written
as Pf[g(ri − rj)] where g is the wave-
function for a pair of particles. Any
antisymmetric matrix Mij has a Pfaf-
fian

Pf[M ] = A[M12M34...].

Also it is useful to know that
(Pf[M ])2 = detM .

the Ising CFT

Ψ = Pf

(
1

zi − zj

)∏

i<j

(zi − zj)
m

N∏

i=1

e−|zi|2/(4ℓ2)

which is known as the Moore-Read wavefunction. For m odd this is a
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wavefunction for bosons and form even it is a wavefunction for fermions.
To figure out the filling fraction, we note that the Pfaffian prefactor
only removes a single power in each variable. Thus the filling fraction
is determined entirely by the power m, and is given (like Laughlin) by
ν = 1/m.

31.3.1 Some Exact Statements About the
Moore-Read Wavefunction

For simplicity, let us consider the m = 1 case ν = 1 for bosons, which
is the easiest to think about analytically. The wavefunction does not
vanish when two particles come to the same point, since the zero of
the (z1 − z2) can be canceled by the pole of the Pfaffian. However, it
is easy to see that the wavefunction must vanish (quadratically) when
three particles come to the same point (three factors from (z − z)1 but
then one factor in the denominator of the Pfaffian).
Note that, even were we to not have an explicit expression for the

Moore-Read wavefunction we would still be able to use the operator
product expansion to demonstrate that the wavefunction (for m = 1)
must vanish quadratically when three particles come to the same point13.13To see this, note that taking the first

two particles to the same point gives

lim
z2→z1

ψe(z1)ψe(z2) ∼ IV2(z1)

Then fusing the third particle

lim
z3→z1

ψe(z3)V2(z1) ∼ (z3−z1)2ψV3(z1)

Analogous to the case of the Laughlin wavefunction, it turns out that
the Moore-Read wavefunction (for m = 1) is the exact (highest density)
zero energy ground state of a three-body delta function interacton

V = V0
∑

i<j<k

δ(ri − rj)δ(ri − rk)

Similarly one can construct a potential for fermions such that the
ν = 1/2 Moore-Read state (m = 2) is the highest density zero energy
state. This is quite analogous to what we did for the Laughlin state:

V = V0
∑

i<j<k

[∇2δ(ri − rj)]δ(ri − rk)

Non-Exact Statements

Although the Coulomb interaction looks nothing like the three body
interaction for which the Moore-Read Pfaffian is exact, it turns out that
ν = 1/2 Moore-Read Pfaffian m = 2 is an extremely good trial state1414Here we have used a mapping be-

tween Landau levels, that any par-
tially filled higher Landau level can be
mapped to a partially filled lowest Lan-
dau level at the price of modifying the
inter-electron interaction. This map-
ping is exact to the extent that there is
no Landau level mixing. I.e., that the
spacing between Landau levels is very
large.

for electrons at ν = 5/2 interacting with the usual Coulomb interaction.
This is very suggestive that the ν = 5/2 is topologically equivalent to
the Moore-Read Pfaffian wavefunction (i.e., they are in the same phase
of matter)15 Further, the most natural interaction for bosons, the simple

15There is one slight glitch here. It
turns out that with a half-filled Landau
level, the wavefunction and its charge-
conjugate (replace electrons by holes in
the Landau level) are inequivalent! The
breaking of the particle-hole symmetry
is very weak and involves Landau-level
mixing. From numerics it appears that
the ν = 5/2 state is actually in the
phase of matter defined by the conju-
gate of the Moore-Read state. *** add
refs

two-body delta function interaction has a ground state at ν = 1 which
is extremely close to the Moore-Read m = 2 Pfaffian.



31.4 Quasiholes of the Moore-Read state 409

31.4 Quasiholes of the Moore-Read state

We now try to construct quasiholes for the Moore-Read Pfaffian wave-
function. As we did in Eq. 31.4, we want to write

Ψqh(w) = 〈ψqh(w)ψe(z1)ψe(z2) . . . ψe(zN)Q̂〉

but we need to figure out what the proper quasihole operator ψqh is.

Laughlin Quasihole

One obvious thing to try would be to write a simple vertex operator

ψLqh(w) = Vβ(w)

Looking at the OPE we have (***include fields on the right? ***)

ψLqh(w)ψe(z) ∼ (w − z)β
√
mψ(z)

In order to have the correlator be single valued in z (i.e., no branch cuts)
we must choose β = p/

√
m for some integer p (the smallest quasihole of

this type corresponding to p = 1 then). This generates the wavefunction

ΨLqh(w) = 〈ψLqh(w)ψe(z1)ψe(z2) . . . ψe(zN )Q̂〉 (31.11)

=

[
N∏

i=1

(zi − w)

]
Ψ

(m)
Moore−Read

which is just a regular Laughlin quasihole factor. By the same argu-
ments, the charge of this quasihole is e∗ = eν.

Minimal quasihole

However, the Laughlin quasihole is not the minimal quasihole that can
be made. Let us try using an operator from the Ising theory as part of
the quasihole operator. Suppose

ψqh(w) = σ(w)Vβ(w)

We then have the operator product expansion

ψqh(w)ψe(z) ∼ [σ(w)ψ(z)]
[
Vβ(w)V√m(z)

]
∼ (w − z)−1/2(w − z)β

√
m

In order for the wavefunction not to have any branch cuts for the physical
electron z coordinates, we must choose β = (p + 1/2)/

√
m for p ≥ 0,

with the minimal quasihole corresponding to p = 0. Thus we have the
minimal quasihole operator of the form

ψqh(w) = σ(w)V 1
2
√
m
(w)
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Note that when we consider correlators, by the general rule (4) from
section 31.2, the operators must fuse to the identity in order to give a
nonzero result. Thus, we must always have an even number of σ fields16.16Like the Sith, they come in pairs.

We thus consider the wavefunction of the form

Ψqh(w,w
′) = 〈ψqh(w)ψqh(w′)ψe(z1)ψe(z2) . . . ψe(zN)Q̂〉 (31.12)

= (w − w′)
1

4m e−(|w|2+|w′|2)/4ℓ∗2
N∏

i=1

(w − zi)
1/2(w′ − zi)

1/2 (31.13)

× 〈σ(w)σ(w′)ψ(z1)ψ(z2) . . . ψ(zN)〉
∏

i<j

(zi − zj)
m

N∏

i=1

e−|zi|2/(4ℓ2)

Several comments are in order here. First of all, from the first line
of Eq. 31.13 it looks like there are branch cuts with respect to the z
coordinates. However, these fractional powers are precisely canceled by
branch cuts in the correlator on the second line. Secondly the charge of
the quasihole is determined entirely by the power of the (z − w) factor,
since it tells us how much the electrons are pushed away from the hole.
(The correlator does not give an extensive number of zeros, similar to the
Pfaffian of Eq. 31.10). If the exponent of (z − w) were one, this would
be a regular Laughlin quasihole with charge eν, thus here we have a
quasihole charge of

e∗ = eν/2.

I.e., the Laughlin quasihole has fractionalized into two pieces! This
charge is reflected in the effective magnetic length ℓ∗ =

√
~/e∗B.

Note that this wavefunction is still an exact zero energy state of the
special interaction discussed above for which the Moore-Read wavefunc-
tion is the exact highest density zero energy state (the wavefunction here
is higher degree and thus less dense, as we would expect given that we
have added quasiholes). We can demonstrate the current wavefunction
is still zero energy by bringing together three electrons to the same point
and examining how the wavefunction vanishes. Since this can be fully
determined by the operator product expansion, it does not matter if we
add quasiholes to the wavefunction, the vanishing property of the wave-
function remains the same, and thus this is an exact zero energy state
of the special interaction.

A Crucial Assumption

The wavefunction here is single valued in all electron coorrdinates (as
it should be) and is holomorphic in all coordinates (all z’s and w’s) ex-
cept for the gaussian exponential factors. In this holomorphic gauge, as
discussed above, we can read off the fractional statistics of the quasipar-
ticles given the assumption that the wavefunction is properly normalized.
This is a crucial assumption and it is not a simple result of CFT, but
always requires an assumption about some sort of plasma being in a
screening phase — and often the mapping to a plasma is highly non-
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trivial17. Nonetheless, from extensive numerical work, it appears that 17See work by Bonderson et al ***.

physics is kind to us and that these wavefunctions do indeed come out
to be properly normalized!

Fusion and Braiding of Two Quasiholes in Identity Channel
(even number of electrons)

Let us assume that the number of electrons is even. In this case the
two σ’s of the quasiholes fuse to the identity as in Eq. 31.8. As the
two quasiholes approach each other we then have18 (** insert also h-h-h 18Strictly speaking on the right hand

side we should also write the identity
operator I for the Ising theory and
V1/

√
m for the boson sector.

derivation of R? **)

ψqh(w)ψqh(w
′) ∼ (w − w′)

1
4m

− 1
8

where the 1
4m is written expliclty in the first line of Eq. 31.13 and the

− 1
8 is from the operator product expansion Eq. 31.8. Invoking now the

crucial assumption that the wavefunctions are normalized, since they
are obviously holomorphic, we simply read off the statistical phase (the
monodromy) we get for wrapping one quasihole around another!
One might object that the operator product expansion only tells us

the behavior of the correlator as w and w′ come close to each other.
However, we are guaranteed that there are no other branch cuts in the
system — the only branch cut in the wavefunction for w is when it
approaches w′. Thus, no matter how far w is from w′, when w circles
w′ it must always accumulate the same monodromy! In the notation
we defined in earlier chapters we have ***(move I downstairs here to fit
with our conventions?, change notation ”I” to 2qh-I?)***

[R“I”
qh−qh]

2 = e2πi(
1

4m
− 1

8
)

Recall that if a × b → c we should have [Rcab]
2 = e2πi(hc−ha−hb). Here,

the total scaling dimension of the quasihole is hqh = 1/16 + 1/(8m)
with the second piece from the bose vertex operator V1/2

√
m. The fusion

product “I” = V1/
√
m has quantum dimension h“I” = 1/2m.

Fusion and Braiding of Two Quasiholes in ψ Channel (odd
number of electrons)

Let us now assume that the number of electrons is odd. In this case the
two σ’s of the quasiholes fuse to ψ as in Eq. 31.9. As the two quasiholes
approach each other we then have19

19Strictly speaking on the right hand
side we should also write the operator
ψ for the Ising theory and V1/

√
m for

the boson sector.

ψqh(w)ψqh(w
′) ∼ (w − w′)

1
4m

+ 3
8

where the 1
4m is written expliclty in the first line of Eq. 31.13 and the

3
8 is from the operator product expansion Eq. 31.9. Again we just read
off the monodromy from this OPE. Thus, one obtains a different phase
depending on the fusion channel of the two quasiholes. In the notation
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we defined in earlier chapters we have

[R“ψ”
qh−qh]

2 = e2πi(
1

4m
+ 3

8
)

31.5 Multiple Fusion Channels and Conformal
Blocks

We will next address the issue of what happens when we have more
than two quasiholes. It is clear what will happen here, we will obtain
a correlator (like that in Eq. 31.13) but now it will have more σ fields.
We will thus have to figure out how to make sense of correlators with
many (nonabelian) σ fields. As an example to show how this works, let
us get rid of the ψ fields for a moment and consider a correlator

G(w1, w2, w3, w4) = 〈σ(w1)σ(w2)σ(w3)σ(w4)〉 (31.14)

Let us imagine that we will bring w1 close to w2 and w3 close to w4.
Now in order for the correlator to give a nonzero value, the four fields
have to fuse to unity (rule (4) from section 31.2). There are two different
ways in which this can happen

σ(w1)σ(w2) → I

σ(w3)σ(w4) → I

OR we could have

σ(w1)σ(w2) → ψ

σ(w3)σ(w4) → ψ

and the two ψ fields could then fuse to the identity.
So which one is right? In fact both happen at the same time! To

understand this we should think back to what we know about a 2d
systems with nonabelian quasiparticles in them — they are described
by a vector space. In order to know which particular wavefunction we
have in a vector space we need some sort of initial condition or space-
time history. Nowhere in the correlator have we specified any space-
time history, so we should be getting a vector space rather than a single
wavefunction. The multiple wavefunctions in the vector space arise from
choosing different roots of the branch cuts of the holomorphic functions.
To see a detailed example of this let us write out the explict form of
the correlator in Eq. 31.14. We note that the calculation that leads to
this requires some substantial knowledge of conformal field theory and
will not be presented here. However many of these sorts of results have
simply been tabulated in books and can be looked up when necessary.
For simplicity we take the four coordinates of the z variables to be at
convenient points so that the correlator looks as simple as possible20.20In fact due to conformal invariance,

knowing the correlator for any fixed
three points and one point z free, we
can determine the correlator for any
other four points, but this is beyond the
scope of the current discussion!
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lim
w→∞

〈σ(0)σ(z)σ(1)σ(w)〉 = a+G+(z) + a−G−(z) (31.15)

where

G± = (wz(1 − z))−1/8

√
1±

√
1− z (31.16)

are known as conformal blocks and here a+ and a− are arbitrary com-
plex coefficients (usually with some normalization condition implied).
I.e, the correlator itself represents not a function, but a vector space
(with basis vectors being conformal blocks) with arbitrary coefficients
yet to be determined by the history of the system!
Let us analyze some limits to see which fusion channels we have here.

Taking the limit of z → 0 we find that

lim
z→0

G+ ∼ z−1/8 (σ(0)σ(z) → I)

lim
z→0

G− ∼ z3/8 (σ(0)σ(z) → ψ)

Thus (comparing to Eqs. 31.8 and 31.9) we see that G+ has σ(0) and
σ(z) fusing to I whereas G− has them fusing to ψ. Since the four σ’s
must fuse to the identity, this tells us also the fusion channel for σ(1)
and σ(w).
The most general wavefunction is some linear combination (a+ and

a−) of the two possible fusion channels. This is what we expect, the
state of a system can be any superposition within this degenerate space.
Now consider what happens as we adiabatically take the coordinate

z in a circle around the coordinate 1. Looking at Eq. 31.16 we see that
we accumulate a phase of e−2πi/8 from the factor of (1− z)−1/8 outside
the square-root. In addition, however, the

√
1− z inside the square root

comes back to minus itself when z wraps around 1, thus turning G+ to
G− and vice versa! The effect of monodromy (taking z around 1) is then

(
a+
a−

)
−→ e−2πi/8

(
0 1
1 0

)(
a+
a−

)

(This result should be somewhat familiar from the homework exercise
on Ising anyons!)
We thus see that in this language, the multiple fusion channels are

just different choices of which Riemann sheet we are considering, and
the fact that braiding (monodromy) changes the fusion channel is simply
the fact that moving coordinates around on a Riemann surface, you can
move from one Riemann sheet to another!
So long as we can assume that the conformal blocks are orthonormal

(see comment above on “crucial assumption” about normalization of
wavefunctions. Orthonormality, is now adding a further assumption21) 21As with the discussion above, this

assumption appears to be true, but
“proofs” of it always boil down to some
statement about some exotic plasma
being in a screening phase, which is
hard to prove. *** myabe move bon-
derson ref here?

then we can continue to read off the result of physically braiding the
particles around each other by simply looking at the branch cuts in the
wavefunction.
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F-matrix

We have seen how to describe the fusion of σ(0) and σ(z). What if
now we instead take z close to 1 such that we can perform an operator
product expansion of σ(z)σ(1). Taking this limit of Eq 31.16 it naively
looks like both

lim
z→1

G+ ∼ (1 − z)−1/8

lim
z→1

G− ∼ (1 − z)−1/8

But examining this a bit more closely we realize we can construct the
linear combinations

G̃+ =
1√
2
(G+ +G−)

G̃− =
1√
2
(G+ −G−)

where here we have inserted the prefactor of 1/
√
2 such that the new

basis G̃± is orthonormal given that the old basis G± was. With this new
basis we now have the limits

lim
z→1

G̃+ ∼ (1− z)−1/8

lim
z→1

G̃− ∼ (1− z)−1/8

[√
1 +

√
1− z −

√
1−

√
1− z

]

∼ (1− z)−1/8(1− z)1/2 ∼ (1 − z)3/8

Thus we see that in this twiddle basis (G̃±) we have in this limit that
G̃+ is the fusion of σ(z) and σ(1) to identity and G̃− is the fusion to ψ.
The transformation between the two bases G± and G̃± is precisely

the F -matrix transformation.
(
G̃+

G̃−

)
=

1√
2

(
1 1
1 −1

)(
G+

G−

)

which should look familiar to anyone who did the homework! (We
also got the same result from writing the ising theory in terms of ca-
bled Kauffman strings). Diagrammatically this transform is shown in
Fig. 31.1
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Fig. 31.1 The F -matrix transforms between the two fusion channels depicted here.

31.6 More Comments on Moore-Read State

with Many Quasiholes

Although we have presented this discussion about multiple fusion chan-
nels and braiding in terms of σ operators, the situation is extremely
similar once we use quasihole operators (σ(z)Vβ(z)) and we put them
in a wavefunction as in Eq. 31.13 but possibly with more quasihole op-
erators. As we might expect just from looking at the fusion rules, the
number of fusion channels (the number of Riemann sheets!) is 2M/2−1

where M is the number of quasiholes, and the -1 arises because the
overall fusion channel must be the identity. Further, the F -matrices and
braiding properties all follow very much in a similar manner. The only
slightly problematic piece is that we must continue to assume that the
conformal blocks form an orthonormal basis — which is hard to prove,
but appears to be true.

31.7 Generalizing to Other CFTs

The principles we used for buidling a quantum Hall state from the Ising
CFT can be generalized to build quantum Hall states from other CFTs
as well. The general principles are as follows:

(1) Construct an electron field which gives a ground state which is
single valued in the electron coordinates. This is done bystarting with
an abelian field from the CFT (one that does not have multiple fusion
channels) and combining it with a chiral bose vertex operator. The filling
fraction is determined entirely by the charge on the vertex operator.

(2) Identify all of the possible quasiholes by looking at all the fields in
the CFT and fusing them with a chiral bose vertex operator and enforc-
ing the condition that the electron coordinates must not have branch
cuts. The charge of the quasihole is determined by the charge on the
vertex operator (and the charge on the electron vertex operator).

(3) Some of the braiding properties can be determined immediately
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from the operator product expansion while others require more detailed
information about the form of the CFT.

31.7.1 Z3 Parafermions (briefly)

As an example, let us consider the Z3 Parafermion CFT. Its primary
fields and fusion rules are given by

h

ψ1 2/3
ψ2 2/3
σ1 1/15
σ2 1/15
ǫ 2/5

× ψ1 ψ2 σ1 σ2 ǫ

ψ1 ψ2

ψ2 I ψ1

σ1 ǫ σ2 σ2 + ψ1

σ2 σ1 ǫ I + ǫ σ1 + ψ2

ǫ σ2 σ1 σ1 + ψ2 σ2 + ψ1 I + ǫ

These fusion rules might look very complicated, but in fact they can
be thought of as an abelian Z3 theory (with fields I, ψ1, ψ2 = ψ̄1) fused
with a Fibonacci theory (with fields I and τ). We then have

σ1 = ψ2τ

σ2 = ψ1τ

ǫ = τ

and using the Fibonacci fusions τ×τ = I+τ and the Z3 fusions ψi×ψj =
ψ(i+j)mod3 with ψ0 being the identity, we recover the full fusion table22.22Note that the scaling dimensions h

also work out modulo 1. The τ field has
hτ = 2/5 If you add this to h = 2/3 for
the ψ field you get h = 2/5 + 2/3 =
1 + 1/15.

Let us propose an electron field

ψe(z) = ψ1(z)V√m+ 2
3

(z)

where m is a nonnegative integer (even for bosons, odd for fermions). It
is easy to check from the OPE that

ψe(z)ψe(w) ∼ (z − w)mψ2(z)V2
√
m+ 2

3

(z)

The resulting wavefunction is then

Ψ = 〈ψe(z1)ψe(z2) . . . ψe(zN )Q〉

which is known as the Read-Rezayi Z3 parafermion wavefunction.
The filling fraction of the wavefunction is determined by the vertex

operator and is given by

ν =
1

m+ 2
3

For the m = 0 case this is ν = 3/2 bosons, while for the m = 1 case this
is ν = 3/5 fermions.
For the case of m = 0 it is easy to check that the wavefunction does

not vanish when two particles come to the same point, nor does it vanish
when three particles come to the same point, but it does vanish when
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four particles come to the same point. Thus the wavefunction is an exact
(densest) zero energy ground state of a four particle delta function.
While there are 4-particle interactions for these systems for which

wavefunctions are the exact ground state, it turns out that there are
physically relevant cases where the Read-Rezayi Z3 parafermion wave-
function is an extremely good trial wavefunction. For bosons interacting
with a simple two body δ-function potential potential at filling fraction
ν = 3/2,the Z3 parafermion wavefunction is extremely good. For elec-
trons interacting with simple coulomb interaction (in realistic quantum
well samples), it turns out that the wavefunction is extremely good for
ν = 2+2/5, which we need to particle-hole conjugate in the partly filled
Landau level to get a ν = 3/5 wavefunction. (** add cites **)
To construct a quasihole we can try building a quasihole from any of

the primary field operators. It turns out the one with the lowest charge
is constructed from σ1

ψqh(z) = σ1(z)Vβ(z)

Using the OPE we have

σ1(w)ψ1(z) ∼ (z − w)−1/3ǫ(z)

We thus choose
β =

p

3
√
m+ 2

3

with the smallest charge quasihole then being p = 1. With this choice,
for a quasihole at position w we generate a factor of

∏

i

(z − w)1/3

meaning the charge of the quasihole is

e∗ = eν/3
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Exercises

Exercise 31.1 Bose Vertex Operators
In lecture we needed the following identity

〈Vα1(z1)Vα2(z2) . . . VαN (zN )〉 =
∏

i<j

(zi − zj)
αiαj (31.17)

where
∑

i

αi = 0 (31.18)

where the vertex operators are defined by

Vα(z) =: eiαφ(z) : (31.19)

with φ a chiral bose field and colons meaning normal ordering.
(a) To get to this result, let us first show that for a bose operator a, such

that [a, a†] = 1, we have

eαaeβa
†
= eβa

†
eαaeαβ (31.20)

(b) Thus derive

〈VA1VA2 . . . VAN 〉 = e
∑
i<j〈AiAj〉 (31.21)

where
Ai = uia

† + via (31.22)

and
VAi =: eAi := euia

†
evia (31.23)

with the colons meaning normal ordering (all daggers moved to the left).
(c) Show that Eq. 31.21 remains true for any operators Ai that are sums of

different bose modes ak, i.e., if

Ai =
∑

k

[ui(k)a
†
k + vi(k)ak] (31.24)

Set Ai = iαiφ(zi) such that VAi = Vα(zi). If φ is a free massless chiral bose
field which can be written as the sum of fourier modes of bose operators such
that

〈φ(z)φ(w)〉 = − ln(z −w) (31.25)

conclude that Eq. 31.17 holds.
Note: This result is not quite correct, as it fails to find the constraint

Eq. 31.18 properly. The reason it fails is a subtlety which involves how one
separates a bose field into two chiral components. (More detailed calculations
that get this part right are given in the Big Yellow CFT book (P. Di Francesco,
P. Mathieu, and D. Senechal) and in a different language in A. Tsvelik’s book.)

There is, however, a quick way to see that the constraint must be true.
Note that the lagrangian of a massless chiral bose field is

L =
1

2π
∂xφ(∂x + v∂t)φ (31.26)



Exercises 419

which clearly must be invariant under the global transformation φ→ φ+ b.
(d)Show that the correlator Eq. 31.17 (with Eq. 31.19) cannot be invariant

under this transformation unless Eq. 31.18 is satisfied, or unless the value of
the correlator is zero.

Exercise 31.2 Z4 Quantum Hall State
In this problem we intend to construct a quantum hall state from the the

Z4 parafermion conformal field theory (Details of the CFT can be found in A.
B. Zamolodchikov and V. A. Fateev, Soviet Physics JETP 62, 216 (1985), but
we will not need too many of the details here).

The wavefunction we construct is known as the Z4 Read-Rezayi wavefunc-
tion (N. Read and E. Rezayi, Phys. Rev. B 59, 8084 (1999) ).

The Z4 parafermion conformal field theory has 10 fields with corresponding
conformal weights (scaling dimension)

field 1 ψ1 ψ2 ψ3 σ+ σ− ǫ ρ χ+ χ−

weight h 0 3
4

1 3
4

1
16

1
16

1
3

1
12

9
16

9
16

and the fusion table is given by

× 1 ψ1 ψ2 ψ3 σ+ σ− ǫ ρ χ+ χ−

1 1 ψ1 ψ2 ψ3 σ+ σ− ǫ ρ χ+ χ−
ψ1 ψ1 ψ2 ψ3 1 χ− σ+ ρ ǫ σ− χ+

ψ2 ψ2 ψ3 1 ψ1 χ+ χ− ǫ ρ σ+ σ−
ψ3 ψ3 1 ψ1 ψ2 σ− χ+ ρ ǫ χ− σ+

σ+ σ+ χ− χ+ σ− ψ1 + ρ 1+ ǫ σ+ + χ+ σ− + χ− ψ3 + ρ ψ2 + ǫ

σ− σ− σ+ χ− χ+ 1+ ǫ ψ3 + ρ σ− + χ− σ+ + χ+ ψ2 + ǫ ψ1 + ρ

ǫ ǫ ρ ǫ ρ σ+ + χ+ σ− + χ− 1+ ψ2 + ǫ ψ1 + ψ3 + ρ σ+ + χ+ σ− + χ−
ρ ρ ǫ ρ ǫ σ− + χ− σ+ + χ+ ψ1 + ψ3 + ρ 1+ ψ2 + ǫ σ− + χ− σ+ + χ+

χ+ χ+ σ− σ+ χ− ψ3 + ρ ψ2 + ǫ σ+ + χ+ σ− + χ− ψ1 + ρ 1+ ǫ

χ− χ− χ+ σ− σ+ ψ2 + ǫ ψ1 + ρ σ− + χ− σ+ + χ+ 1+ ǫ ψ3 + ρ

If I have not made any mistake in typing this table, the fusion rules should
be associative

(a× b)× c = a× (b× c) (31.27)

Note of interest: These fusion rules may look mysterious, but in fact they
are very closely related to the fusion rules of SU(2) appropriately truncated
(i.e., this is the SU(2)4 WZW model). We can write each field as a young
tableau with no more than 2 (for SU(2)) columns and no more than 4−1 = 3
rows

field 1 ψ1 ψ2 ψ3 σ+ σ− ǫ ρ χ+ χ−

tableau empty

The fusion rules are just a slight modification of the usual young tableau
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manipulations for SU(2) where columns are removed if they have 4 boxes.
(See the big yellow book for details).

Using the techniques discussed in lecture:

(a) Use the operator product expansion (dimension counting) to find the
singularity as two ψ1 fields come close together. I.e, find the exponent α in
the relation

lim
z′→z

ψ1(z
′)ψ1(z) ∼ (z′ − z)α ψ2(z) (31.28)

(b) Construct all possible “electron” fields by making a product of the ψ1

field and a chiral bose vertex operator of the form

ψe(z) = ψ1(z)e
iβφ(z) (31.29)

that give a single-valued and nonsingular wavefunction for the electron. (See
Eq. 31.17, but ignore the sum condition Eq. 31.18) I.e., find all acceptable
values of β. Consider both the case where the “electron” is a boson or a
fermion. What filling fractions do these correspond to? (There are multi-
ple allowable solutions for both bosons and fermions). Consider among the
bosonic solution, the one solution of the highest density. The ground state
wavefunction in this case is the highest density zero energy state of a 5-point
delta function interaction. Show that the wavefunction does not vanish when
4 particles come to the same point, but does indeed vanish as 5 particles come
to the same point.

(c) Given a choice of the electron field, construct all possible quasihole
operators from all fields ϕ in the above table

φqh(w) = ϕ(w)eiκφ(w) (31.30)

For each case, fix the values of κ by insisting that the wavefunction remain
single-valued in the electron coordinates. Determine the quasihole with the
lowest possible (nonzero) electric charge. What is this charge?

(d) Two such quasiholes can fuse together in two possible fusion channels.
What is the monodromy in each of these channels. I.e, what phase is accumu-
lated when the two quasiholes are transported around each other (assuming
the Berry matrix is zero – which is a statement about wavefunctions being
properly orthonormal – which we usually assume is true).

(e) Draw a Bratteli diagram (a tree) describing the possible fusion channels
for many of these elementary particles. Label the number of paths in the
diagram for up to 10 quasiholes. If there are 8 quasiparticles and the number
of electrons is divisible by 4, what is the degeneracy of the ground state? If
there are 4 quasiparticles and the number of electrons is 4m + 2 what is the
degeneracy of the ground state?

(f) Construct a 5 by 5 transfer matrix and show how to calculate the ground
state degeneracy in the presence of any number of quasiholes. Finding the
largest eigenvalue of this matrix allows you to calculate the “quantum dimen-
sion” d which is the scaling

Degeneracy ∼ d[Number of Quasiholes] (31.31)

in the limit of large number of quasiholes. While diagonalizing a 5 by 5 matrix
seems horrid, this one can be solved in several easy ways (look for a trick or
a nice factorization of the characteristic polynomial).
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(g) Consider instead constructing a wavefunction from the ψ2 field

ψe(z) = ψ2(z)e
iβφ(z) (31.32)

What filling fraction does this correspond to (for bosons or fermions). In the
highest density case, what are the properties of this wavefunction (how does
it vanish as how many many electrons come to the same point).
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Medium Material

Working out the details of a TQFT is an often tedious task and except
in the simplest cases, one does not want to go through the pain of doing
this. At the end of this chapter we list a number of resources for finding
details of many TQFTs.
Perhaps the most useful single resource I have found for obtaining

data about TQFTs is a computer program called Kac written by A.
N. Schellekens. The complicated part of the algorithm is described by
Fuchs et al. [1996]. More details are given on the project webpage.
The progam can be downloaded from the webpage

https://www.nikhef.nl/~t58/Site/Kac.html

While the program has many capabilities (and I encourage you to
RTFM1), it is probably useful to give here an annotated example of how 1Read the Frikkin Manual

it works. Note that the program uses Dynkin diagram (Cartan) notation
for describing Lie algebras. The correspondence is given by

Ar = su(r + 1)

Br = so(2r + 1)

Cr = sp(2r)

Dr = so(2r) (32.1)

One can also use the E6, E7, E8, F4 and G2 Lie algebras.
Here we present some annotated sessions with Kac.

MYLINUXBOX$Kac

Kac (on MYLINUXBOX), version 8.05468, compiled on Sep 1 2016, at 16:27:29

Started Sun 30 Aug 05:19:53 BST 2020

Non-interactive mode; Assuming default answer: OK

> tensor

The tensor command tells the program that we might be tensoring
together multiple theories.

> g a 1 2

This inputs the group (g for group) with the Cartan notation a 1, or
A1 which is su(2) as given by the correspondence Eq. 32.1 above, and
the 2 indicates level 2. So we are asking it to compute information about
SU(2)2.
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> display

CFT {A1:2}; 3 primaries (2 simple currents)

Lbl Comb. Weights Wts. F.l. F.m.

0 {0} 0.0000000 0 - 1

1 {1} 0.5000000 1/2 - 1

2 {2} 0.1875000 3/16 - 1

The fields are numbered 0,1,2, and we see their corresponding weights
h = 0, 1/2, 3/16. The simple currents are always listed first. Recall that
twist factors are given by θ = e2πih. Note also that the weights are only
correct modulo one. We can then ask for quantities like the fusion rules,
or the S-matrix, the Frobenius-Schur indicator, or the central charge

> fusion

(0) x (0) = (0)

(0) x (1) = (1)

(0) x (2) = (2)

(1) x (1) = (0)

(1) x (2) = (2)

(2) x (2) = (0) + (1)

> S

S(0,0) = 0.50000000

S(0,1) = 0.50000000

S(0,2) = 0.70710678

S(1,1) = 0.50000000

S(1,2) = -0.70710678

S(2,2) = 0.00000000

> Get Schur 2

-1

> Browse Central

Central charge 1.500000000000000

If we had wanted to look at the opposite chirality theory, we use h

rather than g. To wipe the memory of the program and return to tensor
mode we use reset tensor. So for example, we have
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> reset tensor

> h a 1 2

> display

CFT {A1:2}; 3 primaries (2 simple currents)

Lbl Comb. Weights Wts. F.l. F.m.

0 {0} 0.0000000 (mod 1) 0 - 1

1 {1} 0.5000000 (mod 1) 1/2 (mod 1) - 1

2 {2} 0.8125000 (mod 1) 13/16 (mod 1) - 1

Note that the weight of the 2 field is 13/16 = −3/16 mod 1 so this is
the opposite chirality version of SU(2)2 which we write as SU(2)2.
The program can also handle U(1) Chern-Simons theory, and accepts

a parameter for so-called “radius” of the boson (which substitutes for
the level of the Chern-Simons theory). Since there is some disagreement
in the literature as to how you label the level of a U(1) Chern-Simons
theory, and as to how you label the radius, it is worth stating expliclty
that in the convention used by this program, the theory with radius R
has R different fields. In the convention we use in section 20.4.2 we
have U(1)N/2 corresponding to radius N for N even. We produce these
theories using the code g u followed by the radius as follows.

> reset tensor

> g u 4

> display

CFT {U4:0}; 4 primaries (4 simple currents)

Lbl Comb. Weights Wts. F.l. F.m.

0 {0} 0.0000000 0 - 1

1 {1} 0.1250000 1/8 - 1

2 {2} 0.5000000 1/2 - 1

3 {3} 0.1250000 1/8 - 1

The program can handle condensation, as well as splitting. Let us
consider the example used in section 23.4 of SU(2)4. We first produce
the SU(2)4 theory

> reset tensor

> g a 1 4

> display

CFT {A1:4}; 5 primaries (2 simple currents)

Lbl Comb. Weights Wts. F.l. F.m.

0 {0} 0.0000000 0 - 1

1 {1} 1.0000000 1 - 1

2 {2} 0.1250000 1/8 - 1

3 {3} 0.6250000 5/8 - 1

4 {4} 0.3333333 1/3 - 1

Note that one of the simple currents is a boson (integer weight). To
condense it we issue the command current and the name of the field
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we want to condense.

> current 1

> display

CFT {A1:4}; 3 primaries

Lbl Comb. Weights Wts. F.l. F.m.

0 {0} 0.0000000 0 - 1

1 {4} 0.3333333 1/3 0 1

2 {4} 0.3333333 1/3 1 1

> fusion

(0) x (0) = (0)

(0) x (1) = (1)

(0) x (2) = (2)

(1) x (1) = (2)

(1) x (2) = (0)

(2) x (2) = (1)

Which correctly splits the 4-particle as we discussed in section 23.4.
To generate product theories, we just input several theories in a row.

For example, to look at a product theory, SU(2)2 × SU(2)1 × SU(2)1
we write

> reset tensor

> g a 1 2

> h a 1 1

> h a 1 1

> display

CFT {A1:2_A1:1_A1:1}; 12 primaries (8 simple currents)

Lbl Comb. Weights Wts. F.l. F.m.

0 {0,0,0} 0.0000000 (mod 1) 0 - 1

1 {0,0,1} 0.7500000 (mod 1) 3/4 (mod 1) - 1

2 {0,1,0} 0.7500000 (mod 1) 3/4 (mod 1) - 1

3 {0,1,1} 0.5000000 (mod 1) 1/2 (mod 1) - 1

4 {1,0,0} 0.5000000 (mod 1) 1/2 (mod 1) - 1

5 {1,0,1} 0.2500000 (mod 1) 1/4 (mod 1) - 1

6 {1,1,0} 0.2500000 (mod 1) 1/4 (mod 1) - 1

7 {1,1,1} 0.0000000 (mod 1) 0 (mod 1) - 1

8 {2,0,0} 0.1875000 (mod 1) 3/16 (mod 1) - 1

9 {2,0,1} 0.9375000 (mod 1) 15/16 (mod 1) - 1

10 {2,1,0} 0.9375000 (mod 1) 15/16 (mod 1) - 1

11 {2,1,1} 0.6875000 (mod 1) 11/16 (mod 1) - 1

Since SU(2)2 has 3 fields, and each SU(2)1 has 2 fields, the product



427

of these three theories has 12 fields. The second column of the output
shows how each field is constructed from the constituent factors. For
example, the output field labeled 9 in the far left column comes from
the 2 field of SU(2), the 0 field from the first SU(2)1 and the 1 field
from the second SU(2)1.
Let us now construct the coset SU(2)2/(SU(2)1 × SU(2)1). Recall

from section 23.6 that one can construct this coset by starting with
SU(2)2 × SU(2)1 × SU(2)1 and condensing all possible simple current
bosons. Notice in the above output that there are 8 simple currents, and
the one labeled 7 or {1,1,1} is a boson. We thus issue the command

> current 1 1 1

> display

CFT {A1:2_A1:1_A1:1}; 3 primaries (2 simple currents)

Lbl Comb. Weights Wts. F.l. F.m.

0 {0,0,0} 0.0000000 (mod 1) 0 - 1

1 {0,1,1} 0.5000000 (mod 1) 1/2 (mod 1) - 1

2 {2,0,1} 0.9375000 (mod 1) 15/16 (mod 1) - 1

Giving us the result that this coset is actually Ising.

Further Reading

Note that many of the following references give only the so-called “modu-
lar data” for TQFTs — meaning the S-matrices (which imply the fusion
rules via the Verlinde formula, Eq. 17.12) and the twist factors θa. How-
ever, it has recently been established that there can be cases where more
than one modular TQFT can share the same modular data (Mignard
and Schauenburg [2017]2). However the simplest such case known where 2See also Bonderson et al. [2019] and

Delaney and Tran [2018] for discussion
of what additional data might be added
to make the TQFT unique

the modular data does not uniquely define the TQFT has 49 different
particle types and for all simple TQFTs the modular data is, at least in
principle, full information.

• A useful reference on conformal field theory, including WZW the-
ories (which give you the content of the corresponding Chern-
Simons theory) is given by Di Francesco et al. [1997].

• Many details of the simplest few modular tensor categories on the
periodic table are given by Rowell et al. [2009]; A correspond-
ing discussion for fermionic models is given by Bruillard et al.
[2017, 2020].

• Some nice data for some simple categories is given by Bonderson
[2007]. This includes, for example, the F -matrices for SU(2)k and
a number of other simple theories.

• F -matrices for many more complicated theories are given by Ar-
donne and Slingerland [2010].

• An online database of vertex algebras and modular categories is
given at

https://www.math.ksu.edu/~gerald/voas/
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Many undergraduates (and even many graduates) do not get any proper
education in advanced mathematics. As such I am including a very short
exposition of most of what you need to know in order to read this book.
For much of the book, you won’t even need to know this much! If you
have even a little background in mathematics you will probably know
most of this already.

33.1 Manifolds

We sometimes write R to denote the real line, i.e., it is a space where
a point is indexed by a real number x. We can write Rn to denote n-
dimensional (real) space — a space where a point is indexed by n-real
numbers (x1, . . . , xn). Sometimes people call these spaces “Euclidean”
space.

Definition 33.1 A Manifold is a space that locally looks like a Eu-
clidean space.

If a manifold is bounded, contains all its limit points, and has no
boundary we call it closed.

33.1.1 Some Simple Examples: Euclidean Spaces
and Spheres

• Rn is obviously a manifold (it is not bounded, so therefore not
closed).

• The circle S1, also known as a 1-sphere (hence the notation, the
index 1 meaning it is a 1-dimensional object) is defined as as all
points in a plane equidistant from a central point. Locally this
looks like a line since position is indexed by a single variable (the
“curvature” of the circle is not important locally). Globally, one
discovers that the circle is not the same as a real line, as position
is periodic (if you walk far enough in one direction you come back
to where you start). We sometimes define a circle as a real number
from 0 to 2π which specifies the angle around the circle.

• The 2-sphere S2 is what we usually call (the surface of) a sphere
in our regular life. We can define this similarly as all points in R3

equidistant from a central point.

• One can generally define the n-sphere, Sn, as points equidistant
from a central point in Rn+1.
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Often when we discuss a manifold, we will be interested in its topolog-
ical properties only. In other words, we will not care if a circle is dented
as shown in Fig. 33.1, it is still topologically S1. Mathematicians say

Fig. 33.1 This object is topologically
a circle, S1.

that two objects that can be smoothly deformed into each other are
homeomorphic, although we will not use this language often.
It is sometimes convenient to view the circle S1 as being just the real

line R1 with a single point added “at infinity” — think about joining
up +∞ with −∞ to make a circle. We can do the same thing with the
sphere S2 and R2 — this is like taking a big flat sheet and pulling the
boundary together to a point to make it into a bag and closing up the
top (which gives a sphere S2). Obviously the idea generalizes: S3 is the
same as R3 “compactified” with a point at infinity, and so forth.

Orientability

We say a manifold is orientable if we can consistently define a vector nor-
mal to the manifold at all points. Another way of defining orientability
(that does not rely on embedding the manifold in a higher dimension)
is that we should be able to consistently define an orientation of the
coordinate axes at all points on the manifold. Throughout this book we
will almost always assume that all manifolds are orientable.

Fig. 33.2 A Möbius strip is a nonori-
entable manifold (with boundary). If
we move the coordinate axes around
the strip, when they come back to the
same position, the normal vector will
be pointing downwards instead of up-
wards.

Fig. 33.3 A two handled torus is
an orientable two-dimensional manifold
without boundary. Because it has two
holes we say it has genus two. Two di-
mensional manifolds without boundary
are classified by their genus.

An example of a nonorientable manifold is the Möbius strip shown
in Fig. 33.2. If we smoothy move the coordinate axes around the strip,
when we come back to the same point, the upward pointing normal will
have transformed into a downward facing normal.
There is a very simple classification of orientable closed (bounded and

without boundary) two dimensional manifolds by the number of ”holes”
which is known as its “genus”. A sphere has no holes, a torus has one
hole, a two handled torus has two holes, and so forth. See Fig. 33.3.

33.1.2 Unions of Manifolds M1 ∪M2

We can take a “disjoint” union of manifolds, using the notation ∪. For
example, S1 ∪ S1 is two circles (not connected in any way). If we think
of this as being a single manifold, it is a manifold made of two disjoint
pieces (or a disconnected manifold). Locally it still looks like a Euclidean
space.

33.1.3 Products of Manifolds: M3 = M1 ×M2

One can take the product of two manifolds, or “cross” them together,
using the notation ×. We write M3 = M1 ×M2. This means that a
point in M3 is given by one point in M1 and one point in M2. This
multiplication is often called the direct or Cartesian product.

• R2 = R1 × R1. Here, a point in R1 is specified by a single real
number. Crossing two of these together, a point in R2 is specified
by two real numbers (one in the first R1 and one in the second
R1).
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• T 2 = S1 × S1. The 2-torus T 2, or surface of a doughnut1 is the 1Alternatively spelled “donut” if you
are from the states and you like coffee.product of two circles. To see this note that a point on a torus is

specified by two angles, and the torus is periodic in both directions.
Similarly we can build higher dimensional tori (tori is the plural
of torus) by crossing S1’s together any number of times.

33.1.4 Manifolds with Boundary:

One can also have manifolds with boundary. A boundary of a manifold
locally looks like an n-dimensional half-Euclidean space. The interior
of a manifold with boundary looks like a Euclidean space, and near
the boundary it looks like a half-space, or space with boundary . For
example, a half-plane is a 2-manifold with boundary. An example is
useful:

• The n-dimensional ball, denoted Bn is defined as the set of points
in n dimensional space such that the distance to a central point
is less than or equal to some fixed radius r. Note: Often the
ball is called a disk and is denoted by Dn (so Dn = Bn). The
nomenclature makes good sense in two dimensions, where what
we usually call a disc is D2. The one-dimensional ball is just an
interval (one-dimensional segment) which is sometimes denoted
I = D1 = B1.

Note that a boundary of a manifold may have disconnected parts. For
example, the boundary of an interval (segment) in 1-dimension I = B1

is two disconnected points at its two ends2. 2In the notation of Section 33.1.5 be-
low, ∂I = pt ∪ pt where pt means a
point and here ∪ means the union of
the two objects as described above in
33.1.2.

One can take cartesian products of manifolds with boundaries too. For
example, consider the interval (or 1-ball) I = B1 which we can think of
as all the points on a line with |x| ≤ 1. The cartesian product I × I is
described by two coordinates (x, y) where |x| ≤ 1 and |y| ≤ 1. This is
a square including its interior. However, in topology we are only ever
concerned with topological properties, and a square-with-interior can
be continuously deformed into a circle-with-interior, or a 2-ball (2-disc),
B2.

• The same reasoning gives us the general topological law Bn×Bm =
Bn+m.

• The cylinder (hollow tube) is expressed as S1×I (two coordinates,
one periodic, one bounded on both sides).

• The solid donut is expressed as D2 × S1 (= B2 × S1), a 2-disc
crossed with a circle.

33.1.5 Boundaries of Manifolds: M1 = ∂M2.

The notation for boundary is ∂, so if M1 is the boundary of M2 we
write M1 = ∂M2. The boundary ∂M has dimension one less than that
of M.
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• The boundary of D2, the 2-dimensional disc is the one dimensional
circle S1.

• More generally, the boundary of Bn (also written as Dn) is Sn−1.

It is an interesting topological principle that the boundary of a mani-
fold is always a manifold without boundary. Or equivalently, the bound-
ary of a boundary is the empty set. We sometimes write ∂2 = 0 or
∂(∂M) = ∅ where ∅ means the empty set.

• The boundary of the 3-dimensional ball B3 is the sphere S2. The
sphere S2 is a 2-manifold without boundary.

The operation of taking a boundary obeys the Leibnitz rule analogous
to taking derivatives

∂(M1 ×M2) = (∂M1)×M2 ∪ M1 × (∂M2)

Lets see some examples of this:

• Consider the cylinder S1 × I. Using the above formula with find
its boundary

∂(S1 × I) = (∂S1)× I ∪ S1 × ∂I = S1 ∪ S1

To see how we get the final result here, start by examining the
first term, (∂S1) × I. Here, S1 has no boundary so ∂S1 = ∅ and
therefore everything before the ∪ symbol is just the empty set. In
the second term the boundary of the interval is just two points
∂I = pt ∪ pt. Thus the second term gives the final result S1 ∪ S1,
the union of two circles.

• Consider writing the disc (topologically) as the product of two
intervals B2 = I × I. It is best to think of this cartesian product
as forming a filled-in square. Using the above formula we get

∂B2 = ∂(I × I) = (pt ∪ pt)× I ∪ I × (pt ∪ pt)

= (I ∪ I) ∪ (I ∪ I) = top ∪ bottom ∪ left ∪ right

= square (edges only) = S1

The formula gives the union of four segments denoting the edges
of the square.

33.2 Groups

A group G is a set of elements g ∈ G along with an operation that we
think of as multiplication. The set must be closed under this multipli-
cation. So if g1, g2 ∈ G then g3 ∈ G where

g3 = g1g2
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where by writing g1g2 we mean multiply g1 by g2. Note: g1g2 is not
necessarily the same as g2g1. If the group is always commutative (i.e.,
if g1g2 = g2g1 for all g1, g2 ∈ G), then we call the group abelian3. If 3Named after Abel, the Norwegian

mathematician who studied such
groups in the early 1800s despite living
in poverty and perishing at the young
age of 26 from tuberculosis. The word
“abelian” is usually not capitalized due
to its ubiquitous use. There are a few
similar words in English which are not
capitalized despite being named after
people, such as “galvanic”.

there are at least some elements in the group where g1g2 6= g2g1 then
the group is called nonabelian4.

4Apparently named after someone
named Nonabel.

A group must always be associative

g1(g2g3) = (g1g2)g3 = g1g2g3

Within the group there must exist an identity element which is some-
times5 called e or I or 0 or 1. The identity element satisifies

5It may seem inconvenient that the
identity has several names. However,
it is sometimes convenient. If we are
thinking of the group of integers and
the operation of addition, we want to
use 0 as the identity. If we are think-
ing about the group {1,−1} with the
operation of usual multiplication, then
it is convenient to write the identity as
1. For more abstract groups, e or I is
often most natural.

ge = eg = g

for all elements g ∈ G. Each element of the group must also have an
inverse which we write as g−1 with the property that

gg−1 = g−1g = e

33.2.1 Some Examples of Groups

• The group of integers Z with the operation being addition. The
identity element is 0. This group is abelian.

• The group {1,−1} with the operation being the usual multiplica-
tion. This is also called the group Z2. The identity element is 1.
We could have also written this group as {0, 1} with the operation
being the usual addition modulo 2, where here the identity is 0.
This group is abelian.

• The group ZN which is the set of complex numbers e2πip/N with
p an integer (which can be chosen between 1 and N inclusive) and
the operation being multiplication. This is equivalent to the set of
integers modulo N with the operation being addition. This group
is abelian.

• The group of permutations of N elements, which we write as SN
(known as the permutation group, or symmetric group). This
group is nonabelian. There are N ! elements in the group. Think
of the elements of the group as being a one-to-one mapping from
the set of the first N integers into itself.

• The simplest nonabelian group is S3. In S3, one of the elements is

X =





1 → 2
2 → 1
3 → 3

Another element is

R =





1 → 2
2 → 3
3 → 1

where X stands for exchange (exchanges 1 and 2) and R stands
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for rotate. The multiplication operation XR is meant to mean,
do R first, then do X (you should be careful to make sure your
convention of ordering is correct. Here we choose a convention that
we do the operation written furthest right first. You can choose
either convention, but then you must stick to it! You will see both
orderings in the literature!) So, if we start with the element 1,
when we do R the element 1 gets moved to 2. Then when we do
X the element 2 gets moved to 1. So in the product XR we have
1 getting moved back to position 1. In the end we have

XR =





1 → 1
2 → 3
2 → 1

Note that if we multiply the elements in the opposite order we get
a different result (hence this group is nonabelian)

RX =





1 → 3
2 → 2
1 → 2

It is easy to check that

X2 = R3 = e (33.1)

and further we have
XR = R2X (33.2)

There are a total of 6=3! elements in the group which we can list
as e,R,R2, X,XR,XR2. All other products can be reduced to one
of these 6 posibilities using Eqs. 33.1 and 33.2.

33.2.2 More Features of Groups

A subgroup is a subset of elements of a group which themselves form a
group. For example, the integers under addition form a group. The even
integers under addition are a subgroup of the integers under addition.
The centralizer of an element g ∈ G often written as Z(g) is the set

of all elements of the group G that commute with g. I.e., h ∈ Z(g) iff
hg = gh. Note that this set forms a subgroup (proof is easy!). For an
abelian group G the centralizer of any element is the entire group G.
A conjugacy class of an element g ∈ G is defined as the set of

elements g′ ∈ G such that g′ = hgh−1 for some element h ∈ G.

Example: S3 Above we listed some of the properties of the group
S3. S3 has several subgroups:

• The group containing the identity element e alone

• The group containing {e,X}
• The group containing {e,R,R2}
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• The group S3 itself (which is not a so-called “proper” subgroup)

The centralizer is just the identity element Z(S3) = e, since it is the
only element of the group S3 that commutes with all elements of the
group. The group has three conjugacy classes

• The identity element e

• The rotations {R,R2}
• The reflections {X,XR,XR2}

We can check that conjugating any element in any class gives another
element within the same class. For example, consider the element X
and conjugate it with the element R. We have RXR−1 = XR which is
in the same conjugacy class as X .

33.2.3 Lie Groups and Lie Algebras

A Lie group6 is a group which is also a manifold. Roughly, a group with 6Pronounced “Lee”, named after So-
phus Lie, also a Norwegian Mathemati-
cian of the 1800s. Like Ski-Jumping,
Norway seems to punch above its
weight in the theory of groups.

a continuous (rather than discrete) set of elements. Examples include:

• The group of invertible n×n complex matrices. We call this group
GL(n,C). Here GL stands for “general linear”. The identity is the
usual identity matrix. By definition all elements of the group are
invertable.

• The group of invertible n × n real matrices. We call this group
GL(n,R).

• The group, SU(2), the set of 2 by 2 unitary matrices with unit
determinant. In this case the fact that this is also a manifold can
be made particularly obvious. We can write all SU(2) matrices as

(
x1 + ix2 −x3 + ix4
x3 + ix4 x1 − ix2

)

with all xj any real numbers with the constraint that x21 + x22 +
x23 + x24 = 1. Obviously the set of four coordinates (x1, x2, x3, x4)
with the unit magnitude constraint describes the manifold S3.

• SU(N), the group of unitary N by N matrices of determinant one
is a Lie group

• SO(N), the group of real rotation matrices in N dimensions is a
Lie group.

• The vector space Rn with the operation being addition of vectors,
is a Lie group.

Note that certain Lie groups are known as “simple” because as man-
ifolds they have no boundaries and no nontrivial limit points (For ex-
ample, GL(n) is not simple because there is a nontrivial limit — you
can continuously approach matrices which have determinant zero (or
are not invertable) and are therefore not part of the group. The set of



436 Some Mathematical Basics

simple Lie groups (including, SU(N) and SO(N) and just a few others)
is extremely highly studied.
A Lie Algebra is the algebra generated by elements infinitesimally

close to the identity in a Lie group7. For matrix valued Lie groups G,7A slightly more rigorous definition is
that a Lie algebra is an algebra of el-
ements u, v, w... which can be added
with coefficients a, b, c to give X =
au+bv+cw+ . . . where we have a com-
mutator [·, ·] which satisfies [X,X] = 0
for all X as well as bilinearity [au +
bv,X] = a[u,X] + b[v,X] and simi-
larly [X,au + bv] = a[X,u] + b[X, v]
for all X,a, b, u, v, and finally we must
have the Jacobi identity [[X,Y ], Z] +
[[Y,Z],X] + [[Z,X], Y ] = 0.

we can write any element g ∈ G as

g = eX = 1+X + (X)2/2 + . . .

where X is an element of the corresponding Lie algebra (make it have
small amplitude such that g is infinitesimally close to the identity). Con-
ventionally if a Lie group is denoted as G the corresponding Lie algebra
is denoted g.

• For the Lie group SU(2), we know that a general element can be
written as g = exp(in · σ) where n is a real three-dimensional
vector and σ are the Pauli matrices. In this case iσx, iσy and iσz
are the three generators of the Lie algebra su(2) (in the, so-called,
fundamental representation).

• For the Lie group GL(n,R) the corresponding Lie algebra gl(n,R)
is just the algebra of n× n real matrices.

Add something about Lie Algebra?

33.2.4 Representations of Groups:

A representation is a group homomorphism. This means it is a map-
ping from one group to another which preserves multiplication. We will
be concerned with the most common type of representation, which is
a homomorphism into the general linear group, ie, the group of ma-
trices. Almost always we will work with complex matrices. Thus an
n-dimensional representation is a mapping ρ to n-dimensional complex
matrices

ρ : G→ GL(n,C)

preserving multiplication. I.e.,

ρ(g1)ρ(g2) = ρ(g1g2)

for all g1, g2 ∈ G.
Typically in quantum mechanics we are concerned with representa-

tions which are unitary, i.e., ρ(g) is a complex unitary matrix of some
dimension. (In case you don’t remember, a unitary matrix U has the
property that UU † = U †U = 1).
A representation is reducible if the representing matrices decomposes

into block diagonal form. I.e., ρ is reducible if ρ = ρ1 ⊕ ρ2 for two
representations ρ1 and ρ2. An irreducible representation is one that
cannot be reduced.
An amazing fact from representation theory of discrete groups is that

the number of irreducible representations of a group is equal to the
number of distinct conjugacy classes.
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Irrenducible representations matrices satisfy a beautiful orthogonal-
ity relationship known as the grand orthogonality theorem (or Schur
orthogonality)

1

|G|
∑

g∈G
[ρR(g)]∗nm[ρR

′
(g)]pq = δnpδmqδRR′/d (33.3)

where the superscript R indicates a particular representation, the sub-
script are the matrix elements of the ρ matrix, d is the dimension of the
representation R, and |G| is the total number of elements in the group.
A character is the trace of a representation matrix.

χR(g) = Tr[ρR(g)]

where the superscript R indicates we are consisdering a particular repre-
sentation R. Because of the cyclic property of the trace Tr[ab] = Tr[ba]
the character is the same for all elements of a conjugacy class. One can
find tables of characters for different groups in any book on group theory
or on the web.
Representation theory of groups is a huge subject, but we won’t dis-

cuss it further here!

33.3 Fundamental Group Π1(M)

A powerful tool of topology is the idea of the fundamental group of a
manifold M which is often called the first homotopy group, or Π1(M).
This is essentially the group of topologically different paths through the
manifold starting and ending at the same point.
First, we choose a point in the manifold. Then we consider a path

through the manifold that starts and ends at the same point. Any other
path that can be continuously deformed into this path (without changing
the starting point or ending point) is deemed to be topologically equiva-
lent (or homeomorphic, or in the same equivalence class). We only want
to keep one representative of each class of topologically distinct paths.
These topologically distinct paths form a group. As one might expect,

the inverse of a path (always starting and ending at the same point) is
given by following the same path in a backward direction. Multiplication
of two paths is achieved by following one path and then following the
other to make a longer path.

33.3.1 Examples of Fundamental Groups

• If the manifold is a circle S1 the topologically distinct paths (start-
ing and ending at the same point) can be described by the number
n of clockwise wrappings the path makes around the circle before
coming back to its starting point (note n can be 0 or negative as
well). Thus the elements of the fundamental group are indexed by
a single integer. We write Π1(S

1) = Z.
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• If the manifold is a torus S1 the topologically distinct paths can
be described by two integers indicating the number of times the
path winds around each handle. We write Π1(S

1 × S1) = Z× Z.

It is in fact, easy to prove that Π1(M1 ×M2) = Π1(M1)×Π1(M2).

• A fact known to most physicists is that the the group of rotations
of three dimensional space SO(3) is not simply connected — a 2π
rotation (which seems trivial) cannot be continuously deformed
to the trivial rotation, whereas a 4π rotation can be continuously
deformed to the trivial rotation.8 Correspondingly the fundama-8This is the origin of half-odd integer

angular momenta. mental group is the group with two elements Π1(SO(3)) = Z2.

Chapter summary

Some mathematical ideas introduced in this chapter:

• Manifolds are locally like Euclidean space: Examples include
sphere S2, circle S1, torus surface T 2 = S1 × S1, etc. Manifolds
can also have boundaries, like a two dimensional disk B2 (or D2)
bounded by a circle.

• Groups are mathematical sets with an operation, and identity
and an inverse: Important examples include, Z the integers under
addition, ZN the integers mod N under addition, the symmetric
(or permutation group) on N elements SN , and Lie groups such as
SU(2) which are also manifolds at the same time as being groups.

• The Fundamental Group of a manifold is the group of topolog-
ically different paths through the manifold starting and ending at
the same point.

• Isotopy is the topological equivalence of knot diagrams (what can
be deformed to what without cutting).

• Writhe and Linking Number characterize pictures of oriented
knots and links.

Further Reading

For background on more advanced mathematics used by physicists, in-
cluding some topological ideas, see:

• M. Nakahara, Geometry, Topology, and Physics, 2ed, (2003), Tay-
lor and Francis.

• M. Stone and P. Goldbart, Mathematics for Physics, Cambridge
(2009). Free pdf prepublication version available online.

For further information on mathematics of knots, isotopy, and Rie-
dermeister moves, writhe, and linking, see
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• Louis Kauffman, Knots and Physics, World Scientific, (2001), 3ed.
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Medium Material

(1) A general reference which should be useful for much of the book
is the review article by Nayak, Simon, et alNayak et al. [2008].

(2) A wonderful little book which is really fun to read that introduces
the Kauffman invariant and many other ideas of knot theory is
the book Knots and Physics by KauffmanKauffman [2001], now
in its 3rd edition. This book really inspired me when I was a
grad student. It appears to be available online in several places
(not certain which, if any, are legal). Although the whole book is
fun; and much of it is written at a very introductory level, mainly
the end of part 1 is the most relevant part where he explains the
connection of Kauffman invariant to Chern-Simons theory (and
pieces get to be well beyond introductory). There is a lot in here
, the deep parts are easy to gloss over.

(3) A very nice introduction to non abelian anyons and topological
quantum computation is given in John Preskill’s lecture notes,
available online (Preskill [2004]).

(4) Frank Wilczek has two books which both discuss Berry phase and
abelian anyons?Wilczek [1990]. Both have mainly reprints in them
with some commentary by Wilczek. Often it is enough to read the
commentary!

(5) If you need a refresher on path integrals, consider the first 15 pages
of Fabian Essler’s notes?. Also consider the nice article by Richard
MacKenzie?. MacKenzie includes some useful applications such as
Aharanov-Bohm effect. Look mainly at the first 22 pages.

(6) The classic paper by Ed Witten which launched the field is Witten
[1989]. This is a tremendously deep paper which introduces a lot
of brilliant ideas. I find something new every time I read it. I find
it to be tough reading in some places and easy in others.

(7) From a more mathematial viewpoint several articles by Sir Michael
Atiya are very usefulAtiyah [1988, 1997]. These are both introduc-
tions to topological quantum field theories. There is also a more
detailed book by the same authorAtiyah [1990a]. The full book
might be hard to read unless you have a very strong maths back-
ground.

(8) There are several nice references on the structure of topological
quantum field theories and diagrammatic calculus,
Parsa Bonderson’s thesis: http://thesis.library.caltech.edu/2447/2/thesis.pdf
This is a more detailed version of the long article by Kitaev (“Anyons
in exactly solvable models”) which I mention below. Note there is
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some slight change of convention between the two articles.
Also a good reference is the book on Topological Quantum Com-
putation by Zhenghan Wang
“Topological Quantum Computation”, Conference Board of the
Mathematical Sciences, Regional Conference Series in Mathemat-
ics, American Mathematical Society, (Providence, Rhode Island),
Number 112, 2008.
If you are more mathematical, you might like the thesis of Bruce
Bartlett available online here
https://arxiv.org/abs/math/0512103

(9) The monumental work “Anyons in an exactly solved model and
beyond” by Alexei Kitaev, Annals of Physics 321 (2006) 2–111
available online here
https://arxiv.org/abs/cond-mat/0506438
This brings the ideas of topological quantum field theory into the
condensed matter arena. This is not easy reading, but a ton of
great ideas are buried in this paper.
Another work by Kitaev, “Fault-tolerant quantum computation by
anyons”, Annals Phys. 303 (2003) 2-30.
available online here
https://arxiv.org/abs/quant-ph/9707021
introduces the famous toric code, discusses quantum error correc-
tion, and generalizes the toric code model to arbitrary non-abelian
groups.
Kitaev’s work on the quantum wire (which we might get to at the
end of the course) is here.
https://arxiv.org/abs/cond-mat/0010440
A brief digest of some of the many ideas introduced in these three
papers is given by notes taken by Laumann of Kitaev’s lectures,
available here.
https://arxiv.org/abs/0904.2771
Loop gases are introduced in this paper by Freedman et al. It has
a lot of sections which are hard to parse.
http://stationq.cnsi.ucsb.edu/ freedman/Publications/83.pdf
The double-fibonacci string-net is discussed in some detail in this
work by Fidkowski et al,
https://arxiv.org/abs/cond-mat/0610583
The classic paper on string - nets very generally is this by Levin
and Wen.
https://arxiv.org/abs/cond-mat/0404617
The standard reference on introductory quantum hall effect is the
classic book, ”The Quantum Hall Effect”, edited by Prange and
Girvin, published by Springer. The first chapter, and the chapters
by Laughlin and Haldane are probably the best. The experimental
chapters are good for context too.
Another decent reference quantum Hall physics is T. Chakraborty
and P. Piettilainen, ”The Quantum Hall Effects: Integral and Frac-
tional,” (Springer 1995).
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A short review article by Macdonald is pretty nice and is available
here.
https://arxiv.org/pdf/cond-mat/9410047v1.pdf
The article that introduced the ideas of conformal field theory into
the field of quantum Hall effect is by Moore and Read, available
online here.
http://www.physics.rutgers.edu/ gmoore/MooreReadNonabelions.pdf
A recent review article on Fractional quantum Hall hierarchies
(and also discusses nonabelian quantum Hall and conformal field
theory) is online here.
https://arxiv.org/abs/1601.01697

A few random digressions:

(10) If you are interested in 2+1 D quantum gravity, see this article .
I can’t vouch for it, but the introduction is interesting;
https://link.springer.com/article/10.12942/lrr-2005-1
This is the article by Witten explaining how 2+1 D gravity is ”ex-
actly solvable.” More from Witten here. There is reconsideration
many years later, again by Witten, see here .
http://www.sciencedirect.com/science/article/pii/0550321389905919

(11) I’ve been told the book by Jiannis Pachos on topological quantum
computation is a good resource.

(12) If you are interested in the topology of manifolds in 3 and 4 di-
mensions, there are several good books. One by Kirby is online
here.
https://math.berkeley.edu/ kirby/papers/Kirby
There is a book by Gompf and Stipcitz ”4-manifolds and Kirby
Calculus” which is nice. Note that parts of this book are online
free if you google them.
https://www.amazon.co.uk/4-Manifolds-Calculus-Graduate-Studies-
Mathematics/dp/0821809946

(13) For more information on conformal field theory. The standard
reference is the Big yellow book (Conformal Field Theory Authors:
Philippe Di Francesco, Pierre Mathieu, David Sénéchal) . The first
part of this book (up to chapter 12) is excellent, but even that
much is a lot of reading. There is a short set of lectures from les
Houches by Ginsparg .
https://arxiv.org/abs/hep-th/9108028
I also like the short set of notes by Fendley .
http://galileo.phys.virginia.edu/ pf7a/msmCFT.pdf
For even shorter introduction of what you need to apply CFT to
quantum Hall, see the appendix of Ref. 1 above, or the appendix
of ***.
The book by Kauffman and Lins gives more details of constructing
a full anyon theory from the kauffman invariant.
http://press.princeton.edu/titles/5528.html
Neilsen and Chuang for quantum computation in general, although
there are plenty of other refs.
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